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Introduction

Let M be a compact manifold of dimension n. Let F' be a flat vector bundle on
M. Let H*(M,F) = @_, H (M, F) be the cohomology of the sheaf of locally
flat sections of F'. :

If E is a finite dimensional vector space, set det E = A™**(E). Following
an established tradition in algebraic geometry, we define the determinant of the
cohomology of F' to be the real line det H*(M, F') given by
(0.1) det H*(M, F) = Q) (det H(M, F))

=0

(-1)*

Let gF be a metric on the flat vector bundle F. Assume temporarily that g% is
flat, so that F' can be obtained through a representation of 7, (M) into O(dim F’).
If H*(M,F) = {0}, Franz [F], Reidemeister [Re] and de Rham [Rh1] have shown
how to associate to (F, g¥') a positive number, the torsion of F'.

Infactlet F'* bethe dualof F'. Let K beasmoothtriangulationof M. Thenthe
cohomology of the simplicial complex (C,(K, F*),d) is canonically isomorphic
to H*(M, F). Itis then a standard fact that there is a canonical isomorphism of real
lines

(0.2) det H*(M, F) ~ (det C, (K, F*))"".

Let B be the set of barycenters of the simplexes 0 € K. For z € B, let
g%= be a metric on F,. Then C,(K,F*) is a Z-graded Euclidean vector space.
We define the Reidemeister metric || || (ﬁ’tKH,( ) 0 be the metric on the line
det H*(M, F') corresponding to the obvious metric on (det Co(K, F*))~! via the
canonical isomorphism (0.2). The metric || || me(m,ry dependson K, B, and
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onthe gf=’s (z € B). If H*(M,F) = {0}, then det H*(M,F) ~ R, and
the metric || || fe’tKH.( m,Fy on the trivial line det H*(M, F) is now defined by a
positive number, which is the norm of the canonical section 1 € R. This number is
called the torsion of the complex (C,(K, F*),d).

Let gf be a flat metric on F', and assume that the gfz(z € B) are obtained
by restricting g¥ to B. Then if H*(M,F) = {0}, it is a basic result of Franz,
Reidemeister and de Rham that the torsion does not depend on B oron K. Itisa
topological invariant of the flat Euclidean vector bundle F'. More generally, even if

H*(M, F) is not reduced to 0, one can show that the metrics || IIi’tKH.(M F) do

not depend on B oron K. The metric || ||(§1’£1.(M ) on det H*(M, F) is then

a topological invariant of F', which we denote by || ||£, .. (M.F)*

Suppose that the metric || |ldet 7 induced by g¥ on the line det F' is flat.
Assume that the metrics g=(z € B) are still obtained by restricting g* to F, (z €
B). Then in [Mii2], Miiller has shown that the Reidemeister metric || ||fe’tK He(M,F)

is also a topological invariant, which we still denote || ||, (5 F)-

Letnow g7 and gF be smooth metrics on TM and F. Let (F,d) be the
de Rham complex of smooth sections of A(T*M)® F over M. Then the de Rham
theorem asserts that

(0.3) H* (F,d¥) ~ H*(M, F).

By Hodge theory, the harmonic forms in (F,d¥) with respect to the metrics
g™ and gF represent canonically the cohomology of (F,dF").

In [RS1], Ray and Singer constructed the logarithm of the analytic torsion of
(F,d¥), as a combination of derivatives at 0 of the zeta functions of the Laplacian
actingonformsin F of various degrees. By following a well-known recipe indicated
by Quillen [Q2] for Dolbeault complexes, to ¢g”™ and gF, we can associate a
metric on the line det H*(M, F'), which is the product of the standard L, metric
on det H*(M, F') (obtained by identifying H*(M, F') with the harmonic elements
of (F,dF)), by the Ray-Singer analytic torsion of [RS1]. This metric is called the
Ray-Singer metric on det H*(M, F), and is denoted || || &Y He(M,F)- Ray and

Singer showed that if dim M is odd, then || || yo(pr ) does not depend on

g™ and ¢F, i.e. itis a topological invariant of F.



INTRODUCTION

Assume that g is a flat metric on F. Then the real line det H*(M, F') canbe
equipped with two natural invariant metrics, the Reidemeister metric || ||, zo(pr.5)»
and the Ray-Singer metric || |7 4. ). Ray and Singer [RS1] made the con-
jecture that in this case,

R RS
(0.4) I Naes renr,ry = I Maet zocar,py -

They based this conjecture on previous computations by Ray [R] of the torsion of
lens spaces. In celebrated independent papers, Cheeger [C] and Miiller [Mii] proved
that this is indeed the case. The proofs of Cheeger and Miiller are very interesting in
themselves and are based on entirely different principles.

In [C], Cheeger proves that under surgery, the Ray-Singer metric behaves in the
same way as the Reidemeister metric. Then he shows how to pass from M x S to
M x S® x S3 by a sequence of surgeries. Using trivial identities for Reidemeister
and Ray-Singer metrics on product spaces, Cheeger [C] finally obtains (0.4).

In [Miil], by using the invariance of the Reidemeister metrics under subdivision
of a triangulation and combinatorial parametrices, Miiller shows first that the ratio of
the Ray-Singer metric to the Reidemeister metric does not depend on the orthogonally
flat bundle F. Then Miiller [Miil] uses surgery to reduce the proof of (0.4) to the
case of the trivial bundle on the sphere, for which the result was already known.

Assume now that M is odd dimensional, and that only the metric || - ||get 7 in-
ducedby g* on det F isflat. Thenthe metrics || ||, yo(pr.py 804 || 155 gre( s, 1)
are still topological invariants. By using the methods of Cheeger [C], Miiller [Mii2]
has shown that equality (0.4) still holds.

The purpose of this paper is to extend the results of Cheeger [C] and Miiller
[Miil,2] to the general case, where the metric || ||¢et 7 On det F' is not necessarily
flat.

As an important intermediary step, we prove first anomaly formulas for the
Ray-Singer metrics || [|%7 oy ). In fact, let (g7, %) and (gT™ ¢'F)
be two couples Euclidean metrics on (TM,F). Let || |ldeer and || |4 r
be the associated metrics on the line bundle det F. Let VIM and V'TM be
the corresponding Levi-Civita connections on TM, and let e(TM,VTM) and
e(TM,V'TM) be the associated representatives of the Euler class of TM in Chern-
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Weil theory. Let &(TM, VTM v'TM) pe the class of Chem-Simons n — 1 forms
on T'M such that

(0.5) de (TM, vTM ¢'TM ) —e (TM, v'T™ ) — e (TM, V™M),

Let 6(F,g'F') be the closed 1-form, defined in Definition 4.5, which measures
the variation of the metric || ||}, on det F' with respect to the obvious flat
connection on det F'. The cohomology class of §(F, gF ) does not depend on gFt,
and O(F, g'F) vanishes if and only if the metric || ||, » is flat.

Let || ||tﬁfH.(M‘F) and || Il:iffH'(M,F) be the Ray-Singer metrics on
det H*(M, F) associated to the metrics (97™,g%) and (g TM,g'F).

A first result which is proved in this paper is as follows.

Theorem 0.1. The following identity holds,

2

1 e aer | I
(0.6) Log | —ps—— =/ Log( detF) e (TM,VvTM)
M

I Ndet zrea,p) I Nt
~ /M 0(F,gF)e(TM, V™, v'TH) .

Of course if dim M is odd, the right-hand side of (0.6) is zero.

Let f: M — R be a Morse function. Let X be the gradient vector field of f
with respect to a given metric on M. Let B be the finite set of zeroes of X. If
z € B, let W*(z) and W*(z) be the stable and unstable cells of —X at z. We
assume that X verifies the Smale transversality conditions [Sm1, 2]. The Thom-
Smale complex (C,(W*, F*), ) is a finite dimensional complex whose homology
is canonically isomorphic to H,(M, F*). As in (0.2), we still have

(0.7) det H*(M, F) ~ (det C, (W*, F*))™".
Let g¥' be a smooth metricon F. As above, the metrics g*=(z € B) determine

a metric on det H*(M, F') via the canonical isomorphism (0.7) which we call the
Milnor metric, and which we denote by || ||ﬁ;)§1, (M,F)"

By Milnor [Mil, Theorem 9.3], if gF is a flat metric on F', and if the metrics
g™ (z € B) are the restriction of g¥ to F.(z € B), then the Milnor metric
I ||Z"£t’)f,. (u, ) coincides with the Reidemeister metric associated to gF.

10
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Letnow gT™ and g¥ be smoothmetricson TM and F. Let X be a gradient
vector field verifying the Smale transversality conditions. Let B the set of zeroes of
X. Themetric g% induces metrics g¥= onthe F, ’s (z € B). Let || lldetH.(M F)

be the corresponding Milnor metric on det H*(M, F). Let || || yo(ss,p) be the
Ray-Singer metric attached to the metrics g7, gF on TM, F.
Let ¥(TM,VTM) bethe n — 1 current on T'M which is constructed in [MQ]

and in [BGS4, Section 3], whose restriction to TM\{0} is induced by a smooth
form on the sphere bundle which transgresses the form e(TM,VIM).

The main purpose of this paper is to prove the following extension of the Cheeger-
Miiller theorem.

Theorem 0.2. The following identity holds,

(0.8) Lo (L"d—”iﬂ—@) =—/ 0 (F,g%) X*y (TM,VTM).
M

” Ildet He*(M,F)

The arch-typical application of Theorem 0.2 is the case where M = S; ~ R/Z
and where F' is the trivial vector bundle R, such that for a given o € R*, the flat
parallel transport operator 7 on F from 0 to ¢t € [0, 1] is given by e'*. In this
case H*(M,F) = {0} and so det H*(M, F') has a canonical section 1.

A simple calculation shows that
RS 2 AL
(0.9) Log (Il]l”det H.(M,F)) = —Log |25111h (§)| .

Let gF' be the constant metricon F' ~ R. Let f : M — R be a Morse function,
having only two critical points, a maximum at 0, and a minimum at 3 €]0,1[. Let
| ||(J:EQVH’: () denote the corresponding Milnor metric on det °(M, F'). Then

one verifies easily that
M,V 2 K
(0.10)  Log (1113 F ) =~ Log|2sink (5)| +a(28-1).

On the other hand, (Vf)*y(TM,VTM) is a section of o(TM). In fact on
M\{0, 8}, —=2¢(TM,VTM) defines the orientation given by Vf. Moreover

1
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6(F, gF) = 2adt. So we find that
(0.11)

8 1
- [ 0Rg") (V1% (M, 9™) = - ["adt+ [ adi=-a(25 - 1)
M 0 B

S0 (0.9)-(0.11) fit with (0.8).

Although Theorem 0.1 can be obtained as a consequence of Theorem 0.2, estab-
lishing first Theorem 0.1 is essential in our proof of Theorem 0.2.

Let

(0.12) (F*,v):0 - F S F' ... 5 F™ 0.

v

be a flat exact sequence of flat vector bundles on M. Let o be the canonical
nonzero section of the flat line bundle det F'* = ®;."=0 (det F7)(=1)’ defined in
[KMu], [BGS1].

By [KMu], to the exact sequence (0.12), one can associate a canqnical nonzero
section 7 of the line det H*(M, F*) = ®;."=O(det H*(M, Fj))(—l)’ .

Let g¥,-.., g™ be Euclidean metricson F°,--- F™. Let || ||qet r+ be the
corresponding metric on det F'*. Let g”M be an Euclidean metric on TM. Let
I NES e a0y ||fefH.(M’F,,.) denote the associated Ray-Singer metrics
on det H*(M, F°),--. det H*(M,F™), and let || "ﬁiH'(M,F') be the corre-
sponding metric on the line det H*(M, F**).

As an easy consequence of Theorem 0.2, we also obtain the following result.
Theorem 0.3. The following identity holds,

RS,
(0.13)  Log (1711852 pspey) = /M Log (llollge; o )e(TM, VTM).

Now, we will briefly describe the general strategy of our proofs of Theorems 0.1
and 0.2, and also the techniques which we use in this paper.

12
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1. Ray-Singer metrics and Quillen metrics

In [BL1, 2], Bismut and Lebeau have considered a problem which is formally related
to the problem which we solve here. In fact let 7 : Y — X be an embedding of
complex manifolds. Let 7 be a holomorphic vector bundle which resolves the sheaf
1.0y (n). Let A(§) and A(n) be the inverses of the determinants of the Dolbeault
cohomology of n and £&. Then by [KMul], the lines A(£) and A(n) are canonically
isomorphic. If metrics are introduced on TX,TY,&,7, let || |[ae) and || |lacm)
be the corresponding Quillen metrics on the lines A(¢) and A(n) [Q2], [BGS3]. In
[BL1,2], an explicit formula was obtained for Log(]lll—-hli‘i(%)2 in terms of integrals
of certain locally computable currents. One of the ideas of the proof of the main
result of [BL2] is to deform the Hodge theory of (X,&) to the Hodge theory of
(Y,n) by scaling the considered metrics on £.

Here, at a formal level, X is replaced by M, Y by B, and the current
appearing in (0.7) replaces the currents of [BL2]. This essential analogy will be
further explained.

For a detailed review of various results concerning Quillen metrics and complex
immersions, we refer to the survey [B3].

2. A fundamental closed form

Let gTM  g¥ be smoothmetricson TM, F. Let f : M — R be a smooth function.
For T > 0, let gk be the metric on F, gf = e~2TfgF. Let df* be the adjoint
of the de Rham operator d¥ with respect to the L, scalar product associated to the
metrics g7M,gF. Set Dy = dF 4+ df*. Let N be the number operator defining
the Z-grading of F.

Let oy 1 bethe 1-formon R} x R4,

(0.14) our = g%m [N exp (—tD%)] — dT Tr, [f exp (—tD7%)]

In (0.14), Tr, is our notation for supertrace. Then we prove in Theorem 5.6 that
the form aqr is closed. If T is a closed rectangle in R} x Ry, we obtain in
Theorem 5.8 the basic identity

(0.15) /Fa =0.

13
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Theorem 0.2 will be ultimately obtained by taking f to be a Morse function
such that the gradient field Vf associated to the metric g7™ verifies the Smale
transversality conditions, and by deforming the contour I' to the boundary of
R3 x R4. In this process, the contribution of each side of the rectangle diverges.
Once divergences are substracted off, we will obtain an identity which is equivalent
to Theorem 0.2.

3. The Witten complex and the Helffer-Sjostrand calculus

Observe that
(0.16) Dr = eTf (e T1aFeTf 4 eTfgFre=Th) =11,

When F = R, the operator e~T/d¥eT/ is exactly the twisted de Rham operator
introduced by Witten [W], in his proof of the Morse inequalities.

Set Dy = e~ T/ DEeTS . Let ]F[TO’” be the direct sum of the eigenspaces of the
operator D%, corresponding to eigenvalues A € [0,1]. Then (Fi'') e=T/dFeT/)
is a complex, whose cohomology is canonically isomorphic to H*(M, F). In [W],
Witten suggested thatas T — +oo, this complex is “asymptotic” to the Thom-Smale
complex associated to the vector field —V f.

In [HSj4], when FF = R and when Vf verifies the Smale transversality
conditions, Helffer and Sjostrand established the precise asymptotics as T —
+oo of the complex (Fiw!l e=TfdFeTf), in order to give an analytic proof
of the fact that the Betti numbers of the Thom-Smale complex are the same as
the Betti numbers of the de Rham complex. To calculate the asymptotics of the
complex (F[;’ll,e‘Tf dFeTf), Helffer and Sjostrand used their fundamental results
[HSj1,2,3] on the semi-classical analysis of Schrodinger operators with multiple
wells, to calculate the tunelling effects between these potential wells. An essential
consequence of [HSj1,2,3] is in fact that the eigenvectors of such Schrédinger
operators associated to small eigenvalues are approximated by the W K B solutions
of certain transport equations on adequate regions of M. When F' = R, Helffer
and Sjostrand [HSj4] used in fact the results of [HSj1,2,3] to approximate the
eigenvectors of the operator l~)§~ associated to eigenvalues A € [0, 1], by solutions
of WK B transport equations, which are themselves closely related to the Thom-
Smale complex of —V f.

14
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Let ]F[TO’” be the direct sum of the eigenvectors of D% corresponding to
eigenvalues A € [0,1]. Then (IF‘L}””,dF ) is a complex, whose cohomology is
canonically isomorphic to H*(M,F). Now F [;’1] is naturally equipped with
the L, metric associated to the metrics g™, g7.. Let || |3 gro(ar, ),z b the
corresponding metric on det H*(M, F). In our proof of Theorem 0.2, a crucial
role is played by Theorem 7.6, where we calculate the asymptotics of the metric
| 1%t zre(p. )7 @ T — +oo in terms of the Milnor metric on det H*(M,F).
Roughly speaking, to calculate this asymptotics, we need informations on :

— the eigenspaces of D2 associated to eigenvalues X €]0, 1].

— the kernel of D2, i.e. the harmonic forms in F associated to the metrics
g™ and gE.

When F = R, what is needed concerning the nonzero eigenspaces of D%
is essentially contained in the asymptotic description by Helffer-Sjostrand [HSj4,
Proposition 3.3] of the complex (Fi'") e=T/dFeTf). Here instead F is a vector
bundle, and moreover the metric g% is in general not flat, so that the operator sz
contains extra terms with respect to the corresponding operator considered in [HSj4].
Still, the results of [HSj1,2,3] and the techniques of [HSj4] can be adequately adapted
to treat the more complicate problem which is considered here. Nevertheless, we
have been forced to devote the whole Section 8 to summarize some of the essential
results of Helffer-Sjostrand [HSj1, 2,3], and to adapt the techniques of [HSj4] to
our problem. Unsurprisingly, one important result of Section 8 is contained in
Theorem 8.30, where we show that still in this case, as T' — +oo, the complex
(F9! e=TfgFeTf) can be asymptotically described in terms of the Thom-Smale
complex (C,(W", F*),0).

Let us finally point out that if the metric g¥ is flat, the results of [HSj4] can be
directly adapted, since in this case, the operator 13%1 is essentially the one considered
in [HSj4].

The potential which appears in the Schrodinger analysis of [HSj4] is exactly
|df|?. As shown by Witten [W], this explains the localization of the eigenvectors
of D2 as T — +oo near the potential wells for |df|2, i.e. on the critical points
of f. In [BL2], the submanifold Y described before is exactly the locus where
a nonnegative operator V2 has a nonzero kernel. This explains partly the analogy
between [BL2] and our work, where Y is in fact replaced by B. Nevertheless, there
is a fundamental difference : in [BL2], because of algebraic geometry considerations,

15
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there exists ¢ > 0 such that for T large enough, the analogue of l~)2T has no
eigenvalue in [0,1] other than 0. To the contrary, the small eigenvalues play here
an essential role. In fact in [BL2], the Morse inequalities are in fact equalities, and
this explains why no ‘instanton’ analysis is needed, the difficulty being concentrated
in the geometry of Y. Here B is simply a collection of points, and the analytic
difficulties come in fact from the tunelling effects.

4. The de Rham map, and its extension by Laudenbach to
Thom-Smale complexes

Our main result, in Theorem 0.2, compares two different metrics on the line
det H*(M, F'). This implies in particular that the cohomology groups of the de
Rham complex (F,d”’) and of the Thom-Smale complex (C,(W*,F*),d) have
been canonically identified, and besides that this canonical identification appears
explicitly in the analytic process of deformation of the de Rham complex to the
Thom-Smale complex.

If K is a smooth triangulation of M, the de Rham map, which one obtains
by integrating smooth forms on the simplexes ¢ € K provides the canonical
identification of the cohomology groups of (F,d’) with the cohomology groups of
(Co(K, F™*),0).

For general Thom-Smale complexes, it is more difficult to identify explicitly the
de Rham cohomology with the cohomology of the Thom-Smale complex. In the
Appendix, for gradient vector fields X which have a standard form near their zero
set B, Laudenbach provides us with a complete answer to this question. In this
case, the closure of the stable and unstable cells of the gradient vector field are in
fact manifolds with conical singularities, on which smooth forms can be integrated,
and the obvious analogue of the de Rham theorem still holds.

As explained before, the canonical identification of the de Rham cohomology with
the Thom-Smale cohomology should appear explicitly in the analytic deformations
process itself. This is shown to be the case in Section 9, as a consequence of our
extension of the results of Helffer-Sjostrand [HSj4] established in Section 8.

Let us point out that in [BL2, Section 10], the quasi-isomorphism of certain
Dolbeault complexeson X and Y appears also explicitly in the analytic deformation
process.

16
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5. Local index theory and Berezin integrals

As in [BL2], local index theory techniques play an important role in the paper. In
fact the term

—/ 0 (F,gF) X*y (TM, VM)
M

in the right-hand side of (0.8) appears through local index theory techniques. Let us
here just point out that in the case where the metric g¥ is flat, it is easy to see that the
local index contribution is identically zero, essentially because of Poincaré duality. In
general,we need more sophisticate local index techniques. In principle, the Clifford
rescaling techniques of Getzler [G] could be used in the whole paper. However, it is
much more convenient to use a different local index theoretic technique, associated
to the Berezin integral formalism. As explained in [BL2], standard index theoretic
techniques produce in principle local Quillen’s superconnection forms [Q1]. Here
we obtain instead Berezin integrals. While, by Mathai-Quillen [MQ], we know
that the forms produced by the superconnection formalism or the Berezin integral
formalism are equivalent, it is here much more convenient to manipulate Berezin
integrals, if only because they exhibit natural symmetry properties which are difficult
to see in the superconnection formalism. Section 3 is entirely devoted to develop
the Berezin integral formalism in the context of Morse theory, and also to establish a
mysterious identity of differential forms, which is in fact also a consequence of the
proof of Theorem 0.2.

Another difficulty in the application of local index techniques is that the usual
‘fantastic cancellations’ conjectured by McKean-Singer [McKS] do not occur here.
Part of the difficulty is often to calculate the second term in an asymptotic expansion
of the supertrace of heat kernel. This difficulty ressembles superficially a similar
difficulty already considered in Bismut-Gillet-Soulé [BGS2] and also in [BL2].
Again, the Berezin integral formalism is very useful to make the required calculations,
which are very different from the ones in [BGS2] or [BL2].

17
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6. The asymptotics of two parameters supertraces

Set D =d+d*,&(Vf) = df A +ivs. Inthe course of the proof, it is essential to
calculate the asymptotics as ¢ — 0 of Trs[f exp(—(tD + T(Vf))?)] for T < 1,
for T ~ %, and for T > 1. In a different context, this problem was already
encountered in [BL2]. In fact for T < 1, this term explains the appearance of
— [ O(F,gF) X*(TM,VTM), in the right-hand side of (0.8). For T ~ 1, the
harmonic oscillators near the critical points of f are ultimately responsible for a
modest term Log(7), whose role is ultimately to cancel another Log(w) coming
from the asymptotics of the complex (]F[ﬁ’l) ,dF). We hope to show in a forthcoming
paper that, as in [BL2], harmonic oscillators may express themselves in a more

forceful way.

As in [BL2], the difficulty is to establish estimates which take into account the
painful transition from the region 7' < % to the region T' > % Although here, the
geometry of B is trivial (while in [BL2], the geometry of the embedding ¢ : ¥ — X
played an essential role), the fact that one needs to go beyond the first term in the
asymptotics introduces new difficulties with respect to [BL2].

7. Some simplifying assumptions on the metrics

As we already explained, we prove first the anomaly formulas of Theorem 0.1,
by using the local index techniques and the Berezin integral formalism, which we
described before. This allows us to reduce the proof of Theorem 0.2 to the case
of one single couple of metrics (g™, gF'), which we choose to be as simple as
possible near the critical points of f. Incidently, note that using the techniques of
this paper, a direct proof of Theorem 0.2 with arbitrary metrics would break down.

8. From Milnor metrics to Milnor metrics : Cerf’s theory and
Laudenbach’s description of a one parameter deformation of the
Thom-Smale complex

By Theorem 0.2, we deduce a formula which compares the Milnor metrics associated
to two gradient vector fields.

18
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It is natural to expect that a formula comparing two Milnor metrics could be
established directly, without comparing first these metrics to the Ray-Singer metric.
Now, given two Morse functions f and g, Cerf’s theory [Ce] allows us to connect
f and g by a one parameter smooth path of smooth functions, which are Morse
except at a finite number of values of the parameter, corresponding to the birth or the
death of critical points. In the Appendix, over such a path, Laudenbach constructs
a smooth path of gradient fields, which verify the Smale transversality conditions
[Sm1], except at a finite number of values of the parameter, where he describes
explicitly the bifurcation of the Thom-Smale complex. In Section 16, this allows
us to give a direct proof of the formula comparing two Milnor metrics, which does
not use Theorem 0.2. Thus, if the reader is willing to take for granted the results of
the Appendix and of Section 16, we only need to prove Theorem 0.2 for one single
gradient vector field X.

This paper is organized as follows. In Section 1, we construct the Reidemeister
and Milnor metrics and in Section 2, the Ray-Singer metrics.

In Section 3, we describe the Berezin integral formalism in connection with
Morse theory, which we apply in Section 4 to the proof of the anomaly formulas of
Theorem 0.1 for Ray-Singer metrics.

In Section 5, we construct the closed form o 7.

In Section 6, we give various properties of the integral
- / o (F,g") X*y (TM, V™) .
M

In Section 7, we state nine intermediary results whose proofs are delayed to
Sections 8-15, and we prove Theorem 0.2.

In Section 8, we describe the results of Helffer-Sjostrand [HSj1—4], and we extend
their results on the asymptotics as T — +oo of the complex (Fio!l, e~T/dFeTf).

In Section 9, we calculate the asymptotics of the metric || |3 gro(ar,r),7 38
T — +o0.

Sections 10-15 are devoted to the proofs of the remaining intermediary results
stated in Section 7, which concern in particular the two parameter supertraces
described before.

Finally, in Section 16, we compare two Milnor metrics directly, by using results
of Laudenbach proved in the Appendix.
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We now say a few words concerning our notation. If A isa Z,-graded algebra,
if A,B € A, we define the supercommutator [A, B] by the formula

(0.17) [A, B] = AB — (_1)degAdeg BBA.

It is now time to describe our debts. We first owe a special mention to Tangerman
[Ta] who announced some five years ago that he was trying to give a new proof
of the Cheeger and Miiller theorem using Helffer and Sj6strand’s results [HSj4]
on the Witten complex. As far as we know, his program has not been terminated.
Apparently, Tangerman’s idea was to use a combination of Helffer-Sjostrand results
and of surgery techniques, which should make his program very different from ours.

We have had many discussions with F. Laudenbach, whose contribution to the
success of our program has been essential.

We owe our hearty thanks to J. Sjostrand. He helped us to orient ourselves in his
papers with Helffer, and patiently answered our many questions.

Also we are very much indebted to J. Cheeger for many discussions, for the
encouragement he gave us in our study of nonorthogonally flat metrics, and also for
his friendly questioning of our final formula.

The results contained in this paper were announced in Bismut-Zhang [BZ].
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I. Reidemeister metrics and Milnor metrics

In this Section, we construct the Reidemeister metrics and the Milnor metrics on
the determinant of the cohomology of a flat vector bundle.

This Section is organized as follows. In a), we recall some elementary properties
of the determinant of a finite dimensional complex, and of the corresponding metrics.

In b), we construct the Reidemeister metrics on the determinant of the cohomol-
ogy of a flat vector bundle associated to a smooth triangulation.

In ¢), we describe the Thom-Smale complex associated to the gradient vector
field of a Morse function.

Finally in d), we construct the Milnor metrics on the determinant of the coho-
mology of a flat vector bundle, associated to a gradient vector field.

a) A metric on the determinant of the cohomology of a finite
dimensional chain complex

If )\ is areal line, let A~! be the dual line. If F is a finite dimensional real vector
space, set

(1.1) det E = A™*(E).
Let
(1.2) (V',a):O—»VO?---—;V"—»O

be a chain complex of finite dimensional real vector spaces, so that V* = @, V.
Let H*(V) = @;_, H (V) be the cohomology of (V*,9).
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Set

(1.3) det V* = é) (det Vi)D",
=0
det H*(V) = é (det Hi(V)) V"

1=0
Then by [KMu], [BGS1, Section 1a)], there is a canonical isomorphism of real lines
(1.4) detV*® ~det H*(V).

Let || |laesvo, -]l |ldet v» be metrics on the lines det VO, ... det V™. We
equip the dual lines (det V°)~!,... (det V")~! with the dual metrics

“ ”(det Voy=1, """, ” “(det yn)-1.
Let | ||det ve be the metric on the line det(V'®),
n
(1.5) I llaeeve = @)U gep yeyonri-
i=0

Let || |lqet zo(v) be the metric on the line det H*(V') corresponding to the metric
|| |ldet ve via the canonical isomorphism (1.4).

Let ¢¥°,---,¢¥" be Euclidean metrics on V?°,--., V™, inducing the metrics
| llaetvo, ., || lldetvn on detV®, ... detV™. Weequip V = P, V* withthe

metric ¢¥ = @7, ¢, which is the orthogonal sum of the metrics g¥°,---,g"".

Let 0* be the adjoint of & with respect to the metric g¥'. Using finite
dimensional Hodge theory, we have the canonical identifications
(1.6) H V)~ {veV$0v=0,8'v=0}, 0<i<n.

As a vector subspace of V*, the vector space in the right-hand side of (1.6) inherits
an Buclidean metric from the metric ¢¥". Let g#'(Y) be the corresponding metric
on H'(V) via the identification (1.6). Then the line det H*(V') inherits a metric

| ldet Ho(V)-

The metrics || |lget mo(v) and | |qes meo(v) do not coincide in general. We
describe the discrepancy. Set
(1.7) D=9+ 9"

The Laplacian D? = 90* +8*9 preserves the splitting V* = @_, V*. Let P be
the orthogonal projection operator from V' on Ker D?> ~ H*(V). Set P* = 1-P.
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Let N € End(V) be the number operator of the complex (V*,d), i.e. N acts on
V(0 < i < n) by multiplication by s.

Set
(1.8) vit=@PVvive=gVv'.
ieven iodd

Then V = V* @ V~ is a Z,-graded vector space. Let 7 = +1 on VE. If
A € End(V*), we define the supertrace Tr;[A] by the formula

(1.9) Tr,[A] = Tr[r A).
For s € C, set
(1.10) 8v(s) = — Tr, [N (Dz)—sP‘L] .

Let D?>0 be the restriction of the operator D? to the orthogonal space to
Ker D? in V*. Then

(1.11) 6V’ (0) = Tr, [N Log (D>>°)].

The following result is proved in [BGS1, Proposition 1.5].

Theorem 1.1. The following identity holds,

1
(112) ” ”det H’(V) = I |det He(V) exp {50‘/ (0)} .

Remark 1.2. It should be pointed out that the metric || ||qet #e(v) only depends
on the metrics || |lget vo,--,|| |ldet v, While the metric | |ge¢ go(v) and also

9V (0) depend in general on the metrics g¥°,---,g"".
b) The Reidemeister metric on the determinant of the cohomology
of a simplicial complex

Let M be a compact manifold of dimension n. Let F' be a real flat vector bundle
on M, andlet F* be its dual.
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Let F be the locally constant sheaf of flat sections of F. For 0 < ¢ < n, let
Hi(M,F) be the i-th cohomology group of F. Set

(1.13) H*(M,F) = éH‘(M,F).

=0

Definition 1.3. Let det H*(M, F) be the real line

(1.14) det H*(M, F) = é (det H'(M, F)) V"
=0

Let H (M, F*) = @;_, Hi(M, F*) denote the singular homology of sections
of the flat vector bundle F*. Then

(1.15) H'(M,F) = (H;(M,F*))* 0<i<n.

Let K be a smooth triangulation of M. Then K consists of a finite set of
simplexes ¢ whose orientation is fixed once and for all. Let B be the finite subset
of M of the barycenters of the simplexesin K. Let b: K - Band 0 : B — K
denote the obvious one-to-one maps.

For 0 < i < n, let K* be the union of the simplexes in K of dimension < i.
For 0 < i < n, K*\K*~! is the union of simplexes of dimension .

If 0 € K, let [o] be the real line generated by o. Let (Co(K, F*),0) be the
complex of simplicial chains in K with valuesin F*. For 0 < ¢ < n, we have the
identity

(1.16) Ci(K,F )= @ lo]l®rFy,)
aeKi\Kl'—]

The chain map d maps C;(K, F*) into C;_(K,F*). Also the homology of the
complex (C.(K, F*),0) can be canonically identified with the singular homology
H,(M,F~).

If o € K, let [o]* be the line dual to the line [0]. Let (C*(K, F),d) be the
complex dual to the complex (C,(K,F*),0). In particular, for 0 < i < n, we
have the identity

(1.17) CH(K,F)= P I[o]* ®r Fio)-
aeKi\Ki—l
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The cohomology of the complex (C*(K,F), ) can be canonically identified to
the dual (H.(M,F*))* of H,(M,F*). In view of (1.15), the cohomology of
(C*(K,F),d) canbe identified with H*(M, F).

The complex (C*(K, F),d) can be described more explicitly. In fact, let K*
be a smooth cell polyhedral decomposition of M which is dual to the triangulation
K. Then B is also the set of barycenters of the polyhedra in K*. Again, we fix
once and for all the orientation of the polyhedra of K*.

Let o(T'M) be the orientation bundle of TM. Thenif ¢ € K andif o* € K*
is the dual polyhedron, there is a canonical identification of lines

(1.18) [0]" >~ [0*] ® o(TM)p(c)-

From (1.18), we deduce the canonical identification of complexes

(1.19) (c' (K, F) ,5) & (Cn—se (K*,F ® o(TM)),8(~1)**1) .
Using (1.19), we obtain the Poincaré duality isomorphism

(1.20) (H*(M,F))" =H"* (M,F*® o(TM)).

Set

(1.21) detC, (K,F*) = é) (det C; (K, F*)) D"

=0
det C* (K, F) = Q) (det C* (K, )Y
1=0

Then

(1.22) (det C*(K, F)) = (det C, (K, F*))™".

Using (1.4), we get a canonical isomorphism of real lines

(1.23) det C*(K, F) ~ det H*(M, F).

For every z € B, we equip the line det F, with a metric det F,. For every
o € K, we equip the line [o] with the trivial metric || ||{,) such that ||o||;s) = 1.
Forevery z € B, theline det([o(x)]* ® F,) inherits a metric || ||det((o(z)]*®Fs)-
For 0 < i < n, we equip the line det C*(K,F) with the metric || |laet ci(x,F)
which is the tensor product of the metrics || ||det(jo]* @ Fy,)) (0 € K \Ki-1).
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Let || |lget co(k,F) be the metric on the line det C*(K, F) associated to the
metrics ” ”det Ci(K,F) a8 in (15)

Definition 1.4. The Reidemeister metric || ||feff(H.( m,Fy ontheline det H*(M, F)

is the metric corresponding to the metric || ||qe¢ co(k,F) Via the canonical isomor-
phism (1.23).

We equip the line o(T'M) with its canonical trivial metric. For z € B, let
Il lldet(F+@o(TM)). bethe metric on the line det(F* ® o(TM)), associated to the
metric || ||aet 7, on det F,. Let || ||detH,(M Fr@o(TM)) e the Reidemeister
metric on the line det H*(M, F* @ o(T'M)) asssociated to the cell decomposition
K* and to the metrics || ||get(F+go(TM)).+ T € B.

By (1.20), we obtain the canonical isomorphism
(1.24) det H* (M, F* ® o(TM)) ~ (det H*(M, F))(™0"""

The identification (1.24) also identifies the Reidemeister metrics || ||(ﬁ£.( M.F

F*®0(TM))
and (|| HdetH.(M F))(‘l)"_]. This is a result of Milnor [Mi2].
Remark 1.5. Assume that F' can be equipped with a flat metric g¥. This
metric induces metrics || ||det F, on the lines det F(x € B). The associated
Reidemeister metric || || det Ho(M,F) Was constructed by Franz [F], Reidemeister
[Re], and de Rham [Rh1] (see [Mil, Section 8]). They showed that the Reidemeister
metric || ||3uise(as,py 1S invariant by simplicial subdivision. We thus obtain a
metric || ||%, 4. (m,F) ontheline det H*(M, F) which is a topological invariant.
Recently, Miiller [Mii2] extended this result to the case where the line det F' posseses
a flat metric || ||get . and where the lines det F(z € B) are equipped with the
corresponding metrics || ||det F, -

¢) The Thom-Smale complex of the gradient field of a Morse
function

Let M be a compact manifold. Let f : M — R be a Morse function. Let B be
the set of critical points of f, i.e.

(1.25) B = {z € M;df(z) =0}.
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If z € B, recall that the index ind(z) is the number of negative eigenvalues of the
quadratic form d? f(z) on T, M.

Let gTM be ametricon TM, andlet Vf € TM be the corresponding gradient
vector field of f. Consider the differential equation

(1.26) %Z— =-Vf(y).

Equation (1.26) defines a group of diffeomorphism (¢;):er of M.
If z € B, set

WH(o) = {u € M; Jim i) =<},
(1.27)
W) = {ye s Jim_ wity) =<}

The cells W*(z) and W*(z) will be called the unstable and stable cells at z.

We assume that the vector field V f verifies the Smale transversality conditions
[Sm1,2]. Namely, we suppose that if z,y € B, =z # y, W"(z) and W*(y)
intersect transversally. In particular if ind(y) = ind(z) — 1, W¥(z) N W*(y)
consists of a finite set I'(z, y) of integral curves -y of the vector field —V f, with
V-0 = Z,Y+00 = Y, along which W*(z) and W*(y) intersect transversally.

By [Sm1, Theorem A}, given a Morse function f, there exists a metric g7 on
TM suchthat V f verifies the transversality conditions.

We fix an orientation on each W*(z),z € B.

Let z,y € B with ind(y) = ind(z) — 1. Take v € I'(z,y). Then T,W*(y)
is orthogonal to T, W*(y) and is oriented. So for ¢ €] — 00, +0o0], the orthogonal
space T;-W*(y) to T,,W*(y) in T,,M carries a natural orientation. Also for
t €] — 0o, +oo|, the orthogonal space T} W*(z) to —V f(v;) in T,,W*(x) can
be oriented in such a way that s is an oriented base of T W*(z) if (—=V f(v:),s)
is an oriented base of T,, W*(x). Finally since W*(z) and W*(y) are transversal
along 7, for t €] — co,+oo[, T;W*(y) and T/ W*(z) can be identified, and
their orientations can be compared. Set

ny(z,y) =41 1if the orientations are the same,
(1.28)
= —1 if the orientations differ.
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If z € B, let [W*(xz)] be the real line generated by W*(z). Let F' be a flat
vector bundle on M, and let F'* be its dual. Set

Co (W, F*) = P [W*(2)] ®@r F.
(1.29) we?

C;:(WY,F* )= @ [W*(z)]erF;.

z€EB
ind(z)=1

If = € B, the flat vector bundle F* is canonically trivialized on W*(z). In
particular, if z,y € B are such that ind(y) = ind(z) — 1, and if v € I'(z,y),
f* € Fy, let ,(f*) € F; be the parallel transport of f € F; into F; along v
with respect to the flat connection of F*.

If z € B, f*eF;, set

130) dWr@er= X Y menWwonr),

lnd(y)—lnd(z) 1 7€F(x,y)

Then 0 maps C;(W*, F*) into C;—,(W*, F*) .

We now recall a basic result of Thom [T], Smale [Sm2].

Theorem 1.6. (C,(W*, F*),0) isachaincomplex. Moreover, we have a canonical
identification of Z-graded vector spaces

(1.31) H,(C,(W* F*),8) ~ H, (M, F*).

Remark 1.7. In the Appendix, if X has a canonical form near B, Laudenbach
gives a proof of Theorem 1.6, and he constructs the CW complex associated to the
cells W*(z)(z € B). Moreover he shows that the closures of the W*(x)’s are
manifolds with conical singularities.

Remark 1.8. If Vf verifies the Smale transversality conditions, V(—f) verifies
also the Smale transversality conditions. Let W'*(z), W (z)(z € B) be the
corresponding unstable and stable cells. Clearly, if = € B,

W' (z) = We(z),

(1.32) , )
W' (z) = W¥(x).
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If = € B, let [W*(x)]* betheline dual tothe line [W*(z)]. Let (C*(W*, F),8)
be the complex which is dual to (Co(W*, F*),8). For 0 < i < n, we have the
identity

(1.33) cC'W*,F)= @ [W*(=)" @ F:.

z€EB
ind(z)=1i

Then by Theorem 1.6,

(1.34) H* (C* (W™, F) ,8) = H*(M, F).

Fix an orientation on each W*(z). Then one easily verifies that

(1.35) (C° (W*,F),8) = (Cas (W*,F @ o(TM)),8(~1)"*).
Using (1.35), we recover Poincaré duality

(1.36) (H*(M,F))* = H**(M, F* ® o(TM)).

We will make more explicit the canonical identification (1.31). Here we follow
Milnor [Mil, Section 9].

By a result of Smale [Sm1, Theorem B], we may and we will assume that f isa
nice Morse function, i.e. f takes the value ¢ on the critical points of index . For
1 € N, set

(1.37) vi=f-1 [O,i+ -;-]

Let S(F™*) be the complex of singular chains in M with value in F*. For
0 <i < n, let S{(F*) be the complex of singular chains in V* with value in F*.
Then the S*(F*) define a filtration of S(F*),

(1.38) 0C SOF*)...C S*(F*) = S(F*).

By Morse theory, we know that for 0 < i, p < n, H,(V*, V=1 F*) isnonzero
only for p = ¢, and moreover

(1.39) H;(VI, V=L F*) = Ci(W*™, F*).
Set
(1.40) E) = Sp=olF")

(p’q) - Sg—‘]’-(F*) °
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Then (Ef, ;,d°) is the first term of the spectral sequence (E7, ), d") associated
to the filtration (1.38). By definition

(1.41) Ely g = Hp—o(VP, VP~ F¥).

The previous considerations show that

(1.42) E(lp,q) =Cp(W“, F*), if ¢g=0
= {0}, if ¢g#0.

Then, (E!,d") is a chain complex. In view of (1.42), one verifies easily that the
complexes (E, o),d") and (C,(W*, F*),) are identical.

Also by (1.42), the spectral sequence degenerates at E2, i.e. the chain map d?,
vanishes. Tautologically

(1.43) E?, ,=H.(C.(W*,F*),8) if ¢=0,
{0} if ¢#0.
Let
(1.44) 0C G°H,(M,F*)C...C G*"H,(M,F*) = H,(M, F*)

be the filtration on H,(M, F*) induced by the filtration (1.38). Then a basic result
on spectral sequences asserts that

GPH,_ (M, F*)
2 _ P—q )
(1.45) Eoq) = Gp1 H,_,(M,F*)

By (1.43), (1.45), we see that for 0 < i < n,

(1.46) H;(M,F*) = G'H;(M, F*),
G 'H;(M,F*) = 0.

By (1.45), (1.46), we get

(1.47) E(, 0y = Hp(M, F*).

By (1.43), (1.47), we obtain (1.31).
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d) Milnor metrics on the determinant of the cohomology of a flat
vector bundle.

We make the same assumptions and we use the same notation as in Section 1c). By
(1.4) and by Theorem 1.6, we know that

(1.48) det C* (W*, F) ~ det H*(M, F).

For z € B, let || ||qet 7, be ametric on the line det F,. Asin Section 1b), the
metrics || ||aet 7, (z € B) induce ametric || ||get co(ws,r) On det C*(W*, F).
Definition 1.9. The Milnor metric || ||§2£VH".( ) ontheline det H*(M, F) isthe
metric corresponding to the metric || ||get co(w=,F) viathe canonical isomorphism
(1.48).

Remark 1.10. Assume that F' can be equipped with a flat metric g%'. This metric
induces metrics | ||det 7, Onthelines det F,(z € B). The corresponding metrics

i ||3,'£;Z,f.( m,py Was constructed in Milnor [Mil, Section 9]. It was shown in

[Mil, Theorem 9.3] that the metric || ||3Vi5{f. (u,r) does not depend on V f, and
coincides with the Reidemeister metric || [|%, .. (m,F)- More generally, assume

that g¥ is a metric on F, such that the induced metric || |4et 7 On det F' is flat.
The same arguments as in [Mil, Theorem 9.3] show that the corresponding Milnor
metric || “ﬁézf-( m,F) coincides with the Reidemeister metric || NE, Ho(M,F)"
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II. Ray-Singer metrics and the de Rham map

In this Section we construct the Ray-Singer metrics on the determinant of the
cohomology of a flat vector bundle. Also we describe the de Rham map, which
identifies the cohomology of the de Rham complex and the cohomology of the
simplicial complex associated to a smooth triangulation. We also explain the
extension of this result by Laudenbach in the Appendix to certain Thom-Smale
complexes.

This Section is organized as follows. In a), we introduce the Ray-Singer metrics.
In b), we construct the de Rham map for simplicial complexes and in c), we describe
the de Rham map for Thom-Smale complexes.

a) The Ray-Singer metric on det H*(M, F))

Let M be a compact manifold, let F' be a flat vector bundle and let F™* be its dual.
Let g™, gF be smooth metrics on TM, F. Let ( }r and { Ya(r+a)or be the
corresponding scalar products on F' and A(T*M) ® F.

Let F = @, F* be the vector space of smooth sections over M of A(T*M)®
F=@ (A (T*M)® F).

Let VF denote the flat connection on F. Let d¥ denote the obvious action of
V¥ on F. Then

(2.1) df? = 0.

By the de Rham theorem, we know that the cohomology groups of the complex
(F,d¥) are canonically isomorphic to H*(M, F).
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Let duys be the volume form on M associated to the metric g7™. Let * be
the Hodge operator associated to g7 acting on A(T*M). The operator * also
actson A(T*M)Q F.

If a,a’ €F, set

(2.2) (a,)p = /M (@ A*d')p.
Equivalently
(2.3 (@)= [ (@a)yr-mor @)dou(o)

The F'’s (0 < i < n) are mutually orthogonal in F with respect to the scalar
product ( , )r. Let d¥* be the formal adjoint of d¥ with respect to the scalar
product ( , )y. For 0 <i < mn, set

FiOV = {f e F',dF f = 0,d"" f = 0},

FIO) = HFO,

=0

(2.4)

By Hodge theory, we know that for 0 < i < n, H{(M,F) and F{°}¢ are
canonically isomorphic. As finite dimensional vector subspaces of the F’ s, the
F{°}i > 5 inherit the scalar product { , ). Let g® (M-F) denote the corresponding
metricon H*(M, F). Thustheline det H*(M, F) inherits ametric | |5 ;o s, pys
which is also called the Lo metric.

Set
(2.5) D = dF +df*.

Then D? = dFdf* + dF*dF is the Hodge Laplacian associated to the metrics
g™ gF. Let F{°hL denote the orthogonal space to F{°} in F with respect to
the scalar product { , )5. Let P, Pt denote the orthogonal projection operators
from F on F{°} F{0}1  The Hodge Laplacian D? acts as an invertible operator
on F{°hL  and its inverse is denoted (D?)~!.

Let N be the operator defining the Z-grading of F, ie. N acts on F' by
multiplication by ¢.

If A € End(F) is trace class, we define its supertrace Tr,[A] as in (1.9).
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Definition 2.1. For s € C,Re(s) > n/2, set

(2.6) 6%(s) =~ Tr, [N (D?) ™ PJ'] .

By a result of Seeley [Se], 6%(s) extends to a meromorphic function of s € C,
which is holomorphic at s = 0.

Definition2.2. Let || |3 o s, r) betheRay-Singermetric ontheline det H®(M, F)
186F
e e = | B ew {350}

Remark 2.3. The quantity exp{3 agf (0)} was originally called by Ray and Singer

[RS1] the analytic torsion of the complex (T, d¥ ). The holomorphic analogue
for Dolbeault complexes was introduced by Ray and Singer [RS2]. Quillen [Q2]
constructed the corresponding Quillen metric on the determinant of the holomorphic
cohomology. Quillen metrics have been the object of several recent developments
[BGS1, 2, 3], [BL1, 2], some of which will be central to our understanding of the
Ray-Singer metric.

Let gF" be the metric on F* induced by the metric ¢g¥ on F. We equip
the orientation line o(T'M) with the trivial metric. The vector bundle F* ®
o(T M) is then equipped with a metric g¥ ®°(TM) Let || | &S He(M,F*®0(TM))
be the Ray-Singer metric on det H*(M, F* ® o(T'M)) attached to the metric
g™ on TM and the metric gF ®(TM) on F* ® o(TM). 1t is easy to see
that under the isomorphism (1.24), the metrics || ||&%% gro(as, pr@o(Tary) 2nd

(Il ”detH‘(M,F))(_l)"—] correspond.
Remark 2.4. When M is odd dimensional, Ray and Singer [RS1, Theorem 2.1]

proved that the metric || ||get zre(as,7) is a topological invariant, i.e. does not
depend on the metrics g7™ or gF.

When M is even dimensional and oriented, if the metric g% is flat, it follows
from Ray and Singer [RS1, Theorem 2.3] that

s
(2.8) I 1ldss srear,my = b it mre (1, F)-

Remark 2.5. Assume that the metric ¢ is flat. Let || ||, gy ) denote the
corresponding Reidemeister metric on the line det H*(M, F'), which is constructed
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in Remark 1.5. It was conjectured by Ray and Singer [RS1] that if M is odd
dimensional, the Ray-Singer metric || ||&7 yo(5s ) and the Reidemeister metric

I NE, 4 (M, F)» Whichare both topological invariants, are equal. This was proved in
celebrated papers of Cheeger [C] and Miiller [Miil]. Miiller [Mii2] recently extended
this result to the case where the metric || ||¢et 7 on the line det F' is flat.

b) A quasi-isomorphism of complexes : the de Rham map for
smooth triangulations

Take a smooth triangulation K of M asin Section 1b). The flat vector bundle F' is
canonically trivialized over each simplex o € K by using the flat connection V¥,

The line [o] has non zero a canonical section o. Let o* € [0]* be dual to
o € [0], sothat (0,0*) = 1. If @ € F, theintegral o* ® [_a liesin [0]* ® Fy(o).
Of course if a € F*, [« is nonzero only if o € K*\K*~1.

Definition 2.6. Let P,, be the map

(2.9) a€F - Poa= Za*@/aeC’(K,F).

o€K

Theorem 2.7. The map P, is a quasi-isomorphism of the Z-graded complexes
(F,d¥) and (C*(K,F),d), which provides the canonical identification of the
cohomology groups of both complexes.

Proof. Clearly P maps F* into C*(K,F). Take o € K, f* € Fy . By
definition, if o € I, then

(2.10) (Poe,0 ® f*) = <f/aa>

Then
(2.11)

(Podfa,0 @ f*) = <f*,/odFa> = <f*,/aaa> = (Poo, 8 (0 ® f*))

= <5P°°a,a ® f*>.
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From (2.11), we see that P,, is a homomorphism of complexes. The de Rham
theorem asserts that P, is a quasi-isomorphism, i.e. it identifies canonically the
cohomology groups of (F,dF) and of (C*(K, F),0) . a

¢) A quasi-isomorphism of complexes : the de Rham map for
Thom-Smale complexes

We use the same notation as in Section 1c).

Let f: M — R be a Morse function, let g7™ be ametricon TM. Let B be
the set of critical points of f. If z € B, let ind(z) be the index of f at x. We
assume that for any z € B, there exists a coordinate system y = (y!,...,y") near
z such that O represents z, and moreover, near z,

n
gTM — Zldyz'2,
1
(2.12) | nd(2) L oo
— i2 , L i|2
f)=f@)-5 > WP+3 > W
1 ind(z)+1

Let Vf be the gradient vector field of f. We assume that V f verifies the Smale
transversality conditions.

In the Appendix, Laudenbach proves that the closed cells W(z) (z € B) are
submanifolds of M with conical singularities. Therefore smooth forms can be
integrated on the W*(xz)’s (z € B).

The vector bundle F' is canonically trivialized over each cell W*(z).

If z € B, the line [W*(z)] has a canonical nonzero section W*(z). Let
WH(z)* € [W*(z)]* be dualto W¥(z) € [W*(z)], sothat (W*(z), W¥(z)*) =
1. If o € F, the integral W*(z)* ® fwu(w)a lies [W*z)]* @ Fy. Clearly if

a € F, [iyu,, @ is nonzero only if ind(z) = i,
Definition 2.8. Let P., be the map

(2.13) a€F = Pea=Y W) ® /_ a€eC* (W F).
z€B Wu(x)
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Theorem 2.9. The map P, is a quasi-isomorphism of the Z-graded complexes
(F,d¥) and (C*(W*,F),d), which provides the canonical identification of the
cohomology groups of both complexes.

Proof. We use the notation of Section 1 c). Let (D'(M, F*),d"") be the complex
of currents on M with values in F*. If z € B, let 6W"(z) be the current of
integration on W (z).

Take 8 € Co(W*, F*). Then 8 can be written in the form
(2.14) B=Y BW*@)]®f;, B.€R, fi€F;.

z€B

If f2 € F}, weextend f: to aflat section of F* on W' (z), which we still note
fa. Set

(2.15) I8) =) Bafibwr(q)
z€B

Then I(B) € D'(M, F*). By a result of Laudenbach [Appendix, Proposition 7],
I is a quasi-isomorphism from (C,(W¥, F*),d) into (D'(M,F*),dF"). Let
I H,(C(W*,F*),0) — Ho(M, F*) be the induced isomorphism.

Take i,0 < i < n, B € C;(W¥* F*). Then I(8) vanishes near 8V*, and
dI(B) = I(9B) is supported in Vi~1, So I(8) defines a homology class in
H;(Vi,Vi—l F*) = C;(W*", F*) which coincides tautologically with 3.

o

It follows from the previous considerations that I is indeed the canonical
isomorphism H,(C(W*,F*),0) ~ H,(M,F*). Alsoif o € Q*(M,F), B €
Co(Wy, F*), then

(2.16) (Pooat, B) = (@, I(B))-

Therefore P, is the transpose of I. Theorem 2.9 follows. O
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III. Berezin integrals and Morse functions

In this Section, we recall the construction by Mathai-Quillen [MQ] of Thom
forms and of the transgressed Euler forms for Euclidean vector bundles in the
Berezin integral formalism. Also we establish certain identities on Berezin integrals
involving the gradient vector field of a smooth function. Finally when this function
is a Morse function, we prove certain mysterious identities involving currents which
are constructed using Berezin integrals.

This Section is organized as follows. In a), we introduce the Berezin integral. In
b), we construct the Thom forms of Mathai-Quillen [MQ] on the total space of an
Euclidean vector bundle with connection. In c¢), we recall results of [BGS4] on the
convergence of the Mathai-Quillen Thom forms, as a parameter 1" tends to +oo.
In d) we construct a transgressed Euler class, which is a current on the total space of
a vector bundle.

In e), we specialize the previous considerations to the case of the tangent bundle.
In f), we establish a crucial symmetry property for a Berezin integral involving a
gradient vector field. In g), we introduce a canonical section of an exterior algebra.
Inh), we establish transgression formulas for currents which are expressed as Berezin
integrals. In i) and j), we take the limit, as a parameter 7" tends to +oo, of certain
identities of currents associated to a Morse function. Finally, in k), we consider the
case where the metric on the tangent space is flat near the critical points of the Morse
function.

As we will see in Section 7e), the identity established in Section 3;) is in fact a
consequence of the proof of Theorem 0.2. It has seemed convenient to us to give a
direct proof of these identities. Also the symmetry property of Section 3f) will be of
constant use in the sequel.

39



J.-M. BISMUT, W. ZHANG

For an introduction to Berezin integrals and their application to the construction
of Thom forms and of Euler forms, we also refer to Berline-Getzler-Vergne [BeGV,
Chapter 1].

This Section is self-contained.

a) The Berezin integral

Let E and V be real finite dimensional vector spaces of dimension n and m.

Let g€ be an Euclidean metric on E. Let ej,---,e, be an orthonormal base
of E, andlet e!,---,e™ be the corresponding dual base of E*.

Assume temporarily that F is oriented and that e, ---,e, is an oriented base
of E. Let fB be the linear map from A(V*)®A(E*) into A(V*) which is such
thatif o € A(V*),8 € A(E*), then

B
(3.1) / af=0 if degf <dimkFE,
B n!n2+]!
/ ael/\n-/\e":-(—l—)—_——a.
T2

More generally, let o( E) be the orientation line of E. Then [ B defines a linear
map from A(V*)RA(E*) into A(V*) ® o(E). The linear map [” is called a
Berezin integral.

In the sequel, we do not assume any more that E is oriented. Let A be an
antisymmetric endomorphism of E. We identify A with the element of A(E*),
1 .
(3.2) A= D> (e, Aej)et nel.

1<i,j<n

By definition, the Pfaffian Pf[] of = is defined by the formula

55 [*on(2)=re[2]

Then Pf[] liesin o(E). Clearly Pf[2] vanishes if n is odd.
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b) Vector bundles and Berezin integrals : the Mathai-Quillen
Thom forms

Let M be a real manifold of dimension m. Let = : E — M be a real vector
bundle of dimension n. Let g€ be an Euclidean metric on E.

Let VE be an Euclidean connection on (E,g¥) and let R® = (VE)? be the
curvature of VE. Then RF is a smooth section of A?2(T*M) @ End(E).

Also 7*V¥ is an Euclidean connection on 7*(E, g¥) and =*RF is the curva-
ture of 7*VE. Moreover 7*RE is a smooth section of A*(T*E) ® End(7*E).

Let e;,---,e, be an orthonormal base of E and let e!,---,e™ be the corre-
sponding dual base of E*. Let fy,---, fm beabase of TM, andlet f!,..., f™
be the corresponding dual base of T*M. We identify RE with the section RF of
A%(T*M)RA?(E*)

. 1 . )
(34) RE=1 37 (e RE(firfi)es) f' A I ne* NeP.
s
Equivalently
(3.5) RE = 1 Z (ea, REeg)e™ NeP.
2
1<a,8<n

The connection V£ defines a horizontal subspace T#E of TE such that
TE=THEQ®E. Let PE be the projection TE — E andlet PE*: E* - T*E
be the transpose of PE. Then P¥ isasectionof T*E® E. If we identify E with
E* by the metric g, PF can be considered as a section of T*E @ E*. Clearly

n

(3.6) PE =" (PP*e) €.

1

Let Y be the generic element of E.

Definition 3.1. For T > 0, let A7 be the element of (A(T*E)@m*A(E*))ever,

m*RE

(3.7) ar ="

+VTPE + T|Y).
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Recall that we identify E with E*. If e € E, we will often write € when e is
considered as an element of A(E*), and we still denote PZ*e the corresponding
element of A(T*E).

The connection 7*V ¥ acts as a differential operator on smooth sections of
A(T*E)®@n*A(E*). Alsoif e € E, the interior multiplication 7. acts naturally on
A(E*), and also as a derivation of the graded algebra A(T*E)@7*A(E*). To indi-
cate clearly that i, only acts on the second factor 7*A(E*) of A(T*E)®n*A(E*),
we will write i~ instead of .. In particular we have

(3.8) Z (eq, (T*RE) eg)ed A eﬂ
1<aﬁ<n

PE - Z PE*ei A€,

1

The following result is proved in [MQ, Section 6] and [BeGV, Lemma 1.85 and
Propositions 1.87 and 1.88].

Theorem 3.2. The following identities hold

~

0A Y
* 7 FE . _ T * E

(3.9) [7r \Y +2\/sz,AT] =0, o =|rV +2vT i, S Vix
Proof. The Bianchi identity asserts that

(3.10) [w*vE,n*RE] = 0.

Also

(3.11) [Zﬁz ] VT Z (W*REY ea>e“.
1<aln
Moreover, one verifies easily that

(3.12) [W*VE,\/TPE] =T Z <7T*REY,6(,>EE.

1<a<ln
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BEREZIN INTEGRALS AND MORSE FUNCTIONS

From (3.11), (3.12), we get

RE ,
(3.13) [2ﬁ i, 7r*—2—] + [VE, vT PE] =0.

Moreover

(314) [r"VE T[] =2TPPYY,  [2vVTis, VTPE| = —2TPE"Y,
and so

(3.15) [«*VE, T|Y 2] + [2\/’2" ig, VT PE| =0.

From (3.10), (3.13), (3.15), we get the first identity in (3.9). Moreover

0 1
3.16 —Ar = —=PE 4 |Y%
(316) 57 AT = PP Y]
Using (3.16), one obtains the second identity in (3.9). O

Let 7, denote the integral along the fibre of forms on E taking value in 7*o(E).

We will apply the formalism of the Berezin integral developed in Section 3a),
with V = TE. If w is a smooth section of A(T*E)®n*A(E*) over E, wa is
a smooth section of A(T*E)®7*o(E), i.e. a smooth differential form over E with
values in 7*o(FE).

Set
(3.17) e (E,VE) =Pf [1;—:] .

Then e(E, VE) is a smooth closed section of AY™ E(T*M) ® o(E). The form
e(E, VE) isa Chern-Weil representative of the rational Euler class of E. Of course,
if n =dim FE is odd, then

(3.18) e(E,VE) =0.

Definition 3.3. For T > 0 and T > 0, let ar and B be the forms over E

B
aTz/ exp (—-Ar),

B o
ﬁT=/ Z\I;TGXP(—AT)~
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We will establish a fundamental result which was first proved in Mathai-Quillen
[MQ, Theorem 6.4].

Theorem 3.4. For any T > 0, the forms ar have degree n, are closed and their
cohomology class does not depend on T. For T > 0, the forms ar represent the
Thom class of E, so that

(3.20) oo =1
For T > 0, the forms 31 have degree n — 1. Finally

apg =7re (E,VE) ,

_ —iyaT
(3.21) Pr=—7—T>0,
dar
BT = —dBr, T > 0.

Proof. Elements of A(T*E)®A(E*) have a partial degree in A(T*E) and also
a partial degree in A(E*). Then Ar is a sum of forms of type (p,p), and so
exp(—Ar) is also a sum of forms of type (p,p). Therefore the forms ar have
degree n, and the forms (37 have degree n — 1.

If w is a section of A(T*E)®A(E*), then

B
(3.22) / i w=0.
Using Theorem 3.2, we get
(3.23) [W*VE +2VT i3, €Xp (—AT)] =0.
Therefore, by (3.22), (3.23), we obtain
B B
(3.24) d/ exp (—Ar) = / [n*VE +2VT i, €Xp (—AT)] =0,

and so the forms ar are closed.

By (3.3), we get the first identity in (3.21). Also

(3.25) iyAr =VTY.
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Therefore
(3.26)

iy f ¥ exp (Ap) = / 7 iy Ar) exp (— Aq) = / ’ (-VT ?) exp(~Ar).

The second identity in (3.21) follows.
Moreover by using Theorem 3.2 and (3.22), we get

dar [P OAr
(3.27) Y ke / 57 P (—AT1)

B Y
= —/ |:7r*VE + 2\/T ’L?, E—ﬁ exp (—AT)] = —d (.

Finally, for 7' > 0

B -~ —
(3.28) m.ar =/ exp (-T|Y|?) T"/z/ (=1)"PE*e! Ael A--- A PP*e" Nen
E

B
=/exp(—T|Y|)2T"/2/ (1) T2 PEreI . APE*emAGIA. - A = 1.
E

The proof of Theorem 3.4 is completed. a

¢) Convergence of the Mathai-Quillen currents over E

Let o(T'M) be the orientation bundle of T'M. We identify M to the zero section
of E. If k€ N, andif K isacompactsetin E, let || ||ox (g be a natural norm
on the Banach space C%(E) of forms in E with values in 7*o(T'M), which are
continuous with k continuous derivatives, and whose support is included in K.

Let 6)s be the current of integration on M. If u is a smooth compactly
supported form on E with values in 7*o(TM), then [, uby = [, p-

Theorem 3.5. Let K be a compact subset of E. There exists a constant C > 0
such that for any smooth form u on E with values in ©*o(T M) whose support is
included in K, for T > 1, then

C
/Ep(a:r - 6M)| < ﬁ ||l‘"C}((E)’

‘/Eﬂﬁir

(3.29)
C
< T3/2 ”:u”C}((E) :
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Proof. The proof of Theorem 3.5 is essentially the same as the proof of [BGS4,
Theorem 3.12]. It is left to the reader. a

d) A transgressed Euler class

Definition 3.6. Let (E, VE) be the current on E with values in o(E),

(3.30) ¥ (E,VE) = = BrdT .
0

The restriction of ¥(E, VZ) to the sphere bundle of E was first constructed in

Mathai-Quillen [MQ, Section 7]. In view of Theorem 3.5, it is clear that the current
Y(E, VE) is well-defined.

Recall that M is identified to the zero section of E. The normal bundle to M
in E isexactly E.

Let g'F be another metric on E, and let V'E be an Euclidean connectionon E
withrespectto g'%. Let €(E, VE, V'F) denote the Chern-Simons class of forms of
degree n — 1 over M with values in o(E), which is defined modulo exact forms,
such that

(3.31) de (E,VE,V'E) = e (E,V'F) —e(B,VF).
If n is odd, then
(3.32) ¢(E,VE,V'E) =0.

For the definition and properties of the wave front set of a current, we refer to
[Ho, Chapter VIII].

Theorem 3.7. The current (E,V®) hasdegree n—1. If )\ isasmooth function on
E with values in R*, under the map e € E — )e € E,¢(E,VF) is changed into
Y(E,VE) for X >0, into (=1)"¢(E,VE) for A < 0. The current y(E,VE) is
locally integrable on E. The wave front set of ¥(E,VF) isincluded in E*. Also
Y(E,VE) verifies the equation of currents over E

(3.33) dy (E,VE) = 1*e (E,VE) - 6um
The restriction of —(E,VE) to the fibres of E coincides with the solid angle

form of the fibre associated to the metric gF .
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If ¢'E isanother metricon E, andif V'E isaconnectionon E whichpreserves
the metric ¢'%, then

(3.34) o (FE, V'E) -y (E, VE) =n*¢(E, VE, V'E) modulo exact currents.

Proof. By Theorem 3.4, y)(E,VF) has degree n — 1. By proceeding as in [BGS4,
Theorems 3.14 and 3.15], we see that (E, V) is locally integrable, and that the
wave front set of (E,VF) is included in E*. Equation (3.33) follows from
Theorems 3.4 and 3.5.

By (3.21) and (3.33), we know that iy = 0,iydy = 0. Soif A is a smooth
function from E into R*, we see that ¢(E,VF) is invariant under the map
Y € E — )\Y € E. Using the explicit formula (3.19), we find that under the map
Y € E — -Y € E,(E,VF) is changed into (—1)"y(E, VE).

Let w be the volume form in the fibres E. Using (3.21), one verifies easily that
the restriction of —(E, VF) to the fibres of E is given by

['(n/2) iyw

(3.35) prrliart

which is the solid angle form of the fibres.

Finally equation (3.34) follows from equation (3.33) and from a simple deforma-
tion argument which is left to the reader. O

Remark 3.8. Assume that dim £ < dim M. Let s be a smooth section of E. Set
(3.36) M' = {z € M; s(z) =0}.

Suppose that over M’, ds has maximal rank dimE. Then M’ is a smooth
submanifold of M. Let Ny /p be the normal bundle to M "'in M. Then
ds : Nyiym — Ejpe is anidentification of vector bundles. Since the wave front set
of ¥(E,VE) isincluded in E*, by [Ho, Theorem 8.2.4], the pulled-back current
s*y(E,VE) on M is well-defined, and its wave front set is included in N}, M
Moreover

(3.37) ds*y (E,VE) = e (E,VE) = ép.
Also by proceeding as in [BGS4, Theorem 3.15], one verifies easily that the current

s*y(E, VFE) is locally integrable on M.
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e) The Berezin integral formalism over the tangent space.

Let s be a smooth section of E over M. Recall that for T' > 0, A7 is a
smooth section of E over A(T*E)®@n*A(E*). The pull-back s*Ar, where the
pull-back acts non trivially on the factor A(T*E), is now a smooth section of
A(T*M)RA(E™).

Let gTM be a smooth metric on TM. Let VTM be the Levi-Civita connection
on (TM,g™™), and let RTM = (VTM)2 be its curvature. Let V"M be the
corresponding connection on 7*M.

We will apply the construction of Sections 3a)-3d) to (TM,gT™) equipped
with the connection VTM ., In particular = now denotes the projection TM — M
and n is the dimension of M. Also, for T > 0, A7 is a smooth section of
A(T*TM)@7*A(T*M). If s is a smooth section of TM over M, s*Ar is then
a smooth section of A(T*M)RA(T*M).

If w is a smooth section of A(T*M), we identify w with the section w®1
of A(T*M)RA(T*M). Also & will denote the corresponding section 1 ® w of
AT*M)® A(T*M).

Let e;,---,e, be an orthonormal base of TM, and let e!,---,e™ be the

corresponding dual base of T*M. We identify RTM to the smooth section RTM
of A(T* M)®A(T*M) given by

3.38 RTM — L ea, RTM (ei,e;)eg) e’ Aed N> NEP.
4 J e}

1<i,j<n
1<,a,8<n

Recall that we identify TM and T*M by the metric g7M.

Proposition 3.9. Let s be a smooth section of TM. Thenfor T > 0, the following
identity holds

’ TM n . —
(3.39) s*Ap = %— +VTY e AVIMs+T|s].
1
Proof. Formula (3.39) follows directly from Definition 3.1. O
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f) Berezin integral and gradient vector fields : a symmetry
property

We make the same assumptions as in Section 3 (¢). Let f be a smooth function
of M into R. The differential df is a smooth section of T*M. Let Vf be the
corresponding gradient vector field, which is a section of T'M.

From Proposition 3.9, we get the following identity.
Proposition 3.10. For T > 0, the following identity holds

T M n . —
(3.40) (Vf)*Ar = RT +VT ) e AVIMVf +T|df|*.
1

Let ¢ be the algebra homomorphism from A(T*M)®A(T*M) into itself,
which is such that if w € A(T*M), then

p(w) =B,

3.41
34 p(@) = w.

Proposition 3.11. For T > 0, the following identity holds

(3.42) p(Vf)*Ar = (-Vf)*Ar.

Proof. The basic symmetry property of the curvature tensor RTM immediately
shows that

(3.43) ¢ RTM — RTM

Also

(3.44) Y e AVIMVS = Z<v£‘Mdf,e,~>e‘/\€i.
1 1

Since the connection VIM s torsion free, we get from (3.44),

(3.45) Zn:e‘/\vg"/}f\Vf=i<v,’;’:‘Mdf,ej>ef Aé,
1 1
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and so
n . — n . -~
0 (Ze' A VZ:.MVf) = —Z<V§'Mdf,e,~>e' Aei
(3.46) ' .
= — Z e; A VCT/',M\Vf.
1
Proposition 3.11 follows from (3.45), (3.46). d

The Berezin integral [° maps smooth section of A(T*M)RA(T*M) into
smooth section of A(T*M) ® o(TM).

Definition 3.12. For T > 0, let By be the smooth section of A(T*M)RA(T*M)
over M,

(3.47) Br = (Vf)* (Ar).
In the sequel, we will say that o € AP(T*M)®AY(T*M) is of type (p,q).

Theorem 3.13. Let o be a smooth section of A(T*M)QA(T*M) which is of type
(p,p) (0 < p<n). Then,

B B
(3.48) / avexp (—Br) = (~1)? / o(a) exp (~Br).

Proof. One has the easy identity

(3.49) / Y= (1) /  o(@).

If we apply (3.49) to aexp(—(V f)*Ar), using (3.42), we get
B

B
(3.50) / aexp (~(Vf)* (Ar)) = (=1)" / p(@)exp (~(=Vf)* (A7)

Also one verifies easily that if « is of type (p, p), then

(3.51)
B

B
/w(a)exp(—(—vf)*(AT))=(—1)"—”/ p(a) exp (—=(Vf)* (Ar)).

From (3.49)-(3.51), we get (3.48). o
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g) The canonical section of A(T*M)QA(T*M)

We make the same assumptions as in Sections 3e), 3f), and we use the same notation.

Definition 3.14. Let L be the smooth section of A(T*M)RA(T*M)

n

(3.52) L=§¥e Ae.
Clearly L does not depend on the choice of the orthonormal base e;,---,e,.

Proposition 3.15. The following identity holds
(3.53) [VIM L] =0.

Proof. Since the connection VM is torsion free, we get (3.53) . a

h) A variation formula for forms over M
We make the same assumptions as in Section 3f).

Proposition3.16. Forany T > 0, thefollowing identity of sections of A™**(T*M)®
o(TM) holds

B B
(3.54) —a%:/ Lexp(—Bﬂ:—ﬁf%/ exp (—Br)

_g/B (%+f) df exp (—Br) .

Proof. Using Theorem 3.2, we get
o [P B 1 9Br
(3.55) b—ff Lexp(—BT)——/ 5T —— exp (—Br)
:_/BL VIM L 0VT iy A exp (—Br)
VI oVT
=_§/B— df exp (— BT)+/ [VTM+2\/Tz
2 VT

Vf’L] \/_exp( BT)
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By Proposition 3.15, we know that

(3.56) [V + 2T igs, L] =-vTdf.
So using (3.56) and Theorem 3.4, we get
df
(3.57) / [VTM +2VT igs 5 ] 5 j’f exp (—Br)

d - B df
= —5/ fdf exp (—Br) +fd/ —feXP (=Br)
= ——/ fdf exp (— -Br) —VTf— / exp (—Br).
From (3.55)-(3.57), we get (3.54). =

Theorem 3.17. For any T, > 0, the following identity of smooth sections of
A™(T*M) ® o(TM) holds

B B
(3.58) / L (exp (—=Br,) — exp (—By)) = —-\/ﬁf/ exp (—Br,)

AL (] ) 5
S ([ (&) deocan)a

Proof. Using (3.54) and integrating by parts, we get (3.58). 0O

i) The limit as T' — +oo of certain currents over M

We now assume that f is a Morse function, i.e. f has isolated critical points
Ty, -+ Zq, -+ such that d?f(z,),---,d*f(z,),--- are nondegenerate quadratic
forms over T, M,---T; M,---. For i=1,---,q,--- let A, be the self-adjoint
element of End(T,,M) such thatif U,V € T;;M, then

(3.59) (A;,U, V) = d*f(z:)(U, V).

Let ind(z;) be the index of f at z;, i.e. the number of negative eigenvalues of
A,
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Theorem 3.18. Let K be a compact subset of M. There exists a constant C > 0
such that if g is smooth function from M into R whose support is included in K,
and if p is a smooth 1-form on M whose support is included in K, then

B .
/M g ( / exp (—Br) — Z(-l)’“d”")‘szp)
B C
‘/Mg/ Lexp(—Br)| < T "gllc‘}{(M),

B
-~ C
‘ Jow [ dexe(=B0)| < g oy an

[ oo cnn

Proof. For notational simplicity, we assume that M is compact, and that f has
exactly ¢ critical points. Let a > O be the injectivity radius of (M,g7™). For
0 < 5 < a, let BM(xz;,7) be the open ball of center z; and radius 7.

Take € > 0 such that 0 < € < a/2 and that the balls BM(z;,2¢) do not
intersect each other. Clearly, there exist ¢ > 0,C > 0 such that for T' > 0,

C
(3.60) <7 lgll ez (ary -

C
< 572 ”:“"C}((M)'

(3.61) lexp (—Br)| < cexp(—CT) on M\UBM (zp,€).

We fix p,1<p<gq. Let y=(y',---,y") € T,,M be ageodesic coordinate

system centered at z, such that (%,—, ey, %,.) is an orthonormal base of T, M,

with respect to which the matrix A, is diagonal with diagonal entries A1, - -, As.
Of course 0 € T;, M is identified with z, € M.

For T > 0, let or bethemap y € T,,M — % € T,,M. Then

(3.62) /|y|seg/BLexP(—BT)=/|y|55ﬁ(a}g) U%/BLexp(—B:r)-

Now
1 < . .
3.63 7L =—— ‘A€
(3.63) or Wi ; e'ne
Using (3.61)—(3.63), we easily obtain the second inequality in (3.60).
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Also

2
(3.64) o%Br =

L oM T*M i A o3 Y
— E : v . ined A
2TR i+ < e df,e,> e'Nel +T |df T

1<i,j<n

Moreover

(365)  (o79)(¥) =g(zp) +9 (xp)\/— *lgllczan © (h’ifl )
Ve Mdfie;) , e neI+T ‘df
(V) , e nd el

= Y neine+ S a2

Y
s

1<i,j<n

1<i<n 1<i<n
1 - - . -~
+—= Z <V;f MyT 1"Idf(:1:p),ej>e’/\eJ
VT 1 &

4o [P 000) + 50 (P +1s1).

The key fact is that in (3.65), the terms which appear with the weight 717 are odd

polynomials in the variables (y!,---,y™), whose integral with respect to a Gaussian
measure is 0. By proceeding as in (3.28), we obtain the first inequality in (3.60).

Clearly
(3.66)

/:l/|<e / df exp (-Br) = /lyISsx/’T(a}”) /BdAf (%) exp (—o4Br).

By proceeding as before, we find easily that

B
3.67 lim T / o} / dr (L) exp (—o%Br
( ) T —+4o00 |y|55ﬁ T# \/T ( T )
B n n
— i - il2
= /T M,u'(l'p)/ Az, yexp <—Zx\idy Ady' =3 X v ) =0.
ey 1 1

From (3.67), we easily deduce the third inequality in (3.60). To prove the last
inequality, we use (3.63) and we proceed as before. O
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j) An identity of currents over M

By Theorem 3.18, it is clear that the currents over M

(3.68) /0+°° (/B exp (—Br) — Z(_l)ind(z,)é%) d_\/]%
/0+°° (/B (% + f) ‘E’exp(—-BT)) dT,

Observe that if n is even, then

(3.69) /B Lexp (— RZM) =0.

Theorem 3.19. The following identity of currents of degree n withvaluesin o(T M)
holds

B ST M
(3.70) / Lexp (—R2 )

+o0 B
-1 ( [ ew(-Br)- Z(—l)‘"d(zﬂém,) o

are well-defined.

0

AL o))

Proof. Clearly, for Ty > 0,

B To B
@1 VT [Cew-Br)-5 [ 1 [ ew(-Bn

B
_ \/J—_'o-f (/ exp (—BTO) _ Z(—l)ind(zp)6$r>

T B . daT
—-g A </ eXP(_BT)“Z(_l)md(%)‘swp) Wisk

Then we use the estimates of Theorem 3.18, and we make T, — +oo in (3.58). We
get (3.70). O
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k) The case where the metric gTM is flat near the critical points

From now on, we assume that near any critical point z, of f, there exists a system
of coordinates y = (y!,---,y™) such that

— z, is represented by 0.
— The metric g7M is exactly Y7 |dy’[?.

— There are non zero constants Ap,--- A, such that near z,
1 - i12
(3.72) ) = fop) 452 Ny
1

Of course if f is a Morse function, there always exists a system of coordinates
(y',---,y™) near the z,’s and a metric g7 on TM such that the previous
assumptions are verified. Recall that A., is the self-adjoint element of T, M
associated to the quadratic form d?f(x,). Then the matrix of A, with respect to

the basis B%f . ’By has diagonal entries Aq,---, An.

Let g be a smooth functionon M with valuesin R. We calculate g"(z,) using
the coordinates (y',---,y") near z,. Then g”(z,) is a symmetric bilinear form
on T, M. We identify g"(z,) to a self-adjoint element of T, M. Then g —
Tr[A? -2 g"(zp)] defines a current of degree n on M, which we note Tr[A;267 ] .

Slmﬂarly let 1+ be a smooth 1-form on M, which we write near z, as

(3.73) p=> py)dy'.
1
Set
-2 Il' 1 a,u'z
(3.74) Tr [Azp 3 ] Z 2 ay

Equation (3.74) defines a current of degree n — 1 over M, which we note
’I‘r[AxP 3y
Theorem 3.20. Let K be a compact subset of M. There exist constants ¢ > 0,
C > 0 suchthatif g is a smooth real function whose support is included in K and
if p is a smooth 1-form on M whose support is included in K, thenfor T > 1,
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(3.75)

B
1 ind(zp) -1
/Mg (/ Lexp (—BT) + '2—\/-5—;2(-—1) ) Tr [A:c,,] 5:%)
C
< 7 llgllez s

‘/M g(f /B exp (—Br) — Z(_l)ind(:pp)f(xp)éz‘u

1 . . )
_ﬁ (Z(—l)lnd(l‘p) Tr [A;pl] 6;.;,, + Z(_l)lnd(l‘r)f(.’l,‘p) Tr [Aa:pz&;;lp])) }
C
< T3Z ”9"0;((1\4) )
/ I /B &}‘exp (——BT) + _._l_ Z(_l)ind(zp) Tr A_z_?_
M 2T3/2 Zp ay
C
< T2 Ill‘"C?((M)'

Proof. As in the proof of Theorem 3.18, we assume that M is compact. Also we
use the notation in the proof of Theorem 3.18. Here ¢ > 0 will be chosen small
enough so that for any p, over BM(z,,2¢), the assumptions which are stated at
the beginning of this Section 3 k) hold.

Then over BM(z,,2¢), RTM = 0. Therefore

(3.76) /MSE g / ° Lexp(—Br)

B n . n |
=/ g/ Lexp (‘VTZAidy"Ady"-TZA?IZNZ)
lyl<e 1 -
B n n
y L . . A' 2 i2
= -~ _ — _ Ndut A dyt — 2 .
/Iyls:ﬁg(\/T)/ fTeXP( 21: y Ady 21: z|y|>

Also one finds easily that

B n . n .
(3.77) / / Lexp (— Y Nyt Ady' - N2 |y’|2))
Ty M - -
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(_ l)ind(zp) n

1
2 1/\,-

From (3.28), (3.76), (3.77), we get easily the first inequality in (3.75).
Similarly,

B _ Y 1 « 2
(378 /Iylsegf/ =P (~Br) = |y|seﬁg(\/_T)(f (x”)+§f21:)"“|yk| )

exp (— z": Nidy® A (i\y' - Xn:)\? |yi|2) .
1 1

Also

0719 g (L) = atap)+ T2+ g )0 + 2750 ()

We now use the trivial identities

1 2 1 2 1
3.80 —/ ze T dr=0 ; ——/xze_“” dz = =,
(3.80) VT Jr VT Jr 2

and we easily obtain the second inequality in (3.75).

Let u be a smooth 1-form on M, which we write as in (3.73) near z,. Then

o0y Gorco | (S (35))

B 1 ( n k’\k) ( n - n ol 2)
— Aey'dy Jexp | — Adyt ANdyt — S Iy'| .

Also
N Hz) - + 20 ([yf?
(3.82) " ( ﬁ) = (o) + (o) o+ 50 ().
Using (3.28), (3.60), (3.81), (3.82), we obtain the third inequality in (3.75). The
proof of our Theorem is completed. g

Remark 3.21. By adding (3.58) and (3.70), for any T, > 0, we obtain the identity
B B .
(683 [ Lexp(-Br) = ~VTof ( [ exp(=Br) = X1y,
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+o00 B . dT
_% . (/ exp (—Br) — Z(_l)md(zp)é‘zp> TT

d =7 (L df Br) | dT
+5 —+ exp (—
s\ (F5+s) Few-nn
Clearly both sides of (3.83) have asymptotic expansions as Ty — +oo.

By Theorem 3.20, the coefficient of 7% in the asymptotic expansion of the
left-hand side of (3.83) is given by

(3.84) _% Y (~1)mdE) Ty [A;pl] ba,-

By Theorems 3.18 and 3.20, the coefficient of 7170- in the asymptotic expansion of
the right-hand side of (3.83) is given by

- s Sy T [47] 4,
(3.85) — 5 () () Te 47261

- UM ) T[4 2]

Now the sum of the last two terms in (3.85) is trivially equal to 0. Then (3.84) and
(3.85) effectively coincide.
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IV. Anomaly formulas for Ray-Singer metrics

The purpose of this Section is to establish the anomaly formulas for Ray-Singer
metrics, which were stated in Theorem 0.1 of the introduction. These anomaly
formulas will play an important role in our proof of our main result stated in
Theorem 0.2.

To establish these anomaly formulas, we use local index theory techniques, in
combination with the Berezin integral formalism of Section 3. Our local index
techniques are different from the techniques of Getzler [G], even if they have some
obvious relation to them. They will be used again in Section 13.

This Section is organized as follows. In a), given a flat Euclidean vector bundle
(F,g¥), we associate a connection V¢ preserving the metric g¥. Inb), we
construct the closed 1-form 6(F,g¥), which plays a critical role in the whole
paper. In c¢), we give the anomaly formulas, which compare the Ray-Singer metrics
associated to two couples of metrics on TM and F'.

In d), we introduce the Clifford algebra of an Euclidean vector space E, and its
natural actions on A(E*).

In e), we establish a crucial Lichnerowicz formula for the Hodge Laplacian D2,

In ), we state a classical formula evaluating the variation of the Ray-Singer
metrics as the constant term in the asymptotic expansion of the supertrace of a heat
kemel.

In g), we introduce an extra Clifford variable o, which will considerably simplify
our local index calculations. In h) using local index techniques, we obtain an explicit
infinitesimal formula for the variation of the Ray-Singer metric. Finally in i), we
establish the anomaly formulas.
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In this Section, we use the assumptions and notation of Section 2a) and of
Section 3.

a) A canonical connection on a flat Euclidean vector bundle

Let M be a compact manifold of dimension n. Let F' be areal flat vector bundle
of dimension m on M, and let V¥ be the flat connection on F. Let F* be the
dual of F, and let VI~ be the corresponding flat connection on F*.

Let g¥ be an Euclidean metric on F. Let g¥" be the corresponding metric
on F*. Let ¢ be the corresponding identification F' — F*. The connection
VF* = i=1V¥" is also a flat connection on F', which coincides with V¥ if and
only if gF is flat. Once F and F* are identified, it will often be convenient to
view F' as a vector bundle equipped with two flat connections V¥ and V£*,

Definition 4.1. Let w(F,g%) be the 1-form on M taking values in self-adjoint
endomorphisms of F'

(4.1) w (F,gF) = (gF)_1 vEgE,
Then
(4.2) Vi =vF +w(F,g").

Definition 4.2. Let V¢ be the connection on F

(4.3) vie = vF 4 —;—w (F,g").

From (4.2), (4.3), we get
(4.4) vie = % (VF+ V).

One verifies easily that the connection VF¢ preserves the metric g¥. It is
canonically determined by the metric g%

Let VF-¢ be the connection on the flat vector bundle F* which is associated
to the metric g¥". Then

(4.5) vhe = -1y Fle,
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Proposition 4.3. The curvature (V)2 of the connection V¢ is given by
o2 1 2
(4.6) (V) =~ (w(Fg"))"

Proof. Clearly
2

(4.7) [VF,w (F, gF)] =—(w (F,gF)) .

Equation (4.6) follows from (4.7). O
Remark 4.4. Let ¢g"M be a metric on TM. The metric g7 determines a
canonical connection VTM which is the Levi-Civita connection of T'M. Then
the metrics 7™, gF on TM, F determine canonical connections V7'M V¢ on
TM,F. This is very similar to what happens in the holomorphic category, where

a metric canonically determines a connection. This formal analogy will play an
essential role in our work.

b) A closed 1-formon M and its cohomology class

The homomorphism u € GL(m,R) — Log|detu|> € R permits us to construct
an element c in the first Cech cohomology group of M, which measures the
obstruction to the existence of a flat volume form on F'.

Definition 4.5. Let 0(F,g%) be the real 1-form on M
(4.8) 6 (F,g") =Tr [w (F,¢")] .

One has the trivial result.

Proposition 4.6. The form 6(F, g¥) is closed. Its cohomology class in H'(M,R)
is equal to c.

¢) An anomaly formula for Ray-Singer metrics

Let g™ be an Euclidean metric on TM. Let VTM be the associated Levi-Civita
connection on TM and let RTM be its curvature. Recall that the Pfaffian of an
antisymmetric matrix was defined in Section 3a).
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Following (3.17), set

(4.9) e (TM,VvT™) = Pf [RTM] :

2w

Then e(TM,VTM) is aclosed n-form on M with values in o(TM). The form
e(TM,VTM) represents the Euler class of TM in H™(M,o(TM)).

If gTM, ¢'TM are two metrics on TM, and if VIM | V'TM gare the corre-
sponding Levi-Civita connections, let &(TM,VTM v'TM) be the Chern-Simons
class of n — 1 smooth forms on M valued in o(T'M), which is defined modulo
exact n — 1 forms, such that

(4.10) de(TM, V™™ v'TM) = ¢ (TM,V'™) — e (TM, V™).
Of course, if n is odd,
(4.11) e(TM,vTM v'TM) -,
Let now gTM, ¢'TM be two Euclidean metrics on TM, and let gF,g'F be

two Euclidean metrics on F. Let | ||qet 75 || ||4et 7 be the metrics on the line
bundle det F' induced by the metrics g¥, g’¥ . Observe that

2

’
(4.12) dLog ("”#) —0(F,gF) - 6 (F,q).
” "detF
Let || 139 socarry @04 || 113ESye as, ) be the Ray-Singer metrics attached to

the metrics (g7™,g¥) and (¢'T™, ¢'F).

The purpose of this Section is to establish Theorem 0.1, which we state again for
convenience.

Theorem 4.7. The following identity holds

1 onr |2, -
(4.13) Log ————————“ “RS : =/ Log | —detF | ¢ (TM, VM)
M

2
det H*(M,F) I et 7

_/ 0 (F.gF)e(TM, V™, v'TH),
M
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In particular, if dim M = n is odd, then

| e )
(4.14) Log | —fe—— | =0.
I Naet zrecn, )
Proof. Theorem 4.7 will be proved in Sections 4d)—4i). O

Remark 4.8. Equation (4.14) is the well-known basic result of Ray and Singer
[RS1, Theorem 7.3].

d) Clifford algebras and exterior algebras

Let F be a real finite dimensional vector space of dimension n. Let gF be an
Euclidean metric on E.

The exterior algebra A(E*) is Z-graded, and so it posseses a natural Z, -grading.
If A€ End(A(E*)), let Trs[A] be the supertrace of A, as defined in (1.9).

If e € E, let e* € E* correspond to e by the metric gF. Set

c(e) =e* A —i,,
cle) = e* A +ie.
The operators c(e),c(e) acton A(E*). If e,e’ € E, then
c(e)e(e’) + c(e)c(e) = —2 (e, €'),
(4.16) c(e)c(e’) +c(e')e(e) = 2 (e, €',
c(e)é(e’) + ¢(e')c(e) = 0.
From (4.16), we deduce that the maps e € E — c¢(e),c(e) extend to representations
of the Clifford algebra c¢(E) of E. Also, End(A(E*)) is generated as an algebra
by 1 and the c(e),c(e) ’s.

Let e;,---,e, bean orthonormal base of E, let el,---, e be the dual base of
E*.

(4.15)

Proposition 4.9. Among the monomialsinthe c(e;),c(e;) s, only c(e1)c(e1) - - - c(en)
C(en) has a nonzero supertrace. Moreover

(4.17) T [e(er)2len) - - c(en)elen)] = (~2)".
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Proof. Assume that n = 1. Then 1, c(e;),c(e;) have a supertrace equal to 0.
Moreover

(4.18) c(e1)dler) = 2e' Ao, — 1,

and so

(4.19) Trs [c(e1)c(er)] = —2.

Equation (4.19) immediately extends to (4.17). O
We consider the vector space £ & E. Then ep,---,e, still denotes an

orthonormal base of the firstcopy of £ in E®FE, and ey, -, €, the corresponding

orthonormal base of the second copy of E. Also e!,---,e™ and €,---,e" denote

the dual bases of the first and second copies of E* in E* @ E*.
For t > 0,e€ E, if e* € E* corresponds to e by the metric gF, set

ct(e) = 1—/4 A tl/4’Le,

(4.20)
ci(e) = t1/4 A +t1/42A

The operators c;(e),c;(e) act on A(E* @ E*) = A(E*)®A(E*). Moreover if
e,e' € E,

ci(e)ei(e') + ci(e)ei(e) = =2 (e, €'),
(4.21) Gi(e)ci(e') +eu(e)ei(e) = 2(e, €',

ci(e)ci(e') + ci(e')ci(e) =0
Using (4.16), (4.21) we see that there is ahomomorphism of algebras v, : End(A(E*))
— End(A(E* @ E*)) which for e € E, maps c(e) in c;(e) and ¢(e) in C;(e).

Now the operators €' A---e'? A& A . &% Niey, =" lex ,zel ze/[\, are lin-

early independent in End(A(E*)®A(E*)). Moreover, if u € End(A(E*)), ¥:(u)
is a linear combination of such operators.

Definition 4.10. For u € End(A(E*)), let {¢:(u)}™** € R be the coefficient of
the monomial e’ A---Ae™ Ael A--- A€™ in the expansion of ;(u).

Proposition 4.11. If u € End(A(E™*)), then for any t > 0,

n n+l

(4.22) Trg[u] = 2(=1) ™5 ¢F {ahu ()}
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Proof. Equation (4.22) follows from (4.17). a

e) A Lichnerowicz formula for the Hodge Laplacian

Recall that dF denotes the natural action of V¥ on F. Also df* is the formal
adjoint of d¥ with respect to the scalar product (, ).

Asin (2.5), set

(4.23) D =dFf +df*.

The connection VTM induces aconnection VA(T"M) on A(T*M). Let V,V*
be the connections on A(T*M) Q@ F'

V=vVAMT'M)g14+1QVF,

(4.24) ,
Ve = VA(T M) ® 1+ 1 ® VF’e.

Let e;,---,e, be an orthonormal base of TM, let e!,---,e™ be the corre-
sponding dual base of T™ M.

Proposition 4.12. The following identity holds,

n

(4.25) D= Z:c(e,-)vg‘ - % e () oF) (es).

Proof. Since VTM is torsion free, it is clear that

(4.26) dF =3 e nv.,.
1
Then a trivial computation shows that

n

(4.27) df* = — Zie‘. (Ve.. +w (F,gF) (ei)) .

From (4.26), (4.27), we get (4.25). O

67



J.-M. BISMUT, W. ZHANG

Let now e;,---,e, be a locally defined smooth section of the bundle of
orthonormal frames of 7M. Let A, A€ be the Bochner Laplacians

n

A=32(VE - Vozen,).

1
A® = i (vg;z - V%S‘Me,,) .

The Laplacian A€ is self-adjoint with respect to the scalar product (2.2) on F.

(4.28)

Let K be the scalar curvature of (M, gT™). Now we prove the following
extension of Lichnerowicz’s formula [L].

Theorem 4.13. The following identity holds
K 1

(4.29) D?=—-A°+ Tt3 > (e, R™ (eire;) er)
1<i,j,k<n
cledelesaleneled + 5 Y (w(Fe") (@)’
1<i<n
2 Y (edeles) - Teeles)) (w (Frg7)) (eires)
8 1<i,j<n
—:11- 15i,jsnc(e,-)?:‘(ej) (Viw (F,g%) (ej) + ng (F,g") (e,-)) .

Proof. Set

(4.30) D° = Xn:c(e,-)vg_.

1
Then D° is an operator of Dirac type acting on F.

If A€ End(TM) is antisymmetric, A acts on A(T*M) as a derivation, and
its action is given by
1 ~ N
(4.31) T2 (denes) (eledeles) - eledeles) -

1<i,j<n
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Also (VF€)? is given by (4.6). By using an obvious extension of Lichnerowicz’s
formula [L] and also (4.31), we see that

K 1
(432) (D =-A+pHg D (e R™M(enej)er)
1<14,5,k€<n

cledeleseler)iler) — 5 3 cledeles) (w (F,g))" (eies)-
1<i,j<n
Moreover by (4.16) and by Proposition 4.12, we get
(38) D*=(D+; Y (R @) +3 Y edle)

1<i<n 1<i,j<n
(@ (F") ene) =5 3 elei)eles) (VEw (F.g™) (e:)) -
1<i,j<n

Using (4.7), we obtain
1
(4.34) Vfi’ew (F, gF) (ej) = Vf;w (F,g") (e;) + 3 (w (F,gF))2 (ei,€j)

1
=5 (Vflw (F,g") (ej) + ijw (F,g") (e,')) .
From (4.32)—(4.34), we get (4.29). O

f) An infinitesimal variation formula for the Ray-Singer metric

Let £ € R — (gf/™,gf) be a smooth family of metrics on TM, F. Let %, be
the Hodge operator associated to the metrics g; M. Let D, be the operator D
defined in (4.23) attached to the metrics (g7 ™,9;"). Let || |35 go(ar, ;)0 De the
corresponding Ray-Singer metric on det H*(M, F').

Theorem 4.14. If n is even, as t — 0, for any k € N, there is an asymptotic
expansion

0% -1 0gF k :
439 [ (252 + () B e (-100)] = 30 Mo ().

j=-n/2
Also if n is even,

0

2
(4.36) 57 L8 (Il 135 e y.e) = Mo
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Moreover if n is odd,

0 RS 2
(4.37) 37 Log (” llget H-(M,F),e) =0.

Proof. Our Theorem follows from similar computations which are done in Ray-
Singer [RS1, Theorems 2.1 and 7.3] and Bismut-Gillet-Soulé [BGS3, Theorem 1.18].
Note that in the case where n is odd, (4.37) is a consequence of the fact that there
is no constant term in the asymptotic expansion of the left-hand side of (4.35). O

Let ey, - - -, e, bean orthonormal base of TM with respect to the metric g} M,

Proposition 4.15. The following identity holds

_, 0% 1 -1 0g7M
(4.38) (*e 13;) == > 3 <(9¢T M) ga#ei,ej> _, cleaele).
9e

1<i,5<n

Proof. Clearly

10% 1 ¢ -1 0g7M
4. 1226 _ . ™ L oo e
(4.39) (x)7" 5, 2;<(ge ) e .
-10 ™ )
— Z <(g’{M) ageLei,ej> e Nie;.
1<i,j<n gT™
Equation (4.38) follows. O

g) A Clifford algebra trick

Let o be an auxiliary even Clifford variable, such that 02 = 1. So o commutes
with the c(e;) ’s, the ¢{(e;) ’s and more generally with all the previously considered
operators.

Let A, B € End(F) be trace class. Then A + 0B lies in End(F)®R(0). Set
(4.40) TrJ[A + o B] = Tr,[B].

Definition 4.16. Set

(441) (D) =7 3 clenles) (VEw(Fg") (e)+VEw(FgF)(e)
1<i,j<n

(D%)even — D2 _ (D2)odd .
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The operator (D?%)°4¢ is in fact 0dd in the Clifford variables c(e;) or ¢(e;), while
(D2%)ever is even in the Clifford variables c(e;) or ¢(e;).

Let dvy,¢ be the volume form on M with respect to the metric g; M.

Definition 4.17. Let P, ¢(z,z’)(resp .Qs ¢(x,2’')) be the smooth kemel with re-
spect to the volume form dvys.(z’) associated to the operator exp(—tDj) (resp.
the operator exp(—t((D2?)®'e" + g(D3?)°4))).

Theorem 4.18. If n is even, and if M is oriented, for any x € M,t > 0, the
following identity holds

0 ol —10
@) [ BP0 = [ G Quan).

Proof. Since M is oriented, the operator *, maps F into itself. Also *2 is a

constant operator, and so
6* 0 6* I}

(4.43) *p ae + W*[ =0.
Set

- 8*,5
(4.44) C =%, IW'
From (4.43), we get
(4.45) #Cxy ' = —C.

In fact (4.45) can be directly verified by using (4.38).

Also (D?)°¥*" and (D3?)°d4 preserve the Z-grading in F. Moreover one easily
verifies that

(4_46) *e (D?)even *e_l - (D%)even ,

Let h be a smooth function from M into R. Since *, is an even operator
acting on F (i.e. it preserves the Z,-grading of F), and since supertraces vanish
on supercommutators [Q1], we see that

(447)  Tn [xehCexp (~t (D)™ +0 (D)) "]
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= Tr, [hCexp (-t (7)™ +0 (DF)*"))].
On the other hand, by using (4.45), (4.46), we get
(4.48) Tr, [hc exp (—t ((D%)"ven +o (D§)°dd)) *;1]

=~ x, [nexp (1 (7)™~ (09)°))] .
From (4.47), (4.48), we conclude that
(1.49) T, [1Cexp (~ (D7) +0 (09)°*) )]

. [hCeXp (—t ((Dg)even o (Dg)odd))] )

Since (4.49) holds for any smooth function h : M — R we easily get (4.42). O

h) The small time asymptotics of the supertrace of certain heat
kernels

We make the same assumptions as in Sections 4f) and 4g). Let V7™ be the
Levi-Civita connection on (TM,gf™), and let R7™ be the curvature of VI ™.

Let p be the projection M x R — M. Let gTM:tot be the metric on p*TM
which coincides with g™ over M x {¢}. Let VTM:tot be the connection over
PTM

0 1 -10g7M
4.50 VTM,tot — *VTM de | = - (,TM £ .

Then VTMstot preserves the metric g7M*°t., The curvature (VTM:tot)2 of
VTMtot is given by
0

TMtot\2 _ «pTM v _ 1[orm (Tmy-1 99"
(4.51) (VM) = p* Ry M +de vt —3|Ve (g2 ™) a0 |)

Definition 4.19. Set
(4.52)

~ _ 0ol (pTM dorm _1 TM(TM)“lag{M
e (TM) =7 Pf[zw (R‘f +b(an‘ 2 [Vf '\ 9 ot oo

By a standard argument in Chern-Weil theory, we know that
0.

(4.53) 52 (TM,VIM VM) =&, (TM).
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For x € M,e > 0, let BM(x,¢) be the open ball of center = and radius ¢ in M
with respect to the metric g™, and let BT=M(0,¢) be the open ball of center 0
and radius ¢ in T, M with respect to the metric gg =M

Theorem 4.20. Assume that n is even. Then

(4.54) Mj,g =0 for j <0,

-1 0gf

Moo= [ e |(6f) ™ e |e (o, 97%) - [ 6(F.af) & ().
M ot M

Proof. In the whole proof, we will use the notation of Section 3 on the Berezin inte-

gral. We first calculate the asymptotics as ¢ — 0 of Trs[(gf )‘16—(_:‘,’%i exp(—tD3?)].

Here the metric g™ will be fixed. Also we will often omit the subscript £.

First we proceed as in Getzler [G]. Let a > 0 be the injectivity radius of
(M,g™™). Take ¢ suchthat 0 < ¢ < a/2. Take z € M. Let e,---,e, be
an orthonormal base of T, M. We identify the open ball BT=M(0,¢) with the
open ball BM(z,¢) in M using geodesic coordinates. Then y € T, M, |y| < ¢
represents an element of BM(z,¢). For y € T, M, |y| < ¢, we identify T, M, F,
to T, M, F, by parallel transport along the geodesic ¢t € [0,1] — ty with respect
to the connections VIM v Fe,

Let I'TM:z be the connection form for VI'M in the considered trivialization of
TM. By [ABoP, Proposition 4.7], we know that

s 1
(4.55) Ly "" = SR (y,) + O(lyl’)-

The induced connection form FQ(T; M) on A(T}M) is given by
(4.56)

TYEME = 2 Y ((RIM @y, Jeises) + O(1yl?) (eled)eles) — Bler)eley))-

1<i,5<n

The operator D? now acts on smooth sections of (A(T*M) ® F), over BT=M(0,¢).
If h is a smooth section of (A(T*M)Q® F), over T, M, set

(4.57) T,h(y) = h (%) .
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Let K, be the operator
(4.58) K, = T/ 1DT;.

Then K, is a differential operator with coefficients in the algebra spanned by the
c(e;) ’s, the (e;) ’s and elements of End(F),.

Let L; be the operator obtained from K, by replacing the Clifford variables
c(e;),c(e;) by ci(ei),ci(e;) defined in (4.20). Let AT=M be the flat Laplacian
over T, M for the metric g7=M . Using (4.29), (4.56), one concludes easily that as
t — 0, the coefficients of L; converge uniformly over compact sets together with
their derivatives to the coefficients of the operator Lo given by

(4.59) Lo=-ATM 4 % Z (ek,R;}"M (eirej) er) e Nel NeF NEL.

1<i,j,k,0<n
If we use the notation in (3.38), we get

T M
(4.60) Lo = —AT-M 4 ‘R_z‘

Let dvys be the volume element on TM with respect to the metric g™,
Here dvjs is viewed as a section of A™(T*M) ® o(T'M). Using Proposition 4.11,
equation (4.60), and proceeding as in Getzler [G], we see that as ¢t — 0,

F
(4.61) Tr, [(g{) - %Pt (x,w)] dvp ()
F1 B STM
— <Tr [(g{)_l aaié] / exp (—Rz )) (z) uniformly on M.
Moreover
(4.62)

T [(0F) " % oxp (-20)] = [ o [(6) 7 Zepi0,0)] om0,

From (4.61), (4.62), we get
(4.63)

: -1 09} -1 8gf
finy T, | (6F) ™ %5t exp (-1D)| = [ 0 {(6F) ™ | e (T2, 6™).
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Now we assume that the metric g¥ on F is fixed, and that the metric g; ™ on
TM dependson £. We will calculate the asymptotics of Trs[(*; ") % exp(—tD?)].
Clearly

(4.64) Tr, [*e aae exp (- th)] = /M"ﬁs [ p %ept o, m)] dvag o(z).

Take z € M. We assume first that M is oriented. Then by Theorem 4.18, we get
1 0% 0%
(4.65) Trs [*e 5 ZLtp, oz, x)] [*Zl _(#Qt’e(x,x)] .

In the sequel, e;,---,e, is an orthonormal base of T, M with respect to the
metric g; ™, and el,---,e™ is the corresponding dual base of T M .

We consider R equipped with its canonical Euclidean metric. Let a = 1 € R,
let a* € R* correspond to a by the metric of R. For ¢ > 0, set

a*/A\

(466) ot = \/Z t’ia.
If ¢+ do € R[o], then
(4.67) c+dos =c+ (f;f tig.

In the sequel, the operators a*A and i, will commute with all the other operators
considered before.

Take z € M. We trivialize TM and F on BM(z,¢) as before. Then
the operators (D?)ver (D?)°4¢ act on smooth sections of (A(T*M)Q F), on
BT=M(0,¢). We define T; as in (4.57). Set

(4.68) Ki =T ((D})™" +0 (D})**") T

In K;, wereplace c(e;) by c(e;), ¢(e;) by ¢(e;) and o by o;. So we obtaina
new operator Lj. Let AZT'M be the Laplacian on T, M with respect to the metric
g7=M. Using (4.29) and (4.56), one verifies easily that as ¢t — 0, L/ converges to
L;, given by

(4 69)

—_ATM +3 RTM 1

79 *A Z e'ned (Vew (F,g7)(e;)+Ve,w (F,g7)(e:)) -

1<4,5<n
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Let C, be the operator obtained from *,'2%£ by replacing c(e;) by ci(ei),

e
and ¢(e;) by ¢(e;). Using (4.38), we find that

. 1 -1 9gTM .o~
4. =- S ((gFM) 7 Zh—eie; inel.
( 70) }1_11% \/ZCt 1<;<n 2 <(ge ) 6( el7eJ>g;M e Ne

By Proposition 4.11, by equations (4.69), (4.70), and by proceeding as before,
we deduce easily that

) _1 0%
(4.71) lim Tr, [*e 1-6—;Pt,e($,$)] dvn,e(z)

Bl1 ™ —lagcTM ia s
=_{/ ('2‘ Z <(9e ) Y] ei,ej>gZMe Nel

ex (—REM>/\l Z eiAgj
P 2 4

1<i,5<n

Tr [Viw (F,g%) (e;) + ijw (F,g") (e,-)] }(:1:) uniformly on M.

When M is not orientable, equation (4.65) does not hold any more. However
the evaluation of the asymptotics of the left-hand side of (4.71) is local near x € M.
By embedding the considered local neighborhood in an orientable manifold, we see
that (4.71) remains valid in full generality.

Recall that ¢ was defined in Section 3f). Then

(4.72) o0 (F,g") = 0(F,g") (es)e'.
=1
By (4.7), (4.72), we get
(4.73) -;- Yo €A i Tr [vgw (F,g%) (e5) + VEiw (F,g") (e,:)]
1<i,j<n
= 3 énedTx[VEw(F,g") (e;)] = V™6 (F,g").
1<4,j<n

Using (4.64), (4.71), (4.73) and Stokes formula, we find that
«TM

¢
o¢

(4.74) lim Tr, [*;1 9 exp (-tpz)]
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TM . ~,
S (35 (e ) e
1<t]<n 7
R{M F
exp it — 2 A‘Pa(F,g) .

Set VIM = vIM_ Then the connection ﬁ{M given by

preserves the metric g7 M. Its torsion T, is such thatif X,Y € TM,
1 -1 1
(4.76) T(X,)Y) = 5 (gFM) ™ (VIMgTM)y — 5 (gFM)~ (VTM M) X.

From (4.76), we deduce that

8 1 -1 09,
(4.77) 7 Tt Y om0 = (-Q-V;TcM ((gf M) 57 )Y

l T™ T™\ "1 ageTM
-1 ((g ") %)

Set
(4.78) Se=ViM _VTM,
From (4.75), (4.78), we get

0 -1 ag 65(
4. T ogTM _ - T™ — ¥t .
CEOR A R A e N

Let ( , ) be the scalar product on TM for the metric gd ™. Since VM is
torsion free, one sees easily thatif X,Y,Z € TM,

(4.80) <65‘ (X)Y, z> + <%7;‘ (xY), z>

+<%T7fle=o(z,X),Y> <%€‘I (12, X> =0.

Using (4.77), (4.80) we get

(4.81) <Y %‘i‘| _(X)Z > = <%§|£=0(Y, Z),X>.
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Set

9Se 1/ 05, R
4.82 95, _ 1/ 0% N\ 5.5
(45 Ot |e=0 Z 2 <ek’ of |z=o(e')ee>e Nek Aet.

1<i,j<n

Using (4.77), (4.81), (4.82), we see that
(4.83)

95, —_yru [ L Tmy-1 998 M P
(p 6( |€=0 - '—V .2- Z (ge ) ae €4, ej _ e AeJ .
1<i,j<n |e=0

So from (4.74), (4.83), we get

(4.84) hm Tr, |*;! 1 0% exp (—tD})
A le=o

[ AL 3 () oo () nvo s
L (8 ()

Using now Theorem 3.13 and (4.84), we find that

1 O%e
4.85 i s 7
( ) }1_{1(1) Tr l:*e Y1 exp( tDe)] o

B PTM | 9S¢

0 Ry ™ + 0% o=

- _ F |e=0

= /MO(F,g ) 6bexp( ( 7 .
b=0

From (3.3), (4.52), (4.79), (4.85), we finally get

(4.86) lim Tr, [*e 66; exp (—-tD%)] = —/ 8 (F,g") e (TM).
|Z=O M

Of course (4.86) also holds for arbitrary £. The proof of Theorem 4.20 is completed.
O
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i) Proof of Theorem 4.7

By Theorems 4.14 and 4.19, we get

9 2
(4.87) 57 Log (” [ H(M,F) e)

=/MTI[(95)‘1855] (TM, VM) - /MO(F,gf)E’e(TM)-

Using (4.53) and (4.87), we obtain (4.13 ).
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V. A closed 1-form on R% x Ry

In this Section, given a smooth function f : M — R, we exhibit a closed
1-form oy, on R} x R, which is calculated in terms of the supertraces of certain
two parameter heat kernels. This 1-form is very similar to.a corresponding 1-
form obtained in Bismut-Lebeau [BL2, Theorem 3.3] in a different context. By
integrating o, 7 onaclosed contour I', we will obtain an important identity. In the
next Sections, by a suitable deformation of the contour I', we will ultimately derive
Theorem 0.2 from this identity.

This Section is organized as follows. In a), we introduce the family of smooth
metrics e~2TfgF on F. Inb), we calculate the Witten Laplacian D2 [W]
associated to the smooth function T'f. In c), we construct the 1-form oy 7. Ind),
by integrating a; r on a contour I', we obtain an identity, which is the main result
of this Section.

Here we use the assumptions and notation of Section 2a) and of Sections 4a),
4b).

a) A family of smooth metrics on F

Let M be a compact connected manifold. Let F' be a real flat vector bundle on M.
Let gTM be a smooth metric on TM, let g¥' be a smooth metric on F.

Recall that dF denotes the natural action of the flat connection V¥ on F.
Moreover (, )acr+mer still denotes the scalar product on A(T*M) ® F' which
is attached to the metrics g7™ and g¥. Also w(F,gF), 0(F,g") are defined by
(4.1), (4.8).

Let f : M — R be a smooth function.
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Definition 5.1. For T > 0, let g& be the smooth metric on F

(5.1) gr = e 2T1 gk,

We equip F with the L? scalar product { , )7 attached to the metrics g7,
g:,": on TM, F. Namely, if o, 8 € F, we have

(5.2) (,B)g,r = /M (o B)acr-wnyer (@)™ P doy ().

Let df* be the formal adjoint of d¥ with respect to the scalar product ( g,
on F. Clearly

(5.3) dEx = 2T gF*e=2T1,
Set
(5.4) Dr =dF +dE*.

The operator Dr is self-adjoint with respect to the scalar product { ). Also
D2 = d¥dE* + df*d¥ is the Hodge Laplacian associated to the metrics g7™, g4
on TM,F.

Let df € T*M be the differential of f. We identify 7*M to T'M by the
metric gTM. Let Vf € TM be the corresponding gradient vector field.

Let Ly; be the Lie derivative acting on F

(55) va = dFivf + ivde.

Proposition 5.2. The following identities hold

(5.6) di* = df* + 2Tivy,
D%w = D? + 2TLVf.

Proof. The first identity is obvious. The second identity follows easily. O
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b) The Witten Laplacian

Set
(5.7) df = e TfdFeTt,
55 = eTldF*e~ 11,
The operators d%.,6% were introduced by Witten [W]. Clearly
(5.8) (dF)* =o.

The complex (F,d¥) will be called the Witten complex.
Then 64 is the adjoint of df with respect to the scalar product ( , )g =

( ’ )IF,O-

Proposition 5.3. The map

(5.9) acF—oeTlaeF

induces an isomorphism of the Euclidean complexes (F,d¥,( ,)rr) and
(F,d;,( ) )IF)

Proof. This is obvious. a

Let D bethe operator
(5.10) Dr =df + 6F.

Proposition 5.4. The following identities hold
(5.11) Dr =e T/ Dre™/,
13% =e T/ DZeTY.

Proof. This follows from (5.4), (5.10). O

Let LY, be the adjoint of Ly with respect to the scalar product ( , )r. Then
Lyys + LY is an operator of order 0 acting on F. Also &(Vf) is defined as in
(4.15).
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Proposition 5.5.
df = dF + TdfA,
(5.12) 6f = dF* + Tivy,
Dr = D+ TEVf).
Moreover

(5.13) D% = D? + T (Lvs + L) + T2|df 2,

D:=D%-Tuw (F, ") (VA +T Z <V£‘Mdf,€j> c(e;) ¢ (e;) + T?|df|*.
1<i,j<n

Proof. The identities in (5.12) are obvious. Also

(5.14) D% = D? + T (dFivy + ivsd®) + T (dF*df A+df AdT*) + T2|df|2.

From (5.5), we get

(5.15) d¥*df A+df AdF* = Ly,

The first identity in (5.13) follows from (5.14), (5.15). Using the last identity in
(5.12), we obtain

(5.16) D% = D? + T [D,&Vf)| + T*|df|.
By (4.16) and by Proposition 4.12, we find that
(5.17) D,aVH= Y c(e)e(VIMVS) - w (F,g") (VS).
1<i<n
Using (5.16), (5.17) we get the last identity in (5.13). O

¢) A basic closed 1-form

Here we prove an essential result, which is an analogue of a result of Bismut-Lebeau
[BL2, Theorem 3.3].

Theorem 5.6. Let oy 7 bethe 1-formon R} x Ry

(5.18) o = gTrs [N exp (=tD%)] — dT Trs [f exp (-tD%)] .

Then oy, is closed.
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Proof. We proceed as in [BL2]. The vector space F is Z-graded, and so it is
Z,-graded. Let 7 € End(FF) be the operator defining the Z-grading,ie. 7= +1
on F*v*" 1 = —1 on F°¢, Then End(F) is a Z,-graded algebra, the even (resp.
odd) elements of End(F) commuting (resp. anticommuting) with 7. Now the key
fact is that d¥',dE* and Dr are odd operators. Clearly

T — Tr, [N exp (—tD7)]

10 2 oD
=55 {Trs [Nexp (—tDT —b [DT’ oT D] }b=0-

Since the supertrace Trs vanishes on supercommutators [Q1], we get

(5.19)

01 2
520 o757 Trs [V exp (—tDF)]
19 b
=57 {Trs [[DT> ]eXP( tDr — b5 )]} =0
Now
(5.21) [Dr, N] = —d* +df".

Moreover, using (5.3), (5.4), we get

8DT

(5.22) = [2£,d77].

So from (5.20)—(5.22), we obtain

(5.23) D - Tr, [N exp (~tD3)]

= 2 {To, [(dF = d*) exp (~tD3 + b [4F*, /1)]} .-
Also
(520 45, D3] =o.

Using again the fact that Trs vanishes on supercommutators, from (5.23), (5.24),
we get

01
aT 2t

0
= 2 {Trs [[d%*,dF - d;*] exp (—tD%w + bf)] }b=0

(5.25) — Tr, [N exp (-tD7%)]
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= % {Tx, [DF exp (—tD7 + bf)]},_,
— % {Tr, [f exp (—tD% + bD3%)] }omo
0

=-5 Tr, [fexp (—tD%)] .

The proof of our Theorem is completed.
Theorem 5.7. For t > 0,T > 0, the following identity holds

dt ~ ~
(5.26) anr = 5T, [N exp (-tp%)] —dT'Tr, [ fexp (—tD%)] .

Proof. Equation (5.26) follows from Proposition 5.4.

d) A contour integral

We fix constants €, A,Ty suchthat 0 <e <1< A < 400,0 < T < 400.

Let I' =T'c 4,1, be the contourin R4 x R

t A
I,
A -~
AT
Y 1
I
e >
ry |
[}
5 >
0 TO T

Figure 1
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As shown in Figure 1, the contour I' is made of four oriented pieces.

F12T=T0, SStSA,
FzZOSTSTo, t=A;
(5.27)
I's:T=0, e<t< A
F4ZOSTST0, t=¢.
The orientation of I'y,---,I'4 is indicated on Figure 1.
For 1 <k <4, set
(5.28) I = / Q.
Tk
Theorem 5.8. The following identity holds
4
(5.29) Y L=o.
k=1

Proof. This follows from Theorem 5.6.

Remark 5.9. The proof of Theorem 0.2 will now consist of two steps :

— A first step is to make an adequate choice of the function f, and of the metrics

gTM and gF'

— A second step will be to make A — +00,Ty — 400, — 0 in this order
in equality (5.29). Each term I2(1 < k < 4) will diverge at one or several of

these stages. Once the divergences will have been substracted off, we will ultimately

obtain an identity which is exactly Theorem 0.2.
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V1. Some properties of the integral
— [, 0F g )V (T M, VM)

Let f: M — R be a Morse function, and let Vf be the gradient field of f
with respect to a given metric on T M.

In this Section, we show that when the metrics g%',g7™ vary, or when the
gradient field Vf varies, the variation of — [, 0(F,g¥)(Vf)*$(TM,VTM) is
essentially the one which is predicted by the anomaly formulas for the Ray-Singer
metric, which were stated in Theorem 4.7.

As explained in Section 7 b), this step permits us to reduce the proof of Theorem
0.2 to the case where the metrics g7™ and g% are as'simple as possible.

A by-product of Theorem 0.2 is that the integral — [, 0(F, g")(Vf)*y(TM,
VTM) only depends on the metrics g7™,gF and on the Thom-Smale complex
associated to V f. In this Section, we give a more cohomological expression for
this integral in terms of Chern-Simons forms and of the Euler number of a vector
bundle on a cycle of codimension 1.

This Section is organized as follows. Ina), we show that the integral — f, 6(F, g")
(VF)*¢(TM,VTM) is unchanged when replacing V£ by another gradient field
for f. Inb), we give variation formulas for this integral. Finally in c), we express
the integral in a more cohomological form.
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a) Homotopy invariance of the integral

We make the same assumptions and we use the same notation as in Section 4. In
particular M is a compact manifold and F is a flat vector bundle on M.

Let f: M — R be Morse function. Let B be the set of critical points of f. If
z € B, let ind(z) be the index of f at z.

Let (g7M, gF) and (¢'™M, g'F) be two couples of metrics on T M, F. We use
the notation of Sections 4a) and 4b) for the couple (g7, g¥'). The corresponding
objects associated to (g’7M, g'F) will be denoted with a ’. In particular, Vf and
V'f denote the gradient vector fields of f with respect to the metrics g7™ and
g™ . Let || |laetr and || ||}, & be the metrics on the line bundle det F' induced
by ¢F and ¢'F .

Recall that the current ¢(TM,VTM) on TM was constructed in Section 3d).
By Remark 3.8, (Vf)*¢(TM,VTM) and (V'f)*y(TM,VTM) are well-defined
locally integrable currents on M with values in o(TM), which are smooth on
M\B. Moreover they verify the equation of currents

(61)  d(VS)"p (TM, V™) = e (TM, VTM) = 3 (-1)i),,

z€B

d(V'f) ¢ (TM, V™) = e (TM,VTM) - Z(—l)i“d(‘”)éz.
z€B

Proposition 6.1. The following identity holds
(6.2)

- [ 0(R.g") (V16 (M, 9™) = - [ 8(F.g") (V') (TM,V7H).
M M

Proof. For ¢ € [0,1], set

(6.3) oM = (1— 0)g™ 4 g™
Let V,f be the gradient of f with respect to the metric g7/™. Then V,f
has the same zeroes as Vf. Using the current equation (6.1) over M x [0,1],

we deduce that the closed current (Vf)*(TM,VTM) — (V' f)*y(TM,VTM) ig
exact. Since the form 8(F, gF') is closed, equation (6.2) follows. O
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Remark 6.2. The vector fields V'f are exactly the gradient vector fields for f in
the sense of [Sm1]. Let g : M — R be another Morse function having the same
critical points as f with the same indexes. Laudenbach has shown to us that in
general, the vector fields Vf and Vg are not homotopic in the class of vector fields
which exactly vanishon B and are nondegenerate at B. Alsoin general the integrals
~ [y OCF, gF)(V£)*$(TM, V™) and ~ [, 6(F,g")(Vg)*$(TM, V™) take
different values. The counterexample of Laudenbach is very simply constructed on
the 2-dimensional torus.

b) Variation formulas for the integral
~ I O(F,g")(V£)*9(TM, VM),

Here we study dependence of — [, 0(F, gF)(V f)*¢(TM, VTM) in terms of g7
and VTM

Theorem 6.3. The following identity holds

(6.4) —/M 0 (F,g'") (V') (TM, V' TM)+ /M 0 (F,g") (V)¢ (TM, VM)

=/ g(Il ”detF)e(TM,VTM)_/ 8 (F,gF)&(TM,vTM, v'TM)
M M

I et r

'2
— Z(_l)ind(z) LOg (“ “get F,) )

=€B I Naet £,

Proof. Clearly

'2
(65) O(F,g'F)—0(F,gF)=dLog(” ”getF>
I gt 7

Using the equation of currents (6.1), and (6.5), we get
(6.6) - [ 0(Rg™) -0 (Fg) (V)w (T, 9™)

— ” ”dzet F TM ind(z) " "detF

= | Log | -——4detF | ¢ (TM, V™M) - " (~1)4=) Log :

M I Nt F z€B ” "det F,
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Also by (3.34), we obtain
67) - /M 0 (F.g'") (V)¢ (TM, V™) — (Vf) 3 (TM, V™))
= —/ 0 (F,gF)e(TM,vT™ v'TM)
M

Then (6.4) follows from (6.2), (6.6), (6.7). a

Let 1, -,z be the elements of B.

Let ({,z) € R x M — fy(x) € R be a smooth function such that fo = f.
Then there exists € > 0 such that if |[¢| < 2¢, f, is a Morse function. Let B, be
the set of critical points of f,. Then if € > 0 is small enough, there are smooths
maps £ €] — e,e[— z;0 € M (1 <i<gq) suchthat z1,---,24, are the critical
points of f,, and their index does not depend on £.

Proposition 6.4. For |{| < ¢, the following identity holds

0

(6.8) = <— /M 0 (F,g") (Vfo)* v (TM, VTM))

= S (ayreea (mg) (%)

=0

Proof. Using again the fact that the form 6(F,gF) is closed and the equation of
currents (6.1), we get (6.8). O

Remark 6.5. A comparison of formulas (3.13) and (6.4) shows that they are not
unrelated. Theorem 0.2 gives a precise content to their similarity.

In Section 16, by using Laudenbach’s explicit description of the deformation of
the Thom-Smale complex along a Cerf path [Ce] connecting two Morse functions,
and also Proposition 6.4, we will give a direct proof of a formula calculating the ratio
of two Milnor metrics, which does not rely on Theorem 0.2.
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¢) A cohomological expression for the integral
= I O(F, gF) (V) (T M, VM),

Let K’ be a smooth triangulation of M such that K '"=1N B = (. Overeach
simplex o € K'™\K'»~1, the 1-form # has a primitive V,, ie.

(6.9) dV, =0 (F,g¥) ono.
Of course V, is smooth on o.

Let V be the locally integrable current of degree 0 on M, such that for any
o € K'"\K'™1, V coincides with V, on ¢. Obviously, there is a closed current
v of degree 1, whose support is included in K 'n=1 such that

(6.10) dVv =9 (F,g") — 1.
In particular the support of v is included in M\B.

Over M\B, the vector bundle T'M has a nonzero section Vf. By Chem-
Simons theory, there is an unambiguously defined class &(TM,Vf,VIM) of
smooth forms of degree n — 1 on M\B, which is defined modulo exact smooth
forms on M\ B, such that

(6.11) de (TM,Vf,VTM) = e (TM,VT™) on M\B.
Of course,
(6.12) e(TM,Vf,VTM) =0 ifn is odd.

The quotient vector bundle —{7{7—"}'? is well-definedon M\B. Let e(—{,:'-%’{f) denote
the corresponding Euler class. Then e( {lv%) is a cohomology class on M\ B, with
values in the orientation bundle o(%) of TTV% . Of course,

TM
6.13 el —= ] =0 ifnis even.
(6.13) (%7)
Moreover it is clear that
TM
6.14 o| ——= | =o(TM) over M\B.
(6.14) (777 = o) over My

Therefore 7‘3(11%{7) is a cohomology class on M with values in o(T'M), and the
integral [, ve({fy) is well-defined.
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Theorem 6.6. The following identity holds

(6.15) — /Mo(F,gF) (V) o (TM,VvTM) = /MVe (TM,vTM)

=) (~1)M@Y(z) - /M7 (a(TM, Vf,vTM) %e (%)) :

Tz€EB
Proof. Using (6.1), (6.10), it is clear that
(6.16) - [ 6(F.9") (V1) 0 (12,97
M

— e ™™\ _ __1)ind(z) z) — * ™™ )
[ ve@m, v - S ) - [ (v e (v

z€B M

Let TM*' be the orthogonal bundle to Vf in TM over M\B. Then over
M\B,TM = {Vf}®TM~. Over M\B, wecanequip TM = {Vf}®TM*
with the connection VTM = V{Vf} ¢ VTM™ which is the direct sum of the
projections of V7™ on {Vf} and TM*. The connection V7™ still preserves
the metric g7™. Using (3.34), we find that

(6.17) (Vf)* " (TM, VTM) _ (vf)* ) (TM, 6TM)

=-2 (TM, yTM GTM ) on M\B.
Also one sees easily that
(6.18) E(TM, VTMﬁTM) = —&(TM,Vf,vTM)

Moreover by using the explicit formula (3.19), one finds that if Br is the form
Br in associated to the connection VTM | then

. exp (=T |Vf[?) i
(6.19) (V) Br = —— == fle (Tat, vT™ ),
and so
(6.20) (VF)* (TM, 6TM) = —%e (TML,VTM*) .

Using (6.16)—(6.20), we get (6.15). O
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Remark 6.7. When n is odd, (6.15) takes the form

(6.21) —/M0(F,9F) (V) 4 (TM, V™M)
- __1)\ind(z) T 16 ﬂ
R 0+, 73 (o)

Equations (6.15) and (6.21) exhibit clearly how the integral — [, 6(F, gV
Y(TM,VTM) depends on the gradient field Vf.
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VII. An extension of a theorem of Cheeger and Miiller

In this Section, we establish the main result of this paper, which was stated in
Theorem 0.2. Namely we give an explicit formula relating Ray-Singer metrics to the
Milnor metrics on the determinant of the cohomology of a flat vector bundle. This
generalizes the basic result of Cheeger [C] and Miiller [Mii 1,2]. Also, we establish
Theorem 0.3.

This Section is organized as follows. In a), we restate for convenience the main
result of this paper in Theorem 7.1. Inb), by using the results of Sections 4 and 6, we
show that we only need to establish Theorem 7.1 under simple assumptions on the
metric 7™ on TM, on the Morse function f, and on the metric g¥ on F. In
c), we state without proof nine intermediary results, which will play a crucial role in
establishing Theorem 7.1. The proofs of these results are delayed to Sections 8-15.

In d) starting from the crucial identity 3";_, I = O established in (5.29),
we study separately the terms I)(1 < k < 4), by making in succession A —
400,Typ — 400, — 0. Each term diverges at one or several stages. In €), we
verify that the divergences of the terms I)(1 < k < 4) are compatible with our
basic identity. We obtain in Theorem 7.19 an identity, which is shown in f) to be
equivalent to Theorem 7.1. Finally, in g), we prove Theorem 0.3.

The organization of this Section is closely related to the organization of Section 6
in Bismut-Lebeau [BL2]. We have tried to make the resemblance as obvious as
possible, although at many stages, the arguments are of an entirely different nature.

Throughout the Section, the assumptions and notation of Sections 1-6 will be in
force.
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a) An extension of the Cheeger-Miiller theorem

We make the same assumptions as in Section 1.

Let g™™, g% be arbitrary smooth metrics on TM, F. Let || |25 4.y p) be
the corresponding Ray-Singer metric on the line det H*(M, F).

Let f : M — R be a Morse function, and let B be the critical points of f. Let
X be the gradient vector field of f with respect to a given smooth metric g on
TM (which does not necessarily coincide with the metric g7™ ). We assume that
the gradient vector field X verifies the Smale transversality conditions [Sm1,2].

The metric g¥ on F induces metrics || |ldet 7, on the lines det F, (z € B).
Let || |IX det H.( wm,r be the corresponding Milnor metric on det H*(M, F).

The main result of this paper is the extension of a theorem of Cheeger [C] and
Miiller [Mii 1,2], given in Theorem 0.2, which we restate for convenience.

Theorem 7.1. The following identity holds

2
(7.1)  Log (————” "d“”"’””) =—/M0(F,9F) X*y (TM,V™™).

" "det H*(M,F)

Proof. The proof of Theorem 7.1 will occupy the rest of this Section. It relies on
nine intermediary results stated in Theorems 7.6-7.14, whose proofs are delayed to
Sections 8-15. O

Remark 7.2. Assume that the metric g% is flat, or more generally that the metric
|| |laet 7 on the line bundle det F* is flat. Then by Remark 1.10, || ||det Ho(M,F)

coincides with the Reidemeister metric || || £, Ho(u,F)- Also O(F, g¥) = 0. From
Theorem 7.1, we thus effectively recover the theorem of Cheeger [C] and Miiller
[Mii 1,2].

b) Some simplifying assumptions on the metrics g7/, gF

Let ¢'TM ¢'F be another couple of metrics on TM, F. We denote witha ' all

the objects associated to the metrics g'TM, ¢'F
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By Theorem 4.7, we know that
2 "
(12)  Log I "detHO(MF) =/ Log(" ”getF)e(TM,VTM)
Il ”detH'(MF) M I llget 7
- / o (F,g'F)e(TM,vITM v'TM) .
M

If z € B, let ind(z) be the index of f at z. By the very definition of Milnor
metrics, it is clear that

2
'2
(73) Log !I___"d_et_H_’(_]W_Fl — z(_l)ind(z) LOg (” ”get F:,) )

|| ”det H*(M,F) z€B ” "det Fy

So from (7.2), (7.3), we get

2 2
(7.4) Log ”_ﬂg;_[t%_(w e (Il et 2o, F)>
I Naet e car,ry I ”det H*(M,F)
'2
=/ Log (——” "gaF) e (TM, VTM / ¢(TM, vTM V/TM)
M “ “detF
ind(z ||
_Z( 1) d( )Lg( det F,
z€B ”det Fa

Using Proposition 6.1, Theorem 6.3 and (7.4), we see that

2
(7.5) Log "—EM‘LX(M—“ ~ Lo (M)
I Naewtrear, ) I llger Frear.y

=-/ 0 (F,g'F) X (TM,V’TM)+/ 0 (F,g") X*y (TM,VTM).
M M

2

By (7.5), it is clear that to establish Theorem 7.1 in full generality, we only need
to establish (7.1) for one given couple g7™, g¥ of metrics on TM, F. So in the
sequel, we may and we will assume that g7™ = gI'M je. gTM is exactly the
metric from which the gradient vector field X is defined. Equivalently, we will
suppose that X = Vf. Also we will assume that the metric g¥ is flat near B.

For z € M,a > 0, let BM(z,) be the open ball of center z and radius o
with respect to the Riemannian distance associated to g7
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By a simple argument of Helffer-Sjostrand [HSj4, Proposition 5.1], for any
a > 0, there exists a Morse function f, : M — R, and a metric gZM on TM,
which have the following properties :

— fa, gEM coincide with f,g™™ on M\,c5 BM(z,a). Moreover f,
has the same critical points as f with the same indexes.

— Near = € B, there is a coordinate system y = (y!,---,y™) on M centered
at z, such that near x

n
g™ =" |ay'|’,
1

1ind(:c) .12 1 n .19
(76) fel)= @) =3 3 Wl +s O Wl
1 ind(z)+1

— The gradient vector field V,, f, of f, withrespecttothe metric gZ™ verifies
the Smale transversality conditions. Also if (C*(W*, F),d) and (C*(WX, F),0)
are the Thom-Smale complexes associated to the gradient vector fields Vf and
Vafa, the obvious map C*(W* F) — C*(WX,F) identifies the two Thom-
Smale complexes.

Let || ||ﬁ;2".{;4, ) by the Milnor metric on the line det H*(M, F') associated

to the gradient vector field V,f, and to the metrics || ||get 7, On the lines
det F;, (z.€ B). Since the Milnor metric only depends on the associated Thom-
Smale complex and on the metrics || ||det 7, (z € B), itis clear

M, VS _ M, Va fo
(7.7) | Wdet Hoar,ry = I Naet Ho (v, -
Let VoM be the Levi-Civita connection on (TM,gi™). Let || |Z yo(ar,r).a

be the Ray-Singer metric associated to the metrics (gZ™,g¥) on (T'M,F). By
(7.2), (7.7), we see that

1S s\ 12 e\
(78) Log AR — Log — T
R A

= -/ 8 (F,g")e(TM,vTM vIM),
M
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Using Theorem 6.3 and (7.8), we see that

2 2
I lldes rocar,p I Nldes rocar,r
(7.9) Log ( Metv fi L) —Log ——w‘:%—)

” ”det H*(M,F),a " "det H*(M,F)

=~ [ 0(Rg") (Vata)s (TM,IEM)+ [ 0(Fg) (Vo) (TM,97).
M M

Since Vf = Vg4 fo on M\J,c5 B (z, ), by using Theorem 6.6, it is clear that
for @ > 0 small enough, then
(7.10)

—/ 6 (F,g") (Vfa)*¢(TM,vTM)=—/ 0 (F,g") (Vf)*y (TM,VTM).
M M

So from (7.9), (7.10), for a« > 0 small enough, we get

2 2
I e zreca,r [ e
(7.11) Log ( MoV, fi ) - Log ——#‘l

” ”det H*(M,F),a " "det He*(M,F)

== [ 6(B0") (Vato) v (M, I)+ [ 0(F.g") (V)0 (TI,V™).
M M

So we deduce from (7.11) that, to establish (7.1) in full generality, we may and
we will assume that :

— Forany z € B, the metric gF is flat near B.
— For any z € B, there is a system of coordinates y = (y',---y™) centered at
z such that near x

ind(:c) n

(112) M =Y |a', @) =f@ -5 > Wl+y O W
1 1

ind(z)+1

Remark 7.3. Recall that the vector field Vf depends on the metric g7, Using
Proposition 6.1 and Theorem 7.1, one deduces that the Milnor metric || ||3;i;VHf. (M, F)

does not depend on the metric g7™. A direct proof of this result is given in
Section 16, by using the results of Laudenbach in the Appendix.
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¢) Nine intermediary results

For 1 < i< n, let M* be the number of =z € B of index i. Set

X(F) = an(—l)‘dim H'(M,F),
(7.13) 0

X'(F) =Y (-1)'idim H(M, F).

0
Then x(F) is the Euler characteristic of F, and x/(F) is the derived Euler
characteristic of F'. Clearly,

(7.14) X(F) = tk(F) ) (-1)i4(),
z€B
Set
(7.15)  X'(F) =1k(F) ) (-1)™® ind(z) = tk(F) Y (-1)'iM",
z€EB 1=0
T[f] = Y (-1 f(a).
z€B

We use the notation of Sections 3 and 5. In particular for 7" > 0, Br is given by
(3.47) and the scalar product ( , ) on F is defined in (5.2).

Definition 7.4. For T > 0, let F[})’”(resp. F]})’ll,resp ~Fc{1“0}) be the direct sum of
the eigenspaces of D3. associated to eigenvalues \ € [0, 1](resp . A €]0, 1],resp. A = 0)
Let DZT’[O’ll(resp . D2T’]°’1]) be the restriction of D2 to F[r})’l](resp. to IF]})’”).

For T > 0, let Pf_[,0 ’ll(resp .P}o ’1],resp .Pr) be the orthogonal projection
operator from F on Fl})’ll(resp .]F];’l],resp .IF{TO }) with respect to the scalar product
(, ). Set Pl =1 _ plo1,

Definition 7.5. For T > 0, let | |5 yo(ps, ) be the Ly metric on the line

det H*(M, F) constructed in Section 2a), which is associated to the metrics g7, g%
on TM,F.

In the sequel, we assume that the simplifying assumptions of Section 7 b) are
verified.
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We now state without proof nine intermediary results, which will play an essential
role in the proofs of Theorem 7.1. The proofs of these results are delayed to Sections
8-15.

Theorem 7.6. The following identity holds,

2
. | |HS .
(7.16) T}ﬂloo {Trs [NLog (D%]o,u)] + Log ( d:: (M,F), T
| ldet #om,F)

M, VS 2
n - T I "de He(M,F

+21(F) T[T+ (2(F) ~ X(F)) Log (-7;)}=Log (——| Tt |
det H*(M,F)

Theorem 7.7. Given ¢, A with 0 < € < A < +00, there exists C > 0 such that
if t €[e,Al,T > 1, then

~ C
(7.17) |Trs [N exp (—tD%)] — X'(F)| < N
Theorem 7.8. Forany t > 0,
(7.18) Tl—i»I-Il}oo Trs [N exp (—tD%) Prl,wl’+°°[] =0.

Moreover there exist ¢ > 0,C > 0 such that for t > 1,T > 0, then

(7.19) ‘Trs [N exp (—tD%) Pg,-l’+°°[] | < cexp(—-C't).

Theorem 7.9. For T > 0 large enough, then

(7.20) dim Fl = rk(F) M.
Also

.21 : 2:[071] = 0.
nan i T3] =0

Theorem 7.10. As t — 0, the following identity holds,
(7.22) Tr, [Nexp (-tD%)] = %X(F) + O(t) if n is even,

5 .
= rk(F) /M / Lexp (—g) \_1[2 +O(V1) ifn is odd.
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Theorem 7.11. For any t > 0, thereis ¢ > 0 such thatas T — +oo,
(7.23)

T, [ exp (~4D8)] = k() B 111+ (3(F) - 3X(F)) 3+ 0 (™).

Theorem 7.12. For any d > 0, there exists C > 0 such that for 0 < t < 1,
0<T< %, then

(7.24)

e [rexp (- 0+ 729 1)) -

rk(F)/ f/ exp (— BTz)+t/ b (FgF / & exp (- BTz)}

Theorem 7.13. For any T > 0, the following identity holds,

129) iy 35 ([ (- (104 Tawn)’) | - nm i)

n 1_, 1
= <ZX(F) T 9X (F)) Ttanh(T)

Theorem 7.14. There exist ¢ > 0,C > 0 such that for t €]0,1],T > 1, then

<C.

1

(7.26) = (’I‘rs [f exp (— (tD + %(v f))z)] — rk(F) Tx2[f]

_g (%X(F)-ax (F)))\ < cexp(-CT).

Remark 7.15. Sections 8 and 9 are devoted to the proof of the crucial Theorem 7.6,
Section 10 to the proof of Theorems 7.7, 7.8 and 7.9. Each of the Sections 11-15 is
devoted to the proof of one of the Theorems 7.10-7.14.

d) The asymptotics of the 2 ’s

Here we use the notation of Section 5. We start from the identity (5.29)
4
(7.27) Y R=o.
k=1
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We now will study individually each I? (1 < k < 4), by making in succession
A — 400, Ty — 00,6 — 0.

1) Theterm I). Clearly

0 4 g \7 9t
(7.28) I = | Tr,[Nexp(-tD%)] R
a) A— 400
As A — +o0,
o_1., i [ 2 \1 9
(7.29) I - 5x'(F)Log(4) = Iy = [ T, [Nexp (-tD7,)] 3;

+o00
+/1 (Trs [N exp (—-tD7,)) —x'(F))%

B) Ty — 40
By Theorem 7.7, we see that as Tp — o0,
! dt
(7.30) / Tr, [N exp (—tD%,)] 52 — —5X/(F) Log(e).
Moreover we have the obvious identity
oo 2 / dt
(7.31) [ (Trs [Nexp (—tD7,)] — X/'(F)) %
= / n [V exp (—tD%,) PR @[ [V exp (~tD%,) PR+l at
- L 8 p To) * T 2t L s exp To/ * To 2t
By definition,
(7.32)
+ oo +oo
_+p2 | ploal] 4t 2J0,11\] 4t ,
/1 Tr, [N exp (—tD%,) Pp’ 5 /1 [N exp ( —-tDp} )] 5
and so
+oo dt
(7.33) / Tr, [N exp (—tD%,) PR 2
1

o[y vt
s D;:[o’]] 2t To

+1Tx, [NPR] f " e_t% - %’I‘rs [N Log (D3]
1
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Moreover,

! dt
—t ]0,1]
(7.34) Trs [ / L0 N(e7t=1) ol

D 1Y

1
— -t _ [0 1] '
= T, [ /D oV € ) & S Pl ] Y (F) /

Using Theorem 7.9 and (7.34), we see that as Ty — 400,
(7.35)

T [ NGt o S| L L e - ) / (o
° ploal 2t" To g X X 0 t
(1]
Similarly,
(7.36) Tr, [NP]T(;’II] = Tr, [NP,_[,‘;’”] —X(F) .
From Theorem 7.9 and (7.36), we find that as Ty — +oo,
+ oo
(7.37)  Tr, NP‘0 ”] / -tdt —( "(F) = X'(F)) / e‘t%
1

Moreover, one has the trivial identity

(7.38) r'(1) = /01 (et-1) %, /1+°° et

t t
From (7.33), (7.35), (7.37), (7.38), we see that as Tp — +00,

(7.39) /1+°° Tr, [N exp (—tD%,) P! g-.p Tr, [N Log (D 10, 1])]
—~ ST (R'(F) - X (F).

Also by Theorem 7.8, we find that as Ty — +o0,

+oeo dt
(7.40) / Tr, [N exp (~tD},) P, >| 7 — 0.
1

Using (7.29), (7.30), (7.31), (7.39), (7.40), we get
(7. 41)

114— Tr, [N Log (D 10, ‘1)] 2= ——x '(F) Log(e)+= r’(1)( '(F)—x'(F)).
7) e=0
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Set
(7.42) B = ;) (X(F) - X(F)).
Clearly
(7.43) 7+ %X’(F) Log(e) = I3

2) Theterm I2. We have the obvious equality

To
(7.44) L= / Tt [f exp (~AD%)] dT.
0
a) A— 40
Clearly, as A — +o0,
To
(7.45) LI = Trs [f Pr] dT.
0

Proposition 7.16. The following identity holds

1 I IRS 2
(7.46) I} = -3 Log ( det H (M,F),To) .
| ldet H*(M,F)

Proof. We proceed as in [BL2, Theorem 6.12]. By Hodge theory the map s €
Fi°} - Prse IF§~0 } is the canonical isomorphism of F{°} with Frf,?} ( these
two finite dimensional Z-graded vector spaces are identified with H*(M, F')). In
particular, if s € F{0},0 < T < T”, then

(7'47) PTIS = PT’PTS-
Using (7.47), we see that if s € F{°} s’ € F{°}, then

(7.48) Prs, Prs')g 1

0
a7 ¢
oPr oPr ,
< T ——Prs, PT.S’ >]F,T + <PTS, 9T P >ET -2 (fPTS, Prs )]F,T

Since P2 = Pr, then

oPr 0Pr OPr
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From (7.49), we deduce that 2PZ maps FL') in its orthogonal with respect to the
scalar product ( )rr. We then rewrite (7.48) in the form

0
(7.50) T (Prs, Prs')y r = =2(fPrs, Prs')p r -
Using (7.50), we obtain
b 2

(7.51) 5T o8 (l laot o (M, ), T) = —2Tr, [fPr].
From (7.51), we get (7.46). O

B) To — o0

Tautologically

1 | laer ’
(7.52) I+ 3 Log ( det # (M’F)’T") =0.
| |det H*(M,F)
v) e=0
Nothing is left.

3) Theterm IJ. Recallthat D = Dy. We have the identity

A dt
(7.53) I = —/ Tr, [N exp (—tD?) 5
a) A— 400
Clearly, as A — +o0, then
0 1 / 1 ! 2 dt
(7.54) I3+ X (F)Log(A) = I = —/ Tr, [N exp (—tD?) %
oo dt
—/ (T, [Nexp (—tD?)] = X'(F)) %
1
B) To — +oo
As Ty — 400, I} remains constant and equal to IZ.
7) e=0
Set
B M
(7.55) a_, = rk(F)/ / Lexp <— ) , ap = —X(F)
M
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Observe that

a_; =0 if n is even,
(7.56)
ag=0 if mis odd.

By Theorem 7.10, we know that as ¢t — 0,
(7.57) Tr, [Nexp (—tD?)] =ao+O(t) if n iseven,

— + O(WV1) if n isodd.
From (7.57), we see that as ¢t — 0, then

(7.58) Trs [N exp (—tD?)] = 21 e+ O(V1).

Vit
Using (7.58), we find that as € — 0, then

B ATM n
(7.59)  IZ +tk(F) /M / Lexp <_R 5 ) “1\/§ - ZX(F) Log(e)

1
3 _ _4p2)] _ 8-1 dt
— I3 = /(; (’I‘rs [Nexp( tD )] G ao) 2

—/1+oo (Trs [N exp (—tD?)] - X'(F))g_; +rk(F)/M/BLeXp (_R:;M> .

) Evaluation of I3

Recall that the function 6%(s) was defined in Definition 2.1.

Theorem 7.17. The following identity holds

3 _ 1067 n _ 1, '
(7.60) 1 = 35-0) - (5x(F) - 3X(P) ) ().
Proof. For s € C,Re(s) > d"“ M " using (7.58), we get

(7.61) 6F(s) = —% /0 e (Trs [NV exp (—tD?)] - 252 - ao> dt

_f%s_) /1-+oo et (’I‘rs [N exp (-tD?)] - X'(F))dt

a-1 (a0 —X(F))
L(s)(s—3)  T(s+1)
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From (7.59), (7.61), we get (7.60). O

4) Theterm IJ. Clearly

To
(7.62) Ig —A Tr, [f exp (—ED%)] dT.

a) A— 400
The term I remains constant and is equal to I}.
B) To = +o0

By Theorem 7.11, we know that there exists ¢ > 0 such thatas 7" — +oo,
(7.63)

Tr, [f exp (~eD3)] = tk(F) Tx2[f] + (§x(F) - %%’(F)) Z+0 (7).
Using (7.62), (7.63), we see as Ty — 400,
168 1+ kO T + () - 3T () ) Los (1)
—I2=— /01 (Trs [f exp (—eD%)] — tk(F) TcB[f]) dT

- /1 " {m [f exp (—eDF)] — tk(F) Tr[f] - (%X(F) - 35X (F)> }

7) €20

As in Bismut-Lebeau [BL2, Section 6, eq. (6.57)], this step is quite difficult. Set
(7.65) e = /e
Put

(7.66) JO = — /O 1 g (Trs [ fexp ( DT/E,)] _ tk(F) Tx3 [f]) dT

J0 = /1 e é (Tr,, [fexp( s'zpzT,E,)] — 1k(F) Trf[f]) dT

2o [“’i{m[fexp( e DT,E,,)] — tk(F) Tx2[f]
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-7 (3 - 330 3 ar.

(167) D=0 40— ( (F) -1 (F)) Log ().

Clearly

By Theorem 7.12, there exists C > 0 such that for ¢ €]0,1],T € [0,1],

(7.68) Tr [f exp (—EIZD%/S,)] —tk(F) /M f/B exp(—Br2)

< Ce?.

4 B
+E'/M§(F,gF)/ df exp (—Br2)

From (7.66), (7.68), we sece thatas € — 0,

1 B
(7.69) J; +1‘k(F)/O {/M f (/ exp (—Brz) — Z(_l)i“d(z)éz)}

z€B
dT (—;_;) - Jl = %/01 {/Ma (F,g%) /B&;‘exp(—BTz)}dT.
Also
(7.70) J3 = - /5 j—;—z{ﬁs [f exp (—e'zDi/e'z)]—fk(F ) fM f / ixp (=B(z/ery?)

6 B
+€'/M§ FgF)/ dfexp (—B(T/sr)z)}dT

D [ { /1 ( [ (B - Z(—l)i“d“)éx) } ar+

z€B

%/11/51 {/M9(F,9F) /Bd}exp(—BTZ)}dT.

By Propositions 5.4 and 5.5 and by Theorem 7.13, we know that for T > 0, as
e =0,

(7.71) eiz (’I‘rs [ fexp ( €?D%, . )] — rk(F) Tx? [f])
= (3P - 330 o)
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With the notation of (3.59), using (7.12), we find that if z € B, then
(7.72) Tr [A7'] = n - 2ind(x).

By Theorem 3.20, we see that for T > 0, as €/ — 0, then
(7.73)

L( [ /BexP(_B(T,e,)z)—ﬁfm) k(F)( x(F) - 52’(”)%

_/ ’g / dfexp( B(T/e:)z) — 0.

Using (7.71), (7.73), we find that for T' > 0,

(7.74) hm ,2{ [f exp ( DT/ 12 )| — tk(F) /M f/B exp (—B(1/er)2)

+¢' /M g (F,9") / Bgf exp (—B(T/e')Z)}
= (30 -3%0) (Gmm -17) 7

On the other hand, by Propositions 5.4 and 5.5 and by Theorem 7.12, we know that
there exists C' > 0 suchthatfor 0 < ¢’ < 1,¢/ <T <1, then

E%{Trs [fexp( DT/ 1 )| — tk(F) /M f/B exp (—B(z/er))

0 B
+e' /M§ (F,g") / df exp (-B(T/e')Z)}

Using (7.74), (7.75) and dominated convergence, we find that as € — 0,
1 B
(776) - /: ETZ{TIS [fexp( DT/ 1 - I‘k(F)/M f/ exp (—B(T/E/)z)
' 0 F B
+e€ 2 (F,g") df exp (—B(T/SI)‘Z) dT
M
n ! fcosh(T) 1\ dT
N (ZX(F) — X (F)) /0 (sinh(T) - T) T

112

(7.75)

< C.




AN EXTENSION OF A THEOREM BY CHEEGER AND MULLER

Also by using in particular Theorem 3.20, we get

(7.77) /1 Ve /M f ( /  exp (=B - Z(_l)ind(z)&c) dT

z€B

Sl ([ oo g

z€B

LA e

z€B

‘TTi(FS (%X(F) _ %y’(r*)) } k(IF) ( x(F )— 5 (F))

By Theorem 3.20 and by (7.72), we find that

ST ([ mtemm - v

z€B
-y (X0 - %) T

Using (7.77), (7.78), we see that as € — 0,

(7.79) - rkg,F) 11/5 {/Mf </Bexp(—BTz)—- Z(—l)i“d(”)éx)}dT

z€B

= —1k(F) /1+°° {/M f (/B exp (—Br2) — Z(_l)ind(x)6z> } “ (_15)

z€B

+ () - 370 +0 (V).

(7.78)

< C¢.

Finally, by Theorem 3.18, we find that as ¢ — 0,

(7.80) % /1 Ve { /Mo(p, oF) / B@exp(_BTz)}dT
— %/1+°° {/MG(F,gF) /Bifexp(—BTz)}dT.
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From (7.70), (7.76), (1.79), (7.80), we see that as € — 0,

) B
(7.81)  J2 +1k(F) /1+ {/M f (f exp (—Brz2) — Z(—l)i"d(”)éz)}

z€B

7 (Je) == (em-3x0) [ (555 -7) 7
+ (%X(F) — 35X (F)) /1+°° {/Mo (F, ") / erxp(_BTa)} dT.

By Theorem 7.13, we find that for 7 > 0,

(7.82) eil (Trs [fexp (~<2D3,, )] - sk(F) Te211]

e (P - L) 2
&2 (3ur) - 37(P) 1)
n 1., cosh(T) 1
- (ZX(F) X (F)) (sinh(T) YT
Moreover by Propositions 5.4 and 5.5 and by Theorem 7.14, there exist ¢ > 0,C > 0
such that for 0 < ¢’ < 1,T > 1, then

(7.83)

(e [Fex (~¢7D3,.0)] - sk(F) T2 11

— (3x(P) - 3¥(P) 1)

From (7.66), (7.82), (7.83), we conclude that as € — 0,

(7.84)  JY - Ji=- (%X(F) —5X(F )) / -~ (:i:((g B 1) g '

Using (7.67), (7.69), (7.81), (7.84), we see that as € — 0,

< cexp(—-CT).

(7.85) 2+ (x(F) - 3¥(P)) Logte)

ey [ [ 1 ([ owtcmmr- T Yar (L)
0 T€

114



AN EXTENSION OF A THEOREM BY CHEEGER AND MULLER

I = %/Om {/Mo(F,gF) /Bd?exp(—BTz)}dT
-(xo-3v0) ([ (558 -7) T

(&) F)

8) Evaluation of I3

Theorem 7.18. The following identity holds

(7.86) B = % /M0 (F,g") (V)" ¢ (TM, V™M)
+(Fx0) - 3X(P)) (Log(m) + T(1).

Proof. By (3.19), (3.30), it is clear that

(7.87) %/Om {/Me(F,gF) /B@vexp(_BTz)}dT

=3 [ 0(Fg) (V) v (M, TH).
Clearly
cosh(T) 27T
(7.88) Snh(T) ~ 1-e2T

Let ((s) be the Riemann zeta function. By (7.88), we easily deduce that for
s € C,Re(s) > 1, then

(7.89) %s) /0 et (:’ig)) - 1) dT = 2'=2((s).

Also for s € C,Re(s) > 1, we have the identity

o g [ (Dot [ (2B
+%3) [m Ts_l(::ﬁg)) - 1) dT' - r(sl+ ot F(s)(i —y
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Both sides of (7.89) of extend into a meromorphic function of s € C, which is
holomorphic at s = 0. Using (7.89), (7.90), and taking derivatives at 0, we get

! fcosh(T) 1\dT +o° / cosh(T) ) dT
(7.9) /0 (sinh(T) - T) Tt /1 (sinh(T) Y7
+T7(1) — 1 = —2Log(2)¢(0) + 2¢'(0).
Classically,
1
(7.92) () =3
1
¢'(0) = —5 Log(2).
Using (7.91), (7.92), we find that
! fcosh(T) 1\dT +o° /cosh(T) daT
(7.93) /0 (sinh(T) B -T-) T +/1 (sinh(T) _'1) T !
= — Log(w) — T'(1).
From (7.85), (7.87), (7.93), we get (7.86) . O

e) Matching the divergences

Theorem 7.19. The following identity holds

(7.94)
3, 3,3 1 | ll(ﬁfyom F) ’ 1,
LF+I;+1 - 3 Log | —pe———| — | nx(F) - X (F) ) Log(w) = 0.
| lact moma,p)

Proof. Recall that by (7.27),

4
(7.95) Y=o

k=1

As A — 400, the following divergences which concern the terms I and I3 in
(7.29) and (7.54) appear

(7.96) —%x’(F) Log(A) + %x’(F) Log(A) = 0.
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Since these divergences cancel out, we get from (7.95)
(7.97) Y ni=o.

By Theorem 7.6, we know that

RS 2

1 e .

(7.98) lim {5L0g<| ld;;f (M’F)’T") +5 !, [NLog(D "’”)]
To—+oo I H*(M,F)

+1k(F) Tr? [f]To + ('}X(F )= 3X (F)) Lo (T )}

M,Vf
1 Lo <|| et He(M, F))
— 5 —

I ldet He(M,F)

2

In view of (7.41), (7.52), (7.64), (7.97), (7.98), we find that for 0 < £ < 1,

(7.99)
I 1le

det H*(M, F)) _ (_Z_X(F) _ %X«I(F)) Log(?r) =0.

1
P4+ 12412 - ZLog
et 3+I4 2 l |detH'(MF)

As ¢ — 0, the following divergences appear, which concern the terms 1%, IZ, I2
in (7.43), (7.59), (7.85),

(100 (FEE) - FxB)+ Fx(F) - X)) Log(e)
B M
+ rk(F) </M/ L exp (— )
+00 B .
LA e gl

z€B

Because of (7.99), the sum of these divergences should be 0. This is exactly the
case for the coefficient of Log(c). The coefficient of ﬁ must also vanish. This is
in fact a result which was proved in Theorem 3.19.

From (7.99), (7.100), we get (7.94). o
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f) Proof of Theorem 7.1

By (7.42), (7.60), (7.86), (7.94), we get

(a0 {3 E@E) - X(F) - xF)+ JU(F) + 5x(F) - 5T BT
+ () - 328 - () - 3 ) Lol + 5?(0)

T

The coefficients of I'(1) and Log(w) in (7.101) vanish identically. Equation
(7.101) is then equivalent to

2
(7.102) Log (%W) = /Mo(F, aF) (V)" ¢ (TM, V™),

I Waet e ar, )

which is exactly Theorem 7.1. 0
g) Proof of Theorem 0.3

Let

(7.103) (F*,v):0>F" - F' ... = F™ =0

be a flat exact sequence of real flat vector bundles on M. Let o be the canonical
m

nonzero section of the line bundle det F'* = ®(det Fj)(‘l)j constructed in
[KMu], [BGS1, Section 1.a)]. =

Let 7 € det H*(M,F°®) = é(det H*(M, Fj))(‘l)j be the corresponding
nonzero section constructed in [Ié;/?u], which is associated to the exact sequence
(7.103).

Let gFo,...,gFm be Euclidean metricson F°,...,F™. Let | ||qet o be the
corresponding metric on the line bundle det F*. Let g7 be an Euclidean metric
on TM.
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Let || 3% gocarroys---» Il 3 mocas,pmy be the Ray-Singer metrics on the
lines det H*(M, F°),...,det H*(M,F™) associated to the metrics g™ gF°
g Let || ||ES He(u,pey denote the corresponding metric on the line

det H* (M, F*).

Now, we will prove Theorem 0.3, which we restate for convenience.

Theorem 7.20. The following identity holds,

(7104)  Log (Il arrey) = /M Log (|l e ) €(TM, V7).

Proof. We use the notation of Sections 7a)-b). Let || |2t deb H.( M,Fo) -
I ||detH.(M pmy be the Milnor metrics on the lines detH'(M,FO),...,
det H'(M F™) attached to the metrics || ||qet Fo,---,] |ldet Fm (z € B). Let

IR det H. (u, ey denote the corresponding metric on the line det H*(M, F'*).

Clearly, we have the exact sequence of Thom-Smale complexes
(7.105)
0— (C*(W*, F®),8) — (C*(W*,F'),0) = ... — (C*(W* , F™),8) — 0.

Set
(7.106) det C*(W*, F*) = (R)(det C* (W, F7))(=1.
Jj=0

By (1.48), we have the canonical isomorphism
(7.107) det C*(W*,F*®) ~ det H*(M, F*).

Let 7' be the nonzero section of detC*(W*,F*) constructed in [KMu],
[BGS1, Section 1.a)], which is attached to the acyclic complex (7.105). Then
7' € det C*(W*",F*) corresponds to 7 € det H*(M,F*) via the canonical
isomorphism (7.107). It should now be clear that

M,X, i
(7.108) Log (”T"det Hf(M,F°)) =) (-1 Log (||0x||3et F;) '
z€B

Set

m

(7.109) 8(F*,g™") =Y (-1)76(Fi,g"").

=0
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Since o is a nonzero flat section of det F'*, we see that
(7.110) dLog (|lol3es ) = O(F",9™").
By Theorem 0.2, we get
(71111)  Log (I3 5o cae,re)) = Log (I713e Ko )
- /M O(F*, 9" ) X*(TM,VTM),
Using (7.110) and proceeding as in (6.5), (6.6), we find that
(112) - [ o) wrM V™) = [ Log (Il )
M M

e(TM, VTM) _ Z(_l)ind(z) Log (“%"it F:)
z€EB

From (7.108)—(7.112), we get (7.104).
The proof of Theorem 7.20 is completed. O

Remark 7.21. Of course a direct analytic proof of Theorem 7.20 can be given,
which is much simpler than the proof of Theorem 7.1.
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VIII. The asymptotic structure

of the matrix of the df operator
on the Helffer-Sjostrand orthogonal base

The purpose of this Section is to describe the construction by Helffer-Sjostrand
[HSj1-4] of an orthogonal base for the direct sum of the eigenspaces of the operator
15% associated to eigenvalues A € [0,1], and to calculate the asymptotics of the
corresponding matrix of df in terms of the corresponding Thom-Smale complex.
The results of this Section will also be used in Section 9, where the asymptotics of
the Ly metric | |5 yo(ps,py,r On det H*(M, F) as T — +oo is calculated, and
where Theorem 7.6 is proved.

The results of this Section on the asymptotics of the matrix of d¥ were already
established in Helffer-Sjostrand [HSj4, Theorem 3.1 and Proposition 3.3], in the
case where F' is the trivial Euclidean line bundle R. Here the main difference with
respect to the situation considered in [HSj4] is that F' is a vector bundle, and more
fundamentally that the metric g¥ is not flat.

In [HSj4, Sections 2 and 3], in the case where F' = R, the solutions of the
WKB equations for the eigenvectors of EZT associated to eigenvalues A € [0, 1],
were calculated, by solving in particular transport equations near W*(z) and
W*(z)(z € B). If the metric g¥ on F is flat, then the calculations of [HSj4]
can be used without change. If not, the operator l~)2T which we consider here is
more complicated than in [HSj4]. In fact the analogues of [HSj4, Proposition 2.3
and 2.4], where Helffer-Sjostrand calculate the leading term of the WKB equation
for D2 along W*(z) and W*(z) are Propositions 8.24 and 8.25. On W*(z),
parallel transport with respect to the connection V¥ is used to solve the transport
equation, while on W*(z), it is the dual connection V* (which itself depends on

121



J.-M. BISMUT, W. ZHANG

the metric g%’ ) which is needed. This reflects in fact Poincaré duality for flat vector
bundles which are not orthogonally flat.

Because the situation we deal with is different from the one in [HSj4], we have
felt necessary to give a detailed exposition of some of the results and techniques
of Helffer-Sjostrand [HSj1-4], referring when necessary to the original work. Our
own contribution in this Section is in fact to simply apply the general techniques of
[HSj1-3] to a situation which is slightly more complicated than in [HSj4].

This Section is organized as follows. In a), we introduce the Agmon metric
ik g™™ _ Inb), we recall simple results of Witten [W] on the harmonic oscillator
one can attach to each z € B. Inc), we describe the results of [HSj1-3] concerning
eigenvectors of the operators EZT with certain Dirichlet boundary conditions. In d),
we construct a corresponding orthonormal base of eigenvectors.

In e), following [HSj1-3], we construct an orthonormal base {€r gz} 1<:§€(F)

of the eigenspaces of 13% associated to eigenvalues A € [0, 1].

In f), we describe the WKB equation for 13%. In g) and h), we solve the
corresponding transport equation over W*(z) and W*(z)(z € B). Finally in i),
we establish in Theorem 8.30 the main result of this Section, which is the asymptotic
structure of the action of the operator d4 on the considered eigenspaces of ﬁ%.
This generalizes a corresponding result of Helffer-Sjostrand [HSj4, Proposition 3.3].

In this Section, we use the notation of Sections 1, 2,4 and 7. Also the simplifying
assumptions of Section 7b) will be in force in the whole section.

a) The Agmon metric |V f|2gTM

If 2z € M,e > 0, let BM(z,¢) be the open ball of center 2 and radius ¢ with
respect to the Riemannian distance associated to the metric g7, andlet BT-M (0, ¢)

be the open ball of center 0 and radius ¢ in (T, M, gT=M).

In the sequel, we assume that € > 0 is small enough so that the balls BM(z, 2¢)
(z € B) do not intersect each other, that (7.12) is verified on the balls BM (z,€)
(z € B), and also the metric ¢gF is flat on the balls BM(z,¢) (z € B).
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Definition 8.1. Let gZ™ be the Agmon metric on T'M associated to the potential
[VF|?, ie.

(8.1) gaM = |VfIPg™.
Then g4M is a degenerate metric on T M, which degenerates on B C M. Let

d3!(-,-) be the Agmon distance associated to the metric g2 . By [HSj1, Section 6],

we know that if z,z’ € M, there exists a minimizing geodesic + for the distance
d™ , which is smooth on v\B.
Take z € B. For z € M, set

(8.2) ¢o(2) = di (2, 2).

Then, ¢, is a Lipschitz function.

b) The harmonic oscillator of Witten

Recall that by (7.12), if € B, there exists a coordinate system y = (y!,---,y") €
R on BM(z,¢) suchthat 0 represents z, and moreover,

g™ =" |ayi|,
ind(z)
fly) = f(2) + ( Zly|+ Z Iyl)

ind(z)+1

(8.3)

One verifies easily that if |y| < e, then
1 2
(8.4) vly) = Syl

Recall that for = € B, the metric g% is flat on BM(x,¢). On BM(z,¢), we
trivialize ' by using the connection V¥ = V¢, The fibres of F on BM(z,¢)
are identified to F},.

Then R™ splits canonically into

(8.5) R" = Rz g Rr—ind(2)
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Recall that we have identified an open neighborhood of z € B in M to an open
neighborhood of 0 in R™. At z € B, the splitting (8.5) coincides with the obvious
splitting

(8.6) TM =T, W*(z) ® T, W*(z).

Since T, W*(z) is oriented, we find that in (8.5), Ri*4(#) inherits the corresponding
orientation. Let p, be the volume form of the Euclidean oriented vector space

Ri»d(#)  Of course, one can assume that the coordinates y?,- - -,4™4(®) are such
that
(8.7) pz = dyt A+ Ady™d®),

From (8.5), we deduce that near z,
(8.8) A(T*M) = A (Rind(:c)*) A (R(n—ind(x))*) _
Of course at z, (8.8) corresponds to
(8.9) A(T*M) = A(TyW¥(2)) A (TaW*(z)).

Let N=, Nt be the number operators acting in A(R»4(2)*) A(R(r=ind(2)+)),
sothatnear z, N = Nt 4+ N~. Let AR" be the usual Laplacian on R™. We now
give a simple formula of Witten [W].

Proposition 8.2. Near = € B, for any T > 0, the following identity holds,
(8.10) D% = —AY 4 T?|y|? - Tn 4 2T (N* + ind(z) - N™).

Proof. Equation (8.10) follows easily from (4.29) and (5.13). ]

Let 5%2" be the obvious action of the operator (8.10) on the vector space of
smooth sections of A(R"*) ® F, over R". Another simple result of Witten [W] is
as follows.

Proposition 8.3. The operator f)%:g" has discrete spectrum and compact resolvent.

Its spectrum is exactly 2T'N. The kernel 133:5 is of dimension rk(F'). More
precisely

~2.R™ T n/4 _ZLLIZ
(8.11) KerDp, =<4~ e~z pg ¢ QF,.

T

124



THE HELFFER-SJOSTRAND ORTHOGONAL BASE

Proof. Let Gr be map f(y) — f(#) . Then
(8.12) GrDFE G =T (—A’R" +y)? - n) 42T (N* +ind(z) - N7).

The operator —AR" 4 |y|2 — n is twice the harmonic oscillator. It has compact
resolvent and its spectrum is exactly 2N. The operator 2(N*t + ind(z) — N7) is
nonnegative and its spectrum is included in 2N. Also the kernel of —AR” +|y|2 —n
acting on smooth real functions is one dimensional and spanned by the functions
e~/ Finally if @ € A(R™*)® F,, then (Nt +ind(z) — N™)a = 0 if and
only if o € ARd(@)(Rind(#)*) @ F,. Equation (8.11) follows. O

¢) The estimates of Helffer and Sjostrand for the eigenforms of
5% with Dirichlet boundary conditions

For n > 0,z € B, set

(8.13) M, = M\ U BM(y,n).
yEB\{z}
ind(y)=ind(z)

For n > 0 small enough, M, is a smooth manifold with boundary.

Let F, = @;_, F. be the vector space of smooth sections of A(T*M)® F =
DI, A(T*M)® F over M,. We equip F, with the scalar product ( , )F,
given by

(8.14) a,d' € Fz = (a,d)g, =/ (e, &)z (1= my@F VM-
M,

Let ﬁ%,z be the obvious action of D2 on F, with Dirichlet boundary conditions
on OM,.

Definition 8.4. For 0 < <n,T >0, let D¥", be the restriction of D%, to F-.
For T > 0, let K 59”11] = @D, Kgﬁ,’xl]". be the direct sum of the eigenspaces of
5%@ associated to eigenvalues A € [0,1]. Let Q[}],’i) be the orthogonal projection

operator from F, on K [TO ’xl].

Take ¢ > 0. Following [HSj3, Lemma 1.5}, we will write that as T" — o0,
(8.15) AT) =0 (e7T°)
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if for any v > 0, there exist n(y) > 0 suchthatif 0 < n < n(7y), as T — +o0
(8.16) A(T) = 0 (=Tt

Ifin (8.16), A(T') and ¢ depend themselves on an extra parameter, it is understood
that (8.16) is uniform in this parameter.

For 0 < ¢ < n, set

B! = {z € B;ind(z) = i},

(8.17) M* = card(B").

We first state a result of Helffer-Sjostrand [HSj4, Theorem 1.4 and Lemma 1.6].

Theorem 8.5. For T > 0 large enough, then
. rk(F i i = ind(z),

(8.18) rk (KR = (£ (=)
’ 0 if i# ind(z).

If p€ Kg?”zl]’i“d(z) isof norm 1, as T — +o0,
(8.19) p(z') =0 (e—dﬁ’ (20T
Set

(8.20) Cy =2 d¥(z,y).

inf
yeBind(z)—l UBind(z)+luBind(z)\{:c}
If X is an eigenvalue of l~)2T,z in [0,1), then
(8.21) A=0(e7=T).
Proof.. The main difference with [HSj4] is that here, the kernel of the operator
53«’5‘ considered in Proposition 8.3 is of dimension rk(F") and not necessarily of

dimension 1. However all the arguments of [HSj1, Section 4] on which [HSj4] is
based can still be used in this case. 0
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d) An orthonormal base for Dirichlet eigenspaces associated to
small eigenvalues
Definition 8.6. For =z € B,T > 0, let rr, be the map

. /4 .
8.22 ]Flnd(z) .85 = ll'_ n Amd(:l:) T*M F) .
(822)  s€FM@ oy = (1) s € (AN (M) @ F)

Let v be a smooth function defined on R with values in R*, such that

v(a) =1 for aS%,

(8.23)

=0 for a>e.
If y € R™, set
(8.24) u(y) = v(lyl)-

We can consider u as a smooth function defined on M with values in R*, which
vanishes on M\, ¢ B (z,¢).

Set
(8.25) ar = /}R #*(y) exp (=Tly|*) dy.

Clearly, there exists ¢ > 0 such that

7rn/2

+ 0 (e~°T).
Recall that if z € B, on BM(z,¢), the fibres of F have been identified to F,.

Definition 8.7. For = € B,T > 0, let Jr, be the linear map from F in Find(=)

1 Tllyl2 ind(x)
(827) feF:—Jraf(y) = ——zuy)exp | ——— | p- @ f €FFTY.
(or) 2

Clearly Jr, is an isometry from F, into Fi®®®), Also

(L)n/'&
(8.28) TT,J:JT,:;f = (C;TT)]-/2 th ® f’
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so that by (8.26), as T' — o0,
(8'29) 7'T,a:JT,:r:f =p:®f+0 (e_CT) ”f" .

Theorem 8.8. Take n > 0 small enough. There exists ¢ > 0 such that for any
z € B,f €F,, thenas T — 4o,

(8.30) QP ref — Jraf =0 (e™T) || fllp, uniformly on M,.
In particular, if f € F,, as T — +o0,

(831) rr, zQ[O 1]JT a:f Pz ® f| —CT) |f|F‘I .

Proof. We proceed as in [BL2, Section 10]. Let § be the oriented circle of center
0 and radius 1/2 in C. By (8.21), we know that for T > 0 large enough,

1 -1
8.32 o1 _ / ,
( ) Qr i P (/\ DT‘"“) dA
Moreover, if A € C*, then
~» \ ITf D3Jr.f
— 2 9 — T k)
(8.33) ()\ DT’z) s —Lsres,
and so
JT,:cf =2 -1 _ =2 -1 f)%",:cJT»xf
(834)  S=- (A - DT,,) Irof = - (A - DT,::) —

For p > 1, let F; , be the p-th Sobolev space of sections of A(T*M) ® F' over
M. Since u(y) =1 for |y| < €/2, we deduce from Proposition 8.3 that for any
p > 1, thereis ¢ > 0 such that

(8.35) |53 77,0 £ L =0(eT).

z,p

Let F2 be the vector space of sections s € F, such that sjom, = 0. Take g € N*.
By [Tay, p. 108], there exists C > 0 such that if s € F2, then

+ lsllag) -

Also using (5.16), (5.17), we see that there exists C’ > 0 such that for A € §,T >
1,s e Fg,

(8.36) Isllg, ,. <C (||D2s

z,29—-2

(8.37) “ (- D% +D?)s

S C,Tz "sllﬂ“,,zq_z °

z,2q—2
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By (8.36), (8.37), we find that there exists C”” > 0 such thatfor A € §,T > 1,s €
F?, then

839 ol <0 (|- B2, + T el ).

Using (8.38), we see that there exists C > 0 such that for A € §,T > 1,5 € F,
then

(8.39) lsllg, ,, < CT* (|| (A-D%)s )

z,29—2

; ||snw,,o) -

By Theorem 8.5, we know that for 77 > 1 large enough, if A € 6, then
Aé¢ Sp(ﬁ%,z). More precisely, there exists C’ > 0 such that for T > 1 large
enough, s € F,, then

z,29-2

< C'|lsllg, , -
]Fz,o

(8.40) “ (A - 531,3) s

Moreover for A € §,T > 1 large enough, if s € F,, then (A — 5%,z)‘ls e Fy.

Using (8.39), (8.40), we see that there exists C” > 0 such thatif A € §,T > 1,
s € F., then

(8.41) H (r-D%.) s

From (8.35), (8.41), we deduce that there is ¢ > 0, such that for T > 1 large
enough,

< C"T*|sllg

c,29-2
]Fz',Zq

=0 (e~T) Ifllz, uniformlyin X € é.
IF::,Zq
Using (8.42) and Sobolev’s inequalities, we see that there exists ¢ > 0 such that for
T >1, forany f € Fy,
(8.43)

~ -1 -
(/\ - D%«,z) D%, Jr:f| <O (e™T) || f|lp, uniformly on M.

From (8.32), (8.34), (8.43), we obtain (8.30). Equation (8.31) is an obvious
consequence of (8.29) and (8.30). O

Let (@ Jr,.)* betheadjoint of Q2 Jr,.. Then (QQ2)Jr,.)* maps K1)
into Fj.
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Definition 8.9. For z € B, set
(8.44) (Q[" Uyr ) QP gy

Then Hr . is self-adjoint in End(F}).

Theorem 8.10. For T > 0 large enough, for any x € B, the linear map

(8.45) feF —QPNir, f e KR

is one to one. Also there is ¢ > 0 such that as T — +oo, for any x € B, then
(8.46) Hr,=1+0 (e=°T).

Proof. Recall that Jr, is an isometry from F, into F,. From (8.30), it follows
that for T' large enough, the linear map (8.45) is injective. By Theorem 8.5, for T
large enough, F, and K. p,ﬁl’i"d(z) have the same rank, and so the linear map (8.45)

is one-to-one. Since Jr, is an isometry, (8.46) follows from (8.30) and from the
previous considerations. 0

For every = € B, let f;1,- -, fz,k(F) be an orthonormal base of F, with
respect to the metric gf=. This base is fixed once and for all. By (8.46), for T > 0
large enough, Hr . is invertible.

Definition 8.11. For 7' > 0 large enough, 1 < j < rk(F), set

(8.47) 0T = Qo IrHr, fo j.

Proposition 8.12. For T > 0 large enough, ¢1,2,1," ", PT,z,k(F) IS an orthonor-

mal base of the vector space K. 59’ ’;]’i“d(”),

Proof. This is a trivial consequence of Theorem 8.10. (W
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e) The orthonormal base of Helffer-Sjostrand of the eigenspaces
of the operator 5% asssociated to small eigenvalues

For n > 0,y € B, let 6, be a smooth function defined on M with values in [0, 1]
such that 8, =1 on BM(y,7), and 6, =0 on M\BM(y,2n).
If z € B, set
(8.48) Xe=1-— Y 6,
yEB\{r}

ind(y)=ind(z)

For 7 > 0 small enough, x, vanisheson |J sesnizy BM(y,n).

ind(y)=ind(z)
Definition 8.13. For T' > 0 large enough, set
(8.49) "/JT,x,j = Xz¥PT,z,j > 1 S ] S I‘k(F)

For T > 0 large enough,and 0 < i < n, let @[79’1]"' be the vector subspace of F*
spanned by the ¢7, ; ’s with ind(z) = 1,1 < j < rk(F'). Set

(8.50) G = PG,

1=0
Definition 8.14. For 0 < i < n,T > 0, let D3' be the restriction of D2 to
F:. For 0 <i < nT >0, let Flﬁ’ll = P, F[To’ll‘i be the direct sum of
the eigenspaces of 5% associated to eigenvalues A € [0,1]. Let 13;9 1 pe the

orthogonal projection operator from F on F[ﬁ’ll with respect to the scalar product
(,)roncF.

If Hy, H, are closed vector subspaces of a Hilbert space H, if pf1,pfz are
the orthogonal projection operators from H on H,;, Ho, set

(8.51) d (Hy, Hy) = ||[p™ — pi2pi|| = ||p — pipH2||.
For 0 <i < n, set

(8.52) S'= inf d¥(z,y).
z,yEB*
zHy

The following result is proved in [HSj3, Theorem 1.2], [HSj4, Proposition 1.7].
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Theorem 8.15. For T > 0 large enough, for any i,0 < i < n, the eigenvalues of
the operator Dg:' containedin [0, 1] can be put in one-to-one correspondence with
the union of the eigenvalues of the operators 5%; (z € B?) contained in [0,1],
so that the difference of the corresponding eigenvalues is O(e=5'T).

For T > 0 large enough, for any i,0 < i < n, the vector spaces F[:,Q’ll’i and
@L})’l]’i have the same dimension tk(F)M*, and moreover
(853 @ (FpEp) = T (G0 ERDY) =6 (7).

Remark 8.16. As pointed out in Helffer-Sjostrand [HSj4, Corollary 1.8], Morse
inequalities for H*(M, F) immediately follow from the fact that for T large

enough, dim Fo!! = rk(F) M.

For z € B, set
(8.54) VT = Py e 1<) < 1k(F).
If z € B,z € M, set

(8.55) 5.(2") =

= inf dM(z,y) +d¥ (y, ") .
yEBind(,)\{z}( 4 (z,y) +da (y,2))

By [HSj2, eq.(2.1.17)], [HSj4, eq. (1.38)], we know that
(8.56)

(VT2 — YT.2,;) (2') = O (e—éz(zl)T) uniformly together with its derivatives.
From (8.19), (8.56), we deduce that

(8.57) vre (z') =0 (e"TdIX(””’x')> uniformly together with its derivatives.
Definition 8.17. For 0 < i < n, and for T > 0 large enough, let V. be the
(tk(F)M*, tk(F)M?) self-adjoint matrix

(8.58) Vi = (U105, Ty, )p> %,y € B', 1<j,j <1k(F).

As in [HSj2, Section 2.1], we observe that for 0 < ¢ < n, if z,y € B 1<
4,4 < 1k(F) then
(8.59)

(VT,2,5,9T,9,5' ) p = (¥T,2.5) YT,0,5' ) p — (VT,2,5 — To2,55 VTp,5" — YTy, )E -
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From(8.59), Helffer and Sjostrand [HSj2, Section 2.1], [HSj4, eq. (1.43)] deduce
important estimates on the matrices V}. A trivial consequence of (8.56), (8.57) is
that for 0 < 7 < n, there exists ¢; > 0 such that as 7' — o0,

(8.60) Vi=140 (e7=7).

In the sequel, for 0 < ¢ < n, we consider (vr s ;) .es:  as a linear map
15 Srk(F)

from R&(FM* into FIOM | which we note vi-.

Definition 8.18. For T > 0 large enough, 0 < : < n, set

~i i i\~ 1/2
(8.61) €r = 'UT (VT) .

3 3 =, 3 w 0’1 "
The linear map &, defines vectors (7.5 k) sesi  in P,
1<k<rk(F)

Proposition 8.19. For T' > 0 large enough, for 0 < i < n, {€rz;} .epi s

1<5 <rk(F)

an orthonormal base of ﬁ[ﬁ’ll’i. Alsoas T — +oo, for x € B,1 < k < rk(F),

(8.62) er . k(z') = 0] (e‘Td%(”"')) uniformly together with its derivatives.

Proof. The first part of the Proposition follows from Theorem 8.16 and from
(8.60). Equation (8.62) follows from (8.57) and from the estimates on the matrices
V4(0 < i < n) proved in [HS;j2, Section 2.1], [HSj4, eq. (1.43) and (3.12)]. a

f) The W KB equation for 5%

Let U be a non empty open setin M. Let Fy = @, Fi, be the vector space of
smooth sections of A(T*M)® F = @I_, A'(T*M) ® F over U. We equip Fy
with the scalar product ( , ), which is the obvious analogue of the scalar product
(,)ronk.

If Y is a smooth vector field on U, let Ly be the Lie derivative operator
associatedto Y. Then Ly actson Fy. Let L} be the formal adjoint of Ly with
respect to the scalar product ( , ), -

Let ey,--+,e, be an orthonormal base of T M.
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Definition 8.20. If » : U — R is a smooth function, let 7(h) be the first order
differential operator acting on Fy

(8.63) T(h) =Lvs+ L*Vf + Lyy — L*Vh'

Proposition 8.21. For any smooth function h : U — R, the following identity holds
(8.64)

r(h)=2Von+ Y. (VI'Mdf, e; ) c(en)ele;) + Ah+w (F,g") (V(h - £).

1<,5<n
Proof. We have the trivial formula
(8.65) Ly;=Vys+ Y. (VIMVfej)e Aie,.
1<i,j<n
From (8.65), we deduce that
(8.66) Ly = —Vu;—Af+ Y <V£'Mdf,ej>ei/\iej —w (F,¢") (VF).
1<i,j<n

Similar identities hold for Ly, LY. Equation (8.64) follows. a
We now reprove a formula of [HSj4, Lemma 2.1].

Proposition 8.22. Let h: U — R be a smooth function. Then
(8.67) e D2e~Th = D? + Tr(h) + T2 (|df|* — |dR|?) .

Proof. Using (5.12), we get

eThdfe=Th = dF 4 Td(f — h)A,

(868) eThége—Th = dF*

+ Tiv(s+h)-
From (5.10), (8.68), we obtain
(8.69)
e™Die ™" = D* + T (Lvs + LYy ; + Lon — Lyy) + T2 (Jdf* — |dh[?) .

Equation (8.67) follows. U

Take now = € B. Recall that ¢, is the function ¢.(z') = d¥(z,2’). If
' € W¥(z), there exists an integral curve 7 of the vector field —V f, with
Yeoo = &,Yq = 2'(—00 < a < +00). This integral curve is obviously unique. In
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particular it avoids the points in B\{z}. By proceeding as in [HSj4, Appendix 2],
we see that v is the unique geodesic connecting z and z’ with respect to the
Agmon metric g7 . Tt easily follows that the function ¢, is smooth on an open
neighborhood of 7([—o0,a[). Therefore ¢, is smooth on an open neighborhood
of W*(z). Similarly ¢, is smooth on an open neighborhood of W*(z).

Let V' be an open neighborhood of W*(z) U W*(z) such that ¢, is smooth
on V. Then ¢, verifies the Hamilton-Jacobi equation

(8.70) Voo |> = |Vf? on V.
Now, we proceed as in [HSj4, Section 2]. Set
1
f:-:i(so:c'*’f_f(x)),

_ 1
fx='§(80:c—f+f($))-
With the notation of Helffer and Sjostrand in [HSj4, eq. (2.6)], then

(8.71)

(8.72) fr=so- fz =50+
Clearly

‘Pa::f:'f'fx_'

The functions f} and f_ are positive Lipschitz functions, which are smooth on
V.

Using (8.70), (8.73), it is clear that
(8.74) (Vir, Vi) =0.
Also by proceeding as in [HSj4, Lemma A.2.2], we see that
(8.75) p:=f—f(z) on W(a),
=—f+ f(z) on W¥(z).

Since over W*(z) UW*(z), the minimizing geodesics for the Agmon distance are
integral curves of the vector field —V f, we find easily that
(8.76) Vo, =Vf on Wz),

=-Vf on W(z).
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From (8.76), we deduce that f} vanishes to order 2 on W*(z), and f, vanishes
to order 2 on W*(z).

Let

(8.77) ar=Y o
k=0

be a formal power series with values in smooth sections of A(T*M) ® F over V.

We now look for a solution of an equation of W K B type

1 ~ 1
(8.78) ﬁeT"’” D e T¢zqp =0 (—T;) ar on V.
Using Proposition 8.22 and (8.70), we see that equation (8.78) is equivalent to
1 o 1 1 v
(8.79) TED + 77 (¢z) Jar =0 T ) @T onV.
By cancelling the coefficient of —}- in the left-hand side of (8.79), we get
(8.80) T(pz) o =0
Equivalently, by using Proposition 8.21, we find that
(8.81) <2VV% + }: <V£‘Mdf, ej>c(e,~)6(ej)
1<i,j<n
+Ap: +w (F,gF) (V(pz — f)))ao = 0.

Equation (8.81) holds in particular at =, where V f = 0, Vy, = 0. Therefore
(8.82) ( Z (VIMYf(z),e;) clei)Tle;) + Acp(x)) ap = 0.
1<i,5<n

Now we use the notation of Proposition 8.2. By (8.3), equation (8.82) is
equivalent to

(8.83) 2 (N* +ind(z) — N~) ap(z) = 0

The same argument as in the proof of Proposition 8.3 shows that (8.83) holds if and
only if there is g € F,, such that

(8.84) a(z) =pz ®g.
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Then once o (z) taken asin (8.84) is fixed, since the operator V.. +ind(z)—N_
is nonnegative and self-adjoint, one sees easily that equation (8.81) has a unique
solution.

Recall that near z, (8.3) holds. We trivialize F on BM (z,€) using the flat
connection VF. Moreover since the metric g% is flat on BM(z,¢), w(F,gF)
vanishes on BM(z,¢). As in Proposition 8.3, we extend p, ® g into a "constant”
section of A(T*M)® F on BM(z,¢). Then
(8.85)

V9. (p=® g) =0 on BM(z,¢),

( D (VEMVSes)e(e)Eles) + Ape +w (F ") (Ve — f))) (p=®9)
1<i,j<n

=0 on BM(z,¢).
Therefore, on BM(z,¢), the constant ap = p, ® g is exactly the solution of
equation (8.81). Also, on BM(z,¢), D? = —AR", and so we see that
(8.86) D? (p, ® g) =0 on BM(z,¢).

So by Proposition 8.21 and by (8.85), (8.86), we find that

(8.87) (%D? + %T (%)) (ps ® ) = 0 on BM(z,¢).

By Proposition 8.22 and by (8.70), (8.87) is equivalent to

(8.88) eT¢=D2e~T%% (p, ® g) =0 on BM(z,¢).

The fact that (8.88) holds permits us to assume that in (8.77) ,

(8.89) forany j > 1,a; =0 on BM(z,¢).

If V' is small enough, the equivalent equations (8.78) and (8.79) can then be
solved by a trivial recursion procedure.

As in Helffer-Sjostrand [HSj4, Section 2], it will now be crucial to solve the
transport equation (8.80) along W*(z) and W*(z). In fact Vf is tangent to
W*(z) and W*(z). By (8.76), Vi, istangentto W*(z) and W*(z) and so the
same is true for V£,
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g) The transport equation on W¥(z)

By (8.3) and (8.4), it is clear that near =,

1 ;
f:(y)='2_ Z |yz|2’
ind(z)+1
ind(z)

1 .
=53 Wl
1

(8.90)

Using (8.90), we see that near z, fF vanishes exactly to order 2 on W*(z).
Moreover by (8.71), (8.76), Vft = Vf on W#(z), and so on W*(z), Vf}
only vanishes at z.

Let V' be an open neighborhood of W#(z). From the previous considerations,
we see that if V' is small enough, the restriction of Vf} to V vanishes only on
wWe(z).

Let (y',---y™) be the system of coordinates near z considered in (8.3) . Then

(y!,---y'"4(®) is a system of coordinates on W*(x) near z.

As in [HSj4, eq. (2.21)], we consider the transport equation

(8.91) Lij:I/-j =0 1<j<ind(z),
Yilwe(z) = Yjlw(o)-

Equation (8.91) means exactly that (7, -- -, 74(®)) is constant along the trajecto-

ries of the gradient vector field Vf}. The considerations we made before guar-

antee that (7!,---,7"4(®)) defines a system of coordinates transverse to W*(z),

which vanishes on W*(z). Note that near z, (7*,---,7™4®) coincides with

(yt,--- ,yind(w)).

Over W*(z), we define the section p, of Ai*d(®)(T*M) by the formula
(8.92) P =dg* A AdF™d®,

Of course, near z, p, restricts to the section p, of Ai*4(=)(T*M) considered in
(8.7). Similarly, if g € F,, we extend g to a smooth section g, of Flys) by
parallel transport with respect to the connection V¥
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Near z, p, ® §, coincides with the restriction to W*(z) of the section
pz ® g which was considered in (8.84). We now prove the analogue of [HSj4,
Proposition 2.3].

Proposition 8.24. Over W*(z), if g € F, then the following identity holds

Proof. By (8.63), (8.70), it is clear that
(8.94) T(pe) =2Lgs+ — 205,

Since g, is a flat section of Fiy (), from (8.91), we get

Using (8.66), we know that
(8.96)
vie = Ve AR+ ) <V£‘Mdf;’ef>ei/\iej —w (Fg") (V).

1<i,j<n

As we saw after (8.76), f- vanishes to order 2 on W*(z). Then, one verifies
easily that
(8.97)

(—Af;+ > (VZ..‘Mdf;,ej>e"Me,) (P.®3,) =0 on W*(z).

1<i,j<n
Also Vfs =0 on W*(z). Using (8.96), (8.97), we get
(8.98) LY, (5, ®3.) = 0.

Equation (8.95) follows from (8.94), (8.95), (8.98). O

h) The transport equation on W¥(z)

The coordinate system y = (y!,---,y") near z € B is still taken as in (8.3). Then
(yind(@)+1 ... yn) is a system of coordinates on W*(z) near z.
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As in [HSj4, eq. (2.30)], instead of (8.91), we consider the transport equation on
w(z)

Ly, =0 ind(z)+1<j<mn,
(8.99) L ;
Yiwe@) = Yiwe (o)
The same considerations as the ones we made after (8.90) guarantee that equation
(8.99) has a unique solution near W*(z). Then (F"4(®+! ... g") is a system
of coordinates transverse to W*(x), which vanishes on W*(z). Also near
z, (Frd@+ . g™) coincides with (yd(®)+1 ... yn) Since TW¥(z) is
oriented, dj"4(®)*1 A ... Adj™ is asection of A"~ ME)(T*M) ® o(TM).

Recall that * is the Hodge operator for the metric g7 . Set
(8.100) p; — (__1)ind(z)(n—ind(:c)) * (dgind(:c)+1 A A dﬂn)

Then, p% is a section of AI"d(=)(T*M). Also near z,p% coincides with p,.

Take g € F;. Let g; be the flat section of Fjyy«(,) with respect to the flat
connection V¥*, defined in (3.2), which extends g to W*(z). Since the metric
g¥ is flatnear z,3* coincides with g near .

Near z, p; ®g; coincides with the restriction to W*(z) of the section p, ® g,
considered in (8.84).

We now prove the following important extension of [HSj4, Proposition 2.4].

Proposition 8.25. Over W*(x), the following identity holds
(8.101) () (72 © 53) = 0.

Proof. Recall that 7 : F — F™* is the canonical identification of F' and F™
associated to the metric g¥. Let L{;}i be the analogue of the operator Ly ;+

acting on smooth sections of A(T*M) ® F*. Clearly

(8.102) v =—(x@1) LT L (+®1).
Using (8.94), (8.102), we see that

. N — * F* x
(8.103) (*@i)7(pz)(x @)™ =205 — 2Ly /i

Comparing with (8.94), we find that the operator (8.103) is still an operator of the type
7(¢z), with F replaced by F*, and f by —f. We can then use Proposition 8.24
and obtain (8.101). g
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Remark 8.26. The proof of Proposition 8.25 reflects Poincaré duality in a rather
subtle way.

We now describe the solutions of the W K B equation (8.78) on W*(z)UW ().
Recall that 77, was defined in Definition 8.6.

Theorem 8.27. Let a(g) = (L)"/4yF> gl%fi be the W KB solution of

1™ DpeTa(g) = 0 (755 ) (o),

(8.104) T? T™
TT,:ca(g) = Pz ®g-
Then
a =p,®3g, on W?x),
(8.105) o(9) =P ®7 (2)
—7.®7, on W'().
Proof. This follows trivially from Propositions 8.24 and 8.25. O

i) The matrix of df in the base e,

By [HSj4, Lemma A.2.1], we know thatif x € B,y € M,
(8.106) il (z,y) > f(2) - f(y)-

Proposition 8.28. Let x € B, y € M. Then

(8.107) di (z,y) = f() - f()
if and only if y € W¥(zx). Moreover if y € B,y # z, and if (8.107) holds, then
(8.108) ind(z) > ind(y) + 1.

Proof. If z € B,y € W*(z), then (8.107) holds. Therefore (8.107) also holds on
Wu(z).

Conversely assume that (8.107) holds. For a € [—o00,+00], let [—o0, +00] U
-+ -U[—00, a] be a finite union of intervals [—oo, +00] and of the interval [—oo, a].
We denote by —co the first of the —oco. Let ¢ € [—co,+oo] U -+ U [—00,a] —
v¢+ € M be a minimizing geodesic with respect to the Agmon distance d%, such
that v_s = 7, 7, = y. By [HSj4, Lemmas A 2.1 and A 2.2], we find that v is a
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generalized integral curve of the vector field —V f, and f is decreasing along . If
v is parametrized by [—oo,a], it is obvious that y € W¥(z). If ~ is parametrized
by [—00,4+00] U[—00,a], set Zy = Y400. Then 3 € BNWH(x), o # z. As
before, y € W*(z2). Now by [Ro, Lemma 1], or by Proposition 2 in the Appendix,
since Vf verifies the Smale transversality conditions, then W*(z3) C W¥(z),
and so y € W A trivial recursion argument shows that in full generality,
y € Wu(z).

Suppose that y € B,y # z and that (8.107) holds. Let zo € B be the first
critical point of f distinct from z visited by . Then

(8.109) W*(z) N W*(z3) # 0.
Since the vector field Vf verifies the Smale transversality conditions, we find that
(8.110) ind(z) > ind(z2) + 1.
By iterating (8.110), we get (8.108). O

Remark 8.29. Proposition 8.28 is very important, since it guarantees that assump-
tion H1 of Helffer-Sjostrand [HSj4] is verified.

Assumption H2 of [HSj4] is verified because V f satisfies the Smale transver-
sality conditions.

If z € B, recall that [W*(z)]* is the line dual to the line [W*(z)]. Let
WH(z)* € [W¥(z)]* be dualto W*(z) € [W¥(z)], sothat (W*(zx)*, W¥(z)) =
1. Then C*(W*, F) is spanned by the W*(z)*® f’s (z € B, f € F3).

The metric g¥ induces metrics gf= on F, (z € B). Thelines [W¥(z)]* (z €
B) canbe equipped with the obvious metrics which give thenorm 1 to W*(z)* (z €
B). Therefore if « € B, [W"(z)]* ® F, is naturally equipped with a scalar
product. We equip C*(W*,F) = @, p[W*(z)]* ® F, with the scalar product
( )ce(wn,F), whichis the direct sum of the previous scalar products.

We now establish an extension of a fundamental result of Helffer-Sjostrand
[HS;j4].

Theorem 8.30. For 0 < i <n, z € Bt 2’ € B®, for 1 < k, k' < 1k(F), as
T — 400,

T\'/? ,
(8.111) <d§ET,:c’,k’,gT,z,lc>F= (;) e~ T(f(2)=f(z")
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(<5 (W*(&')* ® forw), W"(2)" ® fz,k>c.(W“’F) +0 (—Tll—/z)) :

Proof. We essentially follow Helffer-Sjostrand [HSj4, Section 3]. Still we have to
modify their argument and computations, because of the presence of the flat vector
bundle F.

Take 7, with 0 < n < 1d¥(z,2'). Let x; . be a smooth function from M
into [0, 1] such that

1
Xzz =1 in BY (:c, Edi‘{!(x,x') - 77) ,
(8.112) .
=0 in BY (z', Ed%(x,x') - 17) .

Recall that for T' large enough, the Y. ;’s (z € B,1 < j < rk(F')) were
defined in Definition 8.13, and depend also on 1 > 0.

By proceeding as in [HSj4, Theorem 3.1], and using Proposition 8.28, we find
that there exists o > 0 such thatas T' — 400,
(8.113)

<d§’é{T71’”k” gT,zvk>]F == (¢T,-‘f,k‘,dx:c,:c’ A ¢T,$’,k'>]F + 5 (e(—a—dﬁ"(z,z'))T) .
Using (8.19), (8.49), it is clear that

(8.114) (VT 2.k AX 2t A YT 00 pt)p = O (e—dﬁ‘(z,zl)T) .

By (8.106), we know that f(z) — f(z') < d¥(z,2'). If f(z) — f(z') <
df{’ (z,z'), from (8.113), (8.114), we deduce that there exists o’ > 0 such that

(8115)  (dEere o, oren)y = e TUDIENG (e-o'T)

Moreover if there was an integral curve 7 : [—00,400] of —Vf with y_o =
T,Y400 = z' it would follow that f(z)— f(z') = d¥(z,2'). Soif f(z)— f(z') <
d¥(z,a’), then W*(z) N W*(z') = 0. From (8.115), we find that (8.111) holds.

So we now consider the case where f(z) — f(z') = d¥(z,2'). By Proposi-
tion 8.28, we know that 2’ € W*(z). Since ind(z’) = ind(z)—1, W*(z)NW*(z')
consists of a finite set I'(z, z’) of minimizing geodesics v for the Agmon distance,

with Y_oo =2, V4o = 2'.
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Take v € I'(z,z'). Let V, be an open neighborhood of vy in M. Using (8.19),
(8.49), it is clear that there exists o/’ > 0 such that

(8.116) - (¢’T,:c,lc,dX:c,w' A "/’T,z',k’)]}‘

= — Z / (dX:c,:c' A wT,x"kl A *¢T,I,k>F + 5 (e—(df‘"(z’xl)_l_au)T) .
~€l(z,z') \Z

Recall that o7, (1 < k < rk(F')) was defined in Definition 8.11. By (8.30),
(8.46), (8.47), there exists ¢ > 0 such that as T — +o0, then

(8.117) OTzk = JTofok+ O (e”CT) uniformly on M.

Take € > 0 as in Section 8a). Let Fgm(, )0 be the Hilbert space of the Lo
sections of A(T*M) ® F over BM(z,¢). By [HS]l, eq. (5.9)] and by (8.89), if
n > 0 is small enough, there exists a (rk F, rk F') orthogonal matrix ct . such that
(8.118)

rk(F)

T\"* , 1 .
(PT,z,k = (;) e—T‘pz [pl‘ ® Z c"_%,l,kfl‘,kl} + O (T‘;g) m ]FBM(E’E)vo'
1

Comparing with (8.117), we obtain

T nf4 - 1 .
(8.119) OT ek = (;) e P ® for + 0 (E,,;) InFpm(z,e0-

We use the notation of Theorem 8.27. Let 'W be an open neighborhood of
Y\BM (z,n). By [HSjl, Theorem 5.8] and by (8.119), we see that if > 0 and W
are small enough, forany 57 € N, as T — +o0,

1
=0 (ﬁﬁ) -

From (8.49) and (8.120), we deduce that if » > 0 and ‘W are small enough, then

1

12 B e
(8.120) e TOT 2 k (7() 20: T

Fw o0

(8.121)

nf4 J
T i (fzk)
T, E >
w,0

T
0
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Let W' be an open neighborhood of y\BM(z’,7). Thenif n > 0 and W’ are
small enough, the analogue of (8.121) is

T n/4 J o (f , k’) 1
Ty L i\Jaz!, — _
(8.122)  |le” #=" T pr — (F) Z T =0 (TJ'+1-%) .
0 ]Fw’,o

By (8.71), we know that
(8.123) pa(t) + 0ur(t) = f(2) - F(2') +2 (FF () + Fa (1)),
and so
(8.124) Pa(t) + 9 (t) > f(2) = f(2').

Let (§*,---,7") be the system of coordinates transverse to W *(z') taken as in
(8.91). Similarly, let (z*,---,2z""!) be the system of coordinates transverse to

W*(z) considered in (8.99) (under the name of 7**!,-..,7"). As in [HSj4, proof
of Proposition 3.3], we observe that since W*(z) and W*(z') are transversal, the
forms dy!,---,dyt, dz'-..dz""*"! are linearly independent near .

Equation (8.73) is equivalent to
(8.125) LV].; fr=0
Using (8.90), (8.99), (8.125) we find that

1" 12 u
(8.126) ft= 3 ; |#|” near W(z).
Similarly

1
8.127 = ().
( ) =3 ; near Wé(z')

From (8.121), (8.122), (8.124), we deduce that if » > 0 and V, are small
enough, then for j large enough,

(8.128) - / (dXz,2 A YT b0 A ¥YT 2 k) p

\Z

n/2
= (%) / ! /\Z f’”k A % Z ’(f“”' k1) e~ T(pzte,r)

+e~TU@=1EN 1),
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Let Nwu(z)ym» Nws(z')y/m be the normal bundles to W*(x), W*(z'). Using
Theorem 8.27 and (8.123), (8.126), (8.127), we find that

nf2

T

(8.129) —(—) / (dxa,r A ao(forir) A *o(fo)) pe” T+
V‘Y

T

resw-seny (TN L L
= —e ((;) WL(fx’,k"fx’k>FdXZ,w’

e"ﬁ'zdyl/\---/\dy"/

Nw e (z)/m),

Js

e dzt A Adz +0(1)) :

wa(z!)/ M|,

We orient v positively by the standard orientation of [—oo,+0o0], i.e. from z
to z’, and we denote by 7’ the corresponding oriented geodesic. One sees easily
that, if n,(z,z’) is defined as in (1.28), then

1 - —*
(8130) - m /7 <f:c’,k” f:c,k>F dX:c,:m

Js

e W dgi A A dgj‘/ e azt A Adznmi?

Nwu(zy/my,

=- /‘7 <f-2t’,k'7 fz,k>FdXz,x'n7(x, :I:').

W’(a:’)/MI_,’

Now recall that f,r s+ is parallel along « with respect to the connection VFE, and
that f7 , is parallel along v with respect to the connection VE*, It follows that

(Far 4r» Fox) P is constant along 7. Also — f? dXz o = 1. Therefore

(8131) - /_, <f_z’,k'7f:,k> dX.t,:c’ = (fa:’,k'(x)7 f:c,k)p; .
Y
Also it is clear that

(8.132) Z (le,kl(l'), f’v‘vk>Fz n., (:L‘, :12,)

~v€El(z,z')

- <5(Wu(x,)* ® for k), WH(2)" ® fw’k>CO(Wu,F) .
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The same argument as in (8.129) can be used to handle the other terms in (8.128).
Using (8.112), (8.116), (8.128)—(8.132), we find that

T\'? :
(8.133) A (;) o~ T(H(@)= 1)

~ 1
(0@ @ fea) W@ © £8) 0 40 (717 )

i.e. we still get (8.111).
The proof of Theorem 8.30 is completed. (]
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IX. Proof of Theorem 7.6

The purpose of this Section is to prove Theorem 7.6, i.e. to calculate the
asymptotics of T — +oo of

2
| Dot e
e i (03] b (e
det H*(M,F)

A key input is provided by Theorem 8.30, which allows us to calculate the
asymptotics of the matrix of d¥' on F !ﬁ’l]. This asymptotics contains exponentially
small terms. A first step is then to modify the scalar product on lF[;’ll so that these
exponentially small terms disappear.

Once this is done, a second key and essentially new step in the proof of
Theorem 7.6 is Theorem 9.15, where the asymptotics of the scalar product on
the cohomology of (]Fl_,q’ll, dF) with respect to the new scalar product on ]P‘L_,Q’”
is calculated in terms of the corresponding scalar product on the cohomology of
(C*(W*, F), 5). This uses again the W KB approximation of the eigenvectors
of l~)2T associated to eigenvalues A € [0,1], which was given in Section 8. The
de Rham map P, : (F,dF) — (C*(W*, F), ), which identifies H*(F,dF) and
H*(C*(W™, F),8), appears explicitly from the analysis.

By putting together these two arguments, we establish Theorem 7.6.

This Section is organized as follows. In a), we define a new scalar product on
]F[ﬁ’l]. In b), we construct the corresponding harmonic elements in (F[})’ll,dF ).
In c), we establish the key Theorem 9.15, in which we calculate the asymptotics
as T — +oo of the modified scalar product on H*(M, F). In d), we obtain the
asymptotics of the corresponding metric on det H*(M, F). Finally, in e), we prove
Theorem 7.6.
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In this Section, we use the notation of Sections 1, 4, 7, 8. Again, the simplifying
assumptions of Section 7 b) will be in force in the whole Section.

a) A modified scalar product on Fl_,q’ll

Recall that for T > 0, the scalar product ( )rr on F was defined in (5.2).
Also the finite dimensional Z-graded vector space ]F[To’ll was defined in Definition
7.4. In the sequel, we will often write ]F[})’l]" instead of F[](f’l], to emphasize the
Z-grading.

The operator d actson Fi'*. Then (Fiy''h*,dF) is acomplex, and morever

(9.1) H* (F‘T"’”", dF ) ~ H*(M, F).

Let (,) be the scalar product on ]ng’ll induced by ( , )rr. The

Fol,r
2»[0’11 3 3 4 3 [071]
operator D7 is exactly the associated Laplacian acting on Fp"™.

From (1.4) and (9.1), we deduce that
(9.2) det H*(M, F) ~ det Fiotl*,

The Z-graded vector space Flﬁ’l] was defined in Definition 8.14. Recall that for
T > 0 large enough, for 0-< i <n, {€rzk} zesi isthe orthonormal base of

1<k<rk(F)

ﬁﬁ’l]’i with respect to the scalar product induced by ( , )r, which was defined in
Definition 8.18.

Definition 9.1. For T > 0 large enough, = € B, set

(9.3) eTzr =€ erzp 1<k <k(F).

By Propositions 5.3and 5.4,for 0 < i < n, (erz,k) -eps isanorthonormal
1<k<rk(F)

base of ]I*“[:,?’l] * with respect to the scalar product induced by ( , )F,7.

Definition 9.2. For T > 0 large enough, for 0 < i < n,z € B, let IF‘[%’:,] be the

vector subspace of F[})’ll” spanned by €71, ", €T ¢ rk(F)-
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For 0 < < n, ]FE_?,’”"' splits orthogonally into

(9.4) Fp' = @ Fral

z€B*
Definition 9.3. For T > 0 large enough, let ( , );Fl"'” . be the scalar product on
T
]P‘lo’l] , which is such that

— The various ]F[ 1] ’s are mutually orthogonal in IF[})’” withrespectto ( , );F f0.1] 1
T

—If z € B, andif o, 8 € FiyJ), then

ind(z)—n/2
(9.5) (a 5)#0 U= (T> 2TI() (o, :3>1F,T

Definition 9.4. For T' > 0 large enough, z € B,1 < k < rk(F), set

T indg(:t!_n/4 r
(9.6) €k = (—) e TI@er , k.

T

For z € B, €71, ", €T, () 18 an orthonormal base of IF‘[ ’ ] with respect

to the scalar product () 0,11 .-
T >

Theorem 9.5. For 0 < i < n, if x € Bt 2’ € B, for 1 < k,k' < 1k(F), then
as T — 400

/
(97) <dF€{1“,;,_-',k', e{Ty-’L‘,k>]F!1?']],T
~ 1
— u A% -y u * .
= (B © fua) W@ © fa) oy +O (777
Proof. By Proposition 5.3 and by (9.5), (9.6), it is clear that
(9.8) (d¥er,o 1, €T, k)p 1 = (dTer,e k> €T,z k)

T(f(z)-f(=')) (%) v (dFeT,x',k',eT,z,k>1F,T :

F 1 ' 4 _
<d eT’zI,kl,eT,z’k>Fgg,l],T =e€

Using Theorem 8.30 and (9.8), we get (9.7). 0O

Definition 9.6. For T > 0 large enough, let F be the operator acting on F(;’ll by
multiplication by f(z) on ]F[ 1].
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The operator JF is self-adjoint with respect to the scalar product ( , )go. -
T 9

Moreover, if a, 3 € F[ﬁ’ll’i, then

i—-n/2
(99) (Ol, /3);1.‘,[1‘3'1]’1" = (%) <eT3-a7 eT?/B>F!19,1],T .

Recall that dF and d£* act on Fill,

Definition 9.7. Let d£* be the adjoint of the restriction of d¥ to Fy''! with

respect to the scalar product ( , ) o1 -
T 9

Proposition 9.8. The following identity of operators acting on ]F[TO’” holds

(9.10) dbx' = %e-” F gExe2T5

Proof. The operator e™? is self-adjoint with respect to the scalar product (-, -) 0.1 .-
T ’
Using (9.9), (9.10) follows. a

Definition 9.9. For T > 0 large enough, set

(9.11) Fi” = {s e PP dFs = 0,df"'s = 0}.

Let II+ be the orthogonal projection operator from F [79’1] on ]F,:,fo} with respect to
!’

the scalar product ( , )]F[T.,,,],T.

In the sequel, we write often ]F'T{O}" instead of ]F"TO}

grading.

, to emphasize the Z-

b) The harmonic elements in IFT[IQ’I] for the new scalar product

Recall that (]Fqu’ll" ,dF") is a complex. Then ]FIT{O} is the vector space of harmonic
elements in IF[;’” with respect to the scalar product ( |, >],F[0’]] T By (9.1), it is
T 9

clear that there is a canonical identification of Z-graded vector spaces

(9.12) F %' ~ H*(M, F).
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Recall that P;? 11 is the orthogonal projection operator from F on Flﬁ’ll with
respect to the scalar product ( , )F,T.

Take [w] € H*(M,F). Let w be any closed current on M representing [w].
Then since P}P 1 has a smooth kernel, P;f) My is well-defined and lies in F[_,(f’”.

Theorem 9.10. For T > 0 large enough, if [w] € H*(M,F), if w is a closed
current on M representing [w), l'ITP][? 2y only depends on [w]. The map
(9.13) [w] € H*(M, F) — Oz Py e F%

is in fact the canonical isomorphism H*(M, F) ~ Fi_,{o} .

Proof. Let D'(M, F) be the vector space of currents on M with valuesin F'. The

map P:[p0 Al (D'(M, F),dF) — (IFIIQ’”,dF ) is a quasi-isomorphism of complexes.
Our Theorem is now obvious. 0

If [w] € H*(M,F) is taken as in Theorem 9.10, we will write II7P}""[w]
instead of HTPg) My,

Recall that the scalar product ( , )ce(ww,r) on C*(W*, F) was defined in
Section 81).

Definition 9.11. Let 6* be the adjoint of d with respect to the scalar product
( , )C'(W“.,F) on C'(W",F). Set

(9.14) clO*w*,F)={heC*(W",F),8h=0,8"h=0}.
By Hodge theory, we have a canonical identification of Z-graded vector spaces

(9.15) clh (W, F) = H* (C*(W",F),d).

Definition 9.12. Let I, be the orthogonal projection operator from C*(W*, F)
on C1%h*(W*, F) with respect to the scalar product { , )ce(ws,F)-

Recall thatif o € F, P € C*(W*, F') was defined in Definition 2.8 by

(9.16) Poa = Z w*(z)* ®/ a.

z€EB W (z)
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Theorem 9.13. If [w] € H*(M,F) and if w € F is a smooth closed form
representing (w], Ilo Poow only depends on [w]. The map

(9.17) [w] € H* (M, F) — M Pow € C1OH* (W F)

provides the canonical isomorphism H*(M, F) ~ C{0b¢(W* F),

Proof. By Theorem 2.9, the map a € (F,dF) — Pya € (C*(W*,F),d) isa
quasi-isomorphism. Our Theorem is now obvious. 0O

If w,[w] are taken as in Theorem 9.13, we will write IIoPs[w] instead of
Il oo Poow.

Remark 9.14. The class of closed currents w to which Theorem 9.13 applies is
larger than the smooth ones.

¢) The asymptotics as T — +oo of the modified scalar product
on H*(M,F).
The following result is one of the essential results of this Section.

Theorem 9.15. For any [w], [w'] € H*(M, F), then
(9.18)

. 0,1 0,1 !
Llim (PP ), Iz Pf 1) o 5 = (Moo Pooli Moo Pl oo -

Proof. Take i,0 < i < n, and assume that deg[w] = deg[w’] = i. Let w,w’ € F*
be smooth closed representatives of [w], [w’]. Clearly, for T > 0 large enough,

(9.19) P¢[r°’1] w] = Z (/ (wA *eT,:c,k)Fe_ZTf) €T,z,k-
M

zEB'.

1<k<rk(F)
Using (9.3), (9.6), (9.19), we see that
(9.20)

.11 1 _ T\ . “T(f=£(2) ) !
Py w] = Z — (WA *€T 2 k) pe €T,z k>
; T M
15:§ﬁ(r)
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and so,
(9.21)
o1 T nf4—1i/2
HTP,‘IT > ][w] = Z (-—) (/ (w A *ET,a:,k)F e—T(f—f(z))) HTe,T,:c,Ic‘
T M

1<E S0

Let Wwi—1 be the union of the cells W*(z),z € B,ind(z) < ¢ — 1. Then,
the class [w] can be represented by a smooth closed form on M which vanishes on
an open neighborhood V' of Wwi~1, In effect by Proposition 7 by Laudenbach in
the Appendix, [w] can be represented by a current v which is a linear combination
of the g(SW"(:c) (where z € B and g is a flat section of F|W’(x) ). By de Rham
regularization [Rh2, Chapter XV], we obtain a closed form w € F* which has
the required property. Another simple proof of this fact is as follows. Assume
temporarily that f is a nice function. Then with the notation of Remark 1.8,
H'(V;_1,F) = 0. So any closed form in F* is exact on V;_;. This implies that
[w] can be represented by w € F* having the required property. In the sequel we
assume that w is chosen in this way.

Recall that by (8.62), if z € B,

(9.22) erezr =0 (e7%T) | 1<k <1k(F).
Also by [HSj4, Lemma A.2.1],if t € M,

(9.23) ex(t) + f(t) — f(z) 2 0.
By Proposition 8.28, if there is equality in (9.23), then ¢ € W¥(z).

Let ‘W, be an open neigborhood of W*(z) in M. From (9.22), (9.23), we
deduce that there exists ¢ > 0 such that for = € B¢,

T nf4—if2
T M

T nf4—i/2 _
= (—) / (w A *gT,a:,k) e~ TU=1(=) +0 (C_CT) .
W

T

Recall that 6, was defined in (8.55). By [HS;j2, Section 2.1] and [HS}4, eq.
(3.12)], we know that

(9.25) ‘é'T’,:,k — VT k = 0 (e_é’T) .
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Using (8.56) and (9.25), we get

(9.26) ET,z,k - ¢T,:c,lc =0 (e_ézT) .

By [Ro, Lemma 1] or by Proposition 2 in the Appendix, we know that W"—(m)
is obtained from W*(z) by adding certain W*(z') C W*i~1. So we find that
Wu(z)\V C W*(z). Moreover W4(z)\V is compact. Therefore there exists
a > 0 such that

(9.27) 6z > ¢z +a on Wu(z)\V.
So if ‘W, is small enough,
(9.28) 6z > ¢z +a/2 on W \V.

By using (9.26), (9.28) and [HSj1, Theorem 5.8] as in (8.120), we find that if
n > 0 and ‘W, are small enough, then
(9.29)
1
=0 (m) :
Fw z\v,0

o ren (2 5 (242))

Recall that w vanishes on V. Using (8.71), (9.29), we get for j large enough,

T nfa—i/2
(9.30) (_) / (W A ¥eT 2 k) p e~ T(f=£(z))
W,

s

=) (s () e ve (),

We use now the coordinates (74(*)*1,... ™) transverse to W*(z) which
were constructed in Section 8h). By using Theorem 8.27 and by (8.126) we find that
as T — +o0,

T nf2—if2 . .
9.31 —) / w A xao(fer)) e 2T — W, [ .
030 (3 [ (ool (T,

Over W*(z), f:k is parallel with respect to the connection V*. Then, we see
that

(9.82) /Wu(:c) <w’ f:’k>p - </Wu(z) “ fx’k>pz .
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The other terms in the sum appearing in the right-hand side of (9.30) can be
dealt with in the same way as in (9.31). Using (9.24), (9.30)-(9.32), we find that as
T — 400,

T nf4—1i/2
(9.33) (—) / (w AN *E'T,z’k)F e_T(f-f(-’B)) — </ w, f.t,k> .
™ M Wu(z) F,

Let d* be the matrix of d¥ with respect to the base (ea»,x’k)l<:<€€“?) of FI,

and let 9 be the matrix of & with respect to the base (W*(z)* ® fak) 1< S8 ey of
C*(W*,F). Then by Theorem 9.5,as T — +o0,

= 1

Moreover, and this is essential, by Theorem 1.16 and by (9.1), the complexes
(F[;’ll,dF) and (C*(W*,F),d) have the same Betti numbers. Let II; be the
matrix of ITr with respect to the base (e7 ;) =es , andlet II, be the matrix

1<k<Ik(F)

of I, withrespect to the base (W*(z)* ® fr k) =es . It follows from (9.34)

1<k<rk(F

thatas T — o0,

(9.35) O, — 1

2 200

Let w’ be a smooth closed form of degree i representing [w’] and verifying the
same support conditions as w. The obvious analogue of (9.33) still holds. Using
(9.21), (9.33), (9.35), we find that

(9.36) Lim ([rPrle], HTPT[w’])]'F[To,u’T

- < Z </W"(:c)w,fz’k>Fz Moo (W*(2)* ® fork),

z€ Bt
1<k<rk(F)

Z </ w',f.’c’,k’> Hoo (WU(xl)* ®fz’,k')> ,
We(a) e Co(W,F)

z'e Bt
1<k! <rk(F)

which is equivalent to (9.18). (W
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d) The asymptotics of the modified metric on det H*(M, F)

Definition 9.16. Let || ||,., o110 ;- be the metric on the line det Fyp''"* asso-
T ’

ciated to the scalar product ( , ) on F[ﬁ’l]. For T > 0 large enough,

For
let || “:iet ploale o be the metric on the line det ]FL.,Q’”" associated to the scalar
T ’
0,1}, ~ ~7,
product ( , );F[;,"‘],T on ]F[.r be Let | NGet zrocat, > | N3es mroqaa,py, 7 DE the

metrics on the line det H*(M, F') corresponding to the metrics || ||, gio.1.0 7
T I

I ":m Bl 7 via the canonical isomorphism det H*(M, F') ~ det ]F[TO’I]".

Proposition 9.17. For any T > 0, the following identity holds

(9.37)
= ’ I 1l ’
Log( d';SH'(M,F),T> +Tr, [NLog (D%lo,ll)] — Log( d;tSH'(M,F),T> _
[ it H*(M,F) [ it He*(M,F)
Proof. Using [BGS1, Proposition 1.5], (9.37) follows. O

Proposition 9.18. For T > 0 large enough, the following identity holds,
(9.38)

~ 2
Log<" "“"t”"M’”’T) = 20k(F) T (AT + (5(F) - X () Lo ()

I 1lges H*(M,F),T

Proof. This follows trivially from (9.9). O
The following result is now crucial.

Theorem 9.19. The following identity holds

' 2
| | 152 ooty R
(9.39) lim Log RS 2 =Log | —fz——
T—too | laes oo(p,F) | et zre(m, )

Proof. Recall that the vector space IF"T{O} was defined in (9.11). By (9.12), we get

(9.40) det F®) o det H*(M, F).
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Let | be the metric on the line detF,\®} induced by the scalar

Idet Fi0T

product ( , )’ restricted to F'%O}. Let | |;;,; He(m,F),r bethecorresponding

Fou T
metric on the line det H*(M, F') via the canonical isomorphism (9.40).

Let D7 be the operator acting on ]F[_,?’ll,

(9.41) D} = dE + dE¥'.
Then D7 is self-adjoint with respect to the metric ( );F 0.1 - Also (9.11) says
T 9
that
(9.42) F{% = Ker Df.
Let Dy 2>% be the restriction of D;? to the nonzero eigenspaces of D;?. By

[BGS1, Proposition 1.5], we know that
(9.43)

' 2 ~ 2
Log(” llaet H‘(M,F),T) _ Log<|| laet H'(M,F),T) +Tr, [NLog (D’T2,>o)] .

| Idet H*(M,F) Idet He*(M,F)

Recall that F{°} was defined in (2.4). Clearly F{°} = ]Fgo}. By Theorem 9.10,
for T' > 0 large enough, the linear map

(9.44) w € FO _ [P0, ¢ FiA0

is one to one and provides the canonical isomorphism of F{%} with F’T{O}. By
Theorem 2.9, the linear map

(9.45) w e FO L1 Pyow e COH WY F)

is one to one and provides the canonical isomorphism of F{°} with C{0}(W*, F).

Let | |getctor.o(we ) be the metric on the line detC{"}"(W“,F) induced
by the scalar product ( , )ce(ww,r). Let | | det H.( m,F) be the corresponding
metric on the line det H*(M, F'). Using Theorem 9.15, it is clear that

1 et | B\
(9.46) lim Log [ — st ULDT | _ pog (-——"t { ’))
T=too | IdetH'(M F) | ldetH’(MF‘)
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Let D2 be the matrix of D2 withrespectto the orthonormal base {eTeop} _=¢B

1<k<rk(F)
0
of F!l. Set

(9.47) D' =38+ 08"
Then,
(9.48) clOY(W*, F) =Ker D'

Let D'2>0 be the restriction of D'2 to the eigenspaces of D'2? associated to
positive eigenvalues. By [BGS1, Proposition 1.5], we know that

(A ’ ,
(9.49) Log (ﬁlﬂ) = Tr, [N Log (D 2,>0)] )

det H*(M,F)
Let D2 be the matrix of D'2 with respect to the orthonormal base {W™(z)*
Qfzk} =eB ) of C*(W*, F). By Theorem 9.5, it is clear that as T — +o0,

1<k<tk(F
(9.50) D2 - D

Also for T' > 0 large enough, the Z-graded kernels of the matrices Q’Tg and le
have the same dimension. From (9.50), we deduce that as T" — +o0,

(9.51) Tr, [N Log (D;?’”)] — Tr, [N Log (D’2’>°)] .
Using (9.43), (9.46), (9.49), (9.51), we get (9.39). O

e) Proof of Theorem 7.6

We now prove Theorem 7.6, which we restate for convenience.

Theorem 9.20. As T' — 400,

RS 2
. 20,1 | ldet oo, F),T
(9.52)  lim_ {T&s [N Log (DT‘ ‘)] + Log ( o] )
| laet me(ar, p)

2
n ~ T I Naes Fo
+21k(F) Trf[f]T+(5x(F) - x'(F)) Log (-W—)} = Log (—l Rst I
det H*(M,F)

Proof. This follows from Propositions 9.17 and 9.18 and from Theorem 9.19. O
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X. The asymptotics as T — +oco of certain traces
associated to the operator D%

The purpose of this Section is to establish Theorems 7.7, 7.8 and 7.9. These
results concern the asymptotics as 7' — +o0o or ¢t — +oo of supertraces involving
the operator exp(—tD32) and also the asymptotics of the eigenvalues A € [0,1] of
D3.

To establish these results, we use the techniques of [BL2, Sections 8 and 9],
where a much more difficult problem was considered.

This Section is organized as follows. In a), we describe the operator 1~)T near
B. Inb), following [BL2], we prove Theorem 7.7, in c), we establish Theorem 7.8,
and in d), we prove Theorem 7.9.

a) The operator ET near B

By (5.12), we know that

(10.1) Dy =D+ T&(VY),
and so,
(10.2) D% = D? + T D, &V )] + T*df |*.

Observe that by (5.17), [D,¢(V f)] is a matrix valued operator, i.e. an operator of
order 0.

Also, |df|? is positive on M\B. Therefore the situation is formally identical
to the one described by Bismut and Lebeau in [BL2], with Y replaced by B and
V2 by |df|*>. We will pursue this analogy further.
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Take ¢,0 < 7 < n. We equip R"™ with its canonical scalar product, and we
identify R™ and R™* by the scalar product. We split R" orthogonally into

(10.3) R" =R'@R"".
Then
(10.4) A(R™) = A (R™*) A (R<"-")*) .

Let N,N~,N* be the number operators on A(R"), A(R™*), A(R(~9*), so that
(10.5) N=Nt4+N".

If y € R™, we write y in the form

(10.6) y=y +y"; y eR', yteR"

Let F be the vector space of smooth sections of A(R") ® R* over R". Let Fy
be the space of square-integrable sections of A(R") ® R*¥ over R™. We equip Fo
with the scalar product

(10.7) @B € Fo— (), = [ (an+Blg.

R~

The operator d + (y* — y~)A acts on F. Its formal adjoint with respect to the
scalar product (10.7) is the operator d* + i(,+_,-). Set

(10.8) D* =d+ (yt —y7) Ad* + ity

Let AR" be the flat Laplacian on R"™. By Proposition 8.2, we know that
~Rr" 2 n

(10.9) (D ) =A% 4y -n+2(N* +i-N7).

Let p be the volume form of R’ with respect to the Euclidean scalar product of R*
equipped with its canonical orientation.

Proposition 10.1. The kernel of the operator (13]1‘")2 isof dimension k. If f1,---, fk

~n 2
is an orthonormal base of R*, then Ker(D®")? is spanned by #e’uﬁl'p ®
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1 _.|l|1 . k
fi,0 s =€ 2 p® fr. Moreover if f € R*, then

e"‘lili
(d+(y+_y") /\) —7;n—/4—p®f =0.
(10.10)
_l?

2

* €
(d +l(y+_y~)) (Wp@)f =0.

Proof. The first part of our Proposition was already established in Proposition 8.3.
Moreover (10.10) follows from an easy direct computation. O

b) Proof of Theorem 7.7

By Proposition 5.4,
(1011) T [Newp (~tD})] = Tn, [Vexp (~153)]

In view of (10.2) and of Proposition 10.1, we see that the situation is formally similar
to the corresponding situation in Bismut-Lebeau [BL2, Theorems 6.4 and 8.3]. Of
course it is much simpler here, since the set B = {y, |df|?(y) = 0} is finite, while
its analogue Y in [BL2] is a union of submanifolds. Also by Proposition 8.2, if
z € B, the operator 15% is exactly an harmonic oscillator on a whole neighborhood
of z, while in [BL2], only the corresponding infinitesimal analogue is true. Since
B consists of isolated points, the analogue of the operator DY in [BL2] is the zero
operator acting on P, p F:.

So by proceeding as in [BL2, Section 9], we find that for €, 4 with 0 < € <
A < 400, there exist ¢ > 0,C > 0 suchthatif e <t < A,T > 1, then

N ind(z) : c
(10.12) Tr, [Nexp (-—tD%)] — 1k(F) ;3(_1) 4@ jnd(z)| < woil
Using (10.11), (10.12), we get
~ C
(10.13) |Trs [N exp (-tD%)] — X'(F)| < 77

which is exactly Theorem 7.7.
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¢) Proof of Theorem 7.8
Recall that 13:59 1l was defined in Definition 8.14. By Proposition 5.4, we get
(10.14)  Tr, [Nexp (~tD}) PP+l = Tx, [N exp (~D3) PI+=1] .

Let A = A4 UA_ be the oriented contour in C

y
+1i
~————— - <
A
-1 0 +1 x)
Y
e B >—
A -1 A,

Figure 2

The analogue of the operator DY in [BL2] is the zero operator acting on
®xe g Fz. By the analogue of [BL2, Theorem 9.25], we find that for T' > 0
large enough,

(10.15) Sp (ET) na=0.

Take p € N,p > n+2. Let f, be the unique holomorphic function defined on
C\v-1R with values in C, which has the following properties :

— As A — Fo00, fo(X) — 0.
— The following identity holds

e

(10.16) =

= exp (—/\2) .
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Using (10.15), we see that for T' > 0 large enough,

(1017)  exp (—tD%) Bitl= L /A exp (—32) (A= Br) ™ .

27
Equivalently
~o\ Bll4oof _ 1 f (\/Z/\) ~ \~P
(1018)  exp (—tD3) Bi+<l= /A (i/fT (A= Br) " ar
Also
fp (VEA) (V) ATPdA =0
(10.19) /A O -

Using (10.18), (10.19) and by proceeding as in [BL2, Section 9g)], we find that
(7.18) holds. Also by proceeding as in [BL2, Section 9h)], we get (7.19). The proof
of Theorem 7.9 is completed. a

d) Proof of Theorem 7.9

Let D' be the restriction of D2 to F*. Recall that M = card(B‘). By using
Proposition 10.1 and by proceeding as in [BL2, Section 9], we see that forany ¢ > 0,

(10.20) Tli»r-f-loo Tr [exp (—th:i)] = rk(F)M".

From (10.20), and from elementary properties of the Laplace transform, (7.20) and
(7.21) follow. The proof of Theorem 7.9 is completed. O

Remark 10.12. To prove Theorems 7.8 and 7.9, one can also proceed as in [BL2,
proof of Theorem 9.25], by using in particular the analogue of [BL2, eq. (9.154),
(9.155)]. However the conclusions of [BL2, Theorem 9.25] are not valid any more.
In [BL2, Theorem 9.25], one shows that for 7' > 0 large enough, if A € R is an
eigenvalue of the analogue of D2. which is such that |A| < 1, then A = 0. This
follows from a purely algebraic argument, which has no equivalent here. In general,
Morse inequalities are indeed inequalities and not equalities.

Theorem 7.9 can also be proved by using the much stronger Theorems 8.5 and
8.15.
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XI. The asymptotics of Trs[N exp(—tD?)] as t — 0

The purpose of this Section is to prove Theorem 7.10, i.e. to calculate the
asymptotics as ¢ — 0 of Trs[V exp(—tD?)]. This asymptotics has already been
obtained by Dai and Melrose [D] in the case where the metric gF is flat.

We will obtain Theorem 7.10 as a trivial consequence of Theorem 4.20.

Here we make the same assumptions as in Section 2, i.e. we may work with an
arbitrary metric g™ on TM.

We use the notation of Section 4. Let e;,---,e, be an orthonormal base of
TM. Then one has the trivial

(11.1) N= %lec(e,-)a(ei) +z.

By proceeding as in the proof of Theorem 4.20 (and more specifically as in (4.55)—
(4.63)), we find easily that if n is odd
(11.2)

B 5T M
}i_r'r(l) V't Trs l(%Zc(edE(e,)) exp(—tDZ)] = rk(F)/M/ Lexp (_R2 ) .

1

If n is odd, using standard results on asymptotic expansion of traces of heat kernels,
we get the second identity in (7.22).

We now assume that n is even. In view of Theorem 4.14, of Proposition 4.15
and of equation (4.74) in the proof of Theorem 4.20, it is clear that

(11.3) }1_1}(1) Trs [(% Z c(ei)'é(ei)) exp (—tDZ)]

1
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_ _/M {/BVTM (g) exp (—RZM) /\<p0(F,gF)}.

By Proposition 3.15, we get

(11.4) vVIML =0
From (11.3), (11.4), we deduce that

: 1o
(11.5) }l_r,r(l, Tr, [(5 ZI: c(ei)E(ei)) exp (—tDz)] =0.
Incidently note here that (11.5) also follows directly from Proposition 4.15 and from
Theorem 4.20.

By standard properties of traces of heat kemels, we find from (11.5) that as
t—0,

1« N
(11.6) Tre [(5 Zl:c(e,)é(e,)) exp (—tD )] = 0(t).
Moreover by the McKean-Singer formula [McKS], we get
n 02| =2
(11.7) Trs [2 exp (—tD )] = 2)((F).

From (11.1), (11.6), (11.7), we obtain the first identity in (7.22).
The proof of Theorem 7.10 is completed.
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XII. An asymptotic expansion for
Trs[f exp(—tD%)] as T — 400

The purpose of this Section is to prove Theorem 7.11, i.e. to caculate, for a fixed
t > 0, the asymptotic expansion for Trs[f exp(—tD%)] as T — +oo.

This Section is organized as follows. In a), we give an estimate for the kernel
of exp(—tD%) away from B. In b), using the fact that the metrics g7 and
gF are flat near B, we show that near B, the kemel for exp(—tD%) is well
approximated by the kernel of a corresponding harmonic oscillator. Finally in c¢), we
prove Theorem 7.11.

Let us point out that in our proof of our mains results in Theorem 7.1, we only need
to establish Theorem 7.11 for ¢ = ¢ small enough. This simplifies the arguments
of Section 12 b), where part of the difficulty comes from the fact that we establish
certain estimates for arbitrary (i.e. not necessarily small) ¢ > 0.

As already explained, we suppose the simplifying assumptions of Section 7 b)
(which concern the form of g7M, f and g near B) to be in force.

a) An estimate of the kernel of exp(—tD2) on M\ UzeB BM(z,¢)

Definition 12.1. For ¢t > 0,T > 0, let P, r(2,2')(z,2' € M) be the smooth
kernel of the operator exp(—tﬁzT) with respect to the volume element dvys over
M.

Thenif s € F, forany z € M

(12.1) exp (—tﬁ%) s(z) = /M P, 1(z,2")s(2")dvp (2').
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Proposition 12.2. For any t > 0, > 0, there exist ¢ > 0,C > 0 for which if
2z € M is suchthat d(z,B) > «, for T >0,

(12.2) |Py,7(z, 2)| < cexp(—CT).

Proof. Using (10.2) and the fact that [DX,2(V f)] is an operator of order 0, (12.2)
can be proved by the same methods as the stronger [BL2, Proposition 13.1]. O

Remark 12.3. The proof of [BL2, Proposition 13.1] uses the nonnegativity of the
operator D%, and also probabilistic estimates for Py r(z,2). Still using the

nonegativity of 5% and an argument using finite propagation speed, one can also
give another proof of (12.2).

b) A harmonic oscillator approximation for the kernel of
exp(——tD%) near B

Let r > 0 be the injectivity radius of (M,g"™).

Take € €]0,7/2] small enough so that forany = € B, the balls B (z,2¢)(z €
B) do not intersect each other, that (7.12) holds on BM(z,¢), and moreover the
metric gF isflat on BM(z,¢).

Take z € B. We use the notation of Section 8 b) or of Section 10, with
.M = T,W"(z) ® T,W*(z) replacing R® = R' @ R*~*. In particular, if
y € T,M,y* and y~ denote the orthogonal projection of y on T,W*(z) and
T.W*(z). Alsorecall that TM and T*M are identified by the metric.

Let F, be the vector space of smooth sections of (A(T*M)® F), on T M.
Let dvr,p be the volume element of T,, M with respect to the metric gT=M . We
equip F, with the scalar product

(123)  a,d € F, = (@,a')p, = /T o) acreanem, dvrm ).

The operators d¥ + T(y* — y~)A and d¥* + Ti,+_,- acton F,.
Definition 12.4. Set
DIM — gF 4 T(yt — y") A4+d™* + Tiye -,

(12.4) -
DTM — gF 4 (y* —y ) A+dT iy
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Let G be the map

(12.5) s(y) eFy — s (%) €F,.
Then
(12.6) GrD¥MG;! = VT DM,

Let AT=M be the standard Laplacian on (T M, g™=). By Proposition 8.2, we
know that

~ 2
12.7 DEM) = _ATM L T2|y|? - Tn + 2T(N* +ind(z) - N7).
T

Let £ be the harmonic oscillator

(12.8) L= % (=AM 4 |y|? —n).
Then
~ 2
(12.9) (DF™)" =27G7! (L + N* +ind(z) - N7) Gr.

Definition 12.5. For t > 0,T > 0, let Qf 1(y,y')(y,y’ € T, M) be the smooth

kernel associated to the operator exp(—t(f);’M )?) with respect to the volume
element dvr, .

We then use the coordinates y = (y!,---,y™) considered in (7.12) near z. In
particular if z € M,d™(z,2) < €,Q7 1(2,2) is well defined.

Theorem 12.6. For any t > 0, there exist ¢ > 0,C > 0 such that if x € B,
z € BM(z,¢),T > 0, then
(12.10) 1(Pur = QZx) (2,2)]| < cexp(~CT).

Proof. Let PPp(z,2')(z,2' € BM(z,€)) be the smooth kernel associated to the

operator exp(—tﬁ%) and Dirichlet boundary conditions on 0B (z,¢). We claim
that there exist to > 0, C > 0 for which, given t €]0, ¢}, there is ¢ > 0, such
that if z € BM(z,¢),2' € BM(z,¢),T > 0, then

(12.11) | (P.7 = P"r) (2,2)|| < cexp(—CT).

To establish (12.11), we will use a simple probabilistic method.
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In fact by Theorem 4.13 and by (5.16), we know that there exists smooth sections
Ao, Ay of End(A(T*M) Q@ F) such that forany T > 0

(12.12) D% = —A® + Ag + T A, + T?|df|.
For z € M,z € M, let R' _, be the probability law on C([0,1]; M) of the

z,z'

T
Brownian bridge s € [0,1] — z € M associated to the metric £, starting at z
and ending at z’. Tautologically, R ,.(20 = z) = R. ,(z1 = 2’) = 1. Under
R} ./, z. isexactly the Brownian motion associated to the metric 227 starting at

z at 0 and conditioned to be z’ at 1. For the definition of the Brownian bridge,
we refer to [B2, Chapter 2]. Let ER. be the expectation operator associated to
R:

For 0 < s <1, let 70 be the parallel transport operator along the curve z from
(A(T*M) @ F), into (A(T*M)Q F),,. Set 7§ = (2)~!. Observe that by [B2,
Chapter 2], these operators are well-defined for any s € [0,1], R! ., a.s..

Under R}, ,, consider the differential equation

dvhT

(12.13) ds
Vo'l = Lar o), -

In (12.13), V»T liesin End (A(T*M) ® F).

Let S be the stopping time

(12.14) S =inf {s > 0;2, € 0BM(z,¢)} .

—VITrs (tAo(2,) + tT A1 (25)) T2,

Let ATM be the Laplace-Beltrami operator on M, and let py(z,2')(t > 0,2,2' €

M) be the corresponding heat kernel associated to the semi group etA™ A
standard application of Ito’s formula shows that if z,2’ € BM(z,¢), then

(12.15) (P,r - Py) (2,2)
= pi(z, 2" )BT [exp {_th /0 1 |df(z3)|2ds} Vl"TrollsSl] .
Clearly, there exists v > 0 such that forany ¢ > 0,7 > 0,
(12.16) |vf’T| < exp(yt(1 +T)).
From (12.15), (12.16), we deduce
(12.17) |(Pi.r — P2r) (2,2)] < exp(yt(1+ T))pu(2,7)
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1
B [op {1 [ e Pas s
0

Estimating the right-hand side of (12.17) is now a scalar problem. We fix ¢ > 0.
In the sequel, the constants ¢’ > 0,¢” > 0--- may depend on ¢t > 0 but not on
T > 0. Clearly

, 1
(12.18) ER. [exp {—tTZ/ Idf(zs)lzds} 1551]
0
\ 1
< ER [exp{—tTZ/ Idf(zs)lzds} 1551/2]
0

) 1
+ER:w [exp {-—tTZ/ |df(zs)|2ds} 11/25531] :
0

By using time reversal, the two quantities in the right-hand side (12.16) are deduced
from each other by exchanging z and z’. So we only need to estimate the first one.

Set

(12.19) Sﬂ=mf{323Js€LJ6BM(%%)}.

yEB

Then for 0 < a < 1/4, we have the obvious

, 1
(12.20) ERex [exp{—tT2/ |df(zs)|2ds} 1551/2]
0
<R!,[S<1/2,8 -5<q]

z,2!

. S+a
+ER [exp {_tTZ/g |df(zs)|2d8} 1551/2,3'—52«1] .

Now there exists 3 > 0 such that

2 M €
(12.21) JdfP 28 on M\|JB (y,2).
y€EB
Therefore
(12.22)

. S+a
ER.. [exp {—th/S |df(zs)|2ds} 1551/2,31_52a:| < exp (—fatT?).
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Let R be the probability law on €([0,1]; M) of the standard Brownian motion

. - TM .
z on M associated to the metric £—, with R%(2 = z) = 1.

Recallthat ¢ > 0 isfixed. By [B2, Definition2.4], onthe o-field B(z;|s < 3/4),
Rfm, has a bounded density with respect to RY. Using the estimates of Varadhan
[V, Proof of Theorem 5.1] on Ri, one finds easily that there exists ¢’ > 0 such that
for z,2' € BM(z,¢), 0 < a <1/4,

2
12.2 L[S < '-§<a]l</{ = ).
(12.23) R, ., [8§<1/2,8 -S§<ad]<c exp( 32at)
From (12.17)—(12.23), we find there exists ¢” > 0 such that for T > 0,
0<a<1/4,
(12.24)
2
|(Pr = ) (23] < ¢ exp(rt(14+7)) (¢exp (~ g5 ) +exp (~Bat?) ).
Take
(12.25) 4= — .
V328 tT
It is clear that for T > 0 large enough, then 0 < a < %. Also
(12.26) € patT? = q/ﬁ T
) 32at o 32
Set
evp
12.27 to = —.
(12.27) 0= 3
Then, if t < t,

(12.28) 6\/;22 -9t >0.

Using (12.24), (12.28), we get (12.11).

By a strictly similar proof, we see that for 0 < t < t,, there exists ¢ > 0 such
thatif z,2’ € B, = # 2’ andif z € BM(z,¢),2' € BM(z',¢), if T > 0, then

(12.29) |P1(z,2")| < cexp(=CT).
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Also an application of Ito’s formula shows that

1
(12.30)  P.r(z,2) = pi(z, 2) ER=s [exp{—tT ? / |df (zs)* dS} Vf’T] :

0
Take A > 0. By (12.16), (12.30), there exists ¢ > 0, such that for ¢ €]0, A],T €
[0,3],z € M,

C

(12.31) |Pe,7(2,2)| < mrz

Since the operator (Dr)? is nonnegative, for any z € M, the function ¢ €
RY — Tr[P,7(z,2)] is decreasing. Moreover Py r(z,z) € End(A(T*M)Q® F)
being self-adjoint and nonnegative, we find that if | | denote the norm of trace,
t — |P;,r(2)| is decreasing. In particular, forany ¢ > 0, for T > 1,z € M

(12.32) |P,1(z,2)| < |P+,T(z,z)|.
From (12.16), (12.31), (12.32), we find for ¢ €]0, A],T > 1,
(12.33) |P,,7(2,2)| < T2,

From (12.31), (12.33), we find that given A > 0, there exists ¢ > 0 such that for
0<t<AzeM,

|Py (2, 2)| < tn% f0<T< %
(12.34) 1
< crm/? if0<T <<

Since exp(—tD?2) is a self-adjoint positive operator, if z,2' € M ,
(12.35) |Pr(z,2)| < |Pur(z, )| F [P (2, )1

Take ¢t > 0 which we fix once and for all. For m € N large enough, —,’; €]0, to].
If z € B, andif 2 € BM(z,¢), then

(12'36) Pt,T(zv Z) = / : P#,T(Z’xl)PT::,T(xlvxZ) ter
Mm-

e P_:;’T(xm_l, 2)dvp(z1) - - dops (Tm—1) -
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Using (12.2), (12.29), (12.34)(12.36), it is clear that given ¢ > 0, there exist
¢ >0,C" > 0 suchthatif = € B,z € BM(z,¢), T > 1, then

(12.37) IPt,T(ZaZ) - /

PL T(Z,xl)"‘PL
(BM(z,e))™=1 ™’ "

7(Tm-1,2)dvy (21)

ki

codopy (Zm—1) | < dexp(~-C'T).

Also the same argument as in (12.30)—(12.34) shows that given A > 0, there is

¢ > 0 such that if ¢ €]0, A],T > 0, thenif z € BM(z,¢),
1
Pr(z2)| < o #0ST<3,
(12.38) 1
<cr? i T> -

So, by proceeding as in (12.35), we get for 2,2’ € BM(z,¢),
1/2 1/2
(1239 |[PB()| < [P 2| 7 [PE .

From (12.11), (12.34), (12.37)—(12.39), we find that given ¢ > 0, there exist
¢’ > 0,C"” > 0 such that for T > 1,

(12.40) |Pt,T(z, z) — /(B( s Pg,T(z,ml) e Pg,T(xm—l’ 2)dvps (z1)

ordupyg (Tm—1) | < dexp(-C"T).

Moreover
(12.41)

Pirz) = [

By P2 (2,21)--- P2 1(¥m-1,2)dva (21) - dvps (Tm—1).

From (12.40), (12.41), we deduce that given any ¢ > 0, there exist ¢’ > 0,C" > 0
such thatif z € BM(z,¢), T > 1,

(12.42) |(Pir = P%) (2,2)| < " exp(—C"T).

Let Qf”f})(z, 2')(z,2' € BT=M(0,¢)) be the smooth heat kernel associated with
the operator exp(—t(D+**)?) and Dirichlet boundary conditions on dBT=¥(0, ¢).
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One can prove as in (12.11) that there exist ¢y > 0,C > 0 such thatif 0 < ¢ < %o,
there is ¢ > 0 such that if 2 € BT=M(0,¢),T > 0, then

(12.43) l(Qf,T - th‘?) (z, z)l < cexp(=CT).

The obvious analogue of (12.34) holds. Moreover the kernel QF (2, ') isexplicitly
known by Mehler’s formula [G1J, Theorem 1.5.10]. One can then easily obtain
estimates at infinity for Qf 7(2,2’), and show that the analogue of (12.37) holds.
We deduce that given ¢ > 0, there exist ¢’ > 0,C” > 0 such that if 2z €
BT=M(0,¢),T > 0, then

(12.44) |(@7r - Qi) (2,2)] < cexp(-CT).

Finally, if 2 € BM(z,¢), one has the obvious
(12.45) P2r(z,2) = Q7 (2,2).
Equation (12.10) now follows from (12.42), (12.44), (12.45). O

¢) Proof of Theorem 7.11

Here t > 0 is fixed. By Proposition 5.4, we get

(12.46) Trs [f exp (—tD%)] = Trs [f exp (—-tf)%)] .
Moreover,
(12.47) T, [fexp (-1D%)] = /M Tr, [f(2) Po (2, 2)] dum (2).

By Proposition 12.2, we know that there exist ¢ > 0,C > 0, such that

(12.48)

Tr, [f(2)Pr,1(2, 2)] dum(2)| < cexp(=CT).

Al\UzGB BM (z)

Also by Theorem 12.6, there exist ¢ > 0,C’ > 0 such thatif z € B,

(12.49) < dexp(=C'T).

[ Tl (Pur = Qi) (2)] done(2)
BM(z.e)
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Using (12.9) and Mehler’s formula [G1J, Theorem 1.5.10], we get for y € T, M,

TeZtT ) n/2

(12.50) Qir(v:y) = <27r sinh(2tT)

exp {—T tanh(tT)|y|* } exp {—2¢tT (Nt +ind(z) - N7)}.
Moreover by (7.12), if |y| < ¢,

(12.51) 1w = f@) + 5 (1w - )

Then

(12:52) [ @) o)
BM(z )

Te2tT n/2 y
- {x®)1@) o) e (TP dy

1/ 412 —2 Te*'T "2 2
+1k(F) |y|$e§ (Iy "= |y~ ) (W exp {~T tanh(tT)|y|* } dy

Tr;\(T;M) [e—ZtT(N++ind(:c)—N‘)] )
Also

Te2tT n/2 .
2. _
(12:59 / I<e (27rsmh(2tT)) exp (=T tanh(¢T)|y[*) dy

AR
1—e=2T | |<[T tanh(tT))1/2¢ (m)n/2

and so there exists ¢ > 0 such thatas T — +o0,

Te2tT n/2 9 —eT
(12.54) . (m) exp (=T tanh(tT)|y|*) dy =14+ 0 (e™¢").
Yyise

Moreover

_ Te2tT n/2 9
(12.55) e (|y+| — |y ”(W) exp (—T tanh(tT)|y|*) dy

27 sinh

1
2
2y [2) -l %Y
(1—6_2tT) 2Ttanh(tT /y|<[Ttanh(tT)]1/2e (|y I |y | )e 71'"'/2.

178




AN ASYMPTOTIC EXPANSION AS T TENDS TO INFINITY

From (3.80), (12.55), we deduce that there is ¢ > 0 such thatas T' — 400 ,
(12.56)

1 Te2tT n/2
/I i< 3 (|y+|2 - Iy_lz) (m) exp (=T tanh(¢T)|y|?) dy
Yy|se

_ 1 : —cT
=17 (n—2ind(z)) + O (™).
Also, there is ¢/ > 0 such thatas T — +o0,

(12.57) TN M) [e—ZtT(N++ind(:c)—N‘)] = (=1)n® 4 0 (e-cT)_

Using (12.46)—(12.57), we get (7.23). The proof of Theorem 7.11 is completed.
O
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XIII. An estimate for Trs[f exp(—(tD + Te(Vf))?)]
in the range 0 < ¢ <1, Ong%

The purpose of this Section is to prove Theorem 7.12, i.e. to establish an
estimate involving Trs[f exp(—(tD + T&(Vf))?)] in the range t €]0,1],T €
[0,% . The results of this Section are essential in explaining the appearance of
the term — [, 0(F, g¥')(V f)*¢(TM,VTM) in Theorem 7.1.

The proofs rely on the Berezin integral formalism of Section 3, and also on the
local index techniques we developed in Section 4.

This Section is organized as follows. In a), we show that the problem considered
in Theorem 7.12 is local on M. Inb), we prove certain estimates on the kernel of
the operator exp(—(tD + T¢(Vf))?) in the range ¢ €]0,1],0 < T < Tp. Inc),
we extend these estimates to the range ¢ €]0,1],0 < T < ¢ on compact sets of
M\B. Finally in d), we prove Theorem 7.12.

In the whole Section, the simplifying assumptions of Section 7 b) will be in force.
Also we use the notation of Sections 3 and 4.

a) Localization of the problem
Let r > 0 be the injectivity radius of (M, gTM). Take b €]0,7/2].

Definition 13.1. For ¢t > 0,7 > 0, let Sy r(2,2') (2,2’ € M) be the smooth
kernel associated to the operator exp(—(tD + T¢(Vf))?) with respect to the
volume element dvy.

Comparing with Definition 12.1, we get
(13.1) Si1(2,2") = P z(2,2).
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Definition 13.2. Given zo € M, let §;77(z,2')(z,2' € BM(z9,b)) be the smooth
kernel associated to the operator exp(—(tD + T¢(Vf))?) and Dirichlet boundary
conditions on BM (2, b).

Proposition 13.3. For any d > 0 there exist ¢ > 0,C > 0 such that if z, €
M,t €)0,1],T € [0,d/t],z € BM(29,b/2), then

(13.2) |(St,T - Stl’)jwz") (2, z)l < cexp (-C/t?).

Proof. In view of (10.2), and of the fact that [D,¢(V f)] is of order 0, the proof of
Proposition 13.3 is the same as the proof of [BL2, Proposition 11.10]. O

b) An estimate for the kernel of exp(—(tD + T¢(V£))?) in the
range t €]0,1],T € [0, Tp]-

In the sequel, dvys is considered as a section of A™(T*M) @ o(T'M).

Theorem 13.4. For any Ty > 0, there exists ¢ > 0 such that if z € M,t €
10,1],0 < T < Ty, then
(13.3)

B B
Trs [Se,7(2, 2)] de—rk(F)/ exp (-—BTz)—td/ %—g(F, g%) exp(=Br2)| < Ct°.

Proof. Let e1,---,e, be an orthonormal base of M. By Theorem 4.13 and
Proposition 5.5, we know that

(13.4) (tD+TE(Vf))? = —2A° + t—245 + & > {ex,R™ (ei,e;) er)
1<i,j,k,<n
2
c(ei) c(e;) C(ex)C(ee) + tz Y (w (F ) ()’

1<i<n
2T (oo ele) ~ 8en(es) (w (FrgF))’ (enres)
815i,j5n
t2

“5 Y elentle) (VEw (F67) (o) + VEw (Fg") (o)
1<i,j<n

—tTw (F,g") (V) +1T S <V£‘Mdf, ej> c(ei)E(e;j) + T2|df .
1<i,j<n
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Take z € M. We identify BT=M(0,b) with BM(2,b) using geodesic co-
ordinates centered at z. Also if y € T, M,|y| < b, we identify T,M with
T.M (resp. F, with F,) by parallel transport with respect to the connection
VTM (resp.VF¢) along the geodesic s € [0,1] — sy € M. Therefore if
y € BM(z,b), (A(T* M) @ F), is identified with (A(T*M) ® F),.

Let v be a smooth function R — R4 such that

v(s) =1 if s <1/2,

13.5

(13.5) =0if s> 1.
IfyeT,M, set

(136) o = (1Y),
Then

(13.7) ply) =1 if |y| < b/2,

=0 if |y| >b.

Let F.(resp.F.o) be the vector space of smooth (resp. square integrable)
sections of (A(T*M)® F), over T,M. Let AT-M be the Euclidean Laplacian
on T, M.

Let J, 7 be the operator acting on F,
(13.8)  Ji7 = (1- () (—2ATM 4+ T?) 4 p*(y) (¢tD + TE(V f)).

Let Stl”]z"(y, y')(y,y' € T,M) be the smooth kernel associated to the operator

exp(—Jtl,’qf) with respect to the volume element dvr, pr. By Proposition 13.3, there
exist ¢ > 0,C > 0 such that if ¢ €]0,1],T € [0,d/t], then

. C
(13.9) Si,1(2,2) - Stl,’T(O’O)l S cexp (_t_2) ’

Let H; be the linear map

(13.10) s(y) EF, — s (9) €F,.
t

Set

(13.11) Jof = Hy VR Hy.
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Let e;,---,e, be an orthonormal base of T, M, and let e!,--.,e™ be the
corresponding dual base of T;M. For 1 <i <mn, set

e

c, (e;) = —= — Vtie,,
(13.12) ‘f

G (ei) = % +Vi [

Let Jf’ 7. be the operator obtained from Jtz; by replacing the operators c(e;), ¢(e;)
by cj(e:),E(e:) (1<i<n). Let S}%(y,y")(y,y' € T.M) be the smooth kernel

associated to the operator exp(—J,%). Then Sf’,’;(O, 0) can be expanded in the
form

(13.13)
$2%(0,0) = > e A NeP N A NEV Nig, g,
1§i1<i2---<ip§n
15if1<if2---<i;,,§n
1<31<j2---<j3g<n
*/ -/ =/
1<) <Jg---<Jjg<n
uvdandteilsdudandteil
e O Qi g ity 3 @iy gy i, € End(F%).
q
Set
3. max
(13.14) [537(0,0)] " = Q1,m,1,n € End(Fy).

By Proposition 4.11, it is clear that

max

(13.15) T, [$17(0,0)] = 2(-1)*5 T [S35(0, 0)]

Let I'TM T'Fe pe the connection forms for VI'M VI with respect to the
considered trivializations of TM, F' near z. By [ABoP, Proposition 3.7], we know
that

1
rTM = LRy, 10 (uf?),

rfe=0(yl).

(13.16)
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In the sequel for m € Z, O(|y|™) denotes any matrix valued operator depending
smoothly on y, which may also depend on ¢ > 0, and is such that for any k£ € N,
there is C > 0 such that

(13.17) |00 (Jy|™)| < Cily|™*.

The geodesic coordinate system y = (y!,---,y™) defines a canonical trivi-
alization of T'M near z (which is distinct from the one considered before). It
is well-known that in this trivialization, the Christoffel symbols of the connection
VTM gtill vanishat y = 0. If e € T,M,y € T, M, |y| < €, let 7(e)(y) be the
parallel transport of e along the geodesic s € [0,1] — sy € M with respect to this
trivialization. It follows that

(13.18) re(y) =e+0 (lyl?) .

Then by using (4.28), (4.31), (13.4), (13.8) and proceeding as in the proof of
Theorem 4.20, we find that
(13.19) T3 = (1- (W) (~ATM 4 1?)

>

t
+p2(ty){—(ve;+t20(|y|2) +3 Z ((RTM (y,e:) +tO (lyl?)) ex, ee)
1<ke<n

((e’c A—tie,) (e A tie,) — (8% A +tiz ) (€ A +tigy ) ) + 120 (|y|))2

HOS (e BT (enes)ed) +10(3)

1Si,j,k,eS"

(¢ A—tie,) (¢ — tic,) (25 + tiy, ) (& +tiy,)

+7 Y ((VEMdf(2),e5) +10 ()

1<i,j<n

(¢ = tie,) (&9 +tiz) + T2 (1df (=) +0(ly))

¢ [é Y ((e" A —tie,.) (ej A —tie,)

1<i,j<n
- (Ez A +tia) (eAJ A +tig;)) ((w, (F,97))” (eirej) + tO(IyI))
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+% > (eFa—tie,) (& A+tiz) (VEw: (F.gF) ()

1<i,j<n

+95w: (F97) (@) +10(uD) + T (ox (F4°) (V) +10(uD) | + t20<1>}.

Now we use the notation of Section 3 f). Set

(13.20) Jok = —ATM 4 Bra,
1
I{g 5 Z <RTM (ya ez) €k, e€>
1<%,k <n
- 1
(ek/\eg —e* /\eg) Ve, + 3 Z (ek, (e,,e])eg>
1<4,5,k,L<n

(eiAej A (i;;é}/\+€k/\ia) (ze ej A\ +e' /\26]) /\'ée)

+T S (vg‘Mdf(z),ej> (e" Ao, — ie,.af/\)

1<i,j<n
-[1 S (¢ Aed — @ A& (ws (F,0F))* (enres)
815i,j5n
1 .o~
43 3 G (VEwn (Rg) () + Vi (") (@) +Tu: (F.67) (V)]
1<i,j<n

In the sequel, Or(t2) denotes a second order differential operator acting on
F., whose coefficients are O(t?) as t — 0. From (13.19), we see that there
is an explicitly computable matrix valued operator Lr(y), depending linearly on
y € T,M suchthatas t — 0,

(13.21) T = 335+t (K37 + L2()) + Or(®).

Let ngé(y, y')(y,y’ € T,M) be the smooth kernel associated to the operator
exp(—Jg7). Clearly,

. 1
(13.22) Se7(0,0) = a7z P (-Br2..).
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We define [Sg:;(O, 0)]™2* as in (13.14). From (13.22), we deduce that
(13.23) 2"(- 1) [Sg '2(0, 0)] duy = rk(F)/ exp (—Br2,;) -

For t € [0,1],s > 0, let 8% (v,3')(y,y’ € T:M) be the smooth kemel
associated to the operator exp(—sJ; ). In particular,

(13.24) S3E = 8%

If ps(y,y’) denotes the standard scalar heat kernel associated with the operator
exp(sAT:M), then

(13.25) So7.5(¥,¥") = ps(y,¥') exp (—sB72) .

By Duhamel’s formula, we know that

3, 3, p— 3 3, 39 3’
s20) S-S5 = [ sh, (05— 9) St ndn

OSsl Ss

From (13.24), (13.26) we get
(13.27)

3, 3,z _ 3,z 3, 3,0\ o3,
(537 - s57) 0,0 = / e (5570, (57 = T8 S331-s, ) (0,0)ds1
3813

+/ (S?,,;“,Sl (Jg ; )Sg ;‘ y82—81 (Jg ; - Jf;) SS,T,l—Bz) (0’ 0)d31 d32.
<s81<52<1

Take Tp > 0,s¢ €]0,1]. By proceeding as in [BL2, Theorem 11.31], for any
so > 0, one easily obtains uniform bounds in s € [s¢,1],t € [0,1]0 < T < Ty, on
Sf 'T.s(¥,y’) together with its derivatives over compact sets of T, M x T, M, and
also uniform bounds in s € [0,1],¢ € [0,1],0 < T < Ty, on St T, S an operator
acting on F, o. Incidently note that one here does not need the complicate system
of L, norms with weights depending on the grading which is used in [BL2], this
essentially because in (13.19), (RTM(y, e;),ex,ee) appears with the coefficient ¢,
while in [BL2], a similar term appeared with the coefficient 1. The standard L,
norm over F, o is here quite enough.

Similarly, using the techniques of [BL2, Theorem 11.30], or finite propagation
speed methods, one can obtain adequate uniform controlin s € [0,1],¢ € [0,1],0 <
T < Ty, of the kernels S° 7.6, (¥,y) as |yl or |y'| = +oo.
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From (13.21), (13.27), we find that as ¢ — 0,

(13.28) (st - s33) 0,0

==t [ (St (K35 + 12W) Sam) (0.0)ds: +On (),
0S31 Sl

and in (13.28), Or(#2) is such that there exists C > 0 for which if ¢ € [0,1],0 <
T < T, then,

(13.29) lor(t?)| < Ct2.

We now use (13.25). Since Lr(y) depends linearly on y, it is clear that for
0<s5 <1,

(13.30) (S350, Lr(®)S3 51—, ) (0,0) =0

Also by Proposition 3.10, B7: is a sum of forms of type (p,p), and so for
0<s <1,

(13.31) [exp (—s1Brs) e’ A el exp(—(1 = s1)Br2)]" =0,
[exp (—s1Br2) e Nei exp (—(1 — Sl)BT?)- - 0,

S - max
[eXP (=s1Brz)e’ A’ (’7,67 + acl:) exp(=(1 - s1)Br2)| =0,
[eXP (=s1B12) (ie,.ej A+et A iej) e* Nebexp (=(1 = s1)Br2 )]max =0,
[eXP (—s1Br2) et A ;; exp (—(1 — SI)BTZ)- =0,

[eXP (_slBTZ) ie.' /\ g" /\ eXp (—(1 —_— Sl)BT2 )] max = O'
So from (13.20), (13.25), (13.30), (13.31), we get

(13.32) — 2n(—1)"5" [/0

= /B exp (_BTZ) (% Z e A é} (Viw (Fng) (ej) + vfjw (Fv gF) (ei))

1<i,j<n

+Tw (F, gF) (Vf))-

(Sg:;’SI(I{g:;+L;}(y)) S0,1,1-s, )(0, O)dsl] .

<s<1
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Using (4.73), (13.32), we obtain
(13.33)

max
n(n41 P R
—on(—1)*F Tr[ / 5550, (Ké‘:;+Lé(y))sé’,;,l_s,)(o,o>ds1] dom
OSSISI

B
1~ . >
= / (§V0 (F,g") + ZT?fe (F,gF)) exp (—Br2) .
Now by Theorem 3.2, we see that

B
(13.34) d/ %9 (F,g") exp (~Br2)
Bri_~ ~ F
=/ (§V0 (F,gF)-i-ng}g(Fag )) eXp(—BT2)

From (13.15), (13.23), (13.28), (13.29), (13.33), (13.34), we get (13.3). The
proof of Theorem 13.4 is completed. a

¢) An estimate for the kernel of exp(—(tD + T¢(Vf))?) in the
range t €]0,1],T € [0, %l]

Theorem 13.5. Take o > 0, d > 0. There exists C > 0 such that for any z € M
with d™(z,B) > «, for any t €)0,1],T € [0,d/t], then

(13.35) | T, [Su/2(2, 2)] dows — £k(F) / ¥ exp (—Bp2)
—td(/B %@(F,gp) exp (—BTz))I < Ct.

Proof. Foruniformly bounded 7', (13.35) was proved in Theorem 13.4. To establish
(13.35), we will take advantage of the fact d™(z, B) > a.

We may and we will assume that in Proposition 13.3, b < 5. By (13.2), it is
clear that to establish (13.35), we only need to work ‘locally’ near 2 € M. This
exactly means that all the constructions in the proof of Theorem 13.4 remain valid.

Set

_ 2
(13.36) Jé] _d(z,}l;;fza/z |df|°(2) A 1.
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We will use Duhamel’s formula as in (13.26), (13.27). The main point is that
since T < ¢ $» the norm of pointwise estimates on the kernels St 'r,s canbe improved
by a factor exp(—sBT?). This can be proved by using the Feynman-Kac formula.

Alternatively, by proceeding as in [BL2, Section 11], one can show that for any
k €N, for t €)0,1,0 < T < d the estimates we established for the kernel
SfT(y, y') in Theorem 13.4 remain vahd here for the kernel T’“.S’fT(y, y).

Now J§ — JPr is quadratic in T. By proceeding as in (13.28), (13.29), it
easily follows that (13.28), (13.29) hold uniformly in T € [0,d/t].

As in the proof of Theorem 13.4, we get (13.35). O

d) Proof of Theorem 7.12

In the sequel, the constants ¢ > 0,C > 0 may vary from line to line.

Take € €]0, £] small enough so that the metric g¥ is flat on |J ¢ 5 BM(z,¢),
and (7.12) holds on |J,¢ g BM(z,¢). Clearly

(13.37)  Tr, [ fexp (_ (tD + TV f))Z)] = /M £ T [Se7(2, 2)) dvas.
Then

(13.38) /M £ Trs [Ser(z, 2)] duag

= s X4 T s 2, d .
/{z d(z B)>§}fTr [Se.r(2,2)] dUM"'/{z e B)<s }f rs [St,7(2,2)] dum

Now by Theorem 13.5, for ¢ €]0,1],0 < T < d/t,
(13.39)

/{z,d(z,B)>§} [ Trs [Se,1(2,2)] dvar — ‘/{z,d(z’B»%} f(rk(F) /B exp (—Br2)

—td / F) exp (—Bpa ))

Now, we use the notation of Section 12 a). If z € B, let Ay be the operator
actingon F,

(13.40) rp=—t2ATM 4 T2y — ntT +4T (Nt +ind(z) - N7).

< Ct.
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With the notation of (12.7), A% = t*(D75}")>.

Definition 13.6. Let Ufr(y,y')(y,y’ € T-M) be the smooth kemel associated

to the operator exp(—AZf7). Let UDF(y,4')(y,y' € ToM, |yl ly'| < €) be the
smooth kernel associated to the operator exp(—Af ), with Dirichlet conditions on
OBM(z,¢).

By the same arguments as in the proof of [BL2, Proposition 11.10], which were
already used in the proof of Proposition 13.3, we find that if ¢ €]0,1],T € [0, %], Yy €
BM(z,¢/2), then

z C
(13.41) I(Ut,T - tDT’) (¥, y)l < cexp (—t—z) :

In Definition 13.1, we take b = . Then

(13.42) Sei (y,9) = UF (4,9) » y € BM(z ).

By (13.2), (13.41), (13.42), we see that if ¢ €]0,1],T € [0, 4],y € BM (g, £),

C
(13.43) |(St,T - Ut’fT) (v, y)| < cexp (_t_z) .

So from (13.43), we see that if ¢ €]0,1], T € [0, 4], then

(13.44)

[y|<e/2 f (rI‘rs [St,T(y7 y)] — T, [l'ft"';‘T(y7 y)]) dvy

< cexp (—tgz) .

Using Mehler’s formula [GlJ, Theorem 1.5.10], as in (12.50), with U;";T =
Q% /10 We get

Te2tT n/2 T \
13.45 ’ = —— -=
( ) Uiz ®.y) (27rt sinh(2tT)) xp ( t tanh(tT)ly| )

exp (—2¢tT (Nt +ind(z) - N7)).
Now
(13.46) Trs [exp (—2¢T (N* +ind(z) - N7))]

= rk(F) (1 _ e—ZtT)n-ind(-’B) e—ZtTind(:l:) (1 _ eth)ind(:c) .
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Equivalently,
(13.47)
Tre [eXp (—2tT (N+ + lnd(.’L') - N_))] = rk(F)(_l)ind(z) (1 _ e—ZtT)n .

So by (13.45),(13.47), we get
(13.48)

nf2
T (U2 ()] = ()P40 (F) (5 tanb(17))  exp (=7 tanb(DI P ).

In particular, we deduce from (13.48) that forany 7" > 0, as t — 0,
(13.49)

. T2 n/2
Trs [fUtaiT(yvy)] = (_1)md(z) I‘k(F)f (7) €xp (_T2|y|2) + O(tz)v
which fits with (13.3) and (13.43).
Now using (13.48), we find that
) T2 nf2
(13.50) T (U2 )] dy = (-0 ) [ 7 ()
lyl<e/2 lyl<e/2 T

exp (—T2|y|2) dy

1/2
— (—1)ind(z) k(F ———t——
(-1) rk( ){/|y|ge/2(%tanh(tT))l/2f ((Ttanh(tT)) y)
d d
exp (—|y|2) anz - /lyISe/ZTf (C—Ty_) exp (—Iylz) W,}fz}-

Recall that y*,y~ are the projections of y € T, M on T, W*(z), T,W*(x).
Then by (7.12),

(13.51) fy) = f(=) + % ("= lv=I") vl < .
Set

(13.52) T' =T

Then

(13.53) (T’ tanh(T")) < T".

192



AN ESTIMATE IN THE RANGE 0<t<1,0<T<d/t

Moreover

dy
12
(13.54) [ws”" exp( |y ) 72

2t

d
exp (=[yl?) ;,%

/| |< £ (T" tanh T7)1/2

d
exp (—Iylz) 7”32 .

/{;(T’ tanh T1)1/2< |y|< <&

Nowif 0 < a < b < 400,
(13.55)

b
[y W) = [l < ol
ly|€[a,b] T .

From (13.55), we deduce that

dy

(13.56) 7

exp (—[y[?)

/%(T’ tanh T)1/2< |y| < <&

52) " = (T' (T" tanh(T"))"/ 2)

2
< Cexp (—:?T' tanh(T’)) ( 57

Take now d > 0. Then there exist ¢ > 0,¢’ > 0, such that for 7" € [0,d],

_ ’ / 1/2| < '3
(1557 | (T" tanh(T"))"?| < ¢T3,
T’ tanh(T") > T 2.

By (13.56), (13.57), we deduce that for 7" € [0,d)],

1 dy
(13.58) Z . manr ) eXP(—Iyl)ﬂ_n/z
<C ( ) <C.
Similarly,
1] ¢ 2 -
559 glpm [ (- F) e ()
- 2t

t2 +12
T’tanh(T’) yl< (T'tanh(T’))l/z (ly | - Iy | )exp _lyl )71'"'/2
1 1
sC T'tanh(T") T2
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1
T2

+

/ £(T' tanh(T")

2

ca (I = v ") exp (=IuP?) Wz

Also there is C’ > 0 such that if T € [0,d],

1 1

13. 1 1
(13.60) T tanh(T")  T72

<C.

Moreover by using (13.58), we get for T” € [0, d],

1
T2

dy

- )ex —|y|?
\/L,(T’ta.nh(T’))l/stls_;zL’ (Iy | Iy | P Iyl ) 7rn/2

2

(13.61)

62 2 dy !
€xp (_Iyl ) an/2 <C.

- 2
4% J < (T tanh(T1))1/2< |y|< <L

By (13.50), (13.51), (13.54), (13.58), (13.59)~(13.61), we find that there exists
C > 0 suchthatif t €]0,1], 0 < T < 4, then

(13.62)

/lyl if[Tf [Ufr(y,9)]] = (1) 1k(F)

s

72\ "
/|.|< f (——) exp (—T2|y|2) dy' < Ct.
yI<s

From (13.39), (13.40), (13.62), we see that there exists C' > 0 such that if
t€]0,1],0 < T < 4, then

(13.63) Tr, [ fexp (— (tD + T&(V f))z)]

—1k(F) /M f/B exp (—BTz)—t/M fd/B -;—9\(F,gF) exp (—Br2)

Also

B
(13.64) /M fd / %5 (F,g") exp (—Br2)
B
- /M/ df%@(F, g") exp (—Br2)
B
= /M/ —;-g(F, g"¥) df exp (—=Br2).
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By Theorem 3.13, we find that
(13.65)

B B
/M/ %0 (F,gF) df exp(—Bm2) = — /M %0 (F,QF) / df exp (—Br2) .

From (13.63), (13.65), we get (7.24). The proof of Theorem 7.12 is completed.
O
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XIV. The asymptotics ast — 0 of
Trs[f exp(—(tD + £&(V))?)]

The purpose of this Section is to prove Theorem 7.13, i.e. to calculate the
asymptotics as ¢ — 0 of Tr,[f exp(—(tD + £&(Vf))?)]. In this Section, we
assume that the simplifying assumptions of Section 7 b) are in force. Also we use
the notation of Section 13.

The real number T > 0 is fixed in the whole Section.

Proposition 14.1. Take o > 0. There exist ¢ > 0,C > 0 such that for z € M,
with dM(z,B) > «, and any t €]0,1], then

< cexp <—¥C§) .

Proof. In view of (10.2), the proof of (14.1) is identical to the proof of [BL2,
Proposition 12.1]. O

(14.1)

Clearly

(142) T [f exp (—(tD e f))?)] - fM F T[S, 2 (2,2)] dow.

It easily follows from (13.44), (14.1), (14.2) that there exist ¢ > 0,C > 0 such that
if ¢ €]0,1], then,

(14.3)

Tl feo(-0+ 72907 |- X [ s Vs 0] a

z€EB

< cexp (—t—z-) .

197




J.-M. BISMUT, W. ZHANG

Take = € B. By (13.48), we know that
(14.4)

Tr, [Uf’%(y, y)] = rk(F)(~1)n4® (;:,;3 tanh(T)) " exp (‘tzz tanh(T)IyIz) .

Using (13.51) and (14.4), we see that

(145) tlz{ /I OV )] dy (- 1)‘“"‘”’f(w)}

=rk(F)(—1)i“d(x){t—12-f($) </y|<£g7'unhgrnl/2 ( |3/|2) (i/2 1)
! (|y+|2 - |y‘|2) exp (-lyf*) =7 n/z

+Ttanh(T) |y]< § (T tanh()1/2 2
Clearly there are ¢ > 0,C > 0 such that for ¢ €]0, 1],

dy CT tanh(T)
(146) [y|<g[T""h§Tlll/2 ( Iyl ) anil2 -1 < C€Xp (—_;2——) .
Moreover by (3.80),
1 + 2 —_ 2 2 d
(14.7) lim b Ttanh(T) J)yjcq romenss 2 (Iy e )exp( W*) =7

= 1 +
" Ttanh(T) T,Mf(ly =1 )exp ~lyl? )7(,,,2

_ 1 n _ ind(z) )
" Ttanh(T) \4 2
In view of (14.3), (14.5)—(14.7), we see that

(14.8)  lim tiz (Trs [f exp (—(tD + %e(vf))z)] — tk(F) Tr? [f])

n 1_, 1
- (5x(P) - 33O g

This is exactly Theorem 7.13. a
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XV. The asymptotics of Trs[f exp(—(tD + %—E(V 3]
for 0 <t <1, T >1

The purpose of this Section is to prove Theorem 7.14, i.e. to obtain an estimate
involving Tr,[f exp(—(tD + L&(V f))?)] intherange 0 <t < 1,T > 1.

As in Sections 13 and 14, we denote by S, z(z,2')(2,2' € M) the kernel of the
operator exp(—(tD + L2(V£))?).

This Section is organized as follows. In a) we give an estimate for S, r (z,2)
on the compact sets of M\B. Inb), we show that near = € B, S, z(z,2) is well
approximated by the kernel U t’ z (z,2) defined in Definition 13.6. Finally in c), we
establish Theorem 7.14.

The organization of Section 15 b) is closely related to the organization of Sec-
tion 12 b), although we work here in a different range of parameters. Also, in our
proof of our main result, given in Theorem 7.1, we only need to establish Theo-
rem 7.14 for ¢ = € small enough. This simplifies the arguments of Section 15 b),
where part of the difficulty is to extend the estimates in the range ¢ €]0,?,] (with
to €]0,1]) to the range t €]0, 1].

In the whole Section, the simplifying assumptions of Section 7 b) will be in
force. Also we use the notation of Section 13. In particular ¢ > 0 is chosen as in
Section 13 d).
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a) An estimate for S, r(z,z) on compact sets of M\B
i

Proposition 15.1. Take o > 0. There exist ¢ > 0,C > 0 such that for any
z € M with dM(z,B) > «, and any t €]0,1),T > 1, then

CcT
(15.1) ISi,%(z,z)l < cexp (—-—t—2—) .

Proof. We proceed as in [BL2, Proposition 13.1]. Let |S, T (z,2)| be the norm of
the matrix S, r(z,2) withrespect to the trace. Since the operator (tD + Lg(vf))?
is self-adjoint and nonnegative, we find that for any 3 €]0, 1],

(15.2) |St,%(z,z)| < ISw,Z'g(z,z)|.

Assume that ¢ €]0,1],7 > 1. By taking 8 = ﬁ in (15.2), we get

(15.3)

S.2(:9)] <[54 20
t \/T’ t

Now # €]0, 1]. By Proposition 14.1, we obtain,

< cexp (—%) .

From (15.3), (15.4), (15.1) follows. O

(15.4) \SL vz (2,2)
VTt

b) The kernel S, r(z,2) near B and the harmonic oscillator
]

Theorem 15.2. There exist ¢ > 0,C > 0 such that if t €]0,1],T > 1, if
z € B,z € BM(z,¢), then

(15.5) |(S’t’% - UZ%) (z,z)| < cexp (—gﬂz) .

Proof. Let Sth(z, 2))(z,2' € BM(z,¢€)) be the smooth kernel associated to the
operator exp(—(tD + L&(V f))?), with Dirichlet boundary conditions on dBM(z,¢).
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We claim that there exist ¢ > 0,C > 0 such thatif ¢ €]0,1],7 > 1,z € B,z €
BM(z,¢), then

(15.6) I(S"% - Sf%f) (z,z)l < cexp (—Ct'—zT) .

To establish (15.6), we use the notation and the methods in the proof of The-
orem 12.6. Recall that St,% = ,St r = Ptz z- By (12.15), we get for

z,2' € BM(z,¢),
(15.7)

D, R T ! 2 Y
S, =85 )(2,2) = ppa(2,2) E"o=|expa—— [ |df(2s)["ds oV} " 7gls<a .
t t’t t 0

By (12.16), there exists vy > 0 such that if ¢ €]0,1],7 > 1,

2, %
(15.8) Vi | < exp(7T).
From (15.7), (15.8), we get
t2
(15.9) |(Suz = S2F) (2, 2)| < exp(TIpaa(z, ) B

2 pl
[exp{—-,f—2 A |df(zs)|2ds} 1551].

As in (12.18), we have

(15.10) P2 (2, z)ERz o [exp{_::—z/ |df (z5)|? ds}1551]

< pale B o {2 [P s} 154y

+ptz(z,z’)ERf" [exp{ / |df (z,)|? ds} 1< ]

By using time reversal, we find that the two quantities in the right-hand side of
(15.10) are deduced from each other by interchanging z and z’. So we only need
to estimate the first one.

We still define the stopping time S’ as in (12.19). By the analogue of (12.20)-
(12.22), we obtain for 0 < h < 1/4,

(1) pele B o {1 [l s} iogy]
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2 2
< pp(z,2)ER. [S<1/2,8" — S < hl+ ppa(z,2') exp {—%ﬂh} .

Let Rt; be the probability law of the Brownian motion z associated to the

metric &, with z = z. By [B2, Definition 2.4], we know that since h < 1/4,
(15.12)

12 2
ptZ(Z,Z,)ERZ,z' [S S 1/2,5’ -S _<_ h] = ERs [ISSI/Z,S’—SShpl;"_ (23/4,2’,)] .

For any s > 0, the operator exp(sAM) is positive. Therefore if z,z' € M,
(15.13) po(7,7) < pt/2(z, D)pHI(7, 7).
From (15.13), we deduce that there exists C' > 0 such that for s €]0,1],z,Z € M,
C

sn/2’

(15.14) Ps(2,7) <

Moreover, by [V, proof of Theorem 5.1], we see that there exists ¢ > 0 such that for
any z € BM(z,¢),

2
12 ' €
(15.15) R, [S<1/2,58-S < h]<cexp (_—32ht2) .

So from (15.12)—(15.15), we obtain

02 T2 1
(1516)  po(e, B [exp {- T [ ) ds}15cusd
0

C g2 T?
< t—n[""P( 32htz)+ P(‘?z“”‘)]'

In (15.16), we take

€ 1
15.17 h=infd——nu, 2\,
(15.17) o {\/'73‘32 T’4}

Then we find that there exist ¢ > 0,C > 0 such that if ¢ €]0,1],T > 0,z €
B,z,2' € BM(z,¢),
(15.18)

' CT
pe (2,2 )ERe [eXP{ / ldf (=) " ds} 1S<1/2] < o exp (—-tT)
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From (15.9), (15.10), (15.18), we deduce that there exist ¢ > 0,C > 0 such that
for t €]0,1),7 > 0,z € B, z,2' € BM(z,¢),

(15.19) l(St,g;_ - Sf’%x) (z, z')| < ti" exp (— (C -2 t%) .

Using (15.19), we find that there exist ¢, €]0,1] and ¢ > 0,C > 0 such that
for t €]0,t0],7 > 0,z € B, 2,2’ € BM(z,¢), then

(15.20) |(St,% - Sf’%z) (2, z')l < ti" exp (—%) .

So (15.6) is proved for t €]0, to).

By the same arguments as before, we see that if ¢ €]0, ¢9],T > 0,z,2’' € B,z #
z', if z € BM(z,¢),2' € BM(a2',¢), then

(15.21) [s,,%(z, )| <

Also by (12.34), for any 7 > 0, there exists C' > 0 such that for ¢ €]0,1],T >
T,2 € M, then

) T n/2
(15.22) |st,%(z, z)| <C (ﬁ) .
Since exp(—(tD + £&(V f))?) is a positive operator, then if Z,z € M,
1/2 1/2
(15.23) 5,27 < [sizz2)| " [8,2(2.7)

Clearly there exists m € N suchthatif ¢ € [to, 1], then —= E]O to]. Moreover,
if z € BM(z,¢),
(15.24) S, z(z,2) = /];!m_l S?’___(z zy)--

---S\/_’ =3 (Tm—-1,2)dvp (21) - - dop (T m—-1) -
Using (15.1), (15.20)—(15.24), we see that there exist ¢ > 0,C > 0 such that for
t € [to,1),T > 1,z € B,z € BM(x,¢), then

S, r(z,z —/ S_¢ 2,T
tw( ) (BM(z,e))m-1 R m( 1)
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< cexp (—i’—zT) .

By (12.38), we find that for any 7 > 0, there exists ¢ > 0 such that for
t €]0,1],T > 7, z € BM(z,¢),

. T n/2
(z z)l < c(t2) .

Also as in (15.23), if z,2' € BM(z,¢), then

S\/__ e (m—-1,2)dvp (z1) -+ - dopys (Tm—1)

(15.26)

L%

1/2
(15.27) |SD = | tD’;(z,z)l |sz

Using (15.20), (15.21), the fact that if ¢ € [to, 1], then —= €]0, %], and also

(15.25), (15.27), we find that there exist ¢’ > 0,C’ > 0 such thatif ¢ € [to,1],T >
1,z € B,z € BM(x,¢), then

(15.28) I(S"% - Sf’%l) (z,z)| < cexp (—i—ZT) .

Equation (15.6) follows from (15.20) and (15.28).

Let U "(y,y') (v, € BT=M(0,¢)) be the smooth kernel associated to the
operator exp( — A7 ) with Dirichlet boundary conditions on dBT=(0,¢). By
proceeding as in (15.7)-(15.20), one finds that there exist ¢y €]0,1],¢ > 0,C > 0
such that if ¢ €]0,%0],7 > 1,y,y’ € BT=M(0,¢), then

° cT
(15.29) |(Ut,% - Utl’)é ) (¥, y’)l < cexp (——;2—) .

Moreover the kernel Uy T (y,y") is explicitly known by Mehler’s formula [Gl],

Theorem 1.5.10]. One can then easily obtain estimates at infinity for U, r (y,9")
and show that the obvious analogue of (15.25)—(15.28) holds. Asin (15.6), we deduce
that there exist ¢’ > 0,C’ > 0 such that for any ¢ €]0,1],T > 1,y € BT=M(0,¢),

(15.30) |(U’” —UD x) (y,y)l <cexp( C;’T) .

Finally, if z € BM(x,¢), one has the obvious

(15.31) (z 2) = (z z).
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Using (15.16), (15.30), (15.31), we get (15.5). The proof of Theorem 15.2 is
completed. a

¢) Proof of Theorem 7.14.

Clearly,
(15.32)

Tr, [f exp (—(tD + %a(v f))2>] - /M £(2) Trs [S, 2.(2,2)] dow(2).

Now by Proposition 15.1, we know that
CcT
< cexp = |

’
< exp (—C;ZT) .

(15.33) / f(2) Trs [St’l (2, z)] dupm(2)
{z,d(z,B)>¢€} t

Moreover if z € B, by Theorem 15.2, we get

(15.34) /M(E FO) T [(Suz = Uiz ) ()] dy

Also by (14.4), we have

(15.35) /MQ f(y) Trs [U;f%(y,y)] dy

. t dy
— (—1)ind(z) - —|ul2
=1 rk(F)[yIS%(Ttanh(T))l/zf((Ttanh(T))l/zy) exp (=Iuf) /2

Equivalently, using (13.51) and (15.35), we find that

(15.36) /MQ £ ) Tr [UZ 2 (v, )] dy

= (P11 { 1) | exp (~Iyf?) -2

|<$(T tanh(T))/2

2 1412 _2 o dy }
+ T rani(T) i<s Prannross 2 (Iy "~ |y I)exp( W) =75 -

Clearly,
(15.37)

dy dy
o (-bl) 2 = | exp (~luf?) -2
Yy

-
|y < $(T tanh(T))/2 |> £ (T tanh(T))1/2
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So there exist ¢ > 0,C > 0 such that if ¢ €]0,1],T > 1

(15.38)
2 dy CT
=11 —/ exp (—|y?) —= < cexp (__)
L < |yI<£(T tanh(T))1/2 ( i ) /2 12
Also by (3.80),

1 2 _2 dy 1 1.
(15.39) /T,M 3 (|y+| - |y| )exp (=lyl?) mry i (Zn - §md(x)) .
From (15.39), we deduce that

1 t2 1/ 42 2
(15-40) ﬁ[Ttanh(T) V1< 5(T tanh(T))1/2 2 (ly | - ly | )

dy t?2 (1 1.
exp (—Iylz) 2T (Zn - §1nd(x))]

_ 1 _1_ +12 —12 2y 4y
= —Ttanh(T) lyl> £ (T tanh(T))1/2 9 (ly I - ly I )EXP (—Iyl ) n/2

i (tanlll(T) - 1) (in - %ind(w)) .

Clearly, there exist ¢ > 0,C > 0 such that for ¢ €]0,1],7 > 1,

1 L412 _ 112 o2y
Ttanb(T) Jyi> £ (7 ann(zyys/a 2 (1" = 1v71") exp (-1v*) =73

< cexp (—%) .

(15.41)

Moreover as T — 400,
1 1 1 —2T
(15.42) : (tanh(T) - 1) = 1o ().

Using (15.36), (15.38), (15.40)—(15.42), we find that there exist ¢ > 0,C > 0
such that for any z € B,t €]0,1],T > 1,

1
(1543)

[ 1w oz @
lyl<

— rk(F)(=1)d(=) ( @) + ; Gn _ %ind(:c)))’ < cexp(~CT).
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From (15.33), (15.34), (15.43), we see that there exist ¢ > 0,C > 0 such that if
t €]0,1},T > 1, then

1

(sat)  |5{m [rew (-0 + Tawn)?)]

~rk(F) ﬁf{f}—%(gxw)—gfm)}’ < cexp(~CT).

The proof of Theorem 7.14 is completed. g
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XVI. A direct proof of a formula
comparing two Milnor metrics

Let M be a compact manifold. Let F' be a flat vector bundle on M, and let
gF be a smooth metric on F.

Let f,g : M — R be two Morse functions. Let gT™,g,T™ be two smooth
metrics on T'M, and let X, X', be the gradient vector fields of f,g with respect
to the metric gT™, g,TM.

We assume that X and X’ verify the Smale transversality conditions.

Let B and B’ be the zero sets of X and X’. As in Section 7 a), let
I ||3V£;)I(,.(M’F) and || ||3£;)§I.(M,F) be the Milnor metrics onthe line det H*(M, F)

determined by the gf'(z € B) and the g% (2’ € B').

Let g™ be a smooth metric on TM, and let VTM be the Levi-Civita

connection on (T'M, gTM).

Theorem 16.1. For any smooth metric gT™ on TM, the following identity holds

M, X' z
(163)  Log (18U |~ [ g (5 gF) X"y (T34, 97)
I et zre Py M

-/ 0 (F,g") X*y (TM,VTM).
M

Proof. Clearly (16.1) is a trivial consequence of Theorem 7.1. Here, we will give a
direct proof of (16.1).
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By Proposition 6.1 and Theorem 6.3, we see that the right-hand side of (16.1)
does not depend on the metric gTM.

Assume first that f = g. Then X and X' are gradient vector fields of f.
Observe that one can modify f sothat X and X’ are still gradient vector fields
for f, and f takes distinct values on B. By Proposition 6.1,

(16.2) / Fy X"*y (TM, V™M) - / 0 (F,g") X*y (TM,V™™) = 0.
M

In the Appendix, Laudenbach constructs a smooth path ¢t € [0,1] — X; of
gradient vector fields for f, which verify the Thom-Smale transversality conditions
except at a finite set {t1,---,t,} C [0,1], with 0 < ¢; < --- < t4 < 1. For
t & {t1,---,tq}, let (C*(W,F),8;) be the Thom-Smale complex associated to
Xi. As the notation indicates, the Z-graded vector space C*(W, F') does not
depend on ¢, only the chain map 0; depends on t.

Clearly 9; is constant on the intervals [0, ¢, [,]t1,t2[,---,]tq,1[. For 1 <i<g,
let (C*(W, F),0;;) and (C*(W, F),8;) be the Thom-Smale complexes on the left
of ¢; and on the right of ¢;. By aresult of Laudenbach given in Propositions 9 and 11
of the Appendix, there is an invertible linear map A, acting on the Z-graded vector
space C*(W, F), which is a chain homomorphism from (C*(W,F),0;) into
(C*(W,F),8f) and which identifies canonically the corresponding cohomology
groups. By the Appendix, it is clear that for 1 < j < g, the determinant of the
action of A oneach C/(W,F)(0 < j <n) isequalto 1. It then follows from the
previous considerations that for 1 <: < ¢,

MLX MoX, 4
(16.3) I “det g, py = N Naes oo, ry -
We deduce from (16.3) that

(16.4) I ”det o, ry = | "det H'(M F)-

Using (16.2), (16.4), we see that if X and X' are the gradient vector fields of a
common Morse function f, both sides of (16.1) are equal to 0.

Since the Milnor metric || ”ﬁ;)ﬁ,.( m,ry depends only on f, we will write

M, X
I lges Ho(u,py instead of || |4 pre s, -
Let now f and g be arbitrary Morse functions. Let ¢t € [0,1] — f; be
a smooth Cerf path [Ce] of smooth functions mapping M into R, such that
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fo = f,f1 = g, which are Morse, except at a finite set of parameters tq,---,14
suchthat 0 < t; --- < t4 < 1, where two critical points y; and y;' of index j and
j+1 (0 <j<n-—1) appear or disappear at a birth or death point y € M. The
form of f;(x) near (¢;,y) is given by Laudenbach in the Appendix, equation (8).

We claim that the continuous function t € [0, 1\{t1,---,t} — [4 8(F,g%)
(VF)* »(TM,VTM) € R extends to a continuous function ¢t € [0,1] — R. In
fact we only need to consider the case where ¢t = t;(1 < i < q). If §(F,g%)
vanishes near the birth or death point y € M, it is clear that ¢; is also a point of
continuity. More generally, there is a closed form 6'(F, g¥'), which vanishes near
y € M, which is cohomologous to 6(F, gF), i.e. there exists a smooth function
V : M — R such that

(16.5) ¢' (F,g¥) — 0 (F,gF) = av.

By using the equation of currents (3.33), we see that if ¢ € [0, 1]\{¢1,---,%,} and
if B, is the set of critical points of f;, then

(16.6%4 0 (F,g") (V) ¢ (TM,VTM) = /M ¢ (F,g") (V) ¢ (TM,VTM)

+ / Ve (TM,VTM) = 3~ (-1)™®V(z).
M .’BEB;
Now the first two terms in the right-hand side of (16.6) are clearly continuous at
t = t;. Assume that when ¢ increases, y is a birth point of two critical points, of
index j and j + 1. Then

(16.7) Y (~)MEV (@)= Y (-1)™MEV () + V() - V(z).
:cGBt.?. :L'GBL_

Equivalently, the function ). g (—1)"4®)V(z) extends to a continuous function
near t;. Of course this is still true if y is a death point. We have thus proved that
S O(F, gF)(Vf1)* $(TM,VTM) extends to a continuous function on [0, 1].

By Proposition 6.4, we know that

(16.8) %(/MMF,QF) (Vf) 4 (TM, V™)

_/ 0 (F,g) (Vo) % (TM, V™M) )
M
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— Z (_l)ind(w)o (F,gF) (g_‘::) on [0, 1]\{t1,...,tq}_

ZE Bt

On the other hand, it is clear from the equation of f;(z) near (t;,y;) giveninthe
Appendix, equation (8), that the right-hand side of (16.8) is an integrable function
on [0,1]. Since the function ¢t € [0,1] — [, 0(F,g")(Vf)*¥(TM,VTM) —
Jag O(F, g5 )(V fo)* (T M, VTM) is continuous, we have the equality of distribu-
tions on [0, 1],

(16.9) %(/MG (F,g%) (Vf) v (TM, V™M)

_ /M 0 (F,g") (V1o)' % (TM, V™))
— Z (_1)ind(a:)0 (F,gF) (%{:_) )

IEB;

Take t € [0,1]\{t1,---,%4}, and let g7™ be a smooth metric on TM, such
that the corresponding gradient vector field V f; verifies the Smale transversality
conditions. Then for ¢’ € [0,1] close enough to t,V f;s still verifies the Smale
transversality conditions, and the Thom complex (C*(Wy, F),d), for V fi canbe
identified to the complex (C*(W;, F'),0) for V f,, but of course, the identification
is in general not isometric. In fact one has the easy identity

G, I ||32§f1‘1-(MF)
(16.10) 2 Log [~ ldet H(M.F)

M
ot I Naci zrocae, py

2

= S 0O (Fg") (5) on DN te)

t
:cEB;

5
I Ny 's

We claim that the function ¢ € [0, 1]\{t1,---,t,} — Log(—3r702)2 € R

I NgeiFoa, ry
extends to a continuous function from [0,1] into R. Take ¢,1 < ¢ < ¢ and let

g™™ be a smooth metric on TM taken as in the Appendix with respect to ¢;. Then
for t # t; and t near t;, the Thom-Smale complex (C*(W;, F'),d) is constant on
the left and the right of ¢;. Assume again that y € M is a birth point of two critical
points y;,y; of index j an j+ 1. In particular, for ¢ > ¢; close enough to t;, we
may identify F; and Fy» to F, by using a flat trivialization of F' near y.
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Let (Cy(F),0') be the complex concentrated in degree ¢ and ¢ + 1

(16.11) 0— Fy P Fyr — 0.

In (16.11), &' denotes the canonical identification of Fy; and Fyr. Of course
(Cy (W, F),0") is acyclic.

Then by Propositions 8 and 11 of the Appendix, there exists a linear automorphism
A of the Z-graded vector space C*(W,-,F) ® Cy(F'), which has determinant 1
in every degree, such that

(16.12)  (C* (Wi, F),d) = (c' (Wti_ , F) ® Cy(F), A7 (0@ a')A) ,

which induces the canonical identification of the cohomology groups. Also the
identification (16.12) identifies the metrics. Since A has determinant 1, it preserves
the obvious metric on det(C*(W;,,F) @ C;(F)). Clearly

(16.13)  det (C* (W, F) & Cy(F)) = detC* (W, F) @ det Cy(F).
Using (16.12), (16.13), we see that
(16.14) det C* (Wt F) = detC* (W;,,F) ® det Cj (F).

Now g;z and gﬁ, can be considered as metrics on Fy,. Also det Cj (F) hasa

canonical section (det d’')~!, and moreover

oF (-1
_1n2 y;
(16.15) ||(det ) 1”det Cy(F) — (det (95,)) .
In particular
(16.16) lim | (detd) ™ =1

:ztt: det C;(F)

Using (16.12)—(16.16), we find that
Il e
det HS(M,F
(16.17) Log —T‘”f-_(——) = 0.
| Naet #ot,F)
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M, ft
We have thus proved that Log( u%fl,m'ﬂ)z extends to a continuous function

I Nyet o (a,Fy
of t € [0,1]. Asin (16.9), we deduce from (16.10) that we have the equality of
distributions on [0, 1],

0 I ||3viif1'1-(M,F) ’ ind(z) Fy Oz
(16.18) o Log | —grr— | = 3 (-1)™@6 (£ ") (5 )
" ”detH°(M,F) z€B;

From (16.9), (16.18), it is now clear that for ¢ € [0, 1],
M, t
I W3t can,y
(16.19) Log | ——setH*(M.F)

)
I Naet s,y

2

= [ 0(Rg) (V) v @MI™) - [ 0(FgT) (V1) ¥ (TMT™H).
M M

By taking ¢ =1 in (16.19), we get (16.1). 0O
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