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Introduction 

Let M be a compact manifold of dimension n. Let F be a flat vector bundle on 
M. Let H'(M,F) = Q"=0Hi(M,F) be the cohomology of the sheaf of locally 
flat sections of F. 

If E is a finite dimensional vector space, set detE = Amax(F). Following 
an established tradition in algebraic geometry, we define the determinant of the 
cohomology of F to be the real line det H*(M, F) given by 

n 

(0.1) det H'(M,F) = 0 (det H\M,F))^"1^ . 
¿=0 

Let gF be a metric on the flat vector bundle F. Assume temporarily that gF is 
flat, so that F can be obtained through a representation of n\(M) into O(dimF). 
If H*(M, F) = {0}, Franz [F], Reidemeister [Re] and de Rham [Rhl] have shown 
how to associate to (F, gF) a positive number, the torsion of F. 

In fact let F* be the dual of F. Let K be a smooth triangulation of M. Then the 
cohomology of the simplicial complex (C.(K,F*),d) is canonically isomorphic 
to H* (M, F). It is then a standard fact that there is a canonical isomorphism of real 
lines 

(0.2) det H'(M, F) - (det C. (K, F*))~x. 

Let B be the set of barycenters of the simplexes a £ K. For x G 5, let 
gFx be a metric on Fx. Then C.(K,F*) is a Z-graded Euclidean vector space. 
We define the Reidemeister metric || \\^H.(M F) to be the metric on the line 
det H*(M,F) corresponding to the obvious metric on (detC.(A", F*))"1 via the 
canonical isomorphism (0.2). The metric || \\^H*(M F) depends on K, B, and 
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on the gF* 's (x G 5). If H'(M,F) = {0}, then det #*(M,F) ~ R, and 
the metric || \\f^H^(M,F) on the trivial line det H9(M, F) is now defined by a 
positive number, which is the norm of the canonical section I G R . This number is 
called the torsion of the complex (C. (K, F*), d). 

Let gF be a flat metric on F, and assume that the gFx(x G B) are obtained 
by restricting gF to B. Then if H*(M, F) = {0}, it is a basic result of Franz, 
Reidemeister and de Rham that the torsion does not depend on B oron if. It is a 
topological invariant of the flat Euclidean vector bundle F. More generally, even if 
Hm(M,F) is not reduced to 0, one can show that the metrics || ||fe't/̂ .(M,F) °̂ 
not depend on B oron K. The metric || ||fe'f#.(M?F) on det H*(M,F) is then 
a topological invariant of F, which we denote by || ||<fetif»(M,F)-

Suppose that the metric || ||detF induced by gF on the line detF is flat. 
Assume that the metrics gFx{x G B) are still obtained by restricting gF to Fx (x G 
B). Then in [Mii2],Muller has shown that the Reidemeister metric || \\f^H^M,F) 
is also a topological invariant, which we still denote || ||̂ et H.(M,F) • 

Let now g™ and gF be smooth metrics on TM and F. Let (F, dF) be the 
de Rham complex of smooth sections of A(T*M)(g)F over M. Then the de Rham 
theorem asserts that 

(0.3) H9 (F, dF) ~H9(M,F). 

By Hodge theory, the harmonic forms in (F, dF) with respect to the metrics 
g™ and gF represent canonically the cohomology of (F, dF). 

In [RSI], Ray and Singer constructed the logarithm of the analytic torsion of 
(F, dF), as a combination of derivatives at 0 of the zeta functions of the Laplacian 
acting on forms in F of various degrees. By following a well-known recipe indicated 
by Quillen [Q2] for Dolbeault complexes, to g™ and gF, we can associate a 
metric on the line det H*(M, F), which is the product of the standard L2 metric 
on det H* (M, F) (obtained by identifying H* (M, F) with the harmonic elements 
of (F, dF)), by the Ray-Singer analytic torsion of [RSI]. This metric is called the 
Ray-Singer metric on det iJ*(M,F), and is denoted || Ĥ t ^•(M,F)- Ray and 
Singer showed that if dimM is odd, then || ||^H*(M,F) does not depend on 
g™ and gF, i.e. it is a topological invariant of F. 
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INTRODUCTION 

Assume that gF is a flat metric on F. Then the real line det H*{M,F) can be 
equipped with two natural invariant metrics, the Reidemeister metric || ||̂ ET #«(M,F)> 
and the Ray-Singer metric || ll^t//•(M,F)- Ray and Singer [RSI] made the con
jecture that in this case, 

(°*4) II ll<fet tf«(M,F) = II lldet •̂(M,F) ' 

They based this conjecture on previous computations by Ray [R] of the torsion of 
lens spaces. In celebrated independent papers, Cheeger [C] and Müller [Mü] proved 
that this is indeed the case. The proofs of Cheeger and Müller are very interesting in 
themselves and are based on entirely different principles. 

In [C], Cheeger proves that under surgery, the Ray-Singer metric behaves in the 
same way as the Reidemeister metric. Then he shows how to pass from M x S6 to 
M x S3 x S3 by a sequence of surgeries. Using trivial identities for Reidemeister 
and Ray-Singer metrics on product spaces, Cheeger [C] finally obtains (0.4). 

In [Mül], by using the invariance of the Reidemeister metrics under subdivision 
of a triangulation and combinatorial parametrices, Müller shows first that the ratio of 
the Ray-Singer metric to the Reidemeister metric does not depend on the orthogonally 
flat bundle F. Then Müller [Mül] uses surgery to reduce the proof of (0.4) to the 
case of the trivial bundle on the sphere, for which the result was already known. 

Assume now that M is odd dimensional, and that only the metric || • ||det F in
duced by gF on det F is flat. Then the metrics || ||*t H.{M,F) and || RS H.{M̂ F) 
are still topological invariants. By using the methods of Cheeger [C], Müller [Mü2] 
has shown that equality (0.4) still holds. 

The purpose of this paper is to extend the results of Cheeger [C] and Müller 
[Mül,2] to the general case, where the metric || ||det F on det F is not necessarily 
flat. 

As an important intermediary step, we prove first anomaly formulas for the 
Ray-Singer metrics || \\fest H.{M,Fy In fact, let (g™,gF) and (g™,gF) 
be two couples Euclidean metrics on (TM,F). Let || ||detF and || \\'deiF 
be the associated metrics on the line bundle detF. Let V™ and v'™ be 
the corresponding Levi-Civita connections on TM, and let e(TM,V™) and 
e(TM, v'™) be the associated representatives of the Euler class of TM in Chern-
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Weil theory. Let e(TM, V™, v'™) be the class of Chern-Simons n - 1 forms 
on TM such that 

(0.5) de(TM,V™,V'™) =e(TM,V'™) -e (TM,V™). 

Let 0(F,g'F) be the closed 1-form, defined in Definition 4.5, which measures 
the variation of the metric || ||detF on detF with respect to the obvious flat 
connection on detF. The cohomology class of 0{F,g'F) does not depend on g F, 
and 0(F,g'F) vanishes if and only if the metric || \\f̂ eiF is flat. 

Let Idet H*(M.F) and II lldefifVM,F) be ^ Ray-Singer metrics on 
det##(M,F) associated to the metrics (g™,gF) and (g'™,gF). 

A first result which is proved in this paper is as follows. 

Theorem 0.1. The following identity holds, 
2 

(0.6) Log 
'RS 
det H*(M,F) 
RS 
det H*(M,F) 

= 
M 

Log det F 
det F 

2 
e (TM, V™) 

M 
0fF,^F>)6frM,V™,V,™V 

Of course if dimM is odd, the right-hand side of (0.6) is zero. 
Let / : M —y E be a Morse function. Let X be the gradient vector field of / 

with respect to a given metric on M. Let B be the finite set of zeroes of X. If 
x G B, let Ws(#) and Wu(x) be the stable and unstable cells of -X at We 
assume that X verifies the Smale transversality conditions [Sml, 2]. The Thom-
Smale complex (C. (Wu, F*), d) is a finite dimensional complex whose homology 
is canonically isomorphic to i?.(M, F*). As in (0.2), we still have 

(0.7) det H*(M,F) ~ (detC. {Wu,F*)yl. 

Let gF be a smooth metric on F. As above, the metrics gFx(x G B) determine 
a metric on det Hm(M, F) via the canonical isomorphism (0.7) which we call the 
Milnor metric, and which we denote by || | | ^ ^ » ( M F ) -

By Milnor [Mil, Theorem 9.3], if gF is a flat metric on F, and if the metrics 
gFx{x G B) are the restriction of gF to Fx(x G B), then the Milnor metric 
|| ||̂ t^»(MF) coincides with the Reidemeister metric associated to gF. 
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Let now g™ and gF be smooth metrics on TM and F. Let X be a gradient 
vector field verifying the Smale transversality conditions. Let B the set of zeroes of 
X. The metric gF induces metrics gFx on the Fx's (x e B). Let || || ^ ^ ( M F ) 
be the corresponding Milnor metric on deti?*(M,F). Let || \\fftH*^M,F) be the 
Ray-Singer metric attached to the metrics g™\gF on TM,F. 

Let x/;(TM, V™) be the n - 1 current on TM which is constructed in [MQ] 
and in [BGS4, Section 3], whose restriction to TM\{0} is induced by a smooth 
form on the sphere bundle which transgresses the form e(TM, V™). 

The main purpose of this paper is to prove the following extension of the Cheeger-
Muller theorem. 

Theorem 0.2. The following identity holds. 

(0.8) Log 
RS 
det #»(M,F) 

M,X 
det H•(M.F) 

2 

= – 
M 

^ ( F , / ) I > ( T M , V ™ ) . 

The arch-typical application of Theorem 0.2 is the case where M = Si ~ R/Z 
and where F is the trivial vector bundle R, such that for a given a € R*, the flat 
parallel transport operator r on F from 0 to t G [0,1[ is given by eta. In this 
case H9(M,F) = {0} and so det if* (M, F) has a canonical section 1. 

A simple calculation shows that 

(0.9) Log (||l||d^i/.(M,F))2 = -Log|2sinh ( | ) | 2 . 

Let gF be the constant metric on Fc^K. Let / : M —• R be a Morse function, 
having only two critical points, a maximum at 0, and a minimum at /3 G]0,1[. Let 
|| ||̂ t V»(MF) denote the corresponding Milnor metric on det H9(M,F). Then 
one verifies easily that 

(0.10) Log (||1||^V.(M,F))2 = - Log 2sinh ( f ) I' + a(2/3 - 1). 

On the other hand, (V/)*^(TM, V™) is a section of o(TM). In fact on 
M\{0,/3},-2^(TM,V™) defines the orientation given by V/. Moreover 
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0(F, gF) = 2adt. So we find that 
(0.11) 

- / 6{F,gF)(Vfyi>(TM,V™) = - I adt+ I adt = -a(2(3 - 1). 
J M Jo J(3 

So (0.9)-(0.11)fit with (0.8). 

Although Theorem 0.1 can be obtained as a consequence of Theorem 0.2, estab
lishing first Theorem 0.1 is essential in our proof of Theorem 0.2. 

Let 

(0.12) (F\v) : 0 F° -+ F1 • Fm -+ 0. 
V V 

be a flat exact sequence of flat vector bundles on M. Let a be the canonical 
nonzero section of the flat line bundle det F* = ®JL0(det Fj) (-1)f defined in 
[KMu], [BGS1]. 

By [KMu], to the exact sequence (0.12), one can associate a canonical nonzero 
section r of the line det H'(M,F9) = ®^=0(detff#(M,^))<-1)i. 

Let gF°, • • •, gFm be Euclidean metrics on F°, • • •, Fm. Let || ||det F9 be the 
corresponding metric on detF*. Let g™ be an Euclidean metric on TM. Let 
II \\deStH*(M,F<>)i--'i\\ \\d?tH*{M,F<") denote the associated Ray-Singer metrics 
on detif(M,F°),...,detif(M,Fm), and let ||Rsdet^.(M|F.) be the corre
sponding metric on the line det H* (M, F*). 

As an easy consequence of Theorem 0.2, we also obtain the following result. 

Theorem 0.3. The following identity holds, 

(0.13) Log (IMlSi.(jtf,F.)) = / Log(||a||2detF.)e(TM,V™). 
J M 

Now, we will briefly describe the general strategy of our proofs of Theorems 0.1 
and 0.2, and also the techniques which we use in this paper. 
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INTRODUCTION 

1. Ray-Singer metrics and Quillen metrics 
In [BL1,2], Bismut and Lebeau have considered a problem which is formally related 
to the problem which we solve here. In fact let i : Y —• X be an embedding of 
complex manifolds. Let rj be a holomorphic vector bundle which resolves the sheaf 
i.Oy(r/). Let A(£) and A (7/) be the inverses of the determinants of the Dolbeault 
cohomologyof rj and £. Then by [KMu], the lines A(£) and X(rj) are canonically 
isomorphic. If metrics are introduced on TX,TY,£,rj, let || \\\^) and || ||AĈ ) 
be the corresponding Quillen metrics on the lines A(f) and X(r]) [Q2], [BGS3]. In 
[BL1,2], an explicit formula was obtained for Log( jj )2 in terms of integrals 
of certain locally computable currents. One of the ideas of the proof of the main 
result of [BL2] is to deform the Hodge theory of (X,f) to the Hodge theory of 
(Y, 7?) by scaling the considered metrics on f. 

Here, at a formal level, X is replaced by M, Y by B, and the current 
appearing in (0.7) replaces the currents of [BL2]. This essential analogy will be 
further explained. 

For a detailed review of various results concerning Quillen metrics and complex 
immersions, we refer to the survey [B3]. 

2. A fundamental closed form 

Let g™ ,gF be smooth metrics on TM,F. Let / : M —• R be a smooth function. 
For T > 0, let g% be the metric on F, gF = e"2T/gF. Let * be the adjoint 
of the de Rham operator dF with respect to the L2 scalar product associated to the 
metrics g™,gF. Set DT = dF + d%*. Let N be the number operator defining 
the Z-gradingof F. 

Let at,T be the 1-form on R+ x R+, 

(0.14) at? = V. T>s [A êxp {-tD2T)] - dTTis [/exp (-tD2T)} . 

In (0.14), Trs is our notation for supertrace. Then we prove in Theorem 5.6 that 
the form atiT is closed. If T is a closed rectangle in R+ x K+, we obtain in 
Theorem 5.8 the basic identity 

(0.15) r a = О . 
г 
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Theorem 0.2 will be ultimately obtained by taking / to be a Morse function 
such that the gradient field V/ associated to the metric g™ verifies the Smale 
transversality conditions, and by deforming the contour T to the boundary of 
R+ x R+. In this process, the contribution of each side of the rectangle diverges. 
Once divergences are substracted off, we will obtain an identity which is equivalent 
to Theorem 0.2. 

3. The Witten complex and the Helffer-Sjostrand calculus 

Observe that 

(0.16) DT = eT* {e-TfdFeTf + eT^F*e"T0 e"T'. 

When F = R, the operator e~Tf dFeTf is exactly the twisted de Rham operator 
introduced by Witten [W], in his proof of the Morse inequalities. 

Set DT = e~Tf DFeTf. Let F^'1' be the direct sum of the eigenspaces of the 
operator D\, corresponding to eigenvalues A G [0,1]. Then (F^,1\e~TfdFeTf) 
is a complex, whose cohomology is canonically isomorphic to Hm(M, F). In [W], 
Witten suggested that as T —» +oo, this complex is "asymptotic" to the Thom-Smale 
complex associated to the vector field —V/. 

In [HSj4], when F = R and when V/ verifies the Smale transversality 
conditions, Helffer and Sjostrand established the precise asymptotics as T —• 
+oo of the complex (F^1\e~TfdFeTf), in order to give an analytic proof 
of the fact that the Betti numbers of the Thom-Smale complex are the same as 
the Betti numbers of the de Rham complex. To calculate the asymptotics of the 
complex (F^'1', e~Tf dFeTf), Helffer and Sjostrand used their fundamental results 
[HSj 1,2,3] on the semi-classical analysis of Schrodinger operators with multiple 
wells, to calculate the tunelling effects between these potential wells. An essential 
consequence of [HSj 1,2,3] is in fact that the eigenvectors of such Schrodinger 
operators associated to small eigenvalues are approximated by the WKB solutions 
of certain transport equations on adequate regions of M. When F = R, Helffer 
and Sjostrand [HSj4] used in fact the results of [HSj 1,2,3] to approximate the 
eigenvectors of the operator D\ associated to eigenvalues A G [0,1], by solutions 
of WKB transport equations, which are themselves closely related to the Thom-
Smale complex of —V/. 
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Let F^'1' be the direct sum of the eigenvectors of D\ corresponding to 
eigenvalues A e [0,1]. Then (Fp1\dF) is a complex, whose cohomology is 
canonically isomorphic to H*(M,F). Now F^'1' is naturally equipped with 
the L2 metric associated to the metrics g™,gF. Let || ||̂ et H*(M,F),T ^ ^E 
corresponding metric on det H*(M, F). In our proof of Theorem 0.2, a crucial 
role is played by Theorem 7.6, where we calculate the asymptotics of the metric 
|| ||̂ ET //•(M,F) T as ^ ~~> +oc ^ terms °f the Milnor metric on det Hm{M, F). 
Roughly speaking, to calculate this asymptotics, we need informations on : 

— the eigenspaces of D\ associated to eigenvalues A e]0,1]. 
— the kernel of D\, i.e. the harmonic forms in F associated to the metrics 

g™ and g$. 
When F = R, what is needed concerning the nonzero eigenspaces of D\ 

is essentially contained in the asymptotic description by Helffer-Sjostrand [HSj4, 
Proposition 3.3] of the complex (¥^1\e~Tf dFeTf). Here instead F is a vector 
bundle, and moreover the metric gF is in general not flat, so that the operator D\ 
contains extra terms with respect to the corresponding operator considered in [HSj4]. 
Still, the results of [HSj 1,2,3] and the techniques of [HSj4] can be adequately adapted 
to treat the more complicate problem which is considered here. Nevertheless, we 
have been forced to devote the whole Section 8 to summarize some of the essential 
results of Helffer-Sjostrand [HSjl, 2,3], and to adapt the techniques of [HSj4] to 
our problem. Unsurprisingly, one important result of Section 8 is contained in 
Theorem 8.30, where we show that still in this case, as T —• +oo, the complex 
(F^'1', e~~TfdFeTf) can be asymptotically described in terms of the Thom-Smale 
complex (C.(Wu,F*),d). 

Let us finally point out that if the metric gF is flat, the results of [HSj4] can be 
directly adapted, since in this case, the operator D\ is essentially the one considered 
in [HSJ4]. 

The potential which appears in the Schrodinger analysis of [HSj4] is exactly 
|d/|2. As shown by Witten [W], this explains the localization of the eigenvectors 
of D\ as T +00 near the potential wells for |d/|2, i.e. on the critical points 
of / . In [BL2], the submanifold Y described before is exactly the locus where 
a nonnegative operator V2 has a nonzero kernel. This explains partly the analogy 
between [BL2] and our work, where Y is in fact replaced by B. Nevertheless, there 
is a fundamental difference: in [BL2], because of algebraic geometry considerations, 
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there exists c > 0 such that for T large enough, the analogue of D\ has no 
eigenvalue in [0,1] other than 0. To the contrary, the small eigenvalues play here 
an essential role. In fact in [BL2], the Morse inequalities are in fact equalities, and 
this explains why no 'instanton' analysis is needed, the difficulty being concentrated 
in the geometry of Y. Here B is simply a collection of points, and the analytic 
difficulties come in fact from the tunelling effects. 

4. The de Rham map, and its extension by Laudenbach to 
Thom-Smale complexes 

Our main result, in Theorem 0.2, compares two different metrics on the line 
det iJ*(M, F). This implies in particular that the cohomology groups of the de 
Rham complex (F,dF) and of the Thom-Smale complex (C.(Wu,F*),d) have 
been canonically identified, and besides that this canonical identification appears 
explicitly in the analytic process of deformation of the de Rham complex to the 
Thom-Smale complex. 

If K is a smooth triangulation of M, the de Rham map, which one obtains 
by integrating smooth forms on the simplexes a e K provides the canonical 
identification of the cohomology groups of (F, dF) with the cohomology groups of 
(C.(K,F*),d). 

For general Thom-Smale complexes, it is more difficult to identify explicitly the 
de Rham cohomology with the cohomology of the Thom-Smale complex. In the 
Appendix, for gradient vector fields X which have a standard form near their zero 
set B, Laudenbach provides us with a complete answer to this question. In this 
case, the closure of the stable and unstable cells of the gradient vector field are in 
fact manifolds with conical singularities, on which smooth forms can be integrated, 
and the obvious analogue of the de Rham theorem still holds. 

As explained before, the canonical identification of the de Rham cohomology with 
the Thom-Smale cohomology should appear explicitly in the analytic deformations 
process itself. This is shown to be the case in Section 9, as a consequence of our 
extension of the results of Helffer-Sjostrand [HSj4] established in Section 8. 

Let us point out that in [BL2, Section 10], the quasi-isomorphism of certain 
Dolbeault complexes on X and Y appears also explicitly in the analytic deformation 
process. 
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5. Local index theory and Berezin integrals 

As in [BL2], local index theory techniques play an important role in the paper. In 
fact the term 

in the right-hand side of (0.8) appears through local index theory techniques. Let us 
here just point out that in the case where the metric gF is flat, it is easy to see that the 
local index contribution is identically zero, essentially because of Poincaré duality. In 
general,we need more sophisticate local index techniques. In principle, the Clifford 
rescaling techniques of Getzler [G] could be used in the whole paper. However, it is 
much more convenient to use a different local index theoretic technique, associated 
to the Berezin integral formalism. As explained in [BL2], standard index theoretic 
techniques produce in principle local Quillen's superconnection forms [Ql]. Here 
we obtain instead Berezin integrals. While, by Mathai-Quillen [MQ], we know 
that the forms produced by the superconnection formalism or the Berezin integral 
formalism are equivalent, it is here much more convenient to manipulate Berezin 
integrals, if only because they exhibit natural symmetry properties which are difficult 
to see in the superconnection formalism. Section 3 is entirely devoted to develop 
the Berezin integral formalism in the context of Morse theory, and also to establish a 
mysterious identity of differential forms, which is in fact also a consequence of the 
proof of Theorem 0.2. 

Another difficulty in the application of local index techniques is that the usual 
'fantastic cancellations' conjectured by McKean-Singer [McKS] do not occur here. 
Part of the difficulty is often to calculate the second term in an asymptotic expansion 
of the supertrace of heat kernel. This difficulty ressembles superficially a similar 
difficulty already considered in Bismut-Gillet-Soulé [BGS2] and also in [BL2]. 
Again, the Berezin integral formalism is very useful to make the required calculations, 
which are very different from the ones in [BGS2] or [BL2]. 

- / e(F,gF)X*i¡>(TM,V™) 
J м 
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6. The asymptotics of two parameters supertraces 
Set D = d + d*, c( V/) = df A +iv/. In the course of the proof, it is essential to 
calculate the asymptotics as * 0 of Trs[/exp(-(tD + Tc(V/))2)] for T < }, 
for T ~ | , and for T > | . In a different context, this problem was already 
encountered in [BL2]. In fact for T < j , this term explains the appearance of 
- fM9(F,gF)X*i(>(TM,V™)9 in the right-hand side of (0.8). For T ~ ±, the 
harmonic oscillators near the critical points of / are ultimately responsible for a 
modest term Log(7r), whose role is ultimately to cancel another Log(7r) coming 
from the asymptotics of the complex (F^1\dF). We hope to show in a forthcoming 
paper that, as in [BL2], harmonic oscillators may express themselves in a more 
forceful way. 

As in [BL2], the difficulty is to establish estimates which take into account the 
painful transition from the region T < \ to the region T > \. Although here, the 
geometry of B is trivial (while in [BL2], the geometry of the embedding i : Y —• X 
played an essential role), the fact that one needs to go beyond the first term in the 
asymptotics introduces new difficulties with respect to [BL2]. 

7. Some simplifying assumptions on the metrics 

As we already explained, we prove first the anomaly formulas of Theorem 0.1, 
by using the local index techniques and the Berezin integral formalism, which we 
described before. This allows us to reduce the proof of Theorem 0.2 to the case 
of one single couple of metrics (g™ ,gF), which we choose to be as simple as 
possible near the critical points of / . Incidently, note that using the techniques of 
this paper, a direct proof of Theorem 0.2 with arbitrary metrics would break down. 

8. From Milnor metrics to Milnor metrics : Cerf's theory and 
Laudenbach's description of a one parameter deformation of the 
Thom-Smale complex 

By Theorem 0.2, we deduce a formula which compares the Milnor metrics associated 
to two gradient vector fields. 
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It is natural to expect that a formula comparing two Milnor metrics could be 
established directly, without comparing first these metrics to the Ray-Singer metric. 
Now, given two Morse functions / and g, Cerf *s theory [Ce] allows us to connect 
/ and g by a one parameter smooth path of smooth functions, which are Morse 
except at a finite number of values of the parameter, corresponding to the birth or the 
death of critical points. In the Appendix, over such a path, Laudenbach constructs 
a smooth path of gradient fields, which verify the Smale transversality conditions 
[Sml], except at a finite number of values of the parameter, where he describes 
explicitly the bifurcation of the Thom-Smale complex. In Section 16, this allows 
us to give a direct proof of the formula comparing two Milnor metrics, which does 
not use Theorem 0.2. Thus, if the reader is willing to take for granted the results of 
the Appendix and of Section 16, we only need to prove Theorem 0.2 for one single 
gradient vector field X, 

This paper is organized as follows. In Section 1, we construct the Reidemeister 
and Milnor metrics and in Section 2, the Ray-Singer metrics. 

In Section 3, we describe the Berezin integral formalism in connection with 
Morse theory, which we apply in Section 4 to the proof of the anomaly formulas of 
Theorem 0.1 for Ray-Singer metrics. 

In Section 5, we construct the closed form O?̂ T. 
In Section 6, we give various properties of the integral 

In Section 7, we state nine intermediary results whose proofs are delayed to 
Sections 8-15, and we prove Theorem 0.2. 

In Section 8, we describe the results of Helffer-Sjostrand [HSj 1̂ 4], and we extend 
their results on the asymptotics as T —• +oo of the complex (F ,̂1], e~Tf dFeTf). 

- I в (F,gF) Х*ф (TM, V™) . 
J м 

In Section 9, we calculate the asymptotics of the metric || dettf»(M,F),T as 
T^+oo. 

Sections 10-15 are devoted to the proofs of the remaining intermediary results 
stated in Section 7, which concern in particular the two parameter supertraces 
described before. 

Finally, in Section 16, we compare two Milnor metrics directly, by using results 
of Laudenbach proved in the Appendix. 
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We now say a few words concerning our notation. If A is a Z2 -graded algebra, 
if A, B e A, we define the supercommutator [A, B] by the formula 
(0.17) [A,B] = AB- (-l)degAdegBM 

It is now time to describe our debts. We first owe a special mention to Tangerman 
[Ta] who announced some five years ago that he was trying to give a new proof 
of the Cheeger and Miiller theorem using Helffer and Sjôstrand's results [HSj4] 
on the Witten complex. As far as we know, his program has not been terminated. 
Apparently, Tangerman's idea was to use a combination of Helffer-Sjôstrand results 
and of surgery techniques, which should make his program very different from ours. 

We have had many discussions with F. Laudenbach, whose contribution to the 
success of our program has been essential. 

We owe our hearty thanks to J. Sjôstrand. He helped us to orient ourselves in his 
papers with Helffer, and patiently answered our many questions. 

Also we are very much indebted to J. Cheeger for many discussions, for the 
encouragement he gave us in our study of nonorthogonally flat metrics, and also for 
his friendly questioning of our final formula. 

The results contained in this paper were announced in Bismut-Zhang [BZ]. 
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I. Reidemeister metrics and Milnor metrics 

In this Section, we construct the Reidemeister metrics and the Milnor metrics on 
the determinant of the cohomology of a flat vector bundle. 

This Section is organized as follows. In a), we recall some elementary properties 
of the determinant of a finite dimensional complex, and of the corresponding metrics. 

In b), we construct the Reidemeister metrics on the determinant of the cohomol
ogy of a flat vector bundle associated to a smooth triangulation. 

In c), we describe the Thom-Smale complex associated to the gradient vector 
field of a Morse function. 

Finally in d), we construct the Milnor metrics on the determinant of the coho
mology of a flat vector bundle, associated to a gradient vector field. 

a) A metric on the determinant of the cohomology of a finite 
dimensional chain complex 

If A is a real line, let A"1 be the dual line. If E is a finite dimensional real vector 
space, set 

(1.1) det£ = Amax(£). 

Let 

(1.2) (V,d) : 0 -> V° • Vn -+ 0 
d d 

be a chain complex of finite dimensional real vector spaces, so that V9 = 0"=o V\ 
Let H'(V) = 0 * U # W be the cohomology of (V\d). 
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Set 

(1.3) n 
det У = (g)(detF¿)("""1)\ 

2 = 0 
n 

detH'(V) = (g) (det#¿0O)(~ir . 
¿=o 

Then by [KMu], [BGS1, Section la)], there is a canonical isomorphism of real lines 

(1.4) detV ~detH9(V). 

Let II lldet v° ? • * • , || ||det vn be metrics on the lines det V°, • • •, det V™. We 
equip the dual lines (det V°)~l, • • •, (det Vn)~l with the dual metrics 

II HcdetV0)-1'*** ill llcdetV")-1' 
Let || ||det v be the metric on the line det(F#), 

(1-5) II lldet V = ( g ) || ||(det „.,(-.,.. 
2 = 0 

Let || ||det H*(V) be the metric on the line det H9(V) corresponding to the metric 
|| ||det v via the canonical isomorphism (1.4). 

Let gv°, • • •, gyn be Euclidean metrics on V°, • • •, Vn, inducing the metrics 
II lldetvo,.., II Hdctv» ondety°,...,detFn. Weequip V = ®^=0Vi withthe 
metric #v = 0"=o # v*, which is the orthogonal sum of the metrics gv°, • • •, gyn. 

Let d* be the adjoint of d with respect to the metric gv. Using finite 
dimensional Hodge theory, we have the canonical identifications 

(1.6) H{(V)~{ve Vi;dv = 0,d*v = 0}, 0 < % < n. 

As a vector subspace of V\ the vector space in the right-hand side of (1.6) inherits 
an Euclidean metric from the metric gv\ Let gH^v^ be the corresponding metric 
on Hl(V) via the identification (1.6). Then the line det H9(V) inherits a metric 
I |detif*(V)-

The metrics || ||det#«(V) znd | |det#»(v) do not coincide in general. We 
describe the discrepancy. Set 

(1.7) D = d + d*. 

TheLaplacian D2 = dd*+d*d preserves the splitting V9 = ®^0V\ Let P be 
the orthogonal projection operator from V on Ker D2 ~ H9(V). Set P1 = 1 —P. 
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Let N e End(V) be the number operator of the complex (V,d), i.e. N acts on 
V^O < i < n) by multiplication by i. 

Set 

(1.8) V+ = 0 Vi v- = 0 V*'. 
ieven 2 odd 

Then F = F+ 0 7 " is a Z2-graded vector space. Let r = ±1 on V±. If 
A G End(V*)t we define the supertrace Tr5[A] by the formula 

(1.9) TIS[A] = TT[TA]. 

For s e C, set 

(1.10) ev(s) = -Tra\N (D2)~*p±m . 

Let D2'>0 be the restriction of the operator D2 to the orthogonal space to 
Ker£>2 in V. Then 

(1.11) ^,(0) = Tr5[iVLog(^>0)]. 

The following result is proved in [BGS1, Proposition 1.5]. 

Theorem 1.1. The following identity holds. 

(1.12) II Hdct ^(V) = I |det/f(V)exp | i^,(0)|. 

Remark 1.2. It should be pointed out that the metric || ||det H9(V) onty depends 
on the metrics || ||det Vo, • • •, || ||dct Vn, while the metric | |det #.(v) and also 
6v' (0) depend in general on the metrics gv°, • • •, gyn. 

b) The Reidemeister metric on the determinant of the cohomology 
of a simplicial complex 

Let M be a compact manifold of dimension n. Let F be a real flat vector bundle 
on M, and let F* be its dual. 
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Let 7 be the locally constant sheaf of flat sections of F. For 0 < i < n, let 
Hl(M,F) be the i-thcohomology group of J. Set 

n 
(1.13) Ü#(M,F) = 0 # * ( M , F ) . 

¿=0 
Definition 1.3. Let det H* (M, F) be the real line 

n 
(1.14) detff(M,F) = 0 (detir'(M,F))(_ir . 

¿=0 

Let H.(M, F*) = 0"=O H{(M, F*) denote the singular homology of sections 
of the flat vector bundle F*. Then 

(1.15) Hi(MyF) = (Hi(M,F*))* 0<i<n. 

Let K be a smooth triangulation of M. Then K consists of a finite set of 
Simplexes a whose orientation is fixed once and for all. Let B be the finite subset 
of M of the barycenters of the Simplexes in K. Let b : K —• B and a : B —> K 
denote the obvious one-to-one maps. 

For 0 < i < n, let K{ be the union of the Simplexes in if of dimension < i. 
For 0 < i < n, K^K1"1 is the union of simplexes of dimension i. 

If a e K, let [a] be the real line generated by a. Let (C#(ÜT,F*),9) be the 
complex of simplicial chains in K with values in F*. For 0 < i < n, we have the 
identity 

(1.16) Ci(K,F*)= 0 M ® R F ^ ) . 

<T€A'<\A'<-1 

The chain map 5 maps d(K,F*) into C,_i(K,F*). Also the homology of the 
complex (C.(K,F*),d) can be canonically identified with the singular homology 
H.(M,F*). 

If a eK, let [a]* be the line dual to the line [a]. Let (C'(K, F),d) be the 
complex dual to the complex (C.(K, F*),d). In particular, for 0 < i < n, we 
have the identity 

(1.17 Ci(K,F)= 0 [a]* ®m FK(T). 
<T€A'<\A'<-1 
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The cohomology of the complex (C9(K,F),d) can be canonically identified to 
the dual (#.(M,F*))* of H.(M,F*). In view of (145), the cohomology of 
{C9(K,F),d) can be identified with H'(M,F). 

The complex (C*(K,F),d) can be described more explicitly. In fact, let K* 
be a smooth cell polyhedral decomposition of M which is dual to the triangulation 
K. Then B is also the set of barycenters of the polyhedra in K*. Again, we fix 
once and for all the orientation of the polyhedra of K*. 

Let o(TM) be the orientation bundle of TM. Then if a G K and if a* G K* 
is the dual polyhedron, there is a canonical identification of lines 

(1.18) [a)*~[a*]®o{TM)Ha). 

From (1.18), we deduce the canonical identification of complexes 

(1.19) (c*(/T,F),a) ~ {Cn..(K\F®o(TM)),d(-iy+1). 

Using (1.19), we obtain the Poincaré duality isomorphism 

(1.20) (H*(M,F))* =Hn—(M,F*®o(TM)). 

Set 
n 

(1.21) det C. (K. F*) = ® (det Ci (/if, F*))(_1)i, 
i=0 
n 

det C* (A\ F) = (g) (det Cl (if, F))(~ir . 
¿=0 

Then 
(1.22) (detC9(K,F)) = (detC. (if,F*))"*1. 

Using (1.4), we get a canonical isomorphism of real lines 

(1.23) det C\K,F) ~ det JT(M,F). 

For every x G B, we equip the line det Fx with a metric det Fx. For every 
a G K, we equip the line [a] with the trivial metric || such that ||cr||[a] = 1. 
For every x G 5, the line det([a(a;)]* <g>Fx) inherits a metric || ||det([<7(*)]*<g>FX)-
For 0 < i < n, we equip the line det Cz(if,.F) with the metric || ||det C*(A-,F) 

which is the tensor product of the metrics || ||det(H*®FFE(<7)) (a £ Kl\K(i-1). 
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Let || ||det C*(K,F) be the metric on the line det C*(K, F) associated to the 
metrics || ||det c*(irfF) as in (1.5). 

Definition 1.4. The Reidemeister metric || \\f^H.^M F) on the line det H*(M,F) 
is the metric corresponding to the metric || ||det C*(K,F) via the canonical isomor
phism (1.23). 

We equip the line o(TM) with its canonical trivial metric. For x G B, let 
II ||det(F*<g)o(TM))x be the metric on the line det(F* ® o{TM))x associated to the 
metric || ||detFx on detFx. Let || |lK.(M,F^o(TM)) be the Reidemeister 
metric on the line det if *(M, F* ® o(TM)) asssociated to the cell decomposition 
K* and to the metrics || ||det(F*®o(TM))x,z € B. 

By (1.20), we obtain the canonical isomorphism 

n—1 (1.24) det H* (M, F* <g> o(TM)) - (detiJ#(M,F))(_1) 

The identification (1.24) also identifies the Reidemeister metrics || ||fe't̂ .(M,F*®O(TM)) 

md (II Hfe'tV(Af,F))("1)""1- ThisisaresultofMilnor[Mi2]. 

Remark 1.5. Assume that F can be equipped with a flat metric gF. This 
metric induces metrics || ||detFx on the lines detFx(x G B). The associated 
Reidemeister metric || \\f^H.(M,F) was constructed by Franz [F], Reidemeister 
[Re], and de Rham [Rhl] (see [Mil, Section 8]). They showed that the Reidemeister 
metric || ll^tf •(M,F) *s invariant by simplicial subdivision. We thus obtain a 
metric || \\fet hmf on the line det Hm (M, F) which is a topological invariant. 
Recently, Muller [Mu2] extended this result to the case where the line det F posseses 
a flat metric || ||det F, and where the lines det Fx(x G B) are equipped with the 
corresponding metrics || ||detFx. 

c) The Thom-Smale complex of the gradient field of a Morse 
function 

Let M be a compact manifold. Let / : M —• K be a Morse function. Let B be 
the set of critical points of / , i.e. 

(1.25) B = {xeM; df(x) = 0} . 
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If x e B, recall that the index rnd(x) is the number of negative eigenvalues of the 
quadratic form d2f(x) on TXM. 

Let g™ be a metric on T M , and let V / G TM be the corresponding gradient 
vector field of / . Consider the differential equation 

(1-26) Jt = -Vf (y). 

Equation (1.26) defines a group of diffeomorphism (rpt)tçR of M. 

If x G B, set 

(1.27) 
Wu(x) = i y e M; t Hrn̂  Vt(l,) = Л , 

Ws(x) = \ y e M; lim <̂(у) = Л -
I t->+oo J 

The cells Wu(x) and Ws(x) will be called the unstable and stable cells at x. 
We assume that the vector field V/ verifies the Smale transversality conditions 

[Sml,2]. Namely, we suppose that if x,y G B, x ^ y, Wu(x) and Ws(y) 
intersect transversally. In particular if ind(y) = ind(x) — l,Wu(x) fl Ws(y) 
consists of a finite set r(x, y) of integral curves 7 of the vector field -V/ , with 
7_00 = #,7+oo = 2/, along which Wu(x) and Ws(y) intersect transversally. 

By [Sml, Theorem A], given a Morse function / , there exists a metric g™ on 
TM such that V/ verifies the transversality conditions. 

We fix an orientation on each Wu{x), x G B. 
Let x,y G B with ind(y) = ind(x) - 1. Take 7 G T{x,y). Then TyWu(y) 

is orthogonal to TyWs(y) and is oriented. So for t e] - 00, +00], the orthogonal 
space T^-Ws(y) to TltWs(y) in TltM carries a natural orientation. Also for 
t G] - oo,+oo[, the orthogonal space T'ltWs(x) to -Vf(jt) in TltWu(x) can 
be oriented in such a way that s is an oriented base of V1% Wu(x) if (-Vf(jt), s) 
is an oriented base of TltWu(x). Finally since Wu{x) and Ws(y) are transversal 
along 7, for t G] - oc,+oo[, T^VF5(j/) and T^TVFu(x) can be identified, and 
their orientations can be compared. Set 

n7(#, y) = +1 if the orientations are the same, 
(1.28) 

= — 1 if the orientations differ. 
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If x G B9 let [Wu(x)] be the real line generated by Wu(x). Let F be a flat 
vector bundle on M, and let F* be its dual. Set 

c. (W",F*) = Q\W*(x)] ®MF;, 
x£B 

(1.29) 

Ci(wU,F*)= 0 [W«(x)]®RF;. 
ind(x)=t 

If x G B9 the flat vector bundle F* is canonically trivialized on Wu(x). In 
particular, if x,y G B are such that ind(y) = ind(rr) - 1, and if 7 G T(x,y), 
/* G F£, let r7(/*) G FY* be the parallel transport of / G FX* into F* along 7 
with respect to the flat connection of F*. 

If x G £,/* G F; , set 

(1.30) d(Wu(x)®f*) = 
уев 

ind(y) = ind(x) —1 
7€Г(х,у) 

щ(х,у)\Уи(у)®т1(П-

Then d maps d{Wu,F*) into Ci^{Wu,F*) . 

We now recall a basic result of Thorn [T], Smale [Sm2]. 

Theorem 1.6. (C# (Wu, F*), d) is a chain complex. Moreover, we have a canonical 
identification of Z-graded vector spaces 

(1.31) H. (C. (Wu,F*) ,d)~H. ( M , F * ) . 

Remark 1.7. In the Appendix, if X has a canonical form near J5, Laudenbach 
gives a proof of Theorem 1.6, and he constructs the CW complex associated to the 
cells Wu(x)(x e B). Moreover he shows that the closures of the Wu(x) 's are 
manifolds with conical singularities. 

Remark 1.8. If V/ verifies the Smale transversality conditions, V(—/) verifies 
also the Smale transversality conditions. Let W'u(x), W's(x)(x e B) be the 
corresponding unstable and stable cells. Clearly, if x £ B, 

(1.32) 
W'u(x) = Ws(x), 

W's(x) = Wu(x). 
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If x e By let [Wu{x)Y be the line dual to the line [Wu(x)]. Let (Cm(Wu,F),d) 
be the complex which is dual to (C.(WU, F*), <9). For 0 < i < n, we have the 
identity 

(1.33) Ci{Wu,F)= 0 [Wu{x)]*®RFx. 
ind(x) = t 

Then by Theorem 1.6, 

(1.34) H* (C* (Wu, F), d) ~ iT(M, F). 

Fix an orientation on each Ws(x). Then one easily verifies that 

(1.35) (c*{Wu,F),d) ~ {Cn-.{Ws,F®o{TM)),d{-iy+1). 

Using (1.35), we recover Poincaré duality 
(1.36) (##(M,F))* = Hn—(M,F*®o(TM)). 

We will make more explicit the canonical identification (1.31). Here we follow 
Milnor [Mil, Section 9]. 

By a result of Smale [Sml, Theorem B], we may and we will assume that / is a 
nice Morse function, i.e. / takes the value i on the critical points of index i. For 
i e N, set 

(1.37) vi = r1[o,i + - . 

Let S{F*) be the complex of singular chains in M with value in F*. For 
0 < i < n, let Si (F*) be the complex of singular chains in V' with value in F*. 
Then the S'(F*) define a filtration of S(F*), 
(1.38) Oc S°(F*)...C Sn(F*) = S(F*). 

By Morse theory, we know that for 0 < i, p<n, •Hp(Vi, V'-1,.F*) isnonzero 
only for p = i, and moreover 

(1.39) HiiV^V*-1 ,F*) = d(Wu,F*). 

Set 

(1.40) TP0 - SPP-q(F*) 
SpPZl(F*y 
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Then (E(Pyq)id0) is the first term of the spectral sequence (E(Piqydr) associated 
to the filtration (1.38). By definition 

(1.41) ElPiq) = Hp-q(V*,V*>-\F*). 

The previous considerations show that 

(1.42) E^q)=Cp{W",F% if g = 0 
= {0}, if <^0. 

Then, (J51, d1) is a chain complex. In view of (1.42), one verifies easily that the 
complexes (E^^d1) and (C.(Wu,F*),d) are identical. 

Also by (1.42), the spectral sequence degenerates at E2, i.e. the chain map d2, 
vanishes. Tautologically 

(1.43) E2.iq) = H. (C.(WU, F*), d) ifq = 0, 
{0} if q^O. 

Let 

(1.44) 0 C G°H.(M,F*) C ... C GnH.{M,F*) = ff.(M,F*) 

be the filtration on H.(M, F*) induced by the filtration (1.38). Then a basic result 
on spectral sequences asserts that 

(1 45) E* - GPHr-<(M>F*) 
K j (™) ~ Gv-iHp-q{M,F*) 

By (1.43), (1.45), we see that for 0 < i < n, 

(1.46) Hi(M, F*) = G^iiM, F*), 
Gi-1Hi(M,F*) = 0. 

By (1.45), (1.46), we get 

(1.47) Efpfl) = Hp(M,F*). 

By (1.43), (1.47), we obtain (1.31). 
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d) Milnor metrics on the determinant of the cohomology of a flat 
vector bundle. 

We make the same assumptions and we use the same notation as in Section lc). By 
(1.4) and by Theorem 1.6, we know that 

(1.48) det C* (Wu, F) ~ det H\M, F). 

For x e B, let || ||det FX be a metric on the line det Fx. As in Section 1 b), the 
metrics || HdetF.Oz € B) induce a metric || ||det c*(w«,F) on detC*(Wu,F). 

Definition 1.9. The Milnor metric || ||̂ V*(M,F) on the line det H*(M,F) is the 
metric corresponding to the metric || ||det c»(w« ,F) v*a the canonical isomorphism 
(1.48). 

Remark 1.10. Assume that F can be equipped with a flat metric gF. This metric 
induces metrics || ||detFx on the lines det Fx(x e B). The corresponding metrics 
|| Hdlt #»(M,F) was constructed in Milnor [Mil, Section 9]. It was shown in 
[Mil, Theorem 9.3] that the metric || | | ^^(M,F ) does not depend on V/, and 
coincides with the Reidemeister metric || ||̂ et H.^M Fy More generally, assume 
that gF is a metric on F, such that the induced metric || ||det F on det F is flat. 
The same arguments as in [Mil, Theorem 9.3] show that the corresponding Milnor 
metric II HdrtV-(M,F) coincides with the Reidemeister metric || \\fetH.{M,Fy 
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II. Ray-Singer metrics and the de Rham map 

In this Section we construct the Ray-Singer metrics on the determinant of the 
cohomology of a flat vector bundle. Also we describe the de Rham map, which 
identifies the cohomology of the de Rham complex and the cohomology of the 
simplicial complex associated to a smooth triangulation. We also explain the 
extension of this result by Laudenbach in the Appendix to certain Thom-Smale 
complexes. 

This Section is organized as follows. In a), we introduce the Ray-Singer metrics. 
In b), we construct the de Rham map for simplicial complexes and in c), we describe 
the de Rham map for Thom-Smale complexes. 

a) The Ray-Singer metric on det ##(M, F) 

Let M be a compact manifold, let F be a flat vector bundle and let F* be its dual. 
Let g™% gF be smooth metrics on TM,F. Let ( )F and ( )\(T*M)®F be the 
corresponding scalar products on F and A(T*M) ® F. 

Let F = 0"=o F* be the vector space of smooth sections over M of A(T*M)® 
F = ®^0(Ai(T*M)®F). 

Let VF denote the flat connection on F. Let dF denote the obvious action of 
VF on F. Then 

(2.1) dF'2 = 0. 

By the de Rham theorem, we know that the cohomology groups of the complex 
(F,dF) are canonically isomorphic to H*(M,F). 
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Let dvM be the volume form on M associated to the metric g™. Let * be 
the Hodge operator associated to g™ acting on A(T*M). The operator * also 
acts on A(T*M) ® F. 

If a,a' G F, set 

(2.2) K A = / (<*A*c*V 

Equivalently 

(2.3) (a, a')¥ = M (a, <*')A(T.M)0F (^)^m(^) 

The F ' s (0 < i < n) are mutually orthogonal in F with respect to the scalar 
product ( , )f- Let dF* be the formal adjoint of dF with respect to the scalar 
product ( , )f. For 0 < i < n, set 

F<°>* = { / G P / / = 0, dF*f = 0} , 

(2'4) F{o} = 0F{o},i. 
¿=0 

By Hodge theory, we know that for 0 < i < n, H{(M,F) and FW'*' are 
canonically isomorphic. As finite dimensional vector subspaces of the F19 s, the 
F{0}'2 * s inherit the scalar product ( , )f. Let gH^M^ denote the corresponding 
metricon H*(M,F). Thustheline detH*(M,F) inherits a metric | |^t/f (m,f)» 
which is also called the L2 metric. 

Set 

(2.5) D = dF + dF*. 

Then D2 = dFdF* + dF*dF is the Hodge Laplacian associated to the metrics 
g™ ,gF. Let F{0}'x denote the orthogonal space to F{0} in F with respect to 
the scalar product ( , )F. Let P,PX denote the orthogonal projection operators 
from F on FW,FW'X. The Hodge Laplacian D2 acts as an invertible operator 
on F*0*'-1-, and its inverse is denoted (D2)""1. 

Let N be the operator defining the Z-grading of F, i.e. N acts on Fi by 
multiplication by i. 

If A e End(F) is trace class, we define its supertrace Trs[A] as in (1.9). 
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Definition 2.1. For sGC, Re(s) > n/2, set 

(2.6) 6w(s) = - Tr, \N {D2) ~S PL 

By a result of Seeley [Se], 6w(s) extends to a meromorphic function of s e C, 
which is holomorphic at 5 = 0. 

Definitions. Let || ||fef #.(M,F) be ̂  Ray-Singer metric on the line det H*(M,F) 

(2-7) || Rs feW) = l l f e ^ W ) e X p { ^ ( ° ) } ' 

Remark 2.3. The quantity exp{|^-(0)} was originally called by Ray and Singer 
[RSI] the analytic torsion of the complex (F,dF). The holomorphic analogue 
for Dolbeault complexes was introduced by Ray and Singer [RS2]. Quillen [Q2] 
constructed the corresponding Quillen metric on the determinant of the holomorphic 
cohomology. Quillen metrics have been the object of several recent developments 
[BGS1, 2, 3], [BL1, 2], some of which will be central to our understanding of the 
Ray-Singer metric. 

Let gF* be the metric on F* induced by the metric gF on F. We equip 
the orientation line o(TM) with the trivial metric. The vector bundle F* ® 
o(TM) is then equipped with a metric gF*®°(™). Let || \\f*TH.(M,F*®o(TM)) 
be the Ray-Singer metric on det H*(M,F* ® o(TM)) attached to the metric 
g™ on TM and the metric gF*®°(TM) on F* ® o(TM). It is easy to see 
that under the isomorphism (1.24), the metrics || \\fft h.(M,F*®O{TM)) MD 
(II ||det̂ «(M,F))("1)n~1 correspond. 

Remark 2.4. When M is odd dimensional, Ray and Singer [RSI, Theorem 2.1] 
proved that the metric || ||det H*{M,F) is a topological invariant, i.e. does not 
depend on the metrics g™ or gF. 

When M is even dimensional and oriented, if the metric gF is flat, it follows 
from Ray and Singer [RSI, Theorem 2.3] that 

(2'8) || \\det HM(M,F) = I l<fe?#»(M,F)' 

Remark 2.5. Assume that the metric gF is flat. Let || ||fet ^•(M,F) denote the 
corresponding Reidemeister metric on the line deti!#(M,F), which is constructed 
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in Remark 1.5. It was conjectured by Ray and Singer [RSI] that if M is odd 
dimensional, the Ray-Singer metric || Res det H* H.(MyF) and the Reidemeister metric 
II H<?et H*(M,F)9 which are both topological invariants, are equal. This was proved in 
celebrated papers of Cheeger [C] and Miiller [Mill]. Miiller [Mii2] recently extended 
this result to the case where the metric || ||det F on the line det F is flat. 

b) A quasi-isomorphism of complexes : the de Rham map for 
smooth triangulations 

Take a smooth triangulation if of M as in Section lb). The flat vector bundle F is 
canonically trivialized over each simplex a G if by using the flat connection VF. 

The line [a] has non zero a canonical section a. Let a* G [cr]* be dual to 
o G [cr], so that (<7,cr*) = 1. If a G F, the integral a*® Jaa lies in [a]* ® ify^). 
Of course if a G F\faa is nonzero only if a G if *\if t~1. 

Definition 2.6. Let P^ be the map 

(2.9) a G F —> = ^ o* ® / a G C#(if,P). 
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Theorem 2.7. 77ie map P^ is a quasi-isomorphism of the Z-graded complexes 
(F,dF) and (C#(if,F),d), wAicA provides the canonical identification of the 
cohomology groups of both complexes. 

Proof Clearly P^ maps P into C*(if,F). Take o G if,/* G P6*(cr). By 
definition, if a G F, then 

(2.10) (Poo^o®r) = <f^f \J^y 

Then 
(2.11) 

<PoodFa,^®/*) = (f*>fdFa) = (f*>Jd °) = (poo<x>d(o®f*)) 

= (dPcoa,o®f*y 
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From (2.11), we see that Poo is a homomorphism of complexes. The de Rham 
theorem asserts that Poo is a quasi-isomorphism, i.e. it identifies canonically the 
cohomology groups of (F, dF) and of (C'(K, F), d) . • 

c) A quasi-isomorphism of complexes : the de Rham map for 
Thom-Smale complexes 

We use the same notation as in Section lc). 

Let / : M —• R be a Morse function, let g™ be a metric on TM. Let B be 
the set of critical points of / . If x G B, let ind(x) be the index of / at x. We 
assume that for any x G B, there exists a coordinate system y = (y1,..., yn) near 
x such that 0 represents xy and moreover, near x, 

(2.12) 

0™ = X > f , 
1 

ind(a:) n 

/(») = / ( * ) - 5 E H 2 + ¿ E й2 -
1 ind(aO+l 

Let V/ be the gradient vector field of / . We assume that V/ verifies the Smale 
transversality conditions. 

In the Appendix, Laudenbach proves that the closed cells Wu(x) (x G B) are 
submanifolds of M with conical singularities. Therefore smooth forms can be 
integrated on the Wu(x) 's (x G B). 

The vector bundle F is canonically trivialized over each cell Wu(x). 
If x G B9 the line [Wu (x)] has a canonical nonzero section Wu(x). Let 

Wu(x)* G [Wu (x)] be dual to Wu(x) G [Wu{x)], so that {Wu(x),Wu(x)*) = 
1. If a G F, the integral Wu(x)* ® Jw.{x)<* Hes [Wux)]* ® Fx. Clearly if 

a G Fz, Swu{x)a ŝ nonzero only if ind(x) = i. 

Definition 2.8. Let P0 be the map 

(2.13) a e F -» POOÖ = [Wu(x)}* <8> 
R e B Wu(x) 

Û É C (WU.F). 
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Theorem 2.9. The map P^ is a quasi-isomorphism of the Z-graded complexes 
(F,dF) and (C*(Wu,F),d), which provides the canonical identification of the 
cohomology groups of both complexes. 

Proof We use the notation of Section 1 c). Let (2>'(M, F"), dF* ) be the complex 
of currents on M with values in F*. If x e B, let <S-̂ (x) be the current of 
integration on W"(x). 

Take /3 e C.(WU,F*). Then /3 can be written in the form 

(2.14) /3=£/Ы^и(*) ]®/ ; , As€R, f*x€F;. 
хев 

If /* e F*, we extend /* to a flat section of F* on W (̂a;), which we still note 
/,*• Set 

(2-15) J(0)=2>. / ;«W(.>-
x E B 

Then /(/3) e D'(M,F*). By a result of Laudenbach [Appendix, Proposition 7], 
J is a quasi-isomorphism from (C.(Wu,F*),d) into (î)'(M,F*),dF*). Let 

J: H.(C(Wu,F*),d) -+ H.(M,F*) be the induced isomorphism. 

Take ¿,0 < i < n9 /3 G d(Wu,F*). Then /(/3) vanishes near dV\ and 
dl(P) = I (dp) is supported in V'""1. So I (ft) defines a homology class in 
H^V^V*-1, F*) = C^W", F*) which coincides tautologically with /3. 

o 
It follows from the previous considerations that / is indeed the canonical 

isomorphism H.(C(Wu,F*),d) ~ H.(M,F*). Also if a € 0'(M,F), f3 e 
C.(WU,F*), then 

(2.16) (Pooa,0) = (a,I(p))-

Therefore P^ is the transpose of /. Theorem 2.9 follows. • 
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III. Berezin integrals and Morse functions 

In this Section, we recall the construction by Mathai-Quillen [MQ] of Thorn 
forms and of the transgressed Euler forms for Euclidean vector bundles in the 
Berezin integral formalism. Also we establish certain identities on Berezin integrals 
involving the gradient vector field of a smooth function. Finally when this function 
is a Morse function, we prove certain mysterious identities involving currents which 
are constructed using Berezin integrals. 

This Section is organized as follows. In a), we introduce the Berezin integral. In 
b), we construct the Thorn forms of Mathai-Quillen [MQ] on the total space of an 
Euclidean vector bundle with connection. In c), we recall results of [BGS4] on the 
convergence of the Mathai-Quillen Thorn forms, as a parameter T tends to +00. 
In d) we construct a transgressed Euler class, which is a current on the total space of 
a vector bundle. 

In e), we specialize the previous considerations to the case of the tangent bundle. 
In f), we establish a crucial symmetry property for a Berezin integral involving a 
gradient vector field. In g), we introduce a canonical section of an exterior algebra. 
In h), we establish transgression formulas for currents which are expressed as Berezin 
integrals. In i) and j), we take the limit, as a parameter T tends to +00, of certain 
identities of currents associated to a Morse function. Finally, in k), we consider the 
case where the metric on the tangent space is flat near the critical points of the Morse 
function. 

As we will see in Section 7e), the identity established in Section 3j) is in fact a 
consequence of the proof of Theorem 0.2. It has seemed convenient to us to give a 
direct proof of these identities. Also the symmetry property of Section 3f) will be of 
constant use in the sequel. 
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For an introduction to Berezin integrals and their application to the construction 
of Thorn forms and of Euler forms, we also refer to Berline-Getzler-Vergne [BeGV, 
Chapter 1]. 

This Section is self-contained. 

a) The Berezin integral 

Let E and V be real finite dimensional vector spaces of dimension n and m. 
Let gE be an Euclidean metric on E. Let eu • • •, en be an orthonormal base 

of E, and let e1, • • •, en be the corresponding dual base of E*. 
Assume temporarily that E is oriented and that ex, • • •, en is an oriented base 

of E. Let JB be the linear map from A(F*)®A(£*) into A(V*) which is such 
that if a e A(V*),P € A(E*), then 

(3.1) J af3 = 0 if deg/3 < dimE, 

-в ae A • • • A en = ^—¿-5 a. 
7T 2 

More generally, let o(E) be the orientation line of E. Then / defines a linear 
map from A(V*)®A(E*) into A(V*) ® o(2£). The linear map JB is called a 
Berezin integral. 

In the sequel, we do not assume any more that E is oriented. Let A be an 
antisymmetric endomorphism of E. We identify A with the element of A(E*)9 

(3.2) A = |1/2 Y (euAejje1 Aej. 
l<i',j<n 

By definition, the Pfaffian Pf [̂ r] of £ is defined by the formula 

(3-3) 
B 

exp 
'-A 

2 
= Pf 

A 

2n 

Then Pf[^-1 lies in o(E). Clearly Pf[^-] vanishes if n is odd. 
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b) Vector bundles and Berezin integrals : the Mathai-Quillen 
Thorn forms 

Let M be a real manifold of dimension m. Let 7r : E —• M be a real vector 
bundle of dimension n. Let </£ be an Euclidean metric on E. 

Let V£ be an Euclidean connection on (E,gE) and let #E = (V£)2 be the 
curvature of VE. Then i?*7 is a smooth section of A2(T*M) ® End(E). 

Also 7r*VE is an Euclidean connection on ir*(E,gE) and 7r*i2£ is the curva
ture of 7r*VE. Moreover 7r*i?E is a smooth section of A2(T*E) ® End(7r*£l). 

Let ei, • • •, en be an orthonormal base of 22 and let e1, • • •, en be the corre
sponding dual base of E*. Let /1, • • •, /m be a base of TM, and let Z1, • • •, /m 
be the corresponding dual base of T*M. We identify iZ*7 with the section i?^ of 
A2(T*M)®A2(£*) 

(3.4) RE = \ Y (еа,ЯЕ(1г,Ыер)ГлГЛеаЛее. 
l<i,j<m l<a,ß<n 

Equivalently 

(3.5) A* = 5 E <eQ,i?%)eaA6^. 
l<a,/3<n 

The connection VE defines a horizontal subspace THE of T2? such that 
TE = THE®E. Let PE be the projection TE -> E and let PE* : i?* T*£ 
be the transpose of PE. Then PE is a section of T*E®E. If we identify E with 
E* by the metric gE, PE can be considered as a section of T*E ® . Clearly 

n 
(з.б) pE = Y,(pE*ei)ei-

1 
Let Y be the generic element of E. 

Definition 3.1. For T > 0, let AT be the element of (A(T*E)®n*A(E*))even, 

(3.7) AT = ^ - + y/fPE + T\Y\2. 
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Recall that we identify E with E*. If e e E, we will often write e when e is 
considered as an element of A(E*)9 and we still denote PE*e the corresponding 
element of A(T*E). 

The connection 7r*VE acts as a differential operator on smooth sections of 
A(T*E)<8nr*A(E*). Also if e e E, the interior multiplication ie acts naturally on 
A(E*)9 and also as a derivation of the graded algebra A(T*P)®7r*A(£'*). To indi
cate clearly that ie only acts on the second factor tt*A(E*) of A(T*E')®7r*A(£'*), 
we will write ie instead of ie. In particular we have 

The following result is proved in [MQ, Section 6] and [BeGV, Lemma 1.85 and 
Propositions 1.87 and 1.88]. 

Theorem 3.2. The following identities hold 

(3.8) **RE = \ E (е« ,ИЕ)е/ ) )?Ле/» 
l<a,ß<n 

n Р£ = УР£ ,е*Л? . 
1 

(3.9) TT* Vs + 2y/Ti9,AT = 0, dAT Y 
dT 2VT\ ' 

Proof. The Bianchi identity asserts that 

(3.10) 7t*Ve,tt*RE = 0. 

Also 
ЬЕ~\ 

(3.11) 2Vfi9^*^- 2 2 =-Vf Y (w*REY,ea)e-. 
Ka<n 

Moreover, one verifies easily that 

(3.12) \TC*VE,VT PE] = VT Y (**REY,ea)^. 
Ka<n 
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From (3.11), (3.12), we get 
RE 

(3.13) 2УГгс,тг* — + [ve,Vtpe] =0. 

Moreover 

(3.14) [TT*VE,T\Y\2} = 2ТР**У, [2\/Гг?,\/ГРЕ] = -2TPE* У, 

and so 

(3.15) [ir*VE ,T\Y\2] + [2VTi9,VT PE] = 0. 

From (3.10), (ЗЛЗ), (3.15), we get the first identity in (3.9). Moreover 

(3.16) ^ A T = ^ p E + ÌY?. 

Using (3.16), one obtains the second identity in (3.9). 

Let 7r* denote the integral along the fibre of forms on E taking value in %*o(E). 

We will apply the formalism of the Berezin integral developed in Section 3a), 
with V = TE. If u is a smooth section of A(T*E)®ir*A(E*) over E, JB u is 
a smooth section of A(T*E)§>TT*O(E), i.e. a smooth differential form over E with 
values in ir*o(E). 

Set 

(3.17) e(E,VE) =Pf 
RE 
2тг 

Then e(E, VЕ) is a smooth closed section of Adim E(T*M) <g> o(E). The form 
e(E, VЕ) is a Chern-Weil representative of the rational Euler class of E. Of course, 
if n = dim E is odd, then 

(3.18) e (E,VE) = 0. 

Definition 3.3. For T > 0 and Г > 0, let aT and /Зт be the forms over E 

ат = J exp(-AT), 
(3.19) 

0т = 
в Y 

2VT exp (-Ат). 
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We will establish a fundamental result which was first proved in Mathai-Quillen 
[MQ, Theorem 6.4]. 

Theorem 3.4. For any T > 0, the forms «T have degree n, are closed and their 
cohomology class does not depend on T. For T > 0, the forms aT representee 
Thorn class of E, so that 

(3.20) 7r*aT = 1 

For T > 0, the forms fa have degree n - 1. Finally 

c*o = 7r*e(£,VE), 

(3.21) B X = — iyOCT 
2T T > 0 , 

Dxr 
dT 

-dfa, T > 0. 

Proof Elements of A(T*E)®A(E*) have a partial degree in A(T*E) and also 
a partial degree in A(E*). Then AT is a sum of forms of type (p,p), and so 
exp(-AT) is also a sum of forms of type (p,p). Therefore the forms aT have 
degree n, and the forms fa have degree n — 1. 

If u; is a section of A(T*E)®A(E*), then 

(3.22) y i?w = 0. 

Using Theorem 3.2, we get 

(3.23) [TT* VE + 2y/T i9, exp (-AT)] = 0. 

Therefore, by (3.22), (3.23), we obtain 

(3.24) d 
B 

exp ( -AT) = 
B 

7r*V£ + 2vTi?,exp(-AT)J =0, 

and so the forms C*T are closed. 
By (3.3), we get the first identity in (3.21). Also 

(3.25) iYAT = VTY. 
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Therefore 
(3.26) 

iy 
B 

exp (– AT) = 
B 

(-iYAT)exp(-AT) = 
B 

-VTY exp ( - A T ) . 

The second identity in (3.21) follows. 
Moreover by using Theorem 3.2 and (3.22), we get 

(3.27) dxT 
dT = -

B dAT 
dT exp ( -AT) 

= -
B 

7T*V + 2VT i9, Y 
2VT exp ( -AT) = – d BT. 

Finally, for T > 0 

(3.28) Tr*aT = 
E 

exp {-T\Y\2) Tn/2 
B 
(-\)nPE*ex A e1 A • • • A PE*en A e" 

= 
E 

exp(-T|y|)2Tn/2 
B 

(-1) (n-l)n 
2 P^e1^ • -AP enAe1A- • -Aen = 1. 

The proof of Theorem 3.4 is completed. 

c) Convergence of the Mathai-Quillen currents over E 

Let o(TM) be the orientation bundle of TM. We identify M to the zero section 
of E. If k e N, and if K is a compact set in E, let || ||c£(£) be a natural norm 
on the Banach space CjC(E) of forms in E with values in 7r*o(XM), which are 
continuous with k continuous derivatives, and whose support is included in K. 

Let 6M be the current of integration on M. If n is a smooth compactly 
supported form on E with values in 7r*o(TM), then JE^I6M = JM I1-

Theorem 3.5. Let K be a compact subset of E. There exists a constant C > 0 
such that for any smooth form \i on E with values in 7r*o(TM) whose support is 
included in K, for T > 1, then 

(3.29) E 
n(aT - 6M) < C 

VT ||h|| CK (E), 

E 
a BT < 

C 
T32 ||µ|| C1K (E). 
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Proof The proof of Theorem 3.5 is essentially the same as the proof of [BGS4, 
Theorem 3.12]. It is left to the reader. • 

d) A transgressed Euler class 

Definition 3.6. Let </>(#, V£) be the current on E with values in o(E)9 

(3.30) ф (E,VE) = r+oo 
О 

ßTdT. 

The restriction of ip(E,VE) to the sphere bundle of E was first constructed in 
Mathai-Quillen [MQ, Section 7]. In view of Theorem 3.5, it is clear that the current 
ip(E,VE) is well-defined. 

Recall that M is identified to the zero section of E. The normal bundle to M 
in E is exactly E. 

Let g,E be another metric on E, and let V,E be an Euclidean connection on E 
with respect to g,E. Let e(E,VE,VE) denote the Chern-Simons class of forms of 
degree n - 1 over M with values in o(E)9 which is defined modulo exact forms, 
such that 

(3.31) de(E, VE, V'E) = e (E, V'E) - e (E, VE) . 

If n is odd, then 

(3.32) e(E,VE,VE) =0. 

For the definition and properties of the wave front set of a current, we refer to 
[Ho, Chapter VIH]. 

Theorem3.7. Thecurrent %¡)(E,VE) hasdegree n - l . If X is a smooth function on 
E with values in R*, under the map e e E —• Xe g E, ^(E, VE) is changed into 
ip(E,VE) for A > 0, into (-l)nil)(E,VE) for A < 0. Thecurrent *¡>{E,S7E) is 
locally integrable on E. The wave front set of ip(E, VE) is included in E*. Also 
i¡)(E,S7E) verifies the equation of currents over E 

(3.33) # (E, VE) = тг*е (E, VЕ) - 6M-

The restriction of -ip(E, Ve) to the fibres of E coincides with the solid angle 
form of the fibre associated to the metric gE. 
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Ifg'E is another metric on E, and if V'E is a connection on E which preserves 
the metric g,E, then 

(3.34) </> (E, VE) - ip (£*, VE) = 7r*e (£, VE, VE) modulo exact currents. 

Proof By Theorem 3.4, xp(E, VE) has degree n -1. By proceeding as in [BGS4, 
Theorems 3.14 and 3.15], we see that r/>(E, VE) is locally integrable, and that the 
wave front set of ip(E,'VE) is included in E*. Equation (3.33) follows from 
Theorems 3.4 and 3.5. 

By (3.21) and (3.33), we know that iyi¡) = 0, iYdr¡> = 0. So if A is a smooth 
function from E into R+, we see that \¡>(E,VE) is invariant under the map 
Y e E —> XY E E. Using the explicit formula (3.19), we find that under the map 
Y EE -+ -Y e £,</>(£, V*) is changed into (-l)nV>(£, VE). 

Let CJ be the volume form in the fibres E. Using (3.21), one verifies easily that 
the restriction of -ij)(E,VE) to the fibres of E is given by 

(3.35) T(n/2) iYu 
2W2 |y|"' 

which is the solid angle form of the fibres. 

Finally equation (3.34) follows from equation (3.33) and from a simple deforma
tion argument which is left to the reader. • 

Remark 3.8. Assume that dimE < dimM. Let s be a smooth section of E. Set 

(3.36) M' = {xe M; s(x) = 0} . 

Suppose that over M\ ds has maximal rank dimE. Then Mf is a smooth 
submanifold of M. Let NM,/M be the normal bundle to M' in M. Then 
ds : NM'/M -* E\NP is an identification of vector bundles. Since the wave front set 
of ip(E, VE) is included in E*9 by [Ho, Theorem 8.2.4], the pulled-back current 
s*i¡>(E, VE) on M is well-defined, and its wave front set is included in N^,m^. 
Moreover 

(3.37) ds*i¡) (E, VE) = e (E, VE) -SM'-

Also by proceeding as in [BGS4, Theorem 3.15], one verifies easily that the current 
s*ip(E,VE) is locally integrable on M. 
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e) The Berezin integral formalism over the tangent space. 

Let s be a smooth section of E over M. Recall that for T > 0, AT is a 
smooth section of E over A(T*E)<g)7c*A(E*). The pull-back s*AT, where the 
pull-back acts non trivially on the factor A(T*E), is now a smooth section of 
A(T*M)®A(£*). 

Let #™ be a smooth metric on TM. Let V™ be the LevirCivita connection 
on (TM,g™), and let # ™ = (V™)2 be its curvature. Let VT*M be the 
corresponding connection on T*M. 

We will apply the construction of Sections 3a)-3d) to (TM,g™) equipped 
with the connection V™. In particular 7r now denotes the projection TM —• M 
and n is the dimension of M. Also, for T > 0, AT is a smooth section of 
A(T*TM)®TT*A(T*M). If 5 is a smooth section of TM over M, s*AT is then 
a smooth section of A(T*M)®A(T*M). 

If u is a smooth section of A(T*M), we identify u with the section u;®l 
of A(T*M)®A(T*M). Also cD will denote the corresponding section 1 ® u of 
A(T*M)® A(T*M). 

Let ei, • • •, en be an orthonormal base of TM, and let e1, • • •, en be the 
corresponding dual base of T*M. We identify R™ to the smooth section R™ 
of A(T*M)§A(T*M) given by 

(3.38) R™ = \ Yl (ea,R™ (еиеэ)е0)е{ Ле'Ле" Лё*. 
l<i,j<n 
\<,Q,ß<n 

Recall that we identify TM and T*M by the metric p™. 

Proposition 3.9. L̂ f s be a smooth section of TM. Then for T > 0, the following 
identity holds 

(3.39) 
ÒTM N 

s*AT = ^— + Vf ]T ¿ Л V™s + T\s\2. 
2 i 

Proo/ Formula (3.39) follows directly from Definition 3.1. • 

48 



BEREZIN INTEGRAIS AND MORSE FUNCTIONS 

f) Berezin integral and gradient vector fields : a symmetry 
property 

We make the same assumptions as in Section 3 (e). Let / be a smooth function 
of M into R. The differential df is a smooth section of T*M. Let V/ be the 
corresponding gradient vector field, which is a section of TM. 

From Proposition 3.9, we get the following identity. 

Proposition 3.10. For T > 0, the following identity holds 

Let (p be the algebra homomorphism from A(T*M)®A(T*M) into itself, 
which is such that if a; € A(T*M), then 

ЬТМ n 
(3.40) (Vf)* Ат = ^— + ^ е ' ' л V™V/ + T|d/|2. 

1 i 

(3.41) ¥>{") = w, 
<p(û) = и. 

Proposition 3.11. For T>0, the following identity holds 

(3.42) f(Vf)*AT = (-Vf)* AT. 

Proof The basic symmetry property of the curvature tensor R™ immediately 
shows that 

(3.43) <pR™ = R™. 

Also 

(3.44) ¿ e¿ Л V™V/ = ¿ ( v £ , e,-) ê Л 2 . 
1 1 

Since the connection V™ is torsion free, we get from (3.44), 

(3.45) ¿ e¿ Л V™V/ = ¿ (^;Mdf,ej) é¡ Л ?\ 
1 1 
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and so 

(3.46) 
9 

n 

1 
e'Л Vj™Vf = -

n 

1 
e'Л Vj™Vf eé A EI25 

= -
n 

1 
e,- A V ™ V / . 

Proposition 3.11 follows from (3.45), (3.46). • 

The Berezin integral fB maps smooth section of A(T*M)®A(T*M) into 
smooth section of A(T*M) ® o(TM). 

Definition 3.12. For X > 0, let BT be the smooth section of A(T*M)®A(T*M) 
over M, 

(3.47) -BT = (V/ )* (AT). 

In the sequel, we will say that a e AP(T*M)®A9(T*M) is of type (p, g). 

Theorem 3.13. Lef a be a smooth section of A(T*M)®A(T*M) which is of type 
(PiP) (0 < P < n)- T7ien, 

(3.48) 
в 

аехр(-Вт) = (-1)р 
в 

(р(а) ехр (—Вт). 

Proo/. One has the easy identity 

(3.49) 
B 

a = (-l)n 
В 

V (x). 

If we apply (3.49) to a exp(—(V/)* AT), using (3.42), we get 
B B 

(3.50) / aexp(-(V /r (AT)) = (-!)" / ¥>(<*) exp (-(-V/)* (AT)) • 

Also one verifies easily that if <* is of type (p,p), then 
(3.51) 

3 y(a) exp (-(-V/)* (AT)) = (-l)n~p / * <p(a) exp (-(V/)* (AT)) • 

From (3.49H3.51), we get (3.48). 
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g) The canonical section of A(T*M)<g)A(T*M) 

We make the same assumptions as in Sections 3e), 3f), and we use the same notation. 

Definition 3.14. Let L be the smooth section of A(T*M)®A(T*M) 

(3.52) L = i £ e < A ? ' . 
z l 

Clearly L does not depend on the choice of the orthonormal base ci, • • •, en. 

Proposition 3.15. The following identity holds 

(3.53) [V™,L] =0. 

Proof Since the connection V™ is torsion free, we get (3.53). • 

h) A variation formula for forms over M 

We make the same assumptions as in Section 3f). 

Proposition 3.16. For any T > 0, the following identity of sections of Amax(T*M)(g) 
o(TM) holds 

(3.54) a 
dT 

B 
Lexp{-BT) = -VTf d 

dT 
B 

exp (-BT) 

d 
2 

B L 
vT + f df exp (-BT) • 

Proof. Using Theorem 3.2, we get 

(3.55) А Г L exp (-Вт) = - f Lj£- exp (—Вт) 

= -
в V™ + 2VTi~r df/ 2VT^=exP(-BT) 

2VT L 

= "2 f ^ f exP (-BT)ds + f bb[v™ + 2VTi~,L\ ^ e x p ( - B T ) . 
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By Proposition 3.15, we know that 

(3.56) [V™ + 2\/T %^ L\ = -Vf df. 

So using (3.56) and Theorem 3.4, we get 

(3.57) 
B 

V™ + 2>/Ti~i,L df 
2VT exp (-BT) 

= -
d 
2 

B 
fdfexp(-BT) + fd 

B df 
2 exp (-BT) 

= -
d B 

fdf exp (-BT) - VTf d 
dT 

B 
exp(-B T ) . 

From (3.55H3.57), we get (3.54). • 

Theorem 3.17. For any To > 0, the following identity of smooth sections of 
Amax(r*M) ® o(TM) holds 

(3.58) B 
L (exp {-BTo) - exp (-B0)) = - V W 

B 
exp(-JBTo) 

+ 
f 
2 

To 
0 

B 
exp (-BT) dT 

VT 

m 
2 

B 

0 

• B L 

Vf + f df exp (—BT) dT. 

Proof. Using (3.54) and integrating by parts, we get (3.58). 

i) The limit as T —• +oo of certain currents over M 

We now assume that / is a Morse function, i.e. / has isolated critical points 
xi, • • • xq, • • • such that d2f(xi), • • •, d2f(xq), • • • are nondegenerate quadratic 
forms over TXlM, • • • TXqM, • • •. For i = 1, • • •, q, • • • let Ax. be the self-adjoint 
element of End(Tar.M) such that if [/,Fe TXiM, then 

(3.59) (A,il7,V>=d2/(xO (u,n) 

Let md(xi) be the index of / at X{, i.e. the number of negative eigenvalues of 
AXi. 
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Theorem 3.18. Let K be a compact subset of M. There exists a constant C > 0 
such that if g is smooth function from M into R whose support is included in K, 
and if \x is a smooth 1-formon M whose support is included in K, then 

(3.60) 
м 

9 
в 

exp (-BT) - ,(-l)ind(*p)¿*p < 
С 
T Шс2к(м) > 

м 
9 

в Lexp (—Вт) < 
С 

VT \\9\\c0K(M) > 

м 
M 

в 
dfexp(-BT) < 

С 
J»3/2 1Н1с]ДМ) > 

M 

в L 
VT df exp (-Вт) < 

С 
T5/2 1Н1с]ДМ) > 

Proof For notational simphcity, we assume that M is compact, and that / has 
exactly q critical points. Let a > 0 be the injectivity radius of (M,g™). For 
0 < 7] < a, let BM(xi, rj) be the open ball of center X{ and radius 77. 

Take e > 0 such that 0 < e < a/2 and that the balls BM(x{,2e) do not 
intersect each other. Clearly, there exist c > 0, C > 0 such that for T > 0, 

(3.61) |exp(-BT)| <cexp(-CT) on M\(jBM (xp,e). 
1 

We fix p, 1 < p < 9. Let 1/ = (y1, • • •, j/n) G TXPM be a geodesic coordinate 
system centered at xp such that (g|r, • • •, gfn) is an orthonormal base of TXpM, 
with respect to which the matrix AXp is diagonal with diagonal entries Ai, • • •, An. 
Of course 0 € TXpM is identified with xp G Af. 

For T > 0, let <Jt be the map y e TXpM ^ j - 6 TIPM. Then 

(3.62) / 5 / Lexp(-BT)= f {°T9)°TI Lexp(-BT). 
J\y\<e J J\y\<eVT J 

Now 

(3.63) 0* T L = 1 
2VT 

n 

1 
егЛе\ 

Using (3.61)-(3.63), we easily obtain the second inequality in (3.60). 
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Also 

(3.64) aTBT = 1 
2Т 

ьтм 
tí у VT + 

1 < i,j < n 
VlMdf,ej 

VT 
ег/\ез+Т df У 

VT, 
2 

Moreover 

(3.65) (a*Tg) (y) = g(xp) + g'(xp)^= + \\g\\CHM) O \y? 
T 

+j VT = [|d/|2(xp)](3) (y,y,y) + i o (M2 + \y\4). 

The key fact is that in (3.65), the terms which appear with the weight 1/vt are odd 
polynomials in the variables (y1, • • •, yn), whose integral with respect to a Gaussian 
measure is 0. By proceeding as in (3.28), we obtain the first inequality in (3.60). 

Clearly 
(3.66) 

Ki.j<n 
VTelMdf,ej 

VT 
e A + T df V 

VT 
2 

l<2<n 
Aze* A e* + 

Ki<n 
A? Y 2 

+ 
1 

VT 1 < i,j < n 
VT-MVT-Mdf{XpU. e% A ei 

Ivl<« 
B 

B 
df exp (-BT) = 

\y\<eVT 
(a*Tß) 

B 
df y 

VT. exp (—o^Bx) • 

By proceeding as before, we find easily that 

(3.67) lim T 
Т->+оо \y\<eVT 

0*tm 
B 

df y 
VT exp (—G^BT) 

TXpM 
li(xp) 

B 
AXpyexp 

n 

1 
Xidy A dyl — 

n 

1 
A2 |y'" |2 = 0. 

From (3.67), we easily deduce the third inequality in (3.60). To prove the last 
inequality, we use (3.63) and we proceed as before. • 
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j) An identity of currents over M 

By Theorem 3.18, it is clear that the currents over M 

(3.68) 
+00 

0 
B 

exp (-BT) ~ (-l)ind(Xp)^p dT 
VT 

.+00 

0 

B L 
VT + f dfexp(-Br) dT, 

are well-defined. 
Observe that if n is even, then 

(3.69) 
B 

Lexp 
R™ 

2 = 0. 

Theorem 3.19. The following identity of currents of degree n with values in o(TM) 
holds 

(3.70) 
B 

Lexp 
R™ 

2 

= -
F 
2 

+00 

0 

B 
exp (-BT) - (-1)' ,ind(xp) dT 

VT 

+ 
d 
2 

+00 

0 
B L 

VT + f dfexp(-Br) dT. 

Proof. Clearly, for T0 > 0, 

(3.71) VT0f 
B 

exp(-BTa) -
1 
2 

To 

0 
F 

B 
exp (-BT) 

dT 
VT 

= Vnf 
•B 

exp{-BTo) - (-1] \ind(xp) DXP 

2 
To 

0 

B 
exp(-BT) - (-1] ind(xp) Xp 

dT 
VT 

Then we use the estimates of Theorem 3.18, and we make T0 —> +oo in (3.58). We 
get (3.70). • 
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k) The case where the metric g™ is flat near the critical points 

From now on, we assume that near any critical point xp of / , there exists a system 
of coordinates y = (y1, • • •, yn) such that 

— xp is represented by 0. 
— The metric g™ is exactly M \dy{\2. 
— There are non zero constants Ai, • • • A„ such that near xp 

(3.72) f{y) = f{Xp) + 1/2m ̂ Xi \yi\ \ 2 
z i 

Of course if / is a Morse function, there always exists a system of coordinates 
(y1* * * * ??/n) n âr the xp's and a metric g™ on TM such that the previous 
assumptions are verified. Recall that AXp is the self-adjoint element of TXpM 
associated to the quadratic form d2f(xp). Then the matrix of AXp with respect to 
the basis ^|r, • • •, ̂  has diagonal entries Ax, • • •, An. 

Let g be a smooth function on M with values in R. We calculate g"(xp) using 
the coordinates (y\-- ,yn) near xp. Then g"{xp) is a symmetric bilinear form 
on TXpM. We identify g"{xp) to a self-adjoint element of TXpM. Then g —• 
Tr[A~2gf,(xp)] defines a current of degree n on M, which we note Tr[A~p2<5£p] . 

Similarly let /x be a smooth 1-form on M, which we write near xp as 
n 

(3.73) /i = ^Mi(y)dyi. 
l 

Set 

(3.74) IV K1 
xp 

dp 
dy 

(xp) 
n 

1 = 1 

1 dm 
Y2I ayi r(xp). 

Equation (3.74) defines a current of degree n - 1 over M, which we note 
Tr| 4"2 d 

dy 
Theorem 3.20, Let K be a compact subset of M. There exist constants c > 0, 
C > 0 such that if g is a smooth real function whose support is included in K and 
if /i is a smooth I-form on M whose support is included in K, then for T > 1, 
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(3.75) 
M 

9 
B 

Lexp(-BT) + 1 
2VT (-1) ind(arp) Tr A-1 

p 
f>xp 

< 
C 
T IMIck(M)» 

M 
E f B 

exp(-5T) - (-1) ind(xp) f(xp)6x 

1 
4T (-1) ind(xp) Tr A-1xp 5*p + (-1) ind(xp) f (xp) Tr Xp Xp 

< c 
J>3/2 llsllc^M) ' 

M 
g 

B 
dfexp{-BT) + 1 

2T3/2 (-1) \ind(xp) Tr Ax12 
d 
#2/ 

< C 
T2 ||µ|| G2K (M) 

Proa/. As in the proof of Theorem 3.18, we assume that M is compact. Also we 
use the notation in the proof of Theorem 3.18. Here e > 0 will be chosen small 
enough so that for any p, over BM(xv,2e), the assumptions which are stated at 
the beginning of this Section 3 k) hold. 

Then over BM(xp,2e), R™ = 0. Therefore 

(3.76) 
lvl<* 

9 
B 

Lexp (—BT) 

lvl<* 
E 

B 
Lexp - VT 

n 

1 
Xldyl A dy« - T 

n 

1 
YI l yi 2 

M<£vT 
E 

2/ 
VT 

B 1 
VT exp 

n 

1 
\ldyl A dy1' -

n 

1 
A2 y1' 2 

Also one finds easily that 

(3.77) 
TXPM 

B 
Lexp 

n 

1 
Xdy1 A dy* -n 

1 
y;2 y,1 |2 
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= -
(-1) |ind(xp) 

2 
n 

1 

1 
A, 

From (3.28), (3.76), (3.77), we get easily the first inequality in (3.75). 
Similarly, 

(3.78) 
lvl<« 

9f 
в 
exp (—Вт) = 

\y\<eVT 
9 У 

VT, 
f(*p) + 1 

IT 
n 

1 
Xk Ук 2 

exp 
n 

3 
Xidy1 Л dy1 -

n 

1 
yi2 yi 2 

Also 

(3.79) 5 y 
VT = g(xp) + 9'(xP)y 

VT 
1 

2Г <7"Ы(глг/) + l 
T3/2 0(\y\3) 

We now use the trivial identities 

(3.80) 1 
V* ж 

xe x dx = 0 ; 1 
VT Ж 

x2e x dx = 1 
2 

and we easily obtain the second inequality in (3.75). 
Let // be a smooth 1-form on M, which we write as in (3.73) near xp. Then 

(3.81) 
|y|<e 

µ 
В 

df exp (-Вт) = 
\y\<eVT 

1 
VT 

n 

1 
Pi У 

VT 
dy1 

в 1 
VT 

n 

1 
Xky dy 2 exp 

n 

1 
Xidy1 Л dy2 

n 

1 
Af W 

Also 

(3.82) µi У 
VT = Pi(xP) + Hi(xp) У 

VT + 
l 
г 0(\y?) 

Using (3.28), (3.60), (3.81), (3.82), we obtain the third inequality in (3.75). The 
proof of our Theorem is completed. • 

Remark 3.21. By adding (3.58) and (3.70), for any T0 > 0, we obtain the identity 

(3.83) 
B 

Lexp(-BTo) = -VTof 
в 

ехр(-Вт0) - (-1) ind(xp) dxp 
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-
F 
2 

+ oo 

To 

B 
exp(-£T) - :(-i) ànd(xp) dxp dT 

VT 

+ 
d 
3 

+00 

To 

B L 
VT 

+ f df exp (-BT) dT. 

Clearly both sides of (3.83) have asymptotic expansions as T0 —• +00. 

By Theorem 3.20, the coefficient of 1 
VT in the asymptotic expansion of the 

left-hand side of (3.83) is given by 

(3.84) 1 
2 

(-1) ,ind(xp) Tr A 1-1 6<r . Xp 

By Theorems 3.18 and 3.20, the coefficient of l 
VT 

in the asymptotic expansion of 
the right-hand side of (3.83) is given by 

(3.85) 

-
1 
2 

(-1) ind(xp) Tr A -1 
Xp Xp 

-
1 
2 

(-1) ind(xp) /(*p)Tr A -2 
Xp Xp 

-
1 
2 
d (-1) ind(xp) f (xp) Tr A -2 (xp) 

d 
dy 

Now the sum of the last two terms in (3.85) is trivially equal to 0. Then (3.84) and 
(3.85) effectively coincide. 
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IV. Anomaly formulas for Ray-Singer metrics 

The purpose of this Section is to establish the anomaly formulas for Ray-Singer 
metrics, which were stated in Theorem 0.1 of the introduction. These anomaly 
formulas will play an important role in our proof of our main result stated in 
Theorem 0.2. 

To establish these anomaly formulas, we use local index theory techniques, in 
combination with the Berezin integral formalism of Section 3. Our local index 
techniques are different from the techniques of Getzler [G], even if they have some 
obvious relation to them. They will be used again in Section 13. 

This Section is organized as follows. In a), given a flat Euclidean vector bundle 
(F,gF), we associate a connection VF,e preserving the metric gF. In b), we 
construct the closed 1-form 0(F,gF), which plays a critical role in the whole 
paper. In c), we give the anomaly formulas, which compare the Ray-Singer metrics 
associated to two couples of metrics on TM and F. 

In d), we introduce the Clifford algebra of an Euclidean vector space E, and its 
natural actions on A(E*). 

In e), we establish a crucial Lichnerowicz formula for the Hodge Laplacian D2. 
In f), we state a classical formula evaluating the variation of the Ray-Singer 

metrics as the constant term in the asymptotic expansion of the supertrace of a heat 
kernel. 

In g), we introduce an extra Clifford variable a, which will considerably simplify 
our local index calculations. In h) using local index techniques, we obtain an explicit 
infinitesimal formula for the variation of the Ray-Singer metric. Finally in i), we 
establish the anomaly formulas. 
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In this Section, we use the assumptions and notation of Section 2a) and of 
Section 3. 

a) A canonical connection on a flat Euclidean vector bundle 

Let M be a compact manifold of dimension n. Let F be a real flat vector bundle 
of dimension m on M, and let VF be the flat connection on F. Let F* be the 
dual of F, and let VF* be the corresponding flat connection on F*. 

Let gF be an Euclidean metric on F. Let gF* be the corresponding metric 
on F*. Let i be the corresponding identification F —• F*. The connection 
VF* = i"1 VF* is also a flat connection on F, which coincides with VF if and 
only if gF is flat. Once F and F* are identified, it will often be convenient to 
view F as a vector bundle equipped with two flat connections VF and VF*. 

Definition 4.1. Let u(F,gF) be the 1-form on M taking values in self-adjoint 
endomorphisms of F 

(4-1) u(F,gF) = (gFy1VFgF. 

Then 

(4.2) VF* = VF + u(F,gF). 

Definition 4.2. Let VF,e be the connection on F 

(4.3) VF- = V' + |W(F,jrF). 

From (4.2), (4.3), we get 

(4.4) VF'e = \ (VF + VF*). 

One verifies easily that the connection VF,e preserves the metric gF. It is 
canonically determined by the metric gF. 

Let VF*'e be the connection on the flat vector bundle F* which is associated 
to the metric gF*. Then 

(4.5) VF'e = i'1?*"'*. 
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Proposition 4.3. The curvature (VF,e)2 of the connection VF,e is given by 

(4.6) (VF'e) 2 
= -

1 
4 (u (F, gF)) 

2 

/V00/. Clearly 

(4.7) [VF,u(F,gF)}=-(u(F,gF)) K2 

Equation (4.6) follows from (4.7). • 

Remark 4.4. Let g™ be a metric on TM. The metric g™ determines a 
canonical connection V™, which is the Levi-Civita connection of TM. Then 
the metrics g™,gF on TM,F determine canonical connections V™,VF,e on 
TM, F. This is very similar to what happens in the holomorphic category, where 
a metric canonically determines a connection. This formal analogy will play an 
essential role in our work. 

b) A closed 1-form on M and its cohomology class 

The homomorphism u £ GL(m, R) Log | det u\2 G R permits us to construct 
an element c in the first tech cohomology group of M, which measures the 
obstruction to the existence of a flat volume form on F. 

Definition 4.5. Let 0(F,gF) be the real 1-form on M 

(4.8) 0{F,gF) = TR (F,gF)]. 

One has the trivial result. 

Proposition 4.6. The form 0(F, gF) is closed. Its cohomology class in ff^M, R) 
is equal to c. 

c) An anomaly formula for Ray-Singer metrics 

Let g™ be an Euclidean metric on TM. Let V™ be the associated Levi-Civita 
connection on TM and let R™ be its curvature. Recall that the Pfaffian of an 
antisymmetric matrix was defined in Section 3a). 
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Following (3.17), set 

(4.9) e(TM,V™) =Pf RIM 
2tt 

Then e(TM,V™) is a closed n-formon M with values in o(TM). The form 
e(TM, V™) represents the Euler class of TM in Hn(M,o(TM)). 

If g™9 g'™ are two metrics on TM, and if V™, V ™ are the corre
sponding Levi-Civita connections, let e(TM, V™, V'™) be the Chern-Simons 
class of n - 1 smooth forms on M valued in o(TM), which is defined modulo 
exact n — 1 forms, such that 

(4.10) d e (TM, VTM, V,TM) = e (TM, V'™) - e (TM, V™). 

Of course, if n is odd, 

(4.11) e(TM,V™,V/TM) =0 . 

Let now g™, gf™ be two Euclidean metrics on TM, and let gF,g,F be 
two Euclidean metrics on F. Let || ||det F , || Udet F BE the metrics on the line 
bundle det F induced by the metrics gF\ g'F . Observe that 

(4.12) dLog lldet F 
det F 

2 
= 6 (F,g'F) - 0(F,gF). 

Let II Wfet H*(M,F) MD II HdetV(M,F) be the Ray-Singer metrics attached to 
the metrics (g™,gF) and (g'™,g'F). 

The purpose of this Section is to establish Theorem 0.1, which we state again for 
convenience. 

Theorem 4.7. The following identity holds 

(4.13) Log 
'RS 
det H*(M,F) 
RS 
det H*(M,F) 

2 

M 
Log 

'2 det F 
|2 det F 

e(TM,V™) 

M 
0(F,g'F)e(TM,VTM,V'TM). 
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In particular, if dim M = n is odd, then 

(4.14) Log 
II lld̂ fff»(M,F) 
II lldet#»(M,F) 

2 
= 0. 

Proof Theorem 4.7 will be proved in Sections 4d)-4i). 

Remark 4.8. Equation (4.14) is the well-known basic result of Ray and Singer 
[RSI, Theorem 7.3]. 

d) Clifford algebras and exterior algebras 

Let E be a real finite dimensional vector space of dimension n. Let gE be an 
Euclidean metric on E. 

The exterior algebra A(E*) is Z-graded,andsoitpossesesanatural Z2-grading. 
If A G End(A(£*)), let Tis[A] be the supertrace of A, as defined in (1.9). 

If e G E, let e* G E* correspond to e by the metric gE. Set 

(4.15) c(e) = e* Л — ге, 
c(e) = e* A +ie. 

The operators c(e),c(e) acton A(£*). If e,e; G E, then 
c(e)c(e,) + c(e,)c(e) = -2(e,e/), 

(4.16) c(e)c{e') + c(e')c(e) = 2 (e, e'), 
c(e)c(e,) + c(e>(e) = 0. 

From (4.16), we deduce that the maps e G E -+ c(e), c(e) extend to representations 
of the Clifford algebra c(E) of £*. Also, End(A(£*)) is generated as an algebra 
by 1 and the c(e),c(e)'s. 

Let ei, • • •, en be an orthonormal base of E, let e1, • • •, en be the dual base of 
E*. 

Proposition 4.9. Among the monomials in the c(ez),c(ef) 's,only c(ei)c(ei) • • • c(en) 
c(en) has a nonzero supertrace. Moreover 

(4.17) Trs [c(cx)c(ei) • • -c(en)c(cn)] = (~2)n. 
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Proof. Assume that n = 1. Then 1, c(ei),c(ei) have a supertrace equal to 0. 
Moreover 

(4.18) c(e1)c\el) = 2e1 Aiei-1, 

and so 

(4.19) Tr8 [c(ei)c(ei)] = -2. 

Equation (4.19) immediately extends to (4.17). • 

We consider the vector space E © E. Then e\, • • •, en still denotes an 
orthonormal base of the first copy of E in E@ E, and ei, • • •, en the corresponding 
orthonormal base of the second copy of E. Also e1, • • •, en and e1, • • •, e" denote 
the dual bases of the first and second copies of E* in E* ®E*. 

For t > 0,e e E, if e* e E* corresponds to e by the metric gE, set 

(4.20) 
c*(e) = e* 

¿1/4 
A -*1/4ie, 

c<(e) = e* 
t 1/4 A + T1/A ie 

The operators ct(e),ct(e) acton A^eE1*) = A(i?*)<§>A(.E*). Moreover if 
e,e' G £, 

(4.21) 

ct(e)ct(e') + ct(e')ct(e) = -2 (e,e') , 

Q(e)ct(e') + c,(e')ct(e) = 2 (e,e'), 

ct(e)ct(e') + ct(e')ct(e) = 0. 

Using(4.16),(4.21)weseethatthereisahomomorphism of algebras t/>< : End(A(E*)) 
—• End(A(£* © E1*)) which for e e E, maps c(e) in c<(e) and c(e) in c<(e). 

Now the operators e'1 A • e'p A ê3'1 A • ê3'» A ie. ••• iek • i are lin-

early independent in End(A(£'*)®A(E*)). Moreover, if u e End(A(E*)),tpt(u) 
is a linear combination of such operators. 

Definition 4.10. For u e End(A(£*)), let { (̂«)}max G R be the coefficient of 
the monomial e1 A • • • A e" A e1 A • • • A e71 in the expansion of V'i(u). 

Proposition 4.11. IfuG End(A(£*)), then for any t > 0, 

(4.22) Tr,[u] = 2B(-l)J**tnt* {V<(«)}maX • 
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Proof. Equation (4.22) follows from (4.17). • 

e) A Lichnerowicz formula for the Hodge Laplacian 

Recall that dF denotes the natural action of VF on F. Also dF* is the formal 
adjoint of dF with respect to the scalar product (, )f-

As in (2.5), set 

(4.23) D = dF + dF*. 

The connection V™ induces a connection VA(T*M) on A(T*M). Let V, Ve 
be the connections on A(T*M) ® F 

V = vA(T*M)® 1 + 1® vF, 
(4.24) 

Ve = VA(T*M>®l + l®VF'e. 
Let ei, • • •, en be an orthonormal base of TM, let e1, • • •, en be the corre

sponding dual base of T*M. 

Proposition 4,12. The following identity holds, 

(4.25) D = f ^ e , ) ^ - I £ c ( e , > (F,9F) (ei). 
i z i 

Proof. Since V™ is torsion free, it is clear that 

n 
(4.26) dF = J>'AVei . 

l 

Then a trivial computation shows that 

(4.27) dF* = - £ ie1 (Vej + w (F, 5F) (e,-)) • 
1 

From (4.26), (4.27), we get (4.25). • 
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Let now ei,--,en be a locally defined smooth section of the bundle of 
orthonormal frames of TM. Let A, Ae be the Bochner Laplacians 
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(4.28) 

n 
A = E К - Vv - e . ) , 

1 

A6 = E (Vef " VVTM.J • 
1 

The Laplacian Ae is self-adjoint with respect to the scalar product (2.2) on F. 
Let K be the scalar curvature of (M,g™). Now we prove the following 

extension of Lichnerowicz's formula [L]. 

Theorem 4.13. The following identity holds 

(4.29) D2 = -Ae + j + i ]T <efc, R™ (e,, Cj) ee) 
l<ij,k,£<n 

c(e¿)c(ei)c(efc)c(e£) + - (и {F,gF) (e,-)) 
!<¿<n 

1 
8 

1 < 1, J < 71 

(c(et)c(ej) - c(e¿)c(ej)) (u (F,gF)) (e¿, e,-) 

1 
4 

E с(еОг(е,) (VJW (F,^) (ej) + Ve> (F,gF) («)) . 
<i,j<n 

Proof. Set 

(4.30) D0 = J2<ei)Veei. 
1 

Then D° is an operator of Dirac type acting on F. 
If A e End(TM) is antisymmetric, A acts on A(T*M) as a derivation, and 

its action is given by 

(4-31) I E Ие,-,ел-)(с(еОс(е,-)-с(е,-)с(е,-)). 
1<г j<n 
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Also ( VF'e)2 is given by (4.6). By using an obvious extension of Lichnerowicz's 
formula [L] and also (4.31), we see that 

(4.32) (J90)2 = -Ae + I + 1 £ {ek,R™ (eh Cj) ee) 
l<i,j,k/<n 

cfaWejffîekfâet) - ^ ^ c(e,-)c(ej) (a; (F,5F))2 (e,-,ej). 
l<ij<n 

Moreover by (4.16) and by Proposition 4.12, we get 

(4.33) D* = (Dy + \ £ (o,(F,/-)(ei))2 + i £ cie^ciej) 
l<i<tl 1<2*J<̂  

(W(F,^))2(ei,ej)-i £ ^ ^ ( V j - w ^ ^ C ^ ) ) . 
l<î,j<n 

Using (4.7), we obtain 

(4.34) V 6 > {F,gF) (ej) = VjW (F,gF) (ej) +1/2 (w (F,gF))2 (e,,^) 

= I (Vjo; (F,**) (e,-) + Ve> (F,*') (e,-)) . 

From (4.32H4.34), we get (4.29). • 

f) An infinitesimal variation formula for the Ray-Singer metric 

Let £ e R —> (gfM,g[) be a smooth family of metrics on TM,F. Let be 
the Hodge operator associated to the metrics gJM. Let Di be the operator D 
defined in (4.23) attached to the metrics (gJM,g[). Let || | |^#.(M,F),£ BETHE 
corresponding Ray-Singer metric on det H*(M, F). 

Theorem 4.14. If n is even, as t —• 0, for any k € N, ffore is an asymptotic 
expansion 

(4.35) Trs [ ( V ^ + (fff J"1 M ) exp (-*£?)] = ¿ M ^ + o (t*). 

j=-n/2 
Also if n is even, 

(4.36) ^L°g(ll llSff.(M,F)/) = M ) / . 
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Moreover if n is odd, 

(4.37) 
a 
dl 

Log RS 
det H*(M,F)9t 

2 
= 0. 

Proof Our Theorem follows from similar computations which are done in Ray-
Singer [RSI, Theorems 2.1 and7.3] and Bismut-Gillet-Soule [BGS3, Theorem 1.18]. 
Note that in the case where n is odd, (4.37) is a consequence of the fact that there 
is no constant term in the asymptotic expansion of the left-hand side of (4.35). • 

Let ei, • • •, en be an orthonormal base of TM with respect to the metric gJM. 

Proposition 4.15. The following identity holds 

(4.38) fd tm d*£ 
di = -

l<2,j<Tl 

1 
E 9t TM -1 dg™ 

di ei, ej. 
e1 TM 

c(ei)c\ej). 

Proof. Clearly 

(4.39) i*e) -i d*e 
di 

1 
2 

n 

1 
St TM -l dg™ 

di 
exi, e1 

9jM 

Ki,j<n 
9e TM dgJM 

di 6t*, Cj 
g™ 

eiAiej. 

Equation (4.38) follows. • 

g) A Clifford algebra trick 

Let a be an auxiliary even Clifford variable, such that a2 = 1. So a commutes 
with the c(e,-) 's, the c(ej) 's and more generally with all the previously considered 
operators. 

Let A,B 6 End(F) be trace class. Then A + aB lies in End(F)®M(cr). Set 

(4.40) Tr°[A + aB] = Tr8[B]. 

Definition 4.16. Set 

(4.41) (DJ)°dd = - \ ¿2 ^ ^ ^ ( V ^ ^ ^ ^ O + V . X F , ^ ) ^ ) ) , 
l<2,.;<n 

{Dj)even =D2- {D2)°dd . 
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The operator (Dj)odd is in fact odd in the Clifford variables c(et-) or c(ez), while 
(Dj)even is even in the Clifford variables c(e2) or c(e2). 

Let dvM,e be the volume form on M with respect to the metric gJM. 

Definition 4.17. Let P^(z,x')(resp .Q^(x,a;')) be the smooth kernel with re
spect to the volume form dvM,e(x') associated to the operator exp(-tDj) (resp. 
the operator exp(-*((L>f )even + a(Dj)odd))). 

Theorem 4.18. If n is even, and if M is oriented, for any x £ M, t > 0, the 
following identity holds 

(4.42) Trs *l -1 d*l 
dt 

Pt, l (x, x) J-Ls -id* i ( . 
** -QiQtAxix) 

Proof Since M is oriented, the operator *̂  maps F into itself. Also *| is a 
constant operator, and so 

(4.43) *l 
d*l 
dl + 

5*£ 
dl *£ = 0. 

Set 

(4.44) C = *7X 5*£ 
dl 

From (4.43), we get 

(4.45) nC+J1 = -C. 
In fact (4.45) can be directly verified by using (4.38). 

Also (Dj)eyen and (Dj)odd preserve the Z-gradingin F. Moreover one easily 
verifies that 

(4.46) *l (D2l) even *l -l = (D2l) even 

*l (D2e) Odd *l -1 = - (D2l) odd 

Let h be a smooth function from M into R. Since *̂  is an even operator 
acting on F (i.e. it preserves the Z2 -grading of F), and since supertraces vanish 
on supercommutators [Ql], we see that 

(4.47) Trs [*,ftCexp (-* ((I*?)6™ + a (DJ)°dd)) .J1" 
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= Trs [hCexp (-< ((£>I)even + a (^2)°dd))' . 

On the other hand, by using (4.45), (4.46), we get 
(4.48) Trs [hCexp (-t ((DJ)*™ + a (Dj)°dd)) *l -1] 

= -Trs [hCexp (-* ((D|)even - a (Dj)°dd))] . 

From (4.47), (4.48), we conclude that 
(4.49) Irs [hCexp (-* ({Dj)evea + a {Dj)°dd))] 

= -Tv8 [hCexp (-* ((D|)even - a (Dj)°dd))} . 

Since (4.49) holds for any smooth function h : M —> R we easily get (4.42). • 

h) The small time asymptotics of the supertrace of certain heat 
kernels 

We make the same assumptions as in Sections 4f) and 4g). Let VjM be the 
Levi-Civita connection on (TM,gJM), and let RjM be the curvature of VjM. 

Let p be the projection M x R M. Let g™>tot be the metric on p*TM 
which coincides with gJM over M x {£}. Let V™'tot be the connection over 
p*TM 

(4.50) vTM,tot = p*vJM+^ д 
m + i 

2 (9ÏM) 
daIM 

di 
Then V™'tot preserves the metric g™t°\ The curvature (v™'tot)2 of 
VTM,tot is given by 

(4.51) (V TM,tot\2 ) =p*RfM + d£ д 
di 

V ™ - î 
2 v i " , (ft™)"1 

dgJM 

di 

Definition 4.19. Set 
(4.52) 
4 (TM) = д 

db Pf i 
2тг 

RjM+b д 
dl 

Vl* TM 1 
2 

\7™ TAf 
9t 

-1 00/ 
Dt 6=0 

By a standard argument in Chern-Weil theory, we know that 

(4.53) d 
di e(TM,V¿ M ,Vi M ) =^(TM). 
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For x E M, e > 0, let BM(x, e) be the open ball of center x and radius e in M 
with respect to the metric g%Mand let BTxM(0, e) be the open ball of center 0 
and radius e in TXM with respect to the metric g^xM. 

Theorem 4.20. Assume that n is even. Then 

(4.54) MiJt = 0 for j < 0, 

M** = L Tr [{g[) 1 ^u]e ( ™ ' v ™ } " L6 (F'g!) {TM)' 

Proof. In the whole proof, we will use the notation of Section 3 on the Berezin inte-
gral. We first calculate the asymptotics as t —• 0 of Tr8[(g[)_1-|f- exp (-ID2)]. 
Here the metric g™ will be fixed. Also we will often omit the subscript L 

First we proceed as in Getzler [G]. Let a > 0 be the injectivity radius of 
(M,g™). Take e such that 0 < e < a/2. Take x E M. Let eu • • •, en be 
an orthonormal base of TXM. We identify the open ball BTxM(0,e) with the 
open ball BM(x,e) in M using geodesic coordinates. Then y E TXM, \y\ < e 
represents an element of BM(x,e). For y E TXM, |y| < e, we identify TyM,Fy 
to TXM, Fx by parallel transport along the geodesic t E [0,1] —• ty with respect 
to the connections V™,VF'e. 

Let r™'* be the connection form for V™ in the considered trivialization of 
TM. By [ABoP, Proposition 4.7], we know that 

(4.55) r™'* = i/J™(y,.) + 0(|»|2). 

The induced connection form Ty M^ on A(T*M) is given by 
(4.56) 
rA(T'M),x = 1 J2 ((R™(y,.)ehej) + 0(|y|2)) (c(ei)c(ej) - S f e ) ^ ) ) . 

1 < x,j < n 

The operator D2 now acts on smooth sections of (A(T*M) ®-F% over BTxM(0,s). 
If /i is a smooth section of (A(T*M) ® i*% over TXM, set 

(4.57) T,%) = /i y 
VT 
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Let Kt be the operator 

(4.58) Kt = Tf tD Tt 

Then Kt is a differential operator with coefficients in the algebra spanned by the 
c(ef) 's, the c(e*) 's and elements of End(i<%. 

Let Lt be the operator obtained from Kt by replacing the Clifford variables 
c(e2),c(e2) by ct(et-),ci(e,-) defined in (4.20). Let AT*M be the flat Laplacian 
over TXM for the metric gTxM . Using (4.29), (4.56), one concludes easily that as 
t —• 0, the coefficients of Lt converge uniformly over compact sets together with 
their derivatives to the coefficients of the operator L0 given by 

(4,59) L0 = —ATxM + 1 £ <efc,i?£™ (e,-, e,-) e£) e1" A ej A A ê̂ . 
l<»,j,M<" 

If we use the notation in (3.38), we get 

(4.60) L0 = -AT*M + 

Let c/t̂ M be the volume element on TM with respect to the metric g™. 
Here dvM is viewed as a section of An(T*M) ® o(TM). Using Proposition 4.11, 
equation (4.60), and proceeding as in Getzler [G], we see that as t —> 0, 

(4.61) Trs 

it™ 
2 

(9f) -1 dgf 
di Pt (x, x) dvM(x) 

Tr is!) -1 dgf 
di 

B 
exp 

R™ 
2 

(x) uniformly on M. 

Moreover 
(4.62) 

Tr8 (9[) -1 dgf 
di 

exp (-tDJ) = 
M 

Tr8 (Gl F) -1 dgf 
di 

Pt (x, x) dvM(x). 

From (4.61), (4.62), we get 
(4.63) 

limTrs t—o (gf) -1 dgf 
di 

exp {-tDj) 
M 

Tr (gf) -1 dgf 
di 

e(TM,g™). 
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Now we assume that the metric gF on F is fixed, and that the metric gJM on 
TM dependson^. We will calculate the asymptotics of Trg^+J1)^- exp(-tDj)]. 
Clearly 

(4.64) Trs *l -i 
d*p 
dl 

exp (-tl>?) = 
M 

Trs -1 9*̂  
dl 

Pi,l (x, x) dv M,l (x). 

Take x e M. We assume first that M is oriented. Then by Theorem 4.18, we get 

(4.65) Trs *e -l d*l 
0* 

Pi,l (x, x) = Tra° *l -l 9*£ 
dl Qt,t{x,x) 

In the sequel, ei? • • •, en is an orthonormal base of TXM with respect to the 
metric gJM, and e1, • • •, en is the corresponding dual base of T*M . 

We consider R equipped with its canonical Euclidean metric. Let a = 1 E K, 
let a* E M* correspond to a by the metric of R. For t > 0, set 

(4.66) O i = a*A 
VT + Vtia. 

If c + da E K[a], then 

(4.67) C+d(7t=C + da* 
Vi Л +dVt ia-

In the sequel, the operators a* A and ia will commute with all the other operators 
considered before. 

Take x e M. We trivialize TM and F on BM(x,e) as before. Then 
the operators (Dj)even, (Dj)odd act on smooth sections of (A(T*M)®F)X on 
£T*M(0,e). We define Tt as in (4.57). Set 

(4.68) K't = Tt-H ((D|)even + a (Dj)°dd) Tt. 

In 1^, we replace c(et) by ct(et-), c(ez) by ci(e,-) and a by a*. So we obtain a 
new operator L't. Let AjxM be the Laplacian on TXM with respect to the metric 
gJxM. Using (4.29) and (4.56), one verifies easily that as t —• 0, L't converges to 
L'Q given by 
(4.69) 

L'0 = -Aj'M+ 1 
2 

pTM Zt/ — 1 
4 a A 

K».7<n 
e'Ae? (Veiu; (F,/)(ej)+Ve.a; (F,^)(e,-)) • 
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Let Ct be the operator obtained from *l-1Dl by replacing c(et) by cj(e;), 
and c(e{) by ct(e;). Using (4.38), we find that 

(4.70) lim V* Ct = -t->o 
l<i,j<n 

1 
2 

(9lM) -1 dgl TM 
dl 6 i, 6 j 

gi TM 
ei A Ej. 

By Proposition 4.11, by equations (4.69), (4.70), and by proceeding as before, 
we deduce easily that 

(4.71) lim Trs *l -l a** 
dl Pi,l (x, x) dvM,e(x) 

= -
B 1 

2 l<i,j<n 
(9lM) -1 dgl TM 

dl - 62*, 6j 
gl TM 

e' A ei 

exp 
pTM 
it. 2 

A 
1 
4 

l<t,j<n 
e* A ef 

Tr [vf> {F,gF) (ej) + Vju, (F, gF) (e,-)] J(*) uniformly on M. 

When M is not orientable, equation (4.65) does not hold any more. However 
the evaluation of the asymptotics of the left-hand side of (4.71) is local near x £ M. 
By embedding the considered local neighborhood in an orientable manifold, we see 
that (4.71) remains valid in full generality. 

Recall that cp was defined in Section 3f). Then 

(4.72) 
n 

<p0(F,gF)=J20(F,gF) (a)?. 
¿=1 

By (4.7), (4.72), we get 

(4.73) \ ¿2 ^ A e H j V ^ ^ / J l e ^ + V ^ i F , / ) ! ^ ) ] 
l<¿,j<n 

= £ ei A 3 Tt [V Zu(F,gF)(ej)]=VT»V9(F,gF) 
l<i,j<n 

Using (4.64), (4.71), (4.73) and Stokes formula, we find that 

(4.74) lim Tr8 t-»o V -l 
a*™ 

at 
exp {-tDJ) 
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M 
в V™ i 

4 l<ij<n 
(9ÏMÏ -1 dg™ 

di -e¿, €j 
9jM 

é Л ei 

exp 
Ътм tip 

2 
Л<рв (F,gF) 

Set V™ = V^M. Then the connection VjM given by 

(4.75) V™ = V™ + ì (p£™) -1 V™ft™ 
¿i 

preserves the metric gJM. Its torsion Ti is such that if X, Y G TM, 

(4.76) Te(X, Y) = \ (g™) ~> (VxMgfM) Y-\ (gfM) (V™gfM) X. 

From (4.76), we deduce that 

(4.77) d 
di 

Te(X,Y)\e=0 = 1 
2 

V™ (9lM) -1 dg™ 
di 

Y 

1 
2 

X7™ (g TM) -1 dgl TM 

d£ 
X 

\e=o 

Set 

(4.78) Se = Vj TM fyTM 

From (4.75), (4.78), we get 

(4.79) d 
d£ «|/=o 

1 
2 

V™, (ft™) -l dg™ 
d£ \e=o 

dSe 
d£ | W 

Let ( , ) be the scalar product on TM for the metric g™. Since VjM is 
torsion free, one sees easily that if X,Y,Z e TM, 

(4.80) 2 dSl 

öl 
(X)Y,Z + 

dT, 
di |£=0 

(X, Y), Z 

+ 
dTe 
di i*=o 

(Z,X),Y -
Dtl 
di \e=o 

(Y, Z), X = 0. 

Using (4.77), (4.80) we get 

(4.81) Y, 
dSe 
di \e=o 

(X)Z = -
dT 
di \e=o 

(Y, Z), X 
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Set 

(4.82) dSe 
d£ u=o = 

1 < i,j < n 

1 
2 ek, 

dSe 
d£ \e=o (ei) el ex A ek A e£. 

Using (4.77), (4.81), (4.82), we see that 
(4.83) 

v 
dSe 
d£ \e=o 

= - A TM 1 
2 l<t,j<n 

(ft™) -1 dgf* 
d£ ei, ej 

\£=0 
el A ei 

So from (4.74), (4.83), we get 

(4.84) lim Trs *l -l 5*£ 
dl exp (-*D|) 

|£=0 

M 

P B 
2 y 

as* 
a* |/=o exp 

i>TM 
— tin 2 

A ^ (F,5F) 

M 

B 
(<P0(F,9F)) 1 

2 <P 
dSe 
d£ \e=o exp 

-i?o™ 
2 

Using now Theorem 3.13 and (4.84), we find that 

(4.85) lim Trs t—o *l - l a** 
a/ exp (-tDJ) 

= -
M 

6(F,9F) 
B d 

db exp 
R0 TM as. 

1=0 
2 

6=0 

From (3.3), (4.52), (4.79), (4.85), we finally get 

(4.86) lim Trs *l -l 5*^ 
0* 

exp (-tDJ) 
\£=0 

= -
M 

e (F, gF) Zo (TM). 

Of course (4.86) also holds for arbitrary I. The proof of Theorem 4.20 is completed. 
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i) Proof of Theorem 4.7 

By Theorems 4.14 and 4.19, we get 

(4.87) 
d 
di Log RS 

det H*(M,F),i 
2 

= 
M 

Tr (9Í) -1 dgf 
de 

e (TM, VjM) -
M 

6{F,gf)?e(TM). 

Using (4.53) and (4.87), we obtain (4.13 ). 
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V. A closed 1-form on R*+ x R+ 

In this Section, given a smooth function / : M —• R, we exhibit a closed 
1-form at,T on R*+ x R+ which is calculated in terms of the supertraces of certain 
two parameter heat kernels. This 1-form is very similar to a corresponding 1-
form obtained in Bismut-Lebeau [BL2, Theorem 3.3] in a different context. By 
integrating at^ on a closed contour T, we will obtain an important identity. In the 
next Sections, by a suitable deformation of the contour T, we will ultimately derive 
Theorem 0.2 from this identity. 

This Section is organized as follows. In a), we introduce the family of smooth 
metrics e~2TfgF on F. In b), we calculate the Witten Laplacian D\ [W] 
associated to the smooth function Tf. In c), we construct the 1-form O^T- Ind), 
by integrating atir on a contour T, we obtain an identity, which is the main result 
of this Section. 

Here we use the assumptions and notation of Section 2a) and of Sections 4a), 
4b). 

a) A family of smooth metrics on F 

Let M be a compact connected manifold. Let F be a real flat vector bundle on M. 
Let g™ be a smooth metric on TM, let gF be a smooth metric on F. 

Recall that dF denotes the natural action of the flat connection VF on F. 
Moreover (, )A(T*M)®F still denotes the scalar product on A(T*M) ® F which 
is attached to the metrics g™ and gF. Also u(F,gF), 0(F,gF) are defined by 
(4.1), (4.8). 

Let / : M R be a smooth function. 
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Definition 5.1. For T > 0, let g% be the smooth metric on F 

(5.1) 9$ = e~^9F. 

We equip F with the L2 scalar product ( , )F,T attached to the metrics g™, 
gF on TM, F. Namely, if a, /3 G F, we have 

(5.2) <a,0)FfT= / K/J)A(T.M)^We'2T№)*MW. 

Let d£* be the formal adjoint of dF with respect to the scalar product ( )F,T 
on F. Clearly 

(5.3) df> = e2T'dF*e-2T'. 

Set 

(5.4) DT = dF + d^\ 

The operator £>T is self-adjoint with respect to the scalar product ( )F,T- Also 
Dj> = dFdF* + dF*dF is the Hodge Laplacian associated to the metrics g™\gF 
on TM,F. 

Let df e T*M be the differential of / . We identify T*M to TM by the 
metric g™. Let V/ G TM be the corresponding gradient vector field. 

Let Lv/ be the Lie derivative acting on F 

(5.5) L/ = dFi^ f + z'v fdF. 

Proposition 5.2. The following identities hold 

(5.6) 4 * =dF*+2Tiv/, 

D\ = D2 + 2TLVf. 

Proof The first identity is obvious. The second identity follows easily. • 
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b) The Witten Laplacian 

Set 

(5.7) dF = e'TUFeT^ 

6F = eTfdF*e~Tf. 

The operators dT 6F were introduced by Witten [W]. Clearly 

(5.8) (df)2 = 0. 

The complex (F,d£) will be called the Witten complex. 
Then 6% is the adjoint of d£ with respect to the scalar product ( , )F = 

( > )F,O. 

Proposition 5.3. 77ie map 

(5.9) a€F->e~T/aGF 

induces an isomorphism of the Euclidean complexes (F,dF,( , )F,T) <wd 
M , < , >F). 

Proof This is obvious. • 

Let DT be the operator 

(5.10) DT = d^ + 6lf. 

Proposition 5.4. The following identities hold 

(5.11) DT = e~TfDTeTf, 

D\ = e~TfD2TeTf. 

Proof This follows from (5.4), (5.10). • 

Let L^f be the adjoint of Ly/ with respect to the scalar product ( , )F. Then 
Ly/ + £y/ *s m operator of order 0 acting on F. Also c(V/) is defined as in 
(4.15). 
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Proposition 5.5. 
d£ = dF + Trf/A, 

(5.12) 6$ = dF* +Tivf, 
DT = D + Tc(Vf). 

Moreover 
(5.13) JD̂  = JD2 + r(Xv/ + ^ / )+r2 |d / |2 , 

D*T = D*-TuJ(F,gF)(Vf)+T £ (v£Mdf,ej) c(et) c(e,-) + T2|d/|2. 
l<l,j<Tl 

Proo/. The identities in (5.12) are obvious. Also 

(5.14) T>\ = D2 + T (dFivf + iVfdF) + T {dF*df A +df A dF*) + T2\df\2. 

From (5.5), we get 

(5.15) dF*df A +df A dF* = L*Vf. 
The first identity in (5.13) follows from (5.14), (5.15). Using the last identity in 
(5.12), we obtain 

(5.16) D\ = D2 + T [D, c(V/)] + T2\df\2. 
By (4.16) and by Proposition 4.12, we find that 

(5.17) [Ac(V/)]= ] T c(ei) c(VlMVf) - u;(F,gF)(Vf). 
l<i<n 

Using (5.16), (5.17) we get the last identity in (5.13). • 

c) A basic closed 1-form 

Here we prove an essential result, which is an analogue of a result of Bismut-Lebeau 
[BL2, Theorem 3.3]. 

Theorem 5.6. Let at^ be the I-form on R*+ x R+ 

(5.18) a,,T = Yt Tls lNexP (-tDr)] - dTTr* [/exP (-WT)] • 

Then aiyT is closed. 
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Proof. We proceed as in [BL2]. The vector space F is Z-graded, and so it is 
Z2 -graded. Let r e End(F) be the operator defining the Z2 -grading, i.e. r = +1 
on Feven,r = -1 on F°dd. Then End(F) is a Z2-graded algebra, the even (resp. 
odd) elements of End(F) commuting (resp. anticommuting) with r. Now the key 
fact is that dFdF* and DT are odd operators. Clearly 

(5.19) d 1 
dT2t 

Trs [jVexp(-tD|)] 

= 
1 d 
2 8b Trs iVexp -tD\ - b DT, 

dDT 
dT 6=0 

Since the supertrace Trs vanishes on supercommutators [Ql], we get 

(5.20) d 1 
dT2t 

Trs [Nexp (-tD$)] 

= 
1 d 
2db Trs [L>T,iV]exp -iDy - b dDT 

dT 6=0 
Now 

(5.21) [DT,N] = -dF + d£*. 

Moreover, using (5.3), (5.4), we get 

(5.22) dDT 
dT = [ 2 / , 4 1 -

So from (5.20H5.22), we obtain 

(5.23) d I 
dT2t 

Trs [Nexp(-tD^)} 

= 
d 
db 

{Tr8 [(dF - dF*) exp {-tD\ + b [dF*,f])] }6=0 . 

Also 
(5.24) [d!p*,Dl]=0. 

Using again the fact that Trs vanishes on supercommutators, from (5.23), (5.24), 
we get 

(5.25) d I 
&T2t 

Trs [Nexp(-tD^)] 

= 
d 
db 

{Trs [ [ 4 V F - 4 1 exp (-tD2T + bf)] }6=0 
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d 
= db 

{Tr8 [D2Texp(-tD2T + bf)]}b=0 

= 
d 
db 

{Trs [fexp{-tD2T + bD2T)]}b=0 

= -
d 
dt 

Tr8 [fexp(-tD2T)] . 

The proof of our Theorem is completed. 

Theorem 5.7. For t>0,T>0, the following identity holds 

(5.26) at,T = jt Trs [Nexp (-W2T)\ - dTTr8 [/exp (-W%)] 

Proof. Equation (5.26) follows from Proposition 5.4. 

d) A contour integral 

We fix constants e, A, T0 such that 0 < £ < 1 < A < +oo, 0 < T0 < +oo 

Let T = r£,A,To be me contour in R+ x R*+ 

t 

A 
r2 

r3 
R1 

8 
r4 

0 T0 T 

Figure 1 

86 



A CLOSED 1-FORM 

As shown in Figure 1, the contour T is made of four oriented pieces. 

(5.27) 

T1:T = TQ, e < t <A; 
r 2 : 0 < T < To, t = A; 
T3 : T = 0, s < t < A; 
r 4 : 0 < T < r 0 , t = e. 

The orientation of Ti, • • •, Г4 is indicated on Figure 1. 
For 1 < к < 4, set 

(5.28) T° -
rfc 

a. 

Theorem 5.8. The following identity holds 

(5.29) 
4 

k = 1 
4° = o. 

Proof This follows from Theorem 5.6. • 

Remark 5.9. The proof of Theorem 0.2 will now consist of two steps : 
— A first step is to make an adequate choice of the function / , and of the metrics 

g™ and gF. 
— A second step will be to make A —• +oo, T0 —• +oo, e -* 0 in this order 

in equality (5.29). Each term /£(1 < k < 4) will diverge at one or several of 
these stages. Once the divergences will have been substracted off, we will ultimately 
obtain an identity which is exactly Theorem 0.2. 
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VI. Some properties of the integral 

M 
0(F,gF) (Vf) * v (TM, V™) 

Let / : M -* R be a Morse function, and let V/ be the gradient field of / 
with respect to a given metric on TM. 

In this Section, we show that when the metrics gF,g™ vary, or when the 
gradient field V/ varies, the variation of -/M^(F,(/F)(V/)^(TM,V™) is 
essentially the one which is predicted by the anomaly formulas for the Ray-Singer 
metric, which were stated in Theorem 4.7. 

As explained in Section 7 b), this step permits us to reduce the proof of Theorem 
0.2 to the case where the metrics g™ and gF are as simple as possible. 

A by-product of Theorem 0.2 is that the integral - JM 0(F,/)(V/)*^(TM, 
V™) only depends on the metrics g™\gF and on the Thom-Smale complex 
associated to V/. In this Section, we give a more cohomological expression for 
this integral in terms of Chern-Simons forms and of the Euler number of a vector 
bundle on a cycle of codimension 1. 

This Section is organized as follows. In a), we show that the integral - fM9(F,gF) 
(V/)*^(TM, V™) is unchanged when replacing V/ by another gradient field 
for / . In b), we give variation formulas for this integral. Finally in c), we express 
the integral in a more cohomological form. 
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a) Homotopy invariance of the integral 

We make the same assumptions and we use the same notation as in Section 4. In 
particular M is a compact manifold and F is a flat vector bundle on M. 

Let / : M -» R be Morse function. Let B be the set of critical points of / . If 
x e B, let ind(a;) be the index of / at x. 

Let (g™,gF) and (g'™,g'F) be two couples of metrics on TM,F. We use 
the notation of Sections 4a) and 4b) for the couple (g™,gF). The corresponding 
objects associated to (g'™,g'F) will be denoted with a '. In particular, V/ and 
V'/ denote the gradient vector fields of / with respect to the metrics g™ and 
g'™. Let || ||detF and || ||detF be the metrics on the line bundle detF induced 
by gF and gfF . 

Recall that the current ^(TM, V™) on TM was constructed in Section 3d). 
By Remark 3.8, (V/)^(TM,V™) and (V7)*^(TM, V™) are well-defined 
locally integrable currents on M with values in o(TM), which are smooth on 
M\B. Moreover they verify the equation of currents 

(6.1) d(V/)*^(TM,V™) =e(TM,V™) - ^ ( - l ) indW^, 
x£B 

d{Vf)*xl>(TM,V™)=e(TM,V™) - £(-l)ind<x>6ie. 
xeB 

Proposition 6.1. The following identity holds 
(6.2) 

- / 6 (F,gF) (V/)> (TM, V™) = - / 0 (F,gF) (V ' / )> ( ™ , V™). 
J M JM 

Proof. For i G [0,1], set 

(6.3) gJM = (l-£)g™ + £g'™. 

Let V¿/ be the gradient of / with respect to the metric gJM. Then V¿/ 
has the same zeroes as V/. Using the current equation (6.1) over M x [0,1], 
we deduce that the closed current (V/)*^(TM, V™) - (V7)*^(TM, V™) is 
exact. Since the form 0(F, gF) is closed, equation (6.2) follows. • 
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Remark 6.2. The vector fields V'/ are exactly the gradient vector fields for / in 
the sense of [SmlJ. Let g : M —• R be another Morse function having the same 
critical points as / with the same indexes. Laudenbach has shown to us that in 
general, the vector fields V/ and Vg are not homotopic in the class of vector fields 
which exactly vanish on B and are nondegenerate at B. Also in general the integrals 
- /Me(F, / ) (V/ )^(TM,V™) and -/Mfl(F,/)(Vfl)^(TM,V™) take 
different values. The counterexample of Laudenbach is very simply constructed on 
the 2-dimensional torus. 

b) Variation formulas for the integral 
-jM d(F,gF) {Vf)^v{TM, V™). 

Here we study dependence of - JM 0(F, gF)(Vf)*tp(TM, V™) in terms of gF 
and V™. 

Theorem 6.3. The following identity holds 

(6.4) - / 0{F,g'F){Vf)*^{TM,V™)+t 0 ( F , 9 F ) ( V / ) > ( T M , V T M ) 
J M JM 

= f Log ( l ü ! | i i A e (TM, V™) - f 0 (F,g'F)e(TM,V™,V'™) 
JM VII ILtp/ JM 

x E B 
(-1) ind(x) Log 

'2 
det FX 
2 
det FX T 

Proof. Clearly 

(6.5] 0{F,g'F)-6(F,gF) = d Log 
'2 
det F 2 
det F 

Using the equation of currents (6.1), and (6.5), we get 

(6.6) 
M 

(6 (F,g'F) - 9 (F,gF)) (V/)> (TM,V™) 

M 
Log 

'2 detF 
|2 
det F 

e (TM, V™) -
x E B 

(-D ind(x) Log 
,2 
det FX 2 
det Fz 
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Also by (3.34), we obtain 

(6.7) - / 0 [F,g'F) ((V/)> (TM, V'™) - (V/)> (TM, V™)) 
JM 

= - f в (F,g'F) e (TM, V™, V'™). 
JM 

Then (6.4) follows from (6.2), (6.6), (6.7). 

Let #i, • • •, xq be the elements of B. 
Let (£,x) e R x M —> fi(x) e R be a smooth function such that /0 = / . 

Then there exists e > 0 such that if |̂ | < 2e, ft is a Morse function. Let Bi be 
the set of critical points of fa. Then if e > 0 is small enough, there are smooths 
maps £ G] - £, e[—• â ?£ EM (1 < i < q) such that a?i,/, xq,l, are the critical 
points of ft, and their index does not depend on £. 

Proposition 6.4. For \£\ < e, the following identity holds 

(6.8) 
д 
de (- JM в (F,gF) (VfeT Ф (TM, V™)) 

= _J2(-ir**<-<e(F,9r) (°%A. 
i=0 ^ ' 

Proof Using again the fact that the form 0(F gF) is closed and the equation of 
currents (6.1), we get (6.8). 

Remark 6.5. A comparison of formulas (3.13) and (6.4) shows that they are not 
unrelated. Theorem 0.2 gives a precise content to their similarity. 

In Section 16, by using Laudenbach's explicit description of the deformation of 
the Thom-Smale complex along a Cerf path [Ce] connecting two Morse functions, 
and also Proposition 6.4, we will give a direct proof of a formula calculating the ratio 
of two Milnor metrics, which does not rely on Theorem 0.2. 
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c) A cohomological expression for the integral 
-JMe0(F,gF)(Vf)*i P(TM, V™). 

Let K' be a smooth triangulation of M such that K>n~l fl B = 0. Over each 
simplex o E íí'"^'71"1, the 1-form 0 has a primitive V ,̂ Le. 

(6.9) dVa = 0(F,gF) on a. 

Of course Va is smooth on a. 
Let V be the locally integrable current of degree 0 on M, such that for any 

a G K'n\K'n~l, V coincides with Va on cr. Obviously, there is a closed current 
7 of degree 1, whose support is included in Kn~l, such that 

(6.10) dV = 0(F,gF)-r 

In particular the support of 7 is included in M\B. 
Over M\B, the vector bundle TM has a nonzero section V/. By Chern-

Simons theory, there is an unambiguously defined class e(TM,V/,V™) of 
smooth forms of degree n - 1 on M\B, which is defined modulo exact smooth 
forms on M\B, such that 

(6.11) de(TM,V/,VTM) =e(TM,V™) on M\B. 

Of course, 

(6.12) e (TM, V/, V™) = 0 if n is odd . 

The quotient vector bundle -fyjj is well-defined on M\B. Let e(^yjj) denote 
the corresponding Euler class. Then e(-fyjy) isacohomologyclasson M\B, with 
values in the orientation bundle o(^yjj) of ^ J J - Of course, 

(6.13) e ^jy^j,^ = ^ if^is even. 

Moreover it is clear that 

(6.14) o ( ^ ^ ) = o(TM) over M\5. 

Therefore j e ( j ^ ) t m is a cohomology class on M with values in o(TM), and the 
integral sm JM7e(^jj) is well-defined. 
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Theorem 6.6. The following identity holds 

(6.15) - / 9 ( F , / ) ( V / ) ^ ( T M , V ™ ) = / Ve (TM, V™) 
JM JM 

- J2(-ird^V(x) - JMj(e(TM,Vf,V™) - \e ( ™^)) . 
k c B 

Proof Using (6.1), (6.10), it is clear that 

(6.16) - / fl0(F,/)(V/)*^(TM, V™) 
JM 

= [ F e ( r M , V ™ ) - r ( - l ) i n d W ^ ) - / 7(V/)*^(TM,V™). 
JM XEB JM 

Let TML be the orthogonal bundle to V/ in TM over M\B. Then over 
M\B, TM = { V/} 0 TM±. Over M\B, we can equip TM = {V/} 0 TM1 
with the connection V™ = V{v/} © VTM± which is the direct sum of the 
projections of V™ on {V/} and TML. The connection V™ still preserves 
the metric g™. Using (3.34), we find that 

(6.17) (V/)* </> (TM, V™) - (V/)* </> (TM, V™) 

= -e (TM, V™, V™) on M\£. 

Also one sees easily that 

(6.18) e(TM,V™,V™) = -e(TM,V/,V™) 

Moreover by using the explicit formula (3.19), one finds that if /3T is the form 
PT in associated to the connection V™, then 

(6.19) (V/)*£r = - 6 X P ( ~ % / | 2 ) | V / | e ( T M \ V ™ X ) , 

and so 

(6.20) (V/)* V (TM, V™) = - i e (rMx,VTMi) . 

Using (6.16M6.20), we get (6.15). • 

94 



SOME PROPERTIES OF THE INTEGRAL 

Remark 6.7. When n is odd, (6.15) takes the form 

(6.21) - / 0 {F,gF)(Vf)*^{TM,W™) 
JM 

= -
x E R 

(-1) jnd(x) V(x) + 
M 

7 
1 
2 e 

TM 
{V/} 

Equations (6.15) and (6.21) exhibit clearly how the integral - JM 0(F, gF)(Vf)* 
ip(TM,V™) depends on the gradient field V/. 
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VII. An extension of a theorem of Cheeger and Müller 

In this Section, we establish the main result of this paper, which was stated in 
Theorem 0.2. Namely we give an explicit formula relating Ray-Singer metrics to the 
Milnor metrics on the determinant of the cohomology of a flat vector bundle. This 
generalizes the basic result of Cheeger [C] and Miiller [Mii 1,2]. Also, we establish 
Theorem 0.3. 

This Section is organized as follows. In a), we restate for convenience the main 
result of this paper in Theorem 7.1. In b), by using the results of Sections 4 and 6, we 
show that we only need to establish Theorem 7.1 under simple assumptions on the 
metric g™ on TM, on the Morse function / , and on the metric gF on F. In 
c), we state without proof nine intermediary results, which will play a crucial role in 
establishing Theorem 7.1. The proofs of these results are delayed to Sections 8-15. 

In d) starting from the crucial identity ]Cl=i Ik = 0 established in (5.29), 
we study separately the terms /£(1 < k < 4), by making in succession A —> 
+oo,T0 —• +oo,£ —> 0. Each term diverges at one or several stages. In e), we 
verify that the divergences of the terms /£(1 < k < 4) are compatible with our 
basic identity. We obtain in Theorem 7.19 an identity, which is shown in f) to be 
equivalent to Theorem 7.1. Finally, in g), we prove Theorem 0.3. 

The organization of this Section is closely related to the organization of Section 6 
in Bismut-Lebeau [BL2], We have tried to make the resemblance as obvious as 
possible, although at many stages, the arguments are of an entirely different nature. 

Throughout the Section, the assumptions and notation of Sections 1-6 will be in 
force. 
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a) An extension of the Cheeger-Miiller theorem 

We make the same assumptions as in Section 1. 
Let g™,gF be arbitrary smooth metrics on TM,F. Let || ||<fe? #«(M,F) ^ 

the corresponding Ray-Singer metric on the line det H* (M, JF). 
Let / : M —• R be a Morse function, and let B be the critical points of / . Let 

X be the gradient vector field of / with respect to a given smooth metric gQM on 
TM (which does not necessarily coincide with the metric g™ ). We assume that 
the gradient vector field X verifies the Smale transversality conditions [Sml,2]. 

The metric gF on F induces metrics || ||detFx on the lines detFx (x G B). 
^ II HdeT#»(MF) be the corresponding Milnor metric on det H*(M, F). 

The main result of this paper is the extension of a theorem of Cheeger [C] and 
Miiller [Mii 1,2], given in Theorem 0.2, which we restate for convenience. 

Theorem 7.1. The following identity holds 

(7.1) Log 
RS 
det H9(M,F) 
det #»(M,F) 

2 
= -

M 
6(F,gF) X*i/>(TM, V™). 

Proof The proof of Theorem 7.1 will occupy the rest of this Section. It relies on 
nine intermediary results stated in Theorems 7.6-7.14, whose proofs are delayed to 
Sections 8-15. • 

Remark 7.2. Assume that the metric gF is flat, or more generally that the metric 
|| ||det F on the line bundle det F is flat. Then by Remark 1.10, || ||^^.(MiF) 
coincides with the Reidemeister metric || \\fetH*(M,F)- ^so ^(^9F) = 0- From 
Theorem 7.1, we thus effectively recover the theorem of Cheeger [C] and Miiller 
[Mii 1,2]. 

b) Some simplifying assumptions on the metrics g™\ gF 

Let g,TM\g'F be another couple of metrics on TM, F. We denote with a 1 all 
the objects associated to the metrics g'™, g'F. 
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By Theorem 4.7, we know that 

(7.2) Log 
'RS 
det H•(M,F) RS 
det H*(M,F) 

2 

M 
Log 

,2 
det F 2 
det F 

e(TM,V™) 

- / fl0(F,/) e (TM,V™,V/rM). 
JM 

If # £ B, let ind(x) be the index of / at x. By the very definition of Milnor 
metrics, it is clear that 

(7.3) Log 
'M, X 
det tf*(M,F) 
M, X 
det H*(M,F) 

2 

= 
xeB 

(-i) ind(x) Log 
'2 
det Fx 2 
det Fx 

So from (7.2), (7.3), we get 

(7.4) Log 
'RS 
det ̂ •(M,F) 
FM,X 
det H*(M,F) 

2 
-Log 

RS 
det if •(M,F) 
det H*(M,F) 

2 

= 
M 

Log 
,2 
det F 2 
det F 

e (TM, V™) -
M 

6 (F,g'F) e (TM,V™, V™) 

xeB 
(-1) ind(x) Log 

'2 
det Fx 2 
det Fx 

Using Proposition 6.1, Theorem 6.3 and (7.4), we see that 

(7.5) Log 
'RS 
det H*(M,F) 

2 

det f/#(M,F) 
-Log 

RS 
det i/»(M,F) 
det H*(M,F) 

2 

- - / 0(F,g'F)X*il>(TM,V™)+ f 9(F,gF)X*il;(TM,V™). 
JM JM 

By (7.5), it is clear that to establish Theorem 7.1 in full generality, we only need 
to establish (7.1) for one given couple g™, gF of metrics on TM, F. So in the 
sequel, we may and we will assume that g™ = gJM, i.e. g™ is exactly the 
metric from which the gradient vector field X is defined. Equivalently, we will 
suppose that X = V/. Also we will assume that the metric gF is flat near B. 

For z G M, a > 0, let BM(z,a) be the open ball of center z and radius a 
with respect to the Riemannian distance associated to g™. 
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By a simple argument of Helffer-Sjostrand [HSj4, Proposition 5.1], for any 
a > 0, there exists a Morse function fQ : M -+ R, and a metric g™ on TM, 
which have the following properties : 

— /«,5™ coincide with f,g™ on M\\Jx£BBM(x,a). Moreover fa 
has the same critical points as / with the same indexes. 

— Near xeB, there is a coordinate system y = (j/1, • • •, j/n) on M centered 
at x such that near z 

9ÍM = 
n 

1 
dy i I2 

(7.6) fa(y) = f(x) - 1 
2 

ind(a;) 

1 

i 2 
y'\ + 

1 
2 

n 

ind(x)+l 

i2 
У • 

—The gradient vector field VQ/a of /a with respect to the metric g™ verifies 
the Smale transversality conditions. Also if (C*(Wu,F),d) and (C\WZ,F),d) 
are the Thom-Smale complexes associated to the gradient vector fields V/ and 
VQ/a, the obvious map C'(WU,F) C*(W£,F) identifies the two Thom-
Smale complexes. 

Let II lldet Ht M,F) by ^ Milnor metric on the line det H* (M, F) associated 
to the gradient vector field VQ/a and to the metrics || ||detFx on the lines 
det Fx (x.e B). Since the Milnor metric only depends on the associated Thom-
Smale complex and on the metrics || |[det FX (X £ B), it is clear 

(7.7) det #»(M,F) M,Va/a 
det H*(M,F) ' 

Let V™ be the Levi-Civita connection on (TM, g™). Let || ||£f #.(M,F),a 
be the Ray-Singer metric associated to the metrics {g&M,gF) on (TM,F). By 
(7.2), (7.7), we see that 

(7.8) Log 
RS 
dettf*(M,F),a M,VQ/a 
det tf»(M,F) 

2 
-Log 

AS 
det H*(M,F) M,V/ 
det H*(M,F) 

2 

= - f 6(F,gF)ë(TM,V™,V™) 
J M 
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Using Theorem 6.3 and (7.8), we see that 

(7.9) Log 
RS 
det H*(M,F) 

det H*(M,F),a 

2 
- Log 

RS 
ietH*(M,F) 
M,V/ 
det H*{M,F) 

2 

= - [ 0(F,9F) ( V ^ a ) > (TM,V™) + / e (F,gF) (Vf^*v{TM, V™). 
JM JM 

Since V/ = Va/Q on M\ \JxeB BM(x,a), by using Theorem 6.6, it is clear that 
for a > 0 small enough, then 
(7.10) 
- / 0 (F,gF) (V/a)*V (TM, V™) =- f 0 (F,gF) (V/)*V (TM, V™). 

JM JM 

So from (7.9), (7.10), for a > 0 small enough, we get 

(7.11) Log 
RS 
det H*(M,F) 

det H*(M,F),a 

2 
-Log 

RS 
det H*(M,F) 
M,V/ 
det H*(M,F) 

2 

= - / 0 (i*1,9F) (Va/a) V (TM, V™) + / ^ (F, 5F) (V/)> ( ™ , V™). 
JM JM 

So we deduce from (7.11) that, to establish (7.1) in full generality, we may and 
we will assume that: 

— For any x e B, the metric gF is flat near B. 

— For any xeB, there is a system of coordinates y = (y1, • • • yn) centered at 
x such that near x 

(7.12) g™ = n 

1 
dy' 2 /(y) = /(*) -

1 
2 

ind(x) 

1 
yi 2 + 1 

3 
n 

ind(a0 + l 
y' 2 

Remark 7.3. Recall that the vector field V/ depends on the metric g™. Using 
Proposition 6.1 and Theorem 7.1, one deduces that the Milnor metric || ||JetH>(M,F) 
does not depend on the metric g™. A direct proof of this result is given in 
Section 16, by using the results of Laudenbach in the Appendix. 
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c) Nine intermediary results 

For 1 < i < n, let M* be the number of x € B of index i. Set 

(7.13) 

n 
x(F) = y£(--i)idìmHi(MìF), 

О 
n 

X'(F) = £(-1)г'г dim Я»'(М, F), 
о 

Then x{F) is the Euler characteristic of F, and x'{F) is the derived Euler 
characteristic of F. Clearly, 

(7.14) X(F) = rk(F)£(-l)ind(*). 
хев 

Set 
n 

(7.15) x'(F) = rk{F) J^(-l)lnd(*) ind(x) = rk(F) £ ] ( - l ) W , 
x€B i=0 
Trf[/] = E ( - i r d w / ( x ) . 

xeB 
We use the notation of Sections 3 and 5. In particular for T > 0, BT is given by 
(3.47) and the scalar product ( , F,T on F is defined in (5.2). 

Definition 7.4. For T > 0, let F^'1](resp. F '̂1],resp.F5?}) be the direct sum of 
theeigenspacesof D\ associated to eigenvalues A G [0, l](resp. A e]0,1], resp. A = 0) 
Let Z4'[0'1](resp. D2j]0>1]) be the restriction of D\ to Fl^1](resp. to F1̂ '11). 

For T > 0, let P^^^resp.P^^^resp.Pr) be the orthogonal projection 
operator from F on F^'1' (resp .FJJ!'1', resp .F̂ 0*) with respect to the scalar product 
( , )F,T. SttP]Th+oo[ = l-P^1]. 

Definition 7.5. For T > 0, let | |fef ^•(M,F),T ^ ^ ^2 metric on the line 
det H* (M, P) constructed in Section 2a), which is associated to the metrics g™, gF 
on TM,F. 

In the sequel, we assume that the simplifying assumptions of Section 7 b) are 
verified. 
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We now state without proof nine intermediary results, which will play an essential 
role in the proofs of Theorem 7.1. The proofs of these results are delayed to Sections 
8-15. 

Theorem 7.6. The following identity holds, 

(7.16) lira 
T—>-+oo 

Trs [iVLog D2,]0,l) + Log 
RS 
det H*(M,F),T 
det H*(M,F) 

2 

+2rk(F)Trf[/]T+ N 
2 X(F) - x'(F) Log 

T 
7T 

= Log 
M,V/ 
det if •(M,F) 
RS 
det tf*(M,F) 

2 

Theorem 7.7. Given e, A with 0 < e < A < +oo, there exists C > 0 such that 
zyte[e,A],T>l, then 

(7.17) |Trs [iVexp {-tD2T)] - %(F)\ < C / VT 

Theorem 7.8. For any t > 0, 

(7.18) lim Trs iVexp ( -^)41'+OO[ = 0. 

Moreover there exist c > 0, C > 0 shc/i that for t > 1, T > 0, f/tew 

(7.19) Trs [iVexp (-tC^) P^'+oo[| < cexp(-C**). 

Theorem 7.9. For T > 0 targe enough, then 

(7.20) dim F£'1]'J' = rk(F)M\ 

/4/so 

(7.21) lim Tr D*'10'11 
T-+oo J 

= 0. 

Theorem 7.10. As t 0, the following identity holds, 

(7.22) Trs [iVexp (-tD2T)] = ^X(F) + 0(t) ifn is even, 

= r k ( F ) / T . 
JM J 

Lexp + 0(y/i) ifn is odd. 
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Theorem 7.11. For any t > 0, there is c> 0 such that as T -* +oo, 
(7.23) 

Tr8 [/exp (-tDT)\ = rk(F) Trf [/] + ( ^ ) - ^x'(^)) ^ + 0 (e~cT) . 

Theorem 7.12. For any d > 0, f/iere exwtt С > 0 SKC/I that for 0 < t < 1, 
0 < T < f, f/ien 

(7-24) | iJTr. [/ехр(-(Ш + Гс(У/))2)] -

rk(F)^/JBexp(-BT,) + tj^ 0/2 {F, g F) J*df exp(-BT2)}| < C. 

Theorem 7.13. For any T > 0, fne following identity holds, 

(7.25) lim 1 
t2 Trs /exp tD + 

T 
t W ) 2 -rk(F)Trf[/] 

= n 
4 x(iO- 1 

2 ;X'(F) 1 
Ttanh(T) 

Theorem 7.14. There exist c> 0, C > 0 swc/i //wf/or f e]0,1], T > 1, then 

(7.26) 1 
t2 Trs /exp -ltD + 

T 
t 

OT) E3 -rk(F)Trf[/] 

t2 
T 

n -x(^) - 1 
2 
;X'(F) < cexp(-CT). 

Remark 7.15. Sections 8 and 9 are devoted to the proof of the crucial Theorem 7.6, 
Section 10 to the proof of Theorems 7.7, 7.8 and 7.9. Each of the Sections 11-15 is 
devoted to the proof of one of the Theorems 7.10-7.14. 

d) The asymptotics of the I® 's 

Here we use the notation of Section 5. We start from the identity (5.29) 

(7.27) 
4 

fc=l 
4o = о. 
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We now will study individually each 1% (1 < k < 4), by making in succession 
A —• +oo, T0 —• +oo, s —• 0. 

1) The term J? . Clearly 

(7.28) i j = 
A 

e 
Tr.[JVexp (-*£>?.„)] dt 

2< 

a) A —• +oo 

As A —• +oo, 

(7.29) Jj - 1 

= 

2 V(F)Log(A)-> 7
1 

В = 
1 

2 
Tr.[JVexp (-*£$,)] dt 

2< 

+ 
+ oo 

1 
(Trs[Nexp(-tD2To)]-X'(F)) dt 

2t 
8) T0-»+oo 
By Theorem 7.7, we see that as T0 —• +00, 

(7.30) •1 

e 
Trs [Nexp(-tD^)] dt 

2t 
E 
2 
:x'(F)Log(e). 

Moreover we have the obvious identity 

(7.31) +00 

1 
(Trs [Nexp(-tD2To)}-X'(F)) dt 

2t 
+00 

1 
Trs [Nexp(-tD2To)P%1]' dt 

2t 
+00 

1 
Tra[Nexp(-tD2To)P%+°°1' dt 

2t 
By definition, 
(7.32) 

+00 
1 

Trs \Nexp {-tDl0) Pj?'1] dt 
2t 

+00 
'1 

Trs [iVexp (-t D2 T0) PT010'1]) dt 
2t 

and so 

(7.33) 
+00 

1 
Trs Nexp(-tD2To)P¥0'1]' dt 

2t 

= Trs 
•1 

D2T0 [0,1] iV(e- ' - l ) dt 
2t 

P ]o,i] 
T0 

+ Trs NP ]o,i] 
To 

.+00 

1 
e -t 

oft 
2f 

1 
2 
Trs iVLog^f'1');) 
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Moreover, 

(7.34) Trs l 
D 2,[0,1] To 

iV(e- ' - l ) dt 
2t P To 

]o,i] 

= Trs 
1 

D To ,2,[0,1] 
Nfe-*-!) dt 

2t P To 
[0,1] 1 

2 
X'(F) 

1 

0 
(e-« - 1) dt 

t 
Using Theorem 7.9 and (7.34), we see that as T0 —• +oo, 
(7.35) 

Tr8 
l 

D l2,[0,ll To 
N (e-* - 1) 2t P ]o,i] 

To 
n 
2 (X'(F° - X'(F)) 

1 

0 
( e - - 1) dt 

t 

Similarly, 

(7.36) Trs NF J0.1] To = Tr8 EE [0,1] To - X' (F). 
From Theorem 7.9 and (7.36), we find that as T0 +oo, 

(7.37) Trs NP 10,1]' To 
+oo 

1 
e -1 dt 

2t 
U 
2 

(X'(F) - x'(F)) 
-00 

1 
e -t dt 

t 
Moreover, one has the trivial identity 

(7.38) r'(l) = l 

o 
(c-« - 1) dt 

t + 
+00 

D 
e -1 dt 

t 
From (7.33), (7.35), (7.37), (7.38), we see that as T0 -» +oo, 

(7.39) +oo 
1 

Trs N exp (-tD^J P Jo,i] 
To 

dt 
2t + 1 Trs iVLog D (2,]0,1] To 

1 
2 r'(l)(x '(F)-X'(F)). 

Also by Theorem 7.8, we find that as T0 —• +00, 

(7.40) +00 

1 
Trs N exp (-tD\) P ,]l,+oo[ 

To 
dt 
2t 0. 

Using (7.29), (7.30), (7.31), (7.39), (7.40), we get 
(7.41) 
I l l 

1 
2 

Trs AT Log D 2,]0,1] 
To -A2 = - l 

2 y'(F)Log(e)+ 1 
2 T'(l)(x'(F)-x'(F)). 

7 g^Q 
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Set 

(7.42) I31 = \r'(l) (x'(F) - X'(F)). 

Clearly 

(7.43) IÌ + \x'(F)Log(e) = ll 

2) The term 7° • We nave me obvious equality 

(7.44) J2° = / ° Trs [/exp {-AD2T)] dT. 
Jo 

a) A —» +OQ 

Clearly, as A —» +00, 

(7.45) J2° - , /1 = 
To 

0 
Trs [fPT]dT. 

Proposition 7.16. The following identity holds 

(7.46) Il = - 1 
2 

Log 
RS 
det ff«(M,F),To 

its 
dettf»(M,F) 

2 

Proo/. We proceed as in [BL2, Theorem 6.12]. By .Hodge theory the map s G 
p{o} _> pT s e Ft(0) is me canonical isomorphism of F<°> with FT0} ( these 
two finite dimensional Z-graded vector spaces are identified with H*(M,F)). In 
particular, if s G F*°>, 0 <T < T\ then 

(7.47) PT'S = PT'-PTS-

Using (7.47), we see that if s G F<°>, s' G F<°>, thei 

(7.48) 
d 

dT 
{PTs,PTs\T 

= 
dPT 
dT 

PTs,PTs' 
F, T 

+ PTs, 
dPT 
ÔT 

PTs' 
F,T 

-2(fPTs,PTs')^T. 

Since PT = PT, then 

(7.49) 
dPT 
dT 

PT + PT 
dPT 
dT = 

dPT 
dT 
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From (7.49), we deduce that ApT^ maps F̂ 0} in its orthogonal with respect to the 
scalar product ( )F,T- We then rewrite (7.48) in the form 

(7.50) ^ (PTs, PTS\T = -2 (fPTs, PTs%,T. 

Using (7.50), we obtain 

(7.51) ^ L ° g ( l CH-(M,F),T)2 = -2Trs [/PT]. 

From (7.51), we get (7.46). • 

ß) To -++00 
Tautologically 

(7.52) 4 + 1/2 Log 
RS 
det/f»(M,F),T0 RS 
det ff»(M,F) 

2 
= 0. 

7) g ^ O 
Nothing is left. 

3) The term 1% . Recall that D = DQ. We have the identity 

(7.53) /3° = - ^ T r s [ i V e x p H i ) 2 ) ] g . 

a) A +OQ 

Clearly, as A —• +00, then 

(7.54) /3° + l-X\F) Log(A) -> i* = - jT Trs [^exp Hl>2)] | 

-^+0°(Tr8[iVexpHi)2)]-X'(P))^. 

/3) Tp -> +00 
As T0 —> +00, J31 remains constant and equal to If. 
7) g ^ o 
Set 

(7.55) a_x=rk (P) / / Lexp I it™ 
2 «0 = ^X(F). 
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Observe that 
a_i =0 if n is even, 

(7.56) 
do = 0 if n is odd. 

By Theorem 7.10, we know that as t —• 0, 

(7.57) Trs [TVexp {-tD2)] =a0 + 0(t) if n is even, 

= 
a-i 
Vt 

+ 0(Vt) if n is odd. 

From (7.57), we see that as t —• 0, then 

(7.58) Trs [Nexp(-tD2)] = C - 1 
yTt 

+ a0 + O(Vt). 

Using (7.58), we find that as e —• 0, then 

(7.59) J? + rk(F) 
M 

B 
Lexp 

RTM 

2 
1 

VE 4 
X(F)Log(£) 

r3 _ _ —• ¿3 — — 1 

0 
Trs L/Vexp(-tD2)] - C -1 

VT — a0 
dt 
2t 

l 

+oo 
Trs [TVexp (-tD2)] - x'(-F) 

d< 
2* 

+ rk(F) 
M 

B 
Lexp 

R™ 

2 

6) Evaluation of Jf 

Recall that the function 0¥(s) was defined in Definition 2.1. 

Theorem 7.17. The following identity holds 

(7.60) 
T3 -J3 — 

100F 
2 ds 

(0)- n 
4 :x(*0 - D 

0 
: x W r'(l). 

Pwo/. For s 6 C,Re(s) > dim M 
2 , using (7.58), we get 

(7.6i) ew(s) = - l 
T(s) 

1 

E 
t-1 Trs [iVexp(-tD2)] - a_i 

Vt — o-o dt 

-
1 

T (S) 
+ 00 

1 
t s-1 Trs[iVexp(-<£>2)] -x'(F) dt 

- a-i 
T(s) (s - i) 

(an - X'(F)) 
T(s +1) 
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From (7.59), (7.61), we get (7.60). • 

4) The term I\. Clearly 

(7.62) 1° = - / ° Tr8 [/ exp (-eDl)] dT. 
Jo 

a) A —> +oo 
The term 1° remains constant and is equal to I\. 
p) T0 -» +00 
By Theorem 7.11, we know that there exists c > 0 such that as T —• +00, 

(7.63) 

Tr8 [/exp {-eDl)} = rk(F)Trf [/] + (^x(F) - ^ № ) ) ^ + O (c"cr). 

Using (7.62), (7.63), we see as T0 +00, 

(7.64) I\ + rk(F) Trf [/]T0 + (jX(F) - \x'{F)} Log (T0) 

- 742 = - T (Tr8 [/ exp (-£JDt)] - rk(F) Trf [/]) 
Jo 

- ^+°° {Trs [/ exp (-eDT)} - rk(F) Trf [/] - (^X(F) - ±x'(F?) 1 } dr. 

7) g^O 
As in Bismut-Lebeau [BL2, Section 6, eq. (6.57)], this step is quite difficult. Set 

(7.65) e' = y/e. 

Put 

(7.66) J° = -
1 

0 

1 
e' 

(Trs /expf-e'2!)2^) - rk(F)Trf [ / ]W, 

7° - -J2 — -
.1/,' 

'i 
1 
e' 

(Trs /exp(-£2£>T/e,) -rk(F)Tr?[f]) dT, 

7° - -
+oo 

1 
1 

e'2 
Tr3 /exp (-e2D2 ,2 -rk(F)Trf[/] 
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- e'2 n 
4 

X (F) - 1 
2 

X'(F) 1 
T dT. 

Clearly 

(7.67) 1% — J® -\- J% -\- J3 — n 
4 

X(F) - 1 
2 ;X'(F) Log(e). 

By Theorem 7.12, there exists C > 0 such that for e €]0,1], T e [0,1], 

(7.68) Trs /exp -e2£>2,£, -rk(F) 
M 

f 
B 

exp(—By2) 

+ E' 
M 

e 
2 

(F, gF) 
B 

d/exp(-5T2) < Ce'2. 

From (7.66), (7.68), we see that as e —• 0, 

(7.69) J^+rk^ ) 
l 

o M 
f 

B 
exp (—5xz) — 

x E B 
(-l)ind<x>6. 

dT 1 
VE 4 = 

1 
2 

Q 

0 M 
0 (F, gF) B 

df exp (—BT*) dT. 

Also 

(7.70) J2° = - 1 

0 
1 

e'2 
Trs /ехр - P 2 Г)D2 T/e' 2 -rk(F) 

M 
f 

B 
exp (-B(T/el)2) 

+e' 
M 

e 
2 (F,9F) 

B 
dfexp(-B(T/e,y) }dT 

MF) 
e' 

l/e' 

1 M 
f 

B 
exp (—BT2) — 

xeB 
X - i ) |ind(x) dx dT + 

1 
2 

•l/e' 

1 M 
0 (F, gF) 

B 
d/exp(-5r2) iff. 

By Propositions 5.4 and 5.5 and by Theorem 7.13, we know that for T > 0, as 
e*-» О, 

(7.71) 1 
e'2 

Trs /exp {-e2D2 TE/2 -rk(F)Trf[/] 

n 
4 
:*(F) - 1 

2 x (F) 
cosh(T) 

Tsinh(T) 
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With the notation of (3.59), using (7.12), we find that if x 6 B, then 

(7.72) Tr [A-1] = n - 2 ind(x). 

By Theorem 3.20, we see that for T > 0, as e' -> 0, then 
(7.73) 
1 

e'2 M 
f 

B exp (-B(X/e,)2)- Trf B[f] 1 
rk(F) 

n 
4 

X(F)- 1 
2 

X'(F) 1 
J>2 ' 

1 
e' M 

0 
2 (F,9F) 

B 
dfexp (-B(T/e'y) -»• 0. 

Using (7.71), (7.73), we find that for T > 0, 

(7.74) lim 1 
e'2 Trs /exp - E' D2 T/e'7 - rk(F) 

M 
f 

B 
exp(-B(T/£-)2) 

+6' 
M 

0 
2 

(F, gF) 
B 

d/exp(-B(T/e,)2) 

= n 
4 X' (F) E 

E 
; № ) cosh(T) 

sinh(T) 
0 
T 

I 

T' 

On the other hand, by Propositions 5.4 and 5.5 and by Theorem 7.12, we know that 
there exists C > 0 such that for 0 < e' < 1, s' < T < 1, then 

(7.75) 1 
e'2 

Tr8 /exp F 2 Г)2 
-e L>T/e>2 

- MF) 
M 

f 
B 

exp(-B(T/e/)2) 

+ E' 
M 

0 
2 (F,9F) 

B 
d/exp(-jB(T/e/)2) < c. 

Using (7.74), (7.75) and dominated convergence, we find that as e —> 0, 

(7.76) - 1 

e 
l 

e'2 
Trs /exp _T2n2 

6 Tie'2 
- rk(F) 

M 
f 

B 
exp (-JB(T/£,)2) 

+ E' 
M 

0 
2 

(F, gF) B 
d/exp (-B(T/e.)2) dT 

— - n 
4' x ( ^ ) -

1 
2 X' (F) 

.1 

'0 
cosh(T) 
sinh(T) 

1 
T 

dT 
T 
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Also by using in particular Theorem 3.20, we get 

(7.77) 1/e' 

l M 
f 

B 
exp (—BTI) — 

x£B 
(-1) ind(x) 6X dT 

= 
+oo 

1 M 
f 

B 
exp (—BT*) — 

x£B 
(-i) |ind(x) 8X dT 

+oo 

l/e' M 
f 

B 
exp (—BT*) — 

xeB 
(-i) ind(x) dx 

1 
T2 rk(F) 

n 
4 •x(f) - 1 

2 "XW d T - E' 
rk(F) 

n 
EJ 

X' (F) l 
2 x W 

By Theorem 3.20 and by (7.72), we find that 

(7.78) 1 
E' 

+oo 
l/e' M 

f B 
exp (—BT*) — 

xeB 
(-i) ind(ar) dx 

1 
r2 rk(F) 

n 
4 X (F) - 1 

2 X' (F) dT < Ce'. 

Using (7.77), (7.78), we see that as e -> 0, 

(7.79) rk(F) 
e' l 

1/e' 

M 
f B 

exp (—B^) — 
xeB 

(-1) ,ind(aj) 6X dT 

= -rk(F) +oo 

1 Af 
f 

B 
exp (—Bra) — 

x E B 
(-1) ind(x) dT 1 

VE 

+ n xW l 
2 •xW + o Vi). 

Finally, by Theorem 3.18, we find that as e -+ 0, 

(7.80) 1 
2 

1/E' 

9 M 
e(F,gF) 

B 
d/exp(-J5T2) dT 

o 
2 

+oo 
1 M 

0(F,gF) 
B 

d/exp(-BT2) dT 
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From (7.70), (7.76), (7.79), (7.80), we see that as e -+ 0, 

(7.81) 4 + rk(F) +oo 

1 M 
f B 

exp (—BT*) — 
xeB 

(-i) ind(x) 6X 

dT 1 
V. 

Jl = - n 
4 X' (F) 

1 
2 
X' (F) 

a 

0 

cosh(T) 
sinh(T) 

1 
T 

dT 
T 

+ n 
4 X(F)- 1 

2 
•X'(F) + 

1 
2 

+oo 

1 M 
0(F,9F) 

B 
dfexp(-BT2) dT. 

By Theorem 7.13, we find that for T > 0, 

(7.82) 1 
e'2 TRs /exp fr'2 Г)2 -rk(F)Trf[/] 

-e'2 
4 •x(f) - 1 

2 X' (F) 
1 
T 

n 
4 
rX(̂ ) - 1 

2 
X' (F) cosh(T) 

sinh(r) ̂ - 1 1 
T 

Moreover by Propositions 5.4 and 5.5 and by Theorem7.14, there exist c > 0,C > 0 
such that for 0 < e' < 1, T > 1, then 

(7.83) 1 
e'2 

Trs /exp Г 2 Г)2 
-e VT/e,2 

-rk(F)Trf[/] 

-e'2 n 
4 

X(F)- 1 
2 
X' (F) 1 

T < cexp(-CT). 

From (7.66), (7.82), (7.83), we conclude that as e 0, 

(7.84) J° - J13 = - n 
4 :x(^) - 0 

2 X' (F) 
+00 

1 
cosh(r) 
sinh(T) - 1 

dT 
T 

Using (7.67), (7.69), (7.81), (7.84), we see that as e 0, 

(7.85) I24 + n 
4 X' (F) D 

2 X' (F) Log(e) 

+ rk(F) 
+00 

0 M 
f B 

exp (—BT*) — 
x E B 

(-1) ,ind(x) #x dT 
1 

VE 
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— I34 = 
1 
2 

+00 

0 M 
0(F,gF) 

B 
dfexp (—BY*) dT 

- n 
4 

X(F)- 1 
2 

X'(F) 
1 

E 

cosh(T) 
sinh(T) 

1 
T 

dT 
T 

+ 
+00 

1 

cosh(T) 
simi(T) 

- 1 
dT 
T - 1 

6) Evaluation of I3 

Theorem 7.18. The following identity holds 

(7.86) T3 -
J4 — 

1 
2 M 

0{F,9F) (V/)*V(TM,V™) 

+ n 
4 

X (F) -
1 
2 
•xW (Log(7r) + T'(l)). 

Proof By (3.19), (3.30), it is clear that 

(7.87) 1 
2 

+00 

0 M 
0(F,9F) 

B 
dfexp(-BTi) dT 

= 
1 
2 M 

0(F,«7F) (V/)*V(TM,V™). 

Clearly 

(7.88) cosh(T) 
sinh(r) - 1 = 

2e"2T 
1 - e"2r 

Let C(s) be the Riemann zeta function. By (7.88), we easily deduce that for 
s e C,Re(s) > 1, then 

(7.89) 1 
r(.) 

+oo 

0 
T-1 cosh(r) 

sinh(T) - 1 dT = 21-*((s). 

Also for s G C, Re(s) > 1, we have the identity 

(7.90) 1 
T (s) 

+oo 

0 
rps — 1 cosh(T) 

sinh(T) - 1 dT = 
1 

T (S) 

n 

0 
rpS — 1 cosh(T) 

sinh(r) 
1 
T 

dT 

+ 
1 

T(s) 

+00 

1 
rjis — 1 cosh(T) 

sinh(T) - 1 d r -
1 

r(* +1) 
+ 1 

T (s) (s – 1) 
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Both sides of (7.89) of extend into a meromorphic function of s e C, which is 
holomorphic at s = 0. Using (7.89), (7.90), and taking derivatives at 0, we get 

(7.91) 
.1 

0 
cosh(T) 1 
sinh(T) T 

dT 
T + 

+oo 

1 
cosh(T) 
sinh(T) - 1 dT 

T 
+r'(l) - 1 = -2 Log(2)C(0) + 2C'(0). 

Classically, 

(7.92) C(0) = - 1 
2 

C'(o) = -D 
2 Log(27r). 

Using (7.91), (7.92), we find that 

(7.93) 
I 

o 
cosh(T) 1 
sinh(T) T 

dT 
T + 

+oo 
1 

cosh(T) 
sinh(T) - 1 

dT 
T - 1 

= -Log(7r)-r'(l). 

From (7.85), (7.87), (7.93), we get (7.86). 

e) Matching the divergences 

Theorem 7.19. The following identity holds 
(7.94) 

If + Ii + Il- 1 
2 Log 

R,K 
det H»{M,F) 
RS 
det H»{M,F) 

2 
nX(F) - 1 

3 X' (F) Log(Tr) = 0. 

Proof Recall that by (7.27), 

(7.95) 
4 

k=l 
it = o. 

As A —• +oo, the following divergences which concern the terms 1° and /3 in 
(7.29) and (7.54) appear 

(7.96) 1 
2 X'(F)Log(A) + 1 

2 
X'(F)Log(A) = 0. 
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Since these divergences cancel out, we get from (7.95) 

4 
(7-97) E7fc = 0-

fc=l 

By Theorem 7.6, we know that 

(7.98) Urn 
T„-H-oo 

1 
2 

Log 
RS 
det #»(M,F),T0 

RS 
det H*(M,F) 

2 
+ 

1 
2 

Its iVLog -,2,]0,1] 
'To 

+ rk(F)Trf[/]T0-h n 
4 
X (F) 

1 
2 

x W Log 
To 
7T 

= 
1 
2 Log 

M,V/ 
det H*(M,F) RS 
det H»(M,F) 

2 

In view of (7.41), (7.52), (7.64), (7.97), (7.98), we find that for 0 < e < 1, 
(7.99) 

iï + ii + iï-
1 
2 

Log 
M,V/ 
det H*(M,F) RS 
det H*{M,F) 

2 
n 
4 

x(^) -
1 
2 
;X'(F) Log(Tr) = 0. 

As e —• 0, the following divergences appear, which concern the terms J2,if, if 
in (7.43), (7.59), (7.85), 

(7.100) 1 
2 
•xW -

n 
4 

x(^) + n 
4 

x(*0-
l 
2 
; x W Log(e) 

+ rk(F) 
M 

B 
Lexp 

R™ 

2 

+ 
0 

' + 00 

M 
f 

B 
exp(—B^a) -

xGB 
(-1) ind(i) ¿3; dT 1 

VE 

Because of (7.99), the sum of these divergences should be 0. This is exactly the 
case for the coefficient of Log(e). The coefficient of 1/Ve must also vanish. This is 
in fact a result which was proved in Theorem 3.19. 

From (7.99), (7.100), we get (7.94). • 
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f) Proof of Theorem 7.1 

By (7.42), (7.60), (7.86), (7.94), we get 

(7.101) j l (x'(F) - X'(F)) - jx(F) + \X'(F) + jX(F) - l-x'(F)] T'(l) 

+ (~4X(F) - \x'(F) - faiF) - \x'(F))) Log(.) + f (0) 

-
1 
2 Log det H*(M,F) 

RS 
det H%(M,F) 

2 
+ 1 

2 M 
0{F,gF)(Vf)*^{TM,V™) = 0. 

The coefficients of r'(l) and Log(7r) in (7.101) vanish identically. Equation 
(7.101) is then equivalent to 

(7.102) Log 
RS 
det H*(M,F) 
det H•(M,F) 

2 
= — 

M 
0(F,gF) (V/)*V(TM,VrM), 

which is exactly Theorem 7.1. 

g) Proof of Theorem 0.3 

Let 

(7.103) (F\v) :0-^F° —• F1 — ... -+ Fm -+ 0 
V V V 

be a flat exact sequence of real flat vector bundles on M. Let a be the canonical 
m 

nonzero section of the line bundle detF* = (££)(det FJ)(~1)J constructed in j = 0 
[KMu], [BGS1, Section l.a)]. 

m 
Let T 6 det H'(M,F*) = (g)(det ^ ( M , ^ ) ) ^ 1 ) be the corresponding 

j=o 
nonzero section constructed in [KMu], which is associated to the exact sequence 
(7.103). 

Let gF° gF™ be Euclidean metrics on F°, . . . , Fm. Let || ||det F* be the 
corresponding metric on the line bundle det F*. Let g™ be an Euclidean metric 
on TM. 
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Let II \\™H*{MW~A\ Half H*(M,Fm) be the Ray-Singer metrics on the 
lines det H*(M, F°),..., det H*(M,Fm) associated to the metrics g™,gF\ 
. ..,#Fm. Let || lldif#.(A#,F*) denote the corresponding metric on the line 
detJT(M,F#). 

Now, we will prove Theorem 0.3, which we restate for convenience. 

Theorem 7.20. The following identity holds, 

(7.104) Log ( h S . ^ . ) ) = ^ L o g (iMlLf.) e(TM, V™). 

Proof We use the notation of Sections 7a)-b). Let || ||^ti^M,F°)> • • •» 
|| Hdlw7*(M,F™) ^e ^e Milnor metrics on the lines det H*(M,F°),..., 
det H*(M, Fm) attached to the metrics || ||det Fo,..., || ||d6t Fm (x G B). Let 
|| llĉ uf •(M,F») denote the corresponding metric on the line det H*(M, F9). 

Clearly, we have the exact sequence of Thom-Smale complexes 
(7.105) 
0^(C'(Wu,F°), d) -+(C\Wu,Fl),d)-> ... ->(C*(Wu,Fm),d)-+0. 

V v 
Set 

m 
(7.106) detC9(Wu,F*) = ( ^ ( d e t C * ^ , ^ ) ) ^ 1 ^ . 

j=o 
By (1.48), we have the canonical isomorphism 
(7.107) &etC\Wu,Fm) ~ det ##(M, F#). 

Let r' be the nonzero section of detC*(WU,F*) constructed in [KMu], 
[BGS1, Section l.a)], which is attached to the acyclic complex (7.105). Then 
T' e detC*(WU,F*) corresponds to r 6 det##(M,F*) via the canonical 
isomorphism (7.107). It should now be clear that 

(7.108) Log (\\r\\tf/.{M^) = £(-ird(*>Log (\\*x\\LF.) • 

Set 
m 

(7.109) 0{F\gF%) = (-1)i0 (F1, gF3). 
i=o 
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Since a is a nonzero flat section of det F*, we see that 

(7.110) d Log (\\a\\LtF.)=d(F-,gFt). 

By Theorem 0.2, we get 

(7.111) Log (||r||Si.(M,F.)) = Log (||r||K2(M)F)) 

- / 9 (F',gF') X*^(TM,V™). 
JM 

Using (7.110) and proceeding as in (6.5), (6.6), we find that 

(7.112) - / d(F,gF)(Vf)*RP(TM,V™)= f Log (||cr||2etF.) 
JM JM V 7 

e(TM,V™) - J](-l)»-dWLog (ik.ULi,.) 
xeB 

From (7.108H7.112), we get (7.104). 
The proof of Theorem 7.20 is completed. • 

Remark 7.21. Of course a direct analytic proof of Theorem 7.20 can be given, 
which is much simpler than the proof of Theorem 7.1. 
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VIII. The asymptotic structure 
of the matrix of the dF operator 

on the Helffer-Sjöstrand orthogonal base 

The purpose of this Section is to describe the construction by Helffer-Sjostrand 
[HSjl-4] of an orthogonal base for the direct sum of the eigenspaces of the operator 
D\ associated to eigenvalues A € [0,1], and to calculate the asymptotics of the 
corresponding matrix of dF in terms of the corresponding Thom-Smale complex. 
The results of this Section will also be used in Section 9, where the asymptotics of 
the L2 metric | \fftH.(M F) T on det H* (M, F) as T —• +oo is calculated, and 
where Theorem 7.6 is proved. 

The results of this Section on the asymptotics of the matrix of dF were already 
established in Helffer-Sjostrand [HSj4, Theorem 3.1 and Proposition 3.3], in the 
case where F is the trivial Euclidean line bundle R. Here the main difference with 
respect to the situation considered in [HSj4] is that F is a vector bundle, and more 
fundamentally that the metric gF is not flat. 

In [HSj4, Sections 2 and 3], in the case where F — R, the solutions of the 
WKB equations for the eigenvectors of D\ associated to eigenvalues A 6 [0,1], 
were calculated, by solving in particular transport equations near Wu(x) and 
Ws(x)(x e B). If the metric gF on F is flat, then the calculations of [HSj4] 
can be used without change. If not, the operator D\ which we consider here is 
more complicated than in [HSj4], In fact the analogues of [HSj4, Proposition 2.3 
and 2.4], where Helffer-Sjostrand calculate the leading term of the WKB equation 
for f>\ along Ws(x) and Wu(x) are Propositions 8.24 and 8.25. On Ws(x), 
parallel transport with respect to the connection VF is used to solve the transport 
equation, while on Wu(x)> it is the dual connection VF* (which itself depends on 
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the metric gF ) which is needed. This reflects in fact Poincaré duality for flat vector 
bundles which are not orthogonally flat. 

Because the situation we deal with is different from the one in [HSj4], we have 
felt necessary to give a detailed exposition of some of the results and techniques 
of Helffer-Sjostrand [HSjl-4], referring when necessary to the original work. Our 
own contribution in this Section is in fact to simply apply the general techniques of 
[HSjl-3] to a situation which is slightly more complicated than in [HSj4]. 

This Section is organized as follows. In a), we introduce the Agmon metric 
I V/|2#™. In b), we recall simple results of Witten [W] on the harmonic oscillator 
one can attach to each x G B. In c), we describe the results of [HSj 1-3] concerning 
eigenvectors of the operators D\ with certain Dirichlet boundary conditions. In d), 
we construct a corresponding orthonormal base of eigenvectors. 

In e), following [HSj 1-3], we construct an orthonormal base {er x k} *eB 
' ' l<fc<rk(F) 

of the eigenspaces of D\ associated to eigenvalues A G [0,1]. 
In f), we describe the WKB equation for D\. In g) and h), we solve the 

corresponding transport equation over Ws(x) and Wu(x)(x G B). Finally ini), 
we establish in Theorem 8.30 the main result of this Section, which is the asymptotic 
structure of the action of the operator dj, on the considered eigenspaces of D\. 
This generalizes a corresponding result of Helffer-Sjostrand [HSj4, Proposition 3.3]. 

In this Section, we use the notation of Sections 1,2,4 and 7. Also the simplifying 
assumptions of Section 7b) will be in force in the whole section. 

a) The Agmon metric \Vf\2g™ 

If z G M,e > 0, let BM(z,e) be the open ball of center z and radius e with 
respect to the Riemannian distance associated to the metric g™, and let BTz M (0, e) 
be the open ball of center 0 and radius e in (TZM, gTxM). 

In the sequel, we assume that e > 0 is small enough so that the balls BM(x, 2e) 
(x G B) do not intersect each other, that (7.12) is verified on the balls BM(x, e) 
(x G B), and also the metric gF is flat on the balls BM(x, e) (x G B). 
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Definition 8.1. Let g™ be the Agmon metric on TM associated to the potential 
|V/|2, i.e. 

(8.1) g™ = A |V/|VTM-

Then g™ is a degenerate metric on TM, which degenerates on B c M. Let 
d̂ f (•,) be the Agmon distance associated to the metric g™. By [HSjl, Section 6], 
we know that ]f x,x' e M, there exists a minimizing geodesic 7 for the distance 
ĉ jf, which is smooth on y\B. 

Take x e B. For z E M, set 

(8.2) tpx{z) = d%(x,z). 

Then, ^ is a Lipschitz function. 

b) The harmonic oscillator of Witten 

Recall that by (7.12), if x E J3, there exists a coordinate system y = (y1, • • • ,yn) G 
R on BM(x,e) such that 0 represents x, and moreover, 

9™ = 
П 

1 
dy 2 

(8.3) 
/(2/) = f(x) + 

1 
2 

ind(;r) 

1 
y i 2 + 

n 

ind(a;)+l 
y i 

2 

One verifies easily that if |y| < e9 then 

(8.4) <p(y) = 
1 
2 

\y\2-

Recall that for xeB, the metric gF is flat on BM(x,e). On BM(x,e)> we 
trivialize F by using the connection VF = VF'e. The fibres of F on BM(x,e) 
are identified to Fx. 

Then Rn splits canonically into 

(8.5) W1 = Rind(*) 0 Rn-indW, 
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Recall that we have identified an open neighborhood of x 6 B in M to an open 
neighborhood of 0 in RN. At x e B, the spUtting (8.5) coincides with the obvious 
splitting 
(8.6) TXM = TxWu(x) 0 TxWs(x). 

Since TxWu(x) is oriented, we find that in (8:5), RIND(*) inherits the corresponding 
orientation. Let px be the volume form of the Euclidean oriented vector space 
jRind(*)# of course, one can assume that the coordinates j/1, • • •, ymd^ are such 
that 

(8.7) p, = dy1 A--.AdyINDW. 

From (8.5), we deduce that near x, 

(8.8) A (T*M) = A (]Rind(*)*) ®A (RC""^*))*) . 

Of course at x, (8.8) corresponds to 

(8.9) A (T*M) = A (T;Wu(x)) ®A (T;Ws(x)). 

Let N~,N+ be the number operators acting in A(Rind^^*), A(R̂ w""ind(a?)*))f 
so that near x, N = N+ + N~. Let ARn be the usual Laplacian on RN. We now 
give a simple formula of Witten [W]. 

Proposition 8.2. Afe#r xeB, for any T > 0, the following identity holds, 
(8.10) Z% = -AMn + T2|y|2 - Tn + 2T (N+ + ind(x) - AT") . 

PTO/. Equation (8.10) follows easily from (4.29) and (5.13). • 

Let D2RnTx be the obvious action of the operator (8.10) on the vector space of 
smooth sections of A(RN*) ® Fx over RN. Another simple result of Witten [W] is 
as follows. 

Proposition 8.3. The operator D2RnTx has discrete spectrum and compact resolvent. 

Its spectrum is exactly 2 T N . The kernel Dji* is of dimension rk(jF). More 
precisely 

(8.11) KeiD: ,2,H" 
T,x = 

5 
7T 

n/4 
e Tlyl2 

2 Px ®FX. 
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Proof. Let GT be map f(y) f(v) kt . Then 

(8.12) GTD^GT1 = T (-AR* + \y\2 - n) + 2T (iV+ + ind(z) - AT) . 

The operator -A1" + \y\2 - n is twice the harmonic oscillator. It has compact 
resolvent and its spectrum is exactly 2N. The operator 2(N+ + ind(:r) - N~) is 
nonnegative and its spectrum is included in 2N. Also the kernel of -AEn + |y|2-n 
acting on smooth real functions is one dimensional and spanned by the functions 
e'M2/2. Finally if a e A(Kn*) ® FX9 then (iV+ +ind(x) - N~)a = 0 if and 
only if a e A^(*)(W**(*)*) ® Fx. Equation (8.11) follows. • 

c) The estimates of Helffer and Sjostrand for the eigenforms of 
D\ with Dirichlet boundary conditions 

For r] > 0, x e B, set 

(8.13) MX = M\ |J BM(y,r,). 
y£B\{x} 

ind(y)=ind(») 
For x] > 0 small enough, Mx is a smooth manifold with boundary. 

Let Fx = 0"=o Fx be the vector space of smooth sections of A(T*M) ® F = 
0r=o A2'(T*M) ® F over Afx. We equip Fx with the scalar product ( , )Fx 
given by 

(8.14) a,a' £ Fx —• (a,a')F- = / MX (O^A(T*M)®F DT;M. 

Let JD|, be the obvious action of D\ on Fx with Dirichlet boundary conditions 
on dMx. 

Definition 8.4. For 0 < i < n,T > 0, let D^x be the restriction of T)\x to Fx. 

For T > 0, let J^;11 = 0"=o J^/*1'' be the direct sum of the eigenspaces of 

Dj>x associated to eigenvalues A e [0,1]. Let QT,x be the orthogonal projection 

operator from ¥x on K^'x\ 

Take c > 0. Following [HSj3, Lemma 1.5], we will write that as T -> +oo, 

(8.15) A(T) = 6 (e'Tc) 
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if for any 7 > 0, there exist 77(7) > 0 such that if 0 < rj < 7/(7), as T —• +00 

(8.16) A{T) = O (e-T<c-^) . 

If in (8.16), A(T) and c depend themselves on an extra parameter, it is understood 
that (8.16) is uniform in this parameter. 

For 0 < i < n, set 

(8.17) 
Bi = {xe B;ind(x) = »}, 
Mi = card(5'). 

We first state a result of Helffer-Sjostrand [HSJ4, Theorem 1.4 and Lemma 1.6]. 

Theorem 8.5. For T > 0 large enough, then 

(8.18) rk(4°,;1]") = 
rk(F) if i = md(x), 

0 if i ^ ind(a;). 

If<pe K[^hiadix) is of norm l.asT-* +00, 

(8.19) y>(x') = 6 (C-'A (»^')T^ . 

Set 

(8.20) cx = 2 inf 
j/ĝ ind(x)-lû ind(x)+lU5ind(i)̂ I} 

d%(x,y). 

If A is an eigenvalue of D\ x in [0,1], then 

(8.21) A = O (e-c*T) . 

Proof.. The main difference with [HSi4] is that here, the kernel of the operator 
D2UT,x considered in Proposition 8.3 is of dimension rk(F) and not necessarily of 
dimension 1. However all the arguments of [HSjl, Section 4] on which [HSj4] is 
based can still be used in this case. • 
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d) An orthonormal base for Dirichlet eigenspaces associated to 
small eigenvalues 

Definition 8.6. For x e B,T > 0, let rT,x be the map 

(8.22) 8 g px0d(.) ^ ^ = 7T 
T 

n/4 
Sx E Aind(x) (T.M) 0 p 

x 

Let 7 be a smooth function defined on R with values in R+, such that 

(8.23) 
7(a) =1 for a < ^, 

= 0 for a > e. 

If ye Rn, set 

(8-24) M(l/) = 7(|y|). 

We can consider fx as a smooth function defined on M with values in R+, which 
vanishes on M\ \JxeB BM(x, e). 

Set 

(8.25) aT = 
Rn 

//2(y)exp(-r|y|2)dy. 

Clearly, there exists c> 0 such that 

(8.26) CUT = 
wn/2 
T n/2 

+ 0{e~cT). 

Recall that if x e B, on BM(x,s), the fibres of F have been identified to Fx. 

Definition 8.7. For x e B,T > 0, let JT,X be the linear map from Fx in ¥{xd{x) 

(8.27) fe Fx^ JT,x f(y) = 1 
(ar) 1/2 a(y) exp 

T\y\2 
2 

P*®/ePxnd(a5). 

Clearly JT?X is an isometry from Fx into FLnd(x). Also 

(8.28) rT,xJT,xf = 
7T T 

n/4 

(OfT) 1/2 Px® f, 
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so that by (8.26), as T —• +00, 

(8.29) rT,xJTiXf = px®f + 0 (e~cT) 11/11. 

Theorem 8.8. Take rj > 0 small enough. There exists c > 0 such that for any 
x G J3, / G Fx, then as T —> +00, 

(8.30) Ql}£ JT,xf - JT,xf = O (e"cT) \\f\\Fx uniformly on Mx. 

In particular, if f G FXf as T +00, 

(8.31) dT;x Q ,[0,1] 
7> «/T,x/ ~ Px® f = 0(e~°T)\f\Fx. 

/V00/. We proceed as in [BL2, Section 10]. Let 6 be the oriented circle of center 
0 and radius 1/2 in C. By (8.21), we know that for T > 0 large enough, 

(8.32) Q ,[0,1] T,x 
1 

2m 
( Y – D2 T,x -1 

dY. 

Moreover, if A G C*, then 

(8.33) (\ - Dlx) JT,xf 
X - JT,xf = -

D2TJT,xf 
X 

and so 

(8.34) 
Jr.xf 

X ( Y – D2 T,x 
-1 Jr,xf = - ( Y – D2 T,x 

-1 D2T,x JT,x F 
X 

For p > 1, let FXiP be the p-th Sobolev space of sections of A(T*M) ® F over 
Mx. Since ii(y) = 1 for |?/| < s/2, we deduce from Proposition 8.3 that for any 
p > 1, there is c > 0 such that 

(8.35) b\ JT,xf = O (e~cT). 
IFp 

Let F£ be the vector space of sections s 6 ¥x such that s\dMx = 0. Take q e N*. 
By [Tay, p. 108], there exists C > 0 such that if s € F°x, then 

(8.36) NIF.,, . < c D2s 
Fx,2g-2 

+ ||S| x,0| 

Also using (5.16), (5.17), we see that there exists C > 0 such that for A 6 6, T > 
l,s € Fx, 

(8.37) | ( A - í % + B , ) . | b j f . i < C 4 - | . b . . ^ . 
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By (8.36), (8.37), we find that there exists C" > 0 such that for A e 6, T > 1, s e 
¥°x, then 

(8.38) \\4^fx2<C"(\\(\-D*T)s\8 
Fx,2q - 2 

|+2Л1Ик, ._ , ) -

Using (8.38), we see that there exists C > 0 such that for A e S,T > 1, s e F°x, 
then 

(8.39) IMIF..,, < ст2' (Л - Dl} s 
Fx,2q - 2 

+ IMIF... 

By Theorem 8.5, we know that for T > 1 large enough, if A G <5, then 
A £ Sp(D^x). More precisely, there exists C > 0 such that for T > 1 large 
enough, s G Fx, then 

(8.40) (Y – D2 T,x -l 
5 

Fz,0 
< C II'IIF... • 

Moreover for A £ <5, T > 1 large enough, if s £ ¥X9 then (A - D^^s £ F£. 
Using (8.39), (8.40), we see that there exists C" > 0 such that if A £ <5, T > 1, 

s £ Fa., then 

(8.41) (Y – D2 T,x) -1 
s 

Fz, 2g 
< C"T2q \\s\\ Fx,2 q - 2 

From (8.35), (8.41), we deduce that there is c > 0. such that for T > 1 large 
enough, 
(8.42) 

( Y – D2T, x) -1 DT,xJT,xf 
FX 2Q 

= O (e~cT) \\f\\Fx uniformly in A € 6. 

Using (8.42) and Sobolev's inequalities, we see that there exists c> 0 such that for 
T > 1, for any feFx, 

(8.43) (Y – D2 T,x) -1 D2 T,x JT, x f < O (e~cT) \\f\\Fx uniformly on M. 

From (8.32), (8.34), (8.43), we obtain (8.30). Equation (8.31) is an obvious 
consequence of (8.29) and (8.30). • 

Let (Qp^Jr,.)* be the adjoint of QJ^JT,*- Then (Q^JT,.)* maps KpJ;] 
into Fx. 
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Definition 8.9. For x e B, set 

(8.44) HT,X = (Q^JT^Qpi1^. Q[0,1]T,x 

Then HT,X is self-adjoint in End(Fx). 

Theorem 8.10. For T > 0 large enough, for any x € B, the linear map 

(8.45) f€Fx-+ Q[Zi]JT,xf e K[°i]>ind{x) 

is one to one. Also there is c> 0 such that as T —• +00, for any x 6 B, then 

(8.46) HT,x = l+0{e-cT). 

Proof. Recall that JT,X is an isometry from FX into Fx. From (8.30), it follows 
that for T large enough, the linear map (8.45) is injective. By Theorem 8.5, for T 
large enough, FX and Klf^i {x) have the same rank, and so the linear map (8.45) 
is one-to-one. Since JT,x is an isometry, (8.46) follows from (8.30) and from the 
previous considerations. • 

For every x e B, let /x,i, • • •, /*,rk(F) be an orthonormal base of Fx with 
respect to the metric gFx. This base is fixed once and for all. By (8.46), for T > 0 
large enough, HTJX is invertible. 

Definition 8.11. For T > 0 large enough, 1 < j < rk(F), set 

(8-47) ipT%xJ = Qpi]JT,xH^J2fxJ. 

Proposition 8.12. For T > 0 large enough, <PT,X,I r • ? ^7>,rk(F) *s an orthonor
mal base of the vector space Kjl^jind^x\ 

Proof This is a trivial consequence of Theorem 8.10. • 
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e) The orthonormal base of Helffer-Sjostrand of the eigenspaces 
of the operator Dj asssociated to small eigenvalues 

For rj > 0,y £ B, let 0y be a smooth function defined on M with values in [0,1] 
such that 0y = 1 on BM(y,r?), and 6y = 0 on M\BM{y,2rj). 

If x e J3, set 

(8.48) X. = l - £ *v VGB\{x} ind(y)=ind(x) 

For 77 > 0 small enough, \x vanishes on |J I yeB\{x} 
ind(y)=ind(x) 

BM(y,n). 

Definition 8.13. For T > 0 large enough, set 

(8.49) ipT,xj = Xx<PT,xj , l < i < r k ( F ) . 

For T > 0 large enough, and 0 < i < n, let G '̂11'1 be the vector subspace of F* 
spanned by the V>7>,j's with ind(x) = 1, 1 < j < rk(F). Set 

n 
(8.50) G?'11 = 0Gg'11',\ 

¿=0 

Definition 8.14. For 0 < i < n,T > 0, let ïiïf be the restriction of T)\ to 
F \ For 0 < i < n,T > 0, let F£'1] = 0?=OFT[0,1] be the direct sum of 
the eigenspaces of D\ associated to eigenvalues À e [0,1]. Let PJ?'11 be the 
orthogonal projection operator from F on F^ '1 ' with respect to the scalar product 
( , )F on F. 

If Hi,H2 are closed vector subspaces of a Hilbert space H, if pHl ,pH2 are 
the orthogonal projection operators from H on iïi, if2, set 

(8.51) ~d (HUH2) = ||p* - pH>pH> H = ||p* - p * p * H. 

For 0 < i < n, set 

(8.52) S{= inf d%(x,y). 
x,yeB* 

The following result is proved in [HSj3, Theorem 1.2], [HSj4, Proposition 1.7]. 
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Theorem 8.15. For T > 0 large enough, for any ¿,0 < i < n, the eigenvalues of 

the operator D^1 contained in [0,1] can be put in one-to-one correspondence with 

the union of the eigenvalues of the operators D^lx (x e Bl) contained in [0,1], 

so that the difference of the corresponding eigenvalues is 0{e~s%T). 

For T > 0 large enough, for any z,0 < i < n, the vector spaces Fy'1''* and 

G '̂1''2 have the same dimension rk(F)M\ and moreover 

(8.53) 7 (Fplli, Gg'11'*) = t (Gp1]'\ F?'11'1') = 6 (e~Tsi) . 

Remark 8.16. As pointed out in Helffer-Sjostrand [HSJ4, Corollary 1.8], Morse 
inequalities for H'(M,F) immediately follow from the fact that for T large 
enough, dimF '̂1] = rk(F)M\ 

For x 6 B, set 

(8.54) vT,xJ = Ppl^T,x,j l<j< rk(F). 

If x € B,x' e M, set 

(8.55) 6x(x') = inf. (d%(x,y) + d%(y,x')). 
J/eBi»dc»)\{x} 

By [HSj2, eq.(2.1.17)], [HSj4, eq. (1.38)], we know that 
(8.56) 

(vT,x,j — 4>T,x,j) (#') = O (e~s*(x uniformly together with its derivatives. 

From (8.19), (8.56), we deduce that 

(8.57) VT,X,J(X') = 6 (e~Td^^x'x'^ uniformly together with its derivatives. 

Definition 8.17. For 0 < i < n, and for T > 0 large enough, let Vj be the 
(rk(F)M%rk(F)M') self-adjoint matrix 

(8.58) VJ = («r,XJ-,wr,yj')F , x,u E B1, l < i , i ' < r k ( F ) . 

As in [HSj2, Section 2.1], we observe that for 0 < i < n, if x, y G B\ 1 < 
j,f < vk(F) then 
(8.59) 

(vT,x,j,VT,y,j')w = №T,X,J, ^T,y,j')W - {VT,X,J - <pT,x,j, VT,y,j> ~ *pT,y,j>)¥ • 

132 



THE HELFFER-SjOSTRAND ORTHOGONAL BASE 

From(8.59), Helffer and Sjostrand [HSj2, Section 2.1], [HSj4, eq. (1.43)] deduce 
important estimates on the matrices Vj.. A trivial consequence of (8.56), (8.57) is 
that for 0 < i < n, there exists c2- > 0 such that as T —• +oo, 
(8.60) V} = 1 + O (e"CiT). 

In the sequel, for 0 < i < n, we consider (^i>,j) *GB* as a linear map 
l<i<rk(F) 

from RRK(F)M' into FSJ'1]'\ which we note v^. 

Definition 8.18. For T > 0 large enough, 0 < i < n, set 

(8.6i) 4 = ^ ( T 4 ) ~ 1 / 2 . 

The linear map eT defines vectors (ex,*,*;) ) xEBi Kk<tk(F) in F?'1]'\ 

Proposition 8.19. For T > 0 large enough, for 0 < i < n, {ex,xj} xeB* 
l<i<rk(F) 

is 

an orthonormal base of F^,1]'\ Also as T —• +oo, for x £ B,l < k < rk(F), 

(8.62) eT,x,k(x') = 0 (e~~Td™(x'x'^ uniformly together with its derivatives. 

Proof The first part of the Proposition follows from Theorem 8.16 and from 
(8.60). Equation (8.62) follows from (8.57) and from the estimates on the matrices 
14(0 < i < n) proved in [HSJ2, Section 2.1], [HSJ4, eq. (1.43) and (3.12)]. • 

f) The WKB equation for D% 

Let U be a non empty open set in M. Let Fu — ©̂ =0 Ft/ be ^ vector sPace of 
smooth sections of A(T*M) ® F = 0"=O AZ'(T*M) <g> F over £/. We equip Ft/ 
with the scalar product ( , )Fc/ which is the obvious analogue of the scalar product 
( , }F on F. 

If y is a smooth vector field on U, let Ly be the Lie derivative operator 
associated to Y. Then Ly acts on F^. Let Ly be the formal adjoint of Ly with 
respect to the scalar product ( , )$v. 

Let ei, • •', en be an orthonormal base of TM. 
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Definition 8.20. If h : U -> R is a smooth function, let r(h) be the first order 
differential operator acting on Fu 

(8.63) T(h) = LVf + L*Vf + LVh-L^h. 

Proposition 8.21. For any smooth function h:U^R, the following identity holds 
(8.64) 

T(/.) = 2VV*+ E (^Mdfiei)c{ei)c{ei) + ^h + u{F,gF){y(h- f)). 
1 < x,j < n 

Proof. We have the trivial formula 

(8.65) Zv/ = Vv/+ £ ( V f V / ^ ^ e ' A i e , . 
1 < x,j < n 

From (8.65), we deduce that 

(8.66) ^ / = - V V / - A / + m (yetd2a (^TiMdf^ei^ei-u{Fy){Vf). 
1 < i, j < n 

Similar identities hold for L^h,L^h. Equation (8.64) follows. 

We now reprove a formula of [HSj4, Lemma 2.1]. 

Proposition 8.22. Let h :U —• R be a smooth function. Then 

(8.67) eThD2Te-Th = D2 + Tr(h) + T2 {\df\2 - \dh\2) . 

Proof. Using (5.12), we get 

(8.68) 
eThdÇe~Th = dF + Td(f - h)A, 

Th ehF-Th = df JF* , rji-

From (5.10), (8.68), we obtain 
(8.69) 

eThD2Te~Th = D2 + T (LVf + L*vf + LVh - L*Vh) + T2 (\df\2 - \dh\2) . 

Equation (8.67) follows. • 

Take now x £ B. Recall that (px is the function (px(x') = ĉ f (#,#'). If 
x1 6 Wu(x), there exists an integral curve 7 of the vector field - V / , with 
7_oo = x,ya = x'(—oo < a < +00). This integral curve is obviously unique. In 
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particular it avoids the points in B\{x}. By proceeding as in [HSj4, Appendix 2], 
we see that 7 is the unique geodesic connecting x and xf with respect to the 
Agmon metric #5 M . It easily follows that the function (px is smooth on an open 
neighborhood of 7Q-00, a[). Therefore tpx is smooth on an open neighborhood 
of Wu(x). Similarly (px is smooth on an open neighborhood of Ws(x). 

Let V be an open neighborhood of Wu(x) U Ws(x) such that (px is smooth 
on V. Then <px verifies the Hamilton-Jacobi equation 

(8.70) | V ^ | 2 = |V/| 2 any. 

Now, we proceed as in [HSj4, Section 2]. Set 

(8.71) 
f+ = 
J X 

1 
2 (<Px + f~ /(*)) , 

f- = 
J X 

1 
2 ( y x – f + f (x)). 

With the notation of Helffer and Sjostrand in [HSj4, eq. (2.6)], then 

(8.72) J X 
1 
2 9- /«" = 

1 
2 ;9+-

Clearly 

(8.73) / = /(*) + /x + - /x _ , 
fx = ft + fx-

The functions /+ and fx are positive Lipschitz functions, which are smooth on 
V. 

Using (8.70), (8.73), it is clear that 

(8-74) <V/+,V/") = 0. 

Also by proceeding as in [HSj4, Lemma A.2.2], we see that 

(8.75) <Pz = f-f(x) on Ws(x), 
= -f + f(x) on Wu(x). 

Since over Wu(x) U Ws(x), the minimizing geodesies for the Agmon distance are 
integral curves of the vector field -V / , we find easily that 
(8.76) V<px = Vf on W*(x), 

= - V / on Wu(x). 
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From (8.76), we deduce that /+ vanishes to order 2 on Wu(x), and fx vanishes 
to order 2 on Wa(x). 

Let 

(8.77) ax = 
+oo 

k=0 
aK 
TK 

be a formal power series with values in smooth sections of A(T*M) ® F over V. 
We now look for a solution of an equation of WKB type 

(8.78) 1 
J»2 

eT**D2Te-T**aT = 0 1 
Too ax on V. 

Using Proposition 8.22 and (8.70), we see that equation (8.78) is equivalent to 

(8.79) 1 
J»2' 

D2 + 1 
T T(<Px) ax = O 1 

Too ax on V. 

By cancelling the coefficient of ^ in the left-hand side of (8.79), we get 
(8.80) r(<px)a0 = Q 
Equivalently, by using Proposition 8.21, we find that 

(8.81) 2VV^ + 
l<»,î<n 

^:Mdf,ej c(ei)c(ej) 

+A<px + u (F, gF) ( V(y>« - /)) )a0 = 0. 

Equation (8.81) holds in particular at x, where V/ = 0, V<px = 0. Therefore 

(8.82) 
l<2,jf <7l 

<V^MVAF/(X),6j)c(6i)?(ei) + Ay(x) ufo = 0. 

Now we use the notation of Proposition 8.2. By (8.3), equation (8.82) is 
equivalent to 

(8.83) 2 (JV+ + ind(x) - N~) a0(x) = 0 
The same argument as in the proof of Proposition 8.3 shows that (8.83) holds if and 
only if there is g G Fx such that 

(8.84) a0(x) = px®g. 
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Then once a0(x) taken as in (8.84) is fixed, since the operator N++'md(x)—N-
is nonnegative and self-adjoint, one sees easily that equation (8.81) has a unique 
solution. 

Recall that near x, (8.3) holds. We trivialize F on BM(x,e) using the flat 
connection VF. Moreover since the metric gF is flat on BM(x,e), u(F,gF) 
vanishes on BM(x, e). As in Proposition 8.3, we extend px® g into a "constant" 
section of A(T*M)®F on BM(x,e). Then 
(8.85) 

Vv^x(/>*®<7) = 0 onBM{x,e), 

"l<i,j<n 
< Vjf V/, ej) c (e,-) c(ej) + A<px + u [F,g* ) (V(<px - /)) (px ® g) 

= 0 onBM(ï,e). 

Therefore, on BM(x,e), the constant a0 = px <S> 9 is exactly the solution of 
equation (8.81). Also, on BM(x, e), D2 = -AR", and so we see that 

(8.86) D2 (Px ®g) = 0 on BM(x, s). 

So by Proposition 8.21 and by (8.85), (8.86), we find that 

(8.87) 1 
J>2 

D2 + 1 
T т\Ч>х) (px®g) = 0 onBM(x,e). 

By Proposition 8.22 and by (8.70), (8.87) is equivalent to 

(8.88) eT^D2Te-T^ (px 0 g) = 0 on BM(x, s). 

The fact that (8.88) holds permits us to assume that in (8.77), 

(8.89) for any j > 1, aj = 0 on BM (x, e). 

If V is small enough, the equivalent equations (8.78) and (8.79) can then be 
solved by a trivial recursion procedure. 

As in Helffer-Sjostrand [HSj4, Section 2], it will now be crucial to solve the 
transport equation (8.80) along Ws(x) and Wu{x). In fact V/ is tangent to 
Ws(x) and Wu(x). By (8.76), V<px is tangent to Ws{x) and Wu{x) and so the 
same is true for V/*. 
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g) The transport equation on Ws(x) 

By (8.3) and (8.4), it is clear that near x, 

(8.90) 
fl(y) = П 

2 
П 

ind(x)+l 
н2> 

fx (У) = 
1 
2 

ind(x) 

1 
г 2 

У -
Using (8.90), we see that near x, /+ vanishes exactly to order 2 on Wu(x). 
Moreover by (8.71), (8.76), V/+ = V/ on Ws(x), and so on Ws(x), V/+ 
only vanishes at x. 

Let V be an open neighborhood of Ws{x). From the previous considerations, 
we see that if V is small enough, the restriction of V/+ to V vanishes only on 
Wu(x). 

Let (y1, • • • yn) be the system of coordinates near x considered in (8.3). Then 
(y1, - • - yînd^) is a system of coordinates on Wu(x) near x. 

As in [HSj4, eq. (2.21)], we consider the transport equation 

(8.91) 
Lvf+yj = 0 1<J< ind(x), 

yj\w*(x) = yj\w*(x)-

Equation (8.91) means exactly that (y1, • • •, ymd^) is constant along the trajecto
ries of the gradient vector field V/+. The considerations we made before guar
antee that (y1, • • •, yind(x)) defines a system of coordinates transverse to Ws(x), 
which vanishes on Ws(x). Note that near x, (y1, • • •, ymdW) coincides with 
(vV",vind(x)). 

Over Ws(x), we define the section px of AindW(T*M) by the formula 

(8.92) Px = df A---Adyind(x). 

Of course, near x, px restricts to the section px of Aind(x\T*M) considered in 
(8.7). Similarly, if g G Fx, we extend g to a smooth section gx of FW*(x) by 
parallel transport with respect to the connection VF. 

138 



THE HELFFER-SJÖSTRAND ORTHOGONAL BASE 

Near x, px <g> gx coincides with the restriction to Wa(x) of the section 
px ® g which was considered in (8.84). We now prove the analogue of [HSj4, 
Proposition 2.3]. 

Proposition 8.24. Over Ws{x), if g € Fx, then the following identity holds 

(8.93) T(<px)(px®gx) = 0. 

Proof. By (8.63), (8.70), it is clear that 

(8.94) T(<px) = 2LVf+-2L*Vf-. 

Since gx is a flat section of F\w(x)> from (8.91), we get 

(8.95) Lvf+(px®gt) = 0. 

Using (8.66), we know that 
(8.96) 

L v / , - = - V v / , - - A ^ + 
Ki,i<n 

V ^ ^ W M e j - u ( F , g F ) (V/~) . 

As we saw after (8.76), f~ vanishes to order 2 on Ws(x). Then, one verifies 
easily that 
(8.97) 

– A f-x + 
KiJ<n 

Vei T* Mdf- x, ej> ei A iej (Px®9x) = 0 on Ws(x). 

Also V/ - =0 on Ws(x). Using (8.96), (8.97), we get 

(8.98) L*Vf.(px®gx) = Q. 

Equation (8.95) foUows from (8.94), (8.95), (8.98). 

h) The transport equation on Wu(x) 

The coordinate system y = (y1, • • •, yn) near x € B is still taken as in (8.3). Then 
(yInd(z)+1, • • • ,y") is a system of coordinates on Ws(x) near x. 
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As in [HSj4, eq. (2.30)], instead of (8.91), we consider the transport equation on 
Wu(x) 

LVf-y3 = 0 ind(x) + 1 < j < n, 
(8.99) _/* _ . 

y\w*(x) — y\w*{xy 

The same considerations as the ones we made after (8.90) guarantee that equation 
(8.99) has a unique solution near Wu(x). Then (yind(^)+\ ... ? yn) is a system 
of coordinates transverse to Wu(x), which vanishes on Wu(x). Also near 
z,(yind(*)+V--,yn) coincides with (yind(x)+1, • • • ,yn). Since TWu(x) is 
oriented, dy1*^*1 A • • • A dyn is a section of An-indW(T*M) ® o(TM). 

Recall that * is the Hodge operator for the metric g™. Set 
(8.100) ^ = (_l)ind(x)(n-ind(x)) ^ -̂ind(x)+l A . . . A dyny 

Then, p* is a section of Aind^(T*M). Also near x<pl coincides with jor. 

Take g £ Fx. Let ¿7* be the flat section of F\\y*(x) with respect to the flat 
connection VF*, defined in (3.2), which extends g to Wu(x). Since the metric 
gF is flat near x,g*x coincides with g near x. 

Near x, px®g% coincides with the restriction to W û(x) of the section px®gx 
considered in (8.84). 

We now prove the following important extension of [HSj4, Proposition 2.4]. 

Proposition 8.25. Over Wu{x), the following identity holds 

(8.101) r ( ^ ( £ ® £ ) = 0. 

Proof Recall that i : F —• F* is the canonical identification of F and F* 
associated to the metric gF. Let LF* be the analogue of the operator LVf± 
acting on smooth sections of A(T*M) ® F*. Clearly 

(8.102) L^f± = - f * ® ! ) - 1 ^ ^ ® ! ) -

Using (8.94), (8.102), we see that 

(8.103) (* ® i)r(<px)(* ® i)"1 = 2L^_ - 2LQj. 

Comparing with (8.94), we find that the operator (8.103) is still an operator of the type 
T(Px), with F replaced by F*, and / by - / . We can then use Proposition 8.24 
and obtain (8.101). • 
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Remark 8.26. The proof of Proposition 8.25 reflects Poincaré duality in a rather 
subtle way. 

We now describe the solutions of the WKB equation (8.78) on Ws{x)uWu(x). 
Recall that rr,x was defined in Definition 8.6. 

Theorem 8.27. Let a(g) = {^)n'A 0 +00 ̂  be the WKB solution of 

(8.104) 
1 

J>2 
eT**D\e-T**Oi(g) = 0 1 

rpOC a (g), 

rT,xCn(g) = px®g-
Then 

(8.105) 
<*o(g) = Px®9x on Ws(x), 

= Pl®g*x on Wu(x). 

Proof This follows trivially from Propositions 8.24 and 8.25. • 

i) The matrix of dFT in the base eT, x, k 

By [HSj4, Lemma A.2.1], we know that if x G B, y G M, 

(8.106) d% (Xjy)>f(x)-f(y). 

Proposition 8.28. Let x e Bf ye M. Then 

(8.107) d% (x,y) = f(x)-f(y) 
if and only if y G Wu(x). Moreover if y G B,y ^ x, and if (8.107) holds, then 
(8.108) ind(x) >ind(») + l. 

Proof. If x e B, y e Wu(x), then (8.107) holds. Therefore (8.107) also holds on 
W^{x). 

Conversely assume that (8.107) holds. For a G [—oo,+oo], let [—oo,+oo] U 
•••U[-oc,a] be a finite union of intervals [—oo,+oo] and of the interval [-oo,a]. 
We denote by -co the first of the —oo. Let t G [-co, +oc] U • • • U [-oo, a] —• 
7t G M be a minimizing geodesic with respect to the Agmon distance d^, such 
that 7_db = x , 7a = y. By [HSj4, Lemmas A 2.1 and A 2.2], we find that 7 is a 
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generalized integral curve of the vector field -V / , and / is decreasing along 7. If 
7 is parametrized by [-00, a], it is obvious that y £ Wu(x). If 7 is parametrized 
by [-00, +00] U [-00, a], set x2 = 7+00. Then x2 £ B fl Wu(x), x2 ^ x. As 
before, y £ Wu (x2). Now by [Ro, Lemma 1], or by Proposition 2 in the Appendix, 
since V/ verifies the Smale transversality conditions, then Wu(x2) C Wu(x), 
and so y £ Wu(x). A trivial recursion argument shows that in full generality, 
y £ Wu(x). 

Suppose that y £ Byy ^ x and that (8.107) holds. Let x2 £ B be the first 
critical point of / distinct from x visited by 7. Then 

(8.109) Wu(x)nWs(x2)^<b. 
Since the vector field V/ verifies the Smale transversality conditions, we find that 
(8.110) ind(x) > ind(x2) + 1. 

By iterating (8.110), we get (8.108). 

Remark 8.29. Proposition 8.28 is very important, since it guarantees that assump
tion HI of Helffer-Sjostrand [HSj4] is verified. 

Assumption H2 of [HSj4] is verified because V/ satisfies the Smale transver
sality conditions. 

If x £ B, recall that [W(x)]* is the line dual to the line [Wu(z)]. Let 
Wu(x)* £ [Wu(x)Y be dual to Wu(x) £ [Wu(x)], so that (Wu(x)*, Wu(x)) = 
1. Then C9(WU,F) is spanned by the Wu(x)*®fs (x £ BJ £ Fx). 

The metric gF induces metrics gFx on Fx (x £ B). The lines [Wu(x)j* (x £ 
B) can be equipped with the obvious metrics which give the norm 1 to Wu(x)* (x £ 
B). Therefore if x £ B, [Wu(x)]* ® Fx is naturally equipped with a scalar 
product. We equip C*(WU,F) = ®xeB[Wu(x)]* ® Fx with the scalar product 
( ) c« (w« ,F)» which is the direct sum of the previous scalar products. 

We now establish an extension of a fundamental result of Helffer-Sjostrand 
[HSJ4]. 

Theorem 8.30. For 0 < i < n, x e Bi+1,x' e B\ for 1 < к.к' < rk(F), as 
Т-» +00, 

(8.111) (dTeT,x',k',eT,x,k)F = 

• 

T 
7Г 

1/2 c-T(/(x)-/(«')) 
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d{wu{x'y ® fx,tk.), wu(x)* ® fx,k 
C*(W«,F) 

+ o 
1 

T1'2 

Proof. We essentially follow Helffer-Sjostrand [HSj4, Section 3]. Still we have to 
modify their argument and computations, because of the presence of the flat vector 
bundle F. 

Take 77, with 0 < rj < ^d%(x,x'). Let Xx,x> be a smooth function from M 
into [0,1] such that 

(8.112) 
Xx,x> = 1 in BA x, 1 

2 
•d%(x,x')-ri 

= 0 in B% x , 1 
2 

d%(x,x')-ri 

Recall that for T large enough, the ipr,x,j's (x e B, 1 < j < rk(F)) were 
defined in Definition 8.13, and depend also on 77 > 0. 

By proceeding as in [HSj4, Theorem 3.1], and using Proposition 8.28, we find 
that there exists a > 0 such that as T —• +00, 
(8.113) 

(4ev,fc',eT,,,fc)F = - {ipT,x,k,dxx,x> A YT,x', k")F + O (e(-<*-<T). 

Using (8.19), (8.49), it is clear that 

(8.114) (xl>T,x,k,dXx,x> A Vr,*',fc')F = O (e-«*'*')T) . 

By (8.106), we know that f(x) - f(x') < d%{x,x'). If f(x) - f(x') < 
d%(x, x'), from (8.113), (8.114), we deduce that there exists a' > 0 such that 

(8.115) {d^eT,x,^,eT,x,k)w = e-r(/(*)-/(*'»6 {e~a'T) . 

Moreover if there was an integral curve 7 : [—00,+00] of - V / with 7_oo = 
x,7+00 = x' it would follow that f(x)-f(x') = d%(x,x'). So if f(x)-f(x') < 
dM(x,x')9 then Wu(x) f)Ws(xf) = 0. From (8.115), we find that (8.111) holds. 

So we now consider the case where f(x) - f(x') = d%(x, x'). By Proposi
tion 8.28, we know that x' e Wu{x). Since md(x') = md(x)-l,Wu(x)nWs(x') 
consists of a finite set T(x,xf) of minimizing geodesies 7 for the Agmon distance, 
with 7-00 = x, 7+00 = x'. 

143 



J-M. BISMUT, W. ZHANG 

Take 7 6 T(x,x'). Let V1 be an open neighborhood of 7 in M. Using (8.19), 
(8.49), it is clear that there exists a" > 0 such that 

(8.116) - vl>T,x,k,dXx,x' AlpT,x',kf)W 

= -
7€r(*,a?') Vy 

{dXx,x' A V>7>',fc' A *V>T,*,fc)F + O e-(d%(x,x')+a")T 

Recall that ¥>i>,fc(l <k< THF)) was defined in Definition 8.11. By (8.30), 
(8.46), (8.47), there exists c> 0 such that as T -+ +00, then 

(8.117) y>T>x>fc = JT,xfx,k + O (e~~cT) uniformly on M. 

Take e > 0 as in Section 8a). Let ¥BM^X^ be the Hilbert space of the L2 
sections of A(T*M) ® F over BM(x,e). By [HSjl, eq. (5.9)] and by (8.89), if 
TJ > 0 is small enough, there exists a (rk JF, rk F) orthogonal matrix cx,* such that 
(8.118) 

Y T, x , k + 
T 
7T 

n/4 
E- Ty x px O 

rk(F) 

1 
CT,x,kfx,k' + 0 1 

Too 
in F5M(a.)£))0. 

Comparing with (8.117), we obtain 

(8.119) v>7>,* = T 
7T 

n/4 
e-T^/9x® fx,k + 0 1 

Too 
in FBM(a.?e)5o. 

We use the notation of Theorem 8.27. Let W be an open neighborhood of 
j\BM(x, 77). By [HSjl, Theorem 5.8] and by (8.119), we see that if 77 > 0 and W 
are small enough, for any j e N, as T —• +00, 

(8.120) e Tyx Y t,x,k – 
T 
7T 

n/4 3 

0 

ei (fx, k) 
Ti 

Fw,o 
= 0 1 

Tj + 1 – n/4 

From (8.49) and (8.120), we deduce that if 77 > 0 and W are small enough, then 

(8.121) eTtp'tl>T,x,k -T 
7T 

n/4 3 

0 

<*i (fx,k) 
Ti 

Fw,0 
= 0 1 

Ti+i-f 
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Let W be an open neighborhood of j\BM(x',r)). Then if rj > 0 and W are 
small enough, the analogue of (8.121) is 

(8.122) eT<Px'tl>T,x> ,v -T 
7T 

n/4 3 

0 

OL{ (fx'k') 
Ti 

FW,0 
= o 1 

Tj + 1 -n/4 

By (8.71), we know that 

(8.123) ipx{t) + yv(*) = f(x) - f(x') + 2 (/+(*) + /x"(t)) , 

and so 

(8.124) <px(t) + tpx,(t) > f(x) - /(*')• 

Let (y1, • • •, y1) be the system of coordinates transverse to Ws{x') taken as in 
(8.91). Similarly, let (z1, • • •, J71"2"1) be the system of coordinates transverse to 
Wu(x) considered in (8.99) (under the name of yi+1, • • •, y71 '). As in [HSj4, proof 
of Proposition 3.3], we observe that since Wu{x) and W8{xf) are transversal, the 
forms dy1, • • • ,dy\ dz1 • • • dzn~l~x are linearly independent near 7. 

Equation (8.73) is equivalent to 

(8.125) £v/-/*+ = 0. 

Using (8.90), (8.99), (8.125) we find that 

(8.126) J +X = 
1 
2 

n—i—1 

1 

Zj near Wu(x). 

Similarly 

(8.127) J +X = 
1 
2 

i 

1 
yj 2 near W^a;'). 

From (8.121), (8.122), (8.124), we deduce that if 77 > 0 and V1 are small 
enough, then for j large enough, 

(8.128) - / (dxx,x' A ipT,x',k' A *r/)T,x,k)F 

= -
T 
7T 

n/2 

Vy 
d>Xx,x' A 

j 
Of,' 

0 

(fx9k) 
Ti A * 

j 

0 

<*i (fx'k') 
Ti 

e-T(<px+<px/) 

+c-ïX/(-)-/(«'))0(l). 
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Let N\yu(xyM, Nw(x')/M be the normal bundles to Wu(x), W*(x'). Using 
Theorem 8.27 and (8.123), (8.126), (8.127), we find that 

(8.129) - T 
7T 

n/2 
(dXx,xf Aa0(/X',fc0 A *a0(fXjk))Fe -T(<px+ipx,) 

= -e~T(f(x)-f(x')) T 
7T 

1/2 1 
тгС"-1)/2 7 

f x' ,k' ? /x,fc 
P 

d>Xx,xf 

NW*(x')/M^ 
e_lî/| dy1A---Adyt 

f x' ,k' ? /x,fc 
e-lJl2dJ1A...Adzn~l~1 + 0(l) 

We orient 7 positively by the standard orientation of [—00, +00], i.e. from x 
to x', and we denote by 7* the corresponding oriented geodesic. One sees easily 
that, if n1{x, xr) is defined as in (1.28), then 

(8.130) 1 
7T>-1)/2 7 

fx',k'ifx,k 
F 

dXx,x' 

NW*(x')/M^ 
e"l?l dy1 A---Ady{ 

Nw«(x)/M|7 
e"'*' dz1 A-'-Adz"-*-1 

-7 
f x' ,k' ? /x,fc 

F 
dxx,xf(x, 3? ). 

Now recall that fx,k is parallel along 7 with respect to the connection VF, and 
that fx,k is parallel along 7 with respect to the connection VF*. It follows that 
(fx',k'if*x,k)F is constant along 7. Also - J^dxx^ = 1. Therefore 

(8.131) 
7 

/x',fc' 5 /x,fc dXx,x' = {fx',k'{x),fx,k)Fx • 

Also it is clear that 

(8.132) 
7€T(x,x') 

(/*',*;' /x,fc)Fx n-iix, x') 

d (Wu{x'Y ® fx', k'), W(*)* ® fx, k C»(W«,F) 
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The same argument as in (8.129) can be used to handle the other terms in (8.128). 
Using (8.112), (8.116), (8.128M8.132), we find that 

(8.133) dTeT,x',k',eT,x,k IF = 
T 
7T 

1/2 e-T(/(*)-/(*')) 

a {wu{x'y ® /x,,fc,) ,w«{xy ® fx,k 
C»(W«,F) 

+ 0 D 
Tl/2 

i.e. we still get (8.111). 
The proof of Theorem 8.30 is completed. 
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IX. Proof of Theorem 7.6 

The purpose of this Section is to prove Theorem 7.6, i.e. to calculate the 
asymptotics of T —• +00 of 

Trs [iVLog (^]од1)] + Log 
RS 
det tf«(M,F),T 
RS 
det H*(M,F) 

2 

A key input is provided by Theorem 8.30, which allows us to calculate the 
asymptotics of the matrix of dF on F^'1'. This asymptotics contains exponentially 
small terms. A first step is then to modify the scalar product on F^'1' so that these 
exponentially small terms disappear. 

Once this is done, a second key and essentially new step in the proof of 
Theorem 7.6 is Theorem 9.15, where the asymptotics of the scalar product on 
the cohomology of (F^'1',^) with respect to the new scalar product on F^'1' 
is calculated in terms of the corresponding scalar product on the cohomology of 
(C9(Wu,F),d). This uses again the WKB approximation of the eigenvectors 
of D\ associated to eigenvalues A G [0,1], which was given in Section 8. The 
deRhammap P^j (F,dF) (C*(Wu,F),d), which identifies H*(F,dF) and 
H* (C* (Wu, F), d), appears explicitly from the analysis. 

By putting together these two arguments, we establish Theorem 7.6. 
This Section is organized as follows. In a), we define a new scalar product on 

F^'1'. In b), we construct the corresponding harmonic elements in (F^'1',*^). 
In c), we establish the key Theorem 9.15, in which we calculate the asymptotics 
as T —• +00 of the modified scalar product on if *(M, F). In d), we obtain the 
asymptotics of the corresponding metric on det H* (M, F). Finally, in e), we prove 
Theorem 7.6. 
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In this Section, we use the notation of Sections 1,4, 7, 8. Again, the simplifying 
assumptions of Section 7 b) will be in force in the whole Section. 

a) A modified scalar product on FT [0,1] 

Recall that for T > 0, the scalar product ( )F,T on F was defined in (5.2). 
Also the finite dimensional Z-graded vector space F^ '1 ' was defined in Definition 
7.4. In the sequel, we will often write F^'1''* instead of F^'1', to emphasize the 
Z-grading. 

The operator dF acts on F^'1''*. Then (F^,1''#,dF) is a complex, and morever 

(9.1) H9 (F£'1]'Vf) ~ H\M,F). 

Let ( , )F[o,i] T be the scalar product on F^ '1 ' induced by ( , )W,T- The 
operator D^''0'1' is exactly the associated Laplacian acting on F^'1'. 

From (1.4) and (9.1), we deduce that 

(9.2) det JT (Af, F) ~ det F£'1]'V 

The Z-graded vector space F^ '1 ' was defined in Definition 8.14. Recall that for 
T > 0 large enough, for 0< i < n, {eTja.5fc} xeBi is the orthonormal base of 

l<fc<rk(F) 
F '̂0,1''* with respect to the scalar product induced by ( , )F, which was defined in 
Definition 8.18. 

Definition 9.1. For T > 0 large enough, x e B, set 

(9.3) eM = eTfeT^k l<k< rk(F). 

By Propositions 5.3 and 5.4, for 0 < i < n, (exyX,k) XGB» is an orthonormal 
l<fc<rk(F) 

base of F^'1''* with respect to the scalar product induced by ( , )F,T-

Definition 9.2. For T > 0 large enough, for 0 < i < n, x e B\ let F ^ ] be the 
vector subspace of F^,1',T spanned by er,x,i, • • •, T̂,x,rk(F)-
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For 0 < i < ra, F£'1]'2 splits orthogonally into 

(9.4) FT[0,1],i = FTX[o,i] 

x EBi 

Definition 9.3. For T > 0 large enough, let ( , )' [0fl] _ be the scalar product on 

F£,1], which is such that 

—The various F£'*]'s are mutually orthogonal in F£'1] withrespectto ( , )' [0>1] . 
1 *i» 

— If x G B, and if a, ¡5 € FJĴ 1, then 

(9.5) (a,/3);[o,1])T = 7T 
T 

ind(x)—n/2 c2T/(«) (a,ß)WT. 

Definition 9.4. For T > 0 large enough, x G B, 1 < k < rk(F), set 

(9-6) e'T)Xifc = 
T 

7T 

ind(x) 2 -n/4 
e -T/(x) 

CT, x, k. 

For x e B, efTxl,- • •, e'Tx rk(F) is an orthonormal base of F ^ ' with respect 
to the scalar product (•, •)'[(M] . 

lrT ,i 

Theorem 9.5. For 0 < i < n, if x G JBi+1, x' G B \ /or 1 < k, k' < rk(F), then 
as T +oo 

(9-7) {dFeT,x',k^eT,x,k)'^o,i]T 

d (Wu(x'y ® F x', k') , ^"(z)* ® /X)fc 
C*(W,F) 

+ 0 1 
Jl/2 

Proo/. By Proposition 5.3 and by (9.5), (9.6), it is clear that 

(9-8) (dFeT,x',k',eT,x,k)WT = {dFeT,x',k',eT,x,k)¥, 

a еТ,х',к^еТ9х,к/^^9т "~ eT(/(x)-/(x')) 7T 
T 

1/2 
{dFeT<xl<k.,eT,x,k) 

Using Theorem 8.30 and (9.8), we get (9.7). • 

Definition 9-6. For T > 0 large enough, let 3T be the operator acting on F '̂11 by 
multiplication by f(x) on F™'*'. 
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The operator J is self-adjoint with respect to the scalar product ( , )F[o,i] T. 

Moreover, if a,/3 G F§!'1,,\ then 

(9.9) <a,^...]tT = TT 
T 

i-n/2 (eT7a,eT*ß)flo,i]T. 

Recall that dF and df> acton F£'1]. 

Definition 9.7. Let d%,*' be the adjoint of the restriction of dF to F^'1] with 
respect to the scalar product ( , )'^0,i] T-

Proposition 9.8. The following identity of operators acting on F^ '1 ' holds 

(9.10) dF* = 7T 
T 

e-2TJ d lF* 
T 

e2T7 

Proof. The operator eTy is self-adjoint with respect to the scalar product (•, •) F[o, ij T. 
Using (9.9), (9.10) follows. • 

Definition 9.9. For T > 0 large enough, set 

(9.11) F'10} = {s € Fl°A];dFs = 0,df>'« = o} . 

Let Ilr be the orthogonal projection operator from FT[0,1] on FT0 J with respect to 
the scalar product ( , YFT [0,1], T. 

In the sequel, we write often F^0*'* instead of F^0*, to emphasize the Z-
grading. 

b) The harmonic elements in FT[0,1] for the new scalar product 

Recall that (F '̂1]'*,dF) is a complex. Then F750} is the vector space of harmonic 

elements in F̂ '1] with respect to the scalar product ( , V [0fl] T- BY (9.1), it is 

clear that there is a canonical identification of Z-graded vector spaces 

(9.12) F^'' ~H'(M,F). 
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Recall that PJ?'1' is the orthogonal projection operator from F on F̂ '1] with 
respect to the scalar product ( , )F,T. 

Take [u] G H*(M,F). Let u be any closed current on M representing [v]. 
Then since P̂ ?'1' has a smooth kernel, P^^u is well-defined and lies in F '̂1'. 

Theorem 9.10. For T > 0 large enough, if [u] G H*(M,F), if u> is a closed 
current on M representing [u]f n^P^'1'^ only depends on [u\. The map 

(9.13) [u] G H\M,F) -+ UTP^1]UJ G F̂ {0} 

is in fact the canonical isomorphism H9(M, F) ~ F^ . 

Proof Let D'(M,F) be the vector space of currents on M with values in F. The 
map pj?'11 : (2)'(M,F),dF) -> (F£'1],dF) is a quasi-isomorphism of complexes. 
Our Theorem is now obvious. • 

If [u>] G H*(M,F) is taken as in Theorem 9.10, we will write UTP^1][UJ] 
instead of UTP^1]UJ. 

Recall that the scalar product ( , )c*(wu,F) on C*(WU,F) was defined in 
Section 8i). 

Definition 9.11. Let d* be the adjoint of d with respect to the scalar product 
( , )c*(w*,F) on C9(W»,F). Set 

(9.14) C{0}*'(WU,F) = {/ie C'(Wu,F),dh = 0,0* h = o} . 

By Hodge theory, we have a canonical identification of Z-graded vector spaces 

(9.15) C{0}>9(WU,F) ~ H* (c'(Wu,F),d^ . 

Definition 9.12. Let 11^ be the orthogonal projection operator from C*(WU,F) 
on C^°^9(WU,F) with respect to the scalar product ( , )c*(w,F)-

Recall that if a G F, P^a G Cm(Wu, F) was defined in Definition 2.8 by 

(9.16) P^a = J2 Wu(x)* ® IWU (e) a. 
xEB 
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Theorem 9.13. If [u] G H*(M,F) and if u G F is a smooth closed form 
representing [u], UooP^u only depends on [u]. The map 
(9.17) M G H*(M,F) -+ U^PooU G C^(WU,F) 

provides the canonical isomorphism H*(M, F) ~ C^,9(WU, F). 

Proof By Theorem 2.9, the map a G (F,dF) P^a G (C#(Wu,F),d) is a 
quasi-isomorphism. Our Theorem is now obvious. • 

If a;, [a;] are taken as in Theorem 9.13, we will write n^Po^o;] instead of 
IlooPoô . 

Remark 9.14. The class of closed currents u to which Theorem 9.13 applies is 
larger than the smooth ones. 

c) The asymptotics as T —• + 0 0 of the modified scalar product 
on H*{M,F). 

The following result is one of the essential results of this Section. 

Theorem 9.15. For any [u], [w'] e H'(M,F), then 
(9.18) 

lim (nTpt?'11M,nTF'?'11H)'0 FT0,1 = (IIooPooM,II«,PcoH>c.(Hr-,^ • 
T-++00 

Proof. Take i, 0 < i < n, and assume that deg[u;] = deg[u/] = i. Let u, uf G F* 
be smooth closed representatives of [a;], [a;']. Clearly, for T > 0 large enough, 

(9.19) P|?'1]M = 
xeB* 

l<fc<rk(F) 
M 

{и Л *eT,*,fc) JET e-2T/ e' T,x,k, 

Using (9.3), (9.6), (9.19), we see that 
(9.20) 

p [ОД] 
г [w] = 

l<fc<rk(F) 

T 
7T 

n/4-i/2 

M 
(a; A *eT,a;,A:) F c-T(/-/(*)) e! T,x,k, 
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and so, 
(9.21) 

Пт4°Д1М = 
l<fc<rk(F) 

T 
TT 

n/4-«/2 

M 
(и Л *êT,x,k) F 

p-T(/-/(*)) N reí T,x,k 

Let W^-1 be the union of the cells Wu(x),x G B,ind(x) < t - 1. Then, 
the class [a;] can be represented by a smooth closed form on M which vanishes on 
an open neighborhood V of Wu^-1. In effect by Proposition 7 by Laudenbach in 
the Appendix, [a;] can be represented by a current 7 which is a linear combination 
of the g&w'ix) (w^re x e Bl and 5 is a flat section of F^»^ ). By de Rham 
regularization [Rh2, Chapter XV], we obtain a closed form u G F* which has 
the required property. Another simple proof of this fact is as follows. Assume 
temporarily that / is a nice function. Then with the notation of Remark 1.8, 
fP(Vi-i,F) = 0. So any closed form in F* is exact on V*_i. This implies that 
[LJ] can be represented by u G F* having the required property. In the sequel we 
assume that u is chosen in this way. 

Recall that by (8.62), if x G B, 

(9.22) eM = 0(e-**T) , 1 < k < rk(F). 

Also by [HSj4, Lemma A.2.1], if t G M, 

(9.23) ¥>«(*) +/(*)-/(*)>(>. 

By Proposition 8.28, if there is equality in (9.23), then t G Wu(x). 

Let Wx be an open neigborhood of Wu(x) in M. From (9.22), (9.23), we 
deduce that there exists c> 0 such that for x G B\ 

n/4-i/2 
(9.24) ( £ j JM(u>A*eT,x,k)e-T(f-H*» 

/T\n/4-i/2 r 
= ( ! ) jf̂  (W A *eTta:,fc) c - + 5 (e"cr) 

Recall that <5X was denned in (8.55). By [HSJ2, Section 2.1] and [HSj4, eq. 
(3.12)], we know that 

(9-25) er,*,fc - vT,x,k = 6 (e"^T). 
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Using (8.56) and (9.25), we get 
(9.26) eT^k - V>7>,* = O (e-^T) . 

By [Ro, Lemma 1] or by Proposition 2 in the Appendix, we know that Wu(x) 
is obtained from Wu{x) by adding certain Wu(x') C W^"1. So we find that 
Wu(x)\V C Wu(x). Moreover Wu(x)\V is compact. Therefore there exists 
a > 0 such that 

(9.27) Sx><px + a on W"(x)\V. 

So if Wx is small enough, 

(9.28) Sx>(px + a/2 on WX\V. 

By using (9.26), (9.28) and [HSjl, Theorem 5.8] as in (8.120), we find that if 
rj > 0 and Wx are small enough, then 
(9.29) 

eT<px eT,x,k – 
T 
7T 

n/4 j 

0 

ai (fx,k) 
Ti X\V,0 

= 0 1 
yi+l— n/4 

Recall that u; vanishes on V. Using (8.71), (9.29), we get for j large enough, 

(9.30) T 
7T 

n/4-2/2 

Wx 
u; A *eT,x,fc) F e -T(f-f(x)) 

T 
7T 

n/2-i/2 

Wx 
CJ A * 

j 

o 

<*i (fx,k) 
Ti F 

e~2Tft + o 1 
VT 

We use now the coordinates (y""1 "̂*"1, • • • ,j/n) transverse to Wu(x) which 
were constructed in Section 8h). By using Theorem 8.27 and by (8.126) we find that 
as T —• +oo. 

(9.31) T 
7T 

n/2-i/2 

Wx 
w A*a0(/a?,fc))e -2T/+ 

Wu (x) 
w F x,k F 

Over M n̂(x), /x fc is parallel with respect to the connection VF*. Then, we see 
that 

Wu (x) 
w F x,k F = 

W"(x) 
fx,k 

FX 
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The other terms in the sum appearing in the right-hand side of (9.30) can be 
dealt with in the same way as in (9.31). Using (9.24), (9.30M9.32), we find that as 
T->+oo, 

(9.33) T 
7T 

n/4-i/2 
M u /\*eT,x,k)Fe -T(f-f(x)) 

Wu(x) 
U,fx,k 

Fx 

Let dF be the matrix of dF with respect to the base (efTx k) x£B l<fc<rk(F) of F ,[0,1] T ' 
and let d be the matrix of d with respect to the base (Wu(x)* ® fx,k) xeB 

l<fc<rk(F) 
Of 

Cm(Wu,F). Then by Theorem 9.5, as T —• +00, 

(9.34) dF = d+0 1 
T1/2 

Moreover, and this is essential, by Theorem 1.16 and by (9.1), the complexes 
(F '̂1],dF) and (C'(Wu,F),d) have the same Betti numbers. Let UT be the 
matrix of UT with respect to the base (e'T k) xeB 

l<fc<rk(F) 
and let Noo be the matrix 

of IIoo with respect to the base (Wu(x)* ® fx,k) x£B l<fc<rk(F) It follows from (9.34) 
that as T —• +00, 

(9.35) NT — Noo. 

Let a>' be a smooth closed form of degree i representing [u/] and verifying the 
same support conditions as u. The obvious analogue of (9.33) still holds. Using 
(9.21), (9.33), (9.35), we find that 

(9.36) ^lim^ (nrPrH.nrJ^Iw'Djto.i]^ 

x£B« l<fc<rk(F) Wu (x) 
w, fx, k 

Fx 
noo (Wu(x)*®fX9k), 

x'eB* 
l<fc'<rk(F) 

Wu (x) 
v'jfx'tk' 

Fx 
Hoc (W^(V)*®/ f*x',k*') 

C«(W«,F) 

which is equivalent to (9.18). 
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d) The asymptotics of the modified metric on det iJ#(M, F) 

Definition 9.16. Let || ||dctFiofi]f« T be the metric on the line detF '̂1''* asso

ciated to the scalar product ( , )W[O,D T on F '̂1'. For T > 0 large enough, 

let || lldetF[o,i],. j , be the metric on the line detF '̂1''* associated to the scalar 

product ( , >̂ 0tl] on FS°'1]'V Let || lldettf •(M,F),T> II lldet jy«(A#,F),T be ^ 
metrics on the line det H*(M,F) corresponding to the metrics || ||dctF[o,i],» r, 

II II' TU[O,I],. v*a the canonical isomorphism det H*(M, F) ~ det F^'1''*. 
det №rp , 1 

Proposition 9.17. For any T > 0, the following identity holds 
(9.37) 

Log 
RS 
det H*(M,F),T RS 
det H%(M,F) 

2 
+Tr8 AT Log D, 2J0,1] T = Log det H»(M,F),T 

RS 
det H*(M,F) 

2 

Proo/. Using [BGS1, Proposition 1.5], (9.37) follows. 

Proposition 9.18. For T > 0 large enough, the following identity holds, 
(9.38) 

Log det H*(M,F),T 
det H*(M,F),T 

2 
= 2rk(F)Trf[/]T + n 

2 X(F)-x'(F) Log T 
7T 

Proo/. This follows trivially from (9.9). 

The following result is now crucial. 

Theorem 9.19. The following identity holds 

(9.39) Urn 
T-++00 

Log det tf»(M,F),T 
RS 
dettf«(M,F) 

2 
= Log 

M A f 
RS 
det H*(M,F) 

2 

Proo/. Recall that the vector space F 0̂} was defined in (9.11). By (9.12), we get 

(9.40) det F'T{0} ~ det H*(M, P). 
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Let I |detIF,{o} T be the metric on the line detF^0* induced by the scalar 

product ( , )̂ 0tl] T restricted to F 0̂*. Let | \2E\ H^M,F),T be the corresponding 

metric on the line det H * (M, F) via the canonical isomorphism (9.40). 

Let D'T be the operator acting on F '̂1', 

(9.41) D'T = d£ + dÇ*'. 

Then D'T is self-adjoint with respect to the metric ( , )̂ [01] . Also (9.11) says 

that 

(9.42) F^0} =KeiD'T. 

Let DT*>0 be the restriction of D2T to the nonzero eigenspaces of D?. By 
[BGS1, Proposition 1.5], we know that 
(9.43) 

Log det tf»(M,F),T 
RS 
det H*(M,F) 

2 
= Log det tf«(M,F),T 

RS 
det H9(M,F) 

2 
+Trs AT" Log [D '2,>0 

T 

Recall that F<°> was defined in (2.4). Clearly F*°> = F]0}. By Theorem 9.10, 
for T > 0 large enough, the linear map 

(9.44) u e F<°> - uTpp% e FJ0} 

is one to one and provides the canonical isomorphism of F*0* with F °̂*. By 
Theorem 2.9, the linear map 

(9.45) u e F<°> -> U^P^LJ e C{0}(WU, F) 

is one to one and provides the canonical isomorphism of F ^ with (WU, F). 

Let I ldetc«».»(w,F) be the metric on the line det C^^(WU,F) induced 
by the scalar product ( , )c»(wr»,F)« Let I ldetV»(MF) be ^ corresponding 
metric on the line det H9 (M, F). Using Theorem 9.15, it is clear that 

(9.46) lim 
T-++00 

Log det H*(M,F),T 
RS 
det #*(M,F) 

2 
= Log 

MA f 
det H»(M,F) 
RS 
det H*(M,F), 

2 
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Let DT2 be the matrix of D'T2 with respect to the orthonormal base {e'Txk} Kfc<rk(F) 
of F ,[0,1] T . Set 

(9.47) D' = Ô + d*. 

Then, 

(9.48) cW(Wu,F) = KeiD'. 

Let D'2'>0 be the restriction of D'2 to the eigenspaces of D'2 associated to 
positive eigenvalues. By [BGS1, Proposition 1.5], we know that 

(9.49) Log 
|M,V/ 
Idet H*(M,F) 
M,Vf 
det H*(M,F) 

2 
= Tr8[iVLog(i?'2'>0)' . 

Let D2 be the matrix of D'2 with respect to the orthonormal base {Wu(x)* 
<8>/x,fc} x£B l<fc<rk(F) of C*(WU, F). By Theorem 9.5, it is clear that as T -+ +00, 

(9.50) DT -> В2-

Also for T > 0 large enough, the Z-graded kernels of the matrices D'T2 and D2 
have the same dimension. From (9.50), we deduce that as T —• +00, 

(9.51) Trs iVLog ( l ^ 0 ) ] - Tr8 [iVLog (z)'2->0)" 

Using (9.43), (9.46), (9.49), (9.51), we get (9.39). • 

e) Proof of Theorem 7.6 

We now prove Theorem 7.6, which we restate for convenience. 

Theorem 9.20. As T —> +00, 

(9.52) Tlim JTrs Log (z^']0'1])] + Log 
RS > 
det H*(M,F),T 
RS 
det H*(M,F) > 

2 

+2rk(F)Trf[/]T+ n 
2 X(F) - x'(F) Log T 

7T = Log 
||M,V/ 
Hdet ff* (M,F) 
1RS 
ldet#»(M,F) , 

2 

PTO/. This follows from Propositions 9.17 and 9.18 and from Theorem 9.19. • 
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X. The asymptotics as T + ∞ of certain traces 
associated to the operator D2T 

The purpose of this Section is to establish Theorems 7.7, 7.8 and 7.9. These 
results concern the asymptotics as T —> +oo or t —• +oo of supertraces involving 
the operator exp(-tD^) and also the asymptotics of the eigenvalues A G [0,1] of 
D\. 

To establish these results, we use the techniques of [BL2, Sections 8 and 9], 
where a much more difficult problem was considered. 

This Section is organized as follows. In a), we describe the operator DT near 
B. In b), following [BL2], we prove Theorem 7.7, in c), we establish Theorem 7.8, 
and in d), we prove Theorem 7.9. 

a) The operator DT near B 

By (5.12), we know that 

(10.1) DT = D + Tc(Vf), 

and so, 

(10.2) D\ = D2 + T [D, c(V/)] + T2\df\2. 

Observe that by (5.17), [D, c(V/)] is a matrix valued operator, i.e. an operator of 
order 0. 

Also, \df\2 is positive on M\B. Therefore the situation is formally identical 
to the one described by Bismut and Lebeau in [BL2], with Y replaced by B and 
V2 by \df\2. We will pursue this analogy further. 
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Take i, 0 < i < n. We equip Rn with its canonical scalar product, and we 
identify Rn and Rn* by the scalar product. We split Rn orthogonally into 

(10.3) Rn =R2'elRn"1'. 

Then 

(10.4) A (Rn*) = A (R{*) ®A (R(n-*>) . 

Let N,N~,N+ be the number operators on A(Rn), A(R**), A(K(n"i)*), so that 

(10.5) N = N+ +N~. 

If y e Rn, we write y in the form 

(10.6) y = y~ + y+ ; y- e R{ , y+ 6 Rw-\ 

Let F be the vector space of smooth sections of A(Rn) ® Rfc over Rn. Let F0 
be the space of square-integrable sections of A(Rn) ® Rk over Rn. We equip F0 
with the scalar product 

(10.7) a, /3 E F0 - (a, j0)Po = / (a A */3>E* . 

The operator d + (y+ - y~)A acts on F. Its formal adjoint with respect to the 
scalar product (10.7) is the operator d* + i(y+-y-). Set 

(10.8) DRn =d+ (y+ -y~) A+d* + i(y+_y-). 

Let A1" be the flat Laplacian on Rn. By Proposition 8.2, we know that 

(10.9) (5in)2 = -A1" + \y\2 - n + 2 (N* + i - N-) . 

Let p be the volume form of R{ with respect to the Euclidean scalar product of R* 
equipped with its canonical orientation. 

Proposition 10.1. The kernel of the operator (Dmn)2 is of dimension k. If /1, •••,/*. 
w arc orthonormal base of Rh, then KeT(DRn)2 is spanned by ^jre" * p ® 
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fl ? ' • * 5 wn/4 e \y\2 
2 , 

P® fk- Moreover if f e then 

(10.10) 

(d+(y+-y-) A) e 2 

TT n/4 
p O f = 0. 

{d*+ iiy+-y-)) e Ml 
2 TT"/4 P®f = 0. 

Profl/. The first part of our Proposition was already established in Proposition 8.3. 
Moreover (10.10) follows from an easy direct computation. • 

b) Proof of Theorem 7.7 

By Proposition 5.4, 

(10.11) Trs [TVexp {-tD\)\ = Trs iVexp (-iDy)] . 

In view of (10.2) and of Proposition 10.1, we see that the situation is formally similar 
to the corresponding situation in Bismut-Lebeau [BL2, Theorems 6.4 and 8.3]. Of 
course it is much simpler here, since the set B = {y, \df\2(y) = 0} is finite, while 
its analogue Y in [BL2] is a union of submanifolds. Also by Proposition 8.2, if 
x E B, the operator D\ is exactly an harmonic oscillator on a whole neighborhood 
of x, while in [BL2], only the corresponding infinitesimal analogue is true. Since 
B consists of isolated points, the analogue of the operator DY in [BL2] is the zero 
operator acting on 0A.€B Fx. 

So by proceeding as in [BL2, Section 9], we find that for 5, A with 0 < e < 
A < +00, there exist c> 0, C > 0 such that if e < t < A, T > 1, then 

(10.12) Trs [iVexp ( - í ^ ) J - rk(F) £ ( - l ) ind (*) md(x) 
x€B 

< 
c 

VT 

Using (10.11), (10.12), we get 

(10.13) |Trs [iVexp (-<£#)] - x'(F)\ < 
C 

VT 

which is exactly Theorem 7.7. 
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c) Proof of Theorem 7.8 

Recall that P^0'1' was defined in Definition 8.14. By Proposition 5.4, we get 

(10.14) Trs [N exp {-tD\) pl!'+oo[] = Trs [jV exp (-W2T) P^+oo[' . 

Let A = A+ U A_ be the oriented contour in C 

y 

+ i 

- 1 0 + 1 x 

A. - i A+ 

Figure 2 

The analogue of the operator DY in [BL2] is the zero operator acting on 
®xeB F*- By *e analogue of [BL2, Theorem 9.25], we find that for T > 0 
large enough, 

(10.15) Sp (pT) n A = 0. 

Take p £ N , p > n + 2. Let fp be the unique holomorphic function defined on 
C\>/—T R with values in C, which has the following properties : 

— As A->±oo,/p(A)->0. 
— The following identity holds 

(10.16) /^_1)(A) 
(p-l)\ 

= exp (-A2) . 
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Using (10.15), we see that for T > 0 large enough, 

(10.17) exp -tD\ R ]l,+oo[ 
T = 

1 
2iri A 

exp(-<A2) [X-DT) 
-l d\. 

Equivalently 

(10.18) exp (-tD2T) P£'+oo[ = 1 
2JT« A 

fP (V?A) 
(Vi)'-1 

/ ~ \ —p 
Л - DT) d\. 

Also 

(10.19) 
A 

и (VÍA) 

(Vi)'-1 
\-PdX = 0 

Using (10.18), (10.19) and by proceeding as in [BL2, Section 9g)], we find that 
(7.18) holds. Also by proceeding as in [BL2, Section 9h)], we get (7.19). The proof 
of Theorem 7.9 is completed. • 

d) Proof of Theorem 7.9 

Let D2^ be the restriction of D\ to F*. Recall that M* = card(JB'). By using 
Proposition 10.1 and by proceeding as in [BL2, Section 9], we see that for any t > 0, 

(10.20) lim Tr [exp (-tDT2,i)] = rk(F)M\ 
T-»+oo 
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From (10.20), and from elementary properties of the Laplace transform, (7.20) and 
(7.21) follow. The proof of Theorem 7.9 is completed. • 

Remark 10.12. To prove Theorems 7.8 and 7.9, one can also proceed as in [BL2, 
proof of Theorem 9.25], by using in particular the analogue of [BL2, eq. (9.154), 
(9.155)]. However the conclusions of [BL2, Theorem 9.25] are not valid any more. 
In [BL2, Theorem 9.25], one shows that for T > 0 large enough, if A £ R is an 
eigenvalue of the analogue of D\ which is such that |A| < 1, then A = 0. This 
follows from a purely algebraic argument, which has no equivalent here. In general, 
Morse inequalities are indeed inequalities and not equalities. 

Theorem 7.9 can also be proved by using the much stronger Theorems 8.5 and 
8.15. 





XL The asymptotics of Trs [N exp(-tD2)] as t -> 0 

The purpose of this Section is to prove Theorem 7.10, i.e. to calculate the 
asymptotics as t -* 0 of Trs[iVexp(-*JD2)]. This asymptotics has already been 
obtained by Dai and Melrose [D] in the case where the metric gF is flat. 

We will obtain Theorem 7.10 as a trivial consequence of Theorem 4.20. 
Here we make the same assumptions as in Section 2, i.e. we may work with an 

arbitrary metric g™ on TM. 

We use the notation of Section 4. Let ei, • 
TM. Then one has the trivial 

, en be an orthonormal base of 

(li.i) N = 1 
2 

n 

1 
c(ei)c(ei) + n 

2" 

By proceeding as in the proof of Theorem 4.20 (and more specifically as in (4.55)-
(4.63)), we find easily that if n is odd 
(11.2) 

lim VtTrs <—o 
1 
2 

71 

1 
c(ei)c(ei) exp {-tD2) = rk(F) 

M 
Lexp 

p™ 
2 

If n is odd, using standard results on asymptotic expansion of traces of heat kernels, 
we get the second identity in (7.22). 

We now assume that n is even. In view of Theorem 4.14, of Proposition 4.15 
and of equation (4.74) in the proof of Theorem 4.20, it is clear that 

(11.3) lim Trs <->o 
1 
2 

n 

1 
c(ei)c(ei) exp (-tD2) 
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= -
M 

B A TM L 
2 exp 

R™ 
2 

A<p$ (F,gF) 

By Proposition 3.15, we get 

(11.4) V™L = 0 

From (11.3), (11.4), we deduce that 

(11.5) Um TVs 
<->o 

1 
2 

n 

1 
c(ei)c{ei) exp (-tD2) = 0. 

Incidently note here that (11.5) also follows directly from Proposition 4.15 and from 
Theorem 4.20. 

By standard properties of traces of heat kernels, we find from (11.5) that as 
*-+0, 

(11.6) Trs 1 
2 

n 

1 
c(ei)c(ei) exp {-tD2) = o(t). 

Moreover by the McKean-Singer formula [McKS], we get 

(11.7) Trs n 
2 

exp (-tD2) = 
n 
2 X (F). 

From (11.1), (11.6), (11.7), we obtain the first identity in (7.22). 
The proof of Theorem 7.10 is completed. 
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XII. An asymptotic expansion for 
Trs[f exp(-tD2T)] as T — +00 

The purpose of this Section is to prove Theorem 7.11, i.e. to caculate, for a fixed 
t > 0, the asymptotic expansion for Trs[/exp(—tDj)] as T —» +oo. 

This Section is organized as follows. In a), we give an estimate for the kernel 
of exp(-tDj,) away from B. In b), using the fact that the metrics g™ and 
gF are flat near B, we show that near B, the kernel for exp(-tD^) is well 
approximated by the kernel of a corresponding harmonic oscillator. Finally in c), we 
prove Theorem 7.11. 

Let us point out that in our proof of our mains results in Theorem 7.1, we only need 
to establish Theorem 7.11 for t = e small enough. This simplifies the arguments 
of Section 12 b), where part of the difficulty comes from the fact that we establish 
certain estimates for arbitrary (i.e. not necessarily small) t > 0. 

As already explained, we suppose the simplifying assumptions of Section 7 b) 
(which concern the form of g™, f and gF near B) to be in force. 

a) An estimate of the kernel of exp(-tD2T) on M\ \JxeB BM(x, e) 

Definition 12.1. For t > 0,T > 0, let Pt,T(z, z')(z,z' 6 M) be the smooth 
kernel of the operator exp(-tD^) with respect to the volume element dvM over 
M. 

Then if s e F, for any z e M 

(12.1) exp (-tD2T) s(z) = J^Pi,T(z>z')s(z')dvM(z'). 
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Proposition 12.2. For any t > 0, a > 0, there exist c > 0, C > 0 for which if 
z e M is such that d(z, B) > a, for T > 0, 
(12.2) \Pt,T(z,z)\ < cexp(-CT). 

Proof Using (10.2) and the fact that [Z)x,c(V/)] is an operator of order 0, (12.2) 
can be proved by the same methods as the stronger [BL2, Proposition 13.1]. • 

Remark 12.3. The proof of [BL2, Proposition 13.1] uses the nonnegativity of the 
operator D\, and also probabilistic estimates for P^^z.z). Still using the 
nonegativity of D\ and an argument using finite propagation speed, one can also 
give another proof of (12.2). 

b) A harmonic oscillator approximation for the kernel of 
exp(—tDj) near B 

Let r > 0 be the injectivity radius of (M,gTM). 
Take e G]0,r/2] small enough so that for any x e B, the balls BM(x,2e)(x e 

B) do not intersect each other, that (7.12) holds on BM(x,e), and moreover the 
metric gF is flat on BM(x,e). 

Take x G B. We use the notation of Section 8 b) or of Section 10, with 
TXM = TxWu(x) 0 TxWs(x) replacing Rn = W 0 Rn"2. In particular, if 
y € TxM,y+ and y~ denote the orthogonal projection of y on TxWs(x) and 
TxWu(x). Also recall that TM and T*M are identified by the metric. 

Let Fx be the vector space of smooth sections of (A(T*M) ® F)x on TXM. 
Let dvTXM be the volume element of TXM with respect to the metric gTxM. We 
equip Fa- with the scalar product 

(12.3) a,af E Fx -+ (a,af)F = / (a,a')(A{T*M)0F) (y)dvTXM(y). 
JTXM X 

The operators dF + T(y+ - y~)A and dF* + Tiy+_y- act on Fx. 

Definition 12.4. Set 
(12 4) DT*M = dF + T{V+ " V~] A + ^ * + Tiy+~y~' 

DT*M = dF + (y+-y-)A+dF* + iy+-y-. 
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Let GT be the map 

(12.5) s(y) eFx->s (Jj^) 6 F , . 

Then 
(12.6) GTD^GT1 = Vf DT*M. 

Let ATxM be the standard Laplacian on (TxM,gTxM). By Proposition 8.2, we 
know that 

(12.7) (5£*M)2 = -AT*M + T2\y\2 -Tn + 2T(iV+ + ind(a?) - AT). 

Let £ be the harmonic oscillator 

(12.8) £ = I(_AT*M + |y|2-n). 

Then 

(12.9) ( ^ T M)2 = 2TĜ X (jC + iV+ + ind(x) - AT) GT. 

Definition 12.5. For t > 0,T > 0, let QxuT(y,y'){y,yf € TXM) be the smooth 
kernel associated to the operator exp(-̂ (JD^cM)2) with respect to the volume 
element dvxx M • 

We then use the coordinates y = (y1, • • •, yn) considered in (7.12) near x. In 
particular if z £ M,dM(x,z) < e,Q*^T(z,z) is well defined. 

Theorem 12.6. For any t > 0, there exist c > 0, C > 0 rac/i that if x e B, 
z e BM(x,e),T > 0, then 

(12.10) || (Pt,T - QlT) (Z9Z)\\ < cexp(-CT). 

Proof Let P^T{z, z')(z, z1 e BM(z.£)) be the smooth kernel associated to the 
operator exp(—fcDy) and Dirichlet boundary conditions on dBM(x,e). We claim 
that there exist t0 > 0, C > 0 for which, given t G]0, t0], there is c > 0, such 
that if z e BM(x,e),z' £ BM(^,e),T > 0, then 

(12.11) | | ( « , r - P 5 - ) ( ^ ^ ) | | <cexp(-CT). 
To estabhsh (12.11), we will use a simple probabilistic method. 
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In fact by Theorem 4.13 and by (5.16), we know that there exists smooth sections 
Ao, A1 of End(A(r*M) ® F) such that for any T > 0 

(12.12) B\ = -Ae + A0 + TAi + T2\df\2. 

For z e M,zf G M, let Rzz, be the probability law on C([0,1];M) of the 

Brownian bridge s £ [OA] —> x € M associated to the metric TM 
2t , starting at z 

and ending at z'. Tautologically, i2* ,̂(z0 = z) = Rtz, z (*i = z') = 1- Under 

i?* zi, 2. is exactly the Brownian motion associated to the metric TM 
2t , starting at 

z at 0 and conditioned to be z' at 1. For the definition of the Brownian bridge, 
we refer to [B2, Chapter 2]. Let E Rt be the expectation operator associated to 

ẑ,z'« 
For 0 < s < 1, let r° be the parallel transport operator along the curve z from 

(A(T*M)®F)Z into (A(T*M)®F)Zs. Set r0s = (rf)"1. Observe that by [B2, 
Chapter 2], these operators are well-defined for any s G [0,1], -R* z, a.5. . 

Under R\ z,, consider the differential equation 

(12.13) 
dvy 

ds 
= ~V:'TT¿ (tA0(zs) + fTA^z.)) rs°, 

V0* = 1(A(T*A#)®F),-

In (12.13), Vy lies in End^(A(T*M)®F). 

Let 5 be the stopping time 

(12.14) 5 = inf {s >0;zse dBM(x, s)} . 

Let A™ be the Laplace-Beltrami operator on M, and let pt(z, z')(t > 0, z, z' G 
M) be the corresponding heat kernel associated to the semi group etA™. A 
standard application of Ito's formula shows that if z, z1 G BM(x, e), then 

(12.15) {Pt,T-PtDT)(z,z') 

= pt(z,z')ER'*.*' [exp{-*r2jf Idfiz^ds^V^T^lg^<1 . 

Clearly, there exists 7 > 0 such that for any t > 0, T > 0, 

(12.16) \v{'T\ <exp(7*(l+T)). 

From (12.15), (12.16), we deduce 

(12.17) \{Pt,T-PtDT)(z,z')\ <exp(7*(l + r))ft(z,z') 
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ERt-'' [exp j-iT2 £ \df(zs)\2ds} ls<i . 

Estimating the right-hand side of (12.17) is now a scalar problem. We fix t > 0. 
In the sequel, the constants d > 0, c" > 0 • • • may depend on t > 0 but not on 
T > 0. Clearly 

(12.18) ER^' [exp j-*T2 jT1 |#(z4)|2ds j l5<a 

< ER*:'' [exp j-*T2 jf * |d/(za)|2ds| l5<i/2 

+ER':'' [ex?{-tT2 £ {dfiz^ds^h^s^<s <1 . 

By using time reversal, the two quantities in the right-hand side (12.16) are deduced 
from each other by exchanging z and z'. So we only need to estimate the first one. 

Set 

(12.19) S' = inf s>S,zsG (jdBM (y , | ) 
y€B 

Then for 0 < a < 1/4, we have the obvious 

(12.20) ERt»*' [exp j-*T2 £ \df(zs)\2ds} l5<1/2 

+ER'.'' 

<R\,Z, [S <1/2,S' -S <a] 

exp S^-tT2 jf + |d/(zs)|2d«| lS<l/2,S>-S>a 

Now there exists j3 > 0 such that 

(12.21) \df\2>(3 on M \\jBM{y,£-). 

y&B 
Therefore 
(12.22) 

ERt'.'' 
exp 

fS+a ï 
-tT2 J \df(zs)\2ds \ lS<l,2,S>-S>a < exp (-ßatT2). 
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Let R\ be the probability law on e([0,1]; M) of the standard Brownian motion 
z on M associated to the metric s^-, with R\(zo = z) = 1. 

Recall that t > 0 is fixed. By [B2, Definitional, on the a-field "B(zs\s < 3/4), 
R\ z, has a bounded density with respect to R\. Using the estimates of Varadhan 
[V, Proof of Theorem 5.1] on R\, one finds easily that there exists c' > 0 such that 
for z,z' e BM(x,e), 0 < a < 1/4, 

(12.23) R\^, [S < 1/2, S' - S < a] < c' exp e2 
32a< 

From (12.17H12.23), we find there exists c" > 0 such that for T > 0, 
0 < a < 1/4, 
(12.24) 

| (Pt,T - PtDT) (z, z')\ < c"exP(7<(l+T)) c;exp -
e2 

32at 
+ exp (-ßatT2) 

Take 

(12.25) a = 
e 

y/32ß tT 

It is clear that for T > 0 large enough, then 0 < a < l 
4 
. Also 

(12.26) 
e2 

32at 
= ßatT2 = e ß 

32 
T. 

Set 

(12.27) to = 
e VB 

87 

Then, if * < t0 

(12.28) s 
ß 
32 

- 7* > 0. 

Using (12.24), (12.28), we get (12.11). 

By a strictly similar proof, we see that for 0 < t < to, there exists c > 0 such 
that if x,x' eB, x ^ x' and if z € £M(x,e),z' G BM(x',e), if T > 0, then 

(12.29) |^,rG*,*')|<cexp(-CT). 
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Also an application of Ito's formula shows that 

(12.30) Pt,T(z, z) = pt(z, z)ERt*« [exp j-*T2 £ \df(zs)\2 ds} V{'T . 

Take A > 0. By (12.16), (12.30), there exists c> 0, such that for t e]0,A],T e 
[0,±],zGM, 

(12.31) I«,T(Z,Z)|< c 
t»/2 

Since the operator (Dr)2 is nonnegative, for any z £ M, the function t € 
R*+ -» Tr[P<(T(z,z)] is decreasing. Moreover Pt,T(z,z) £ End(A(r*M) ® P) 
being self-adjoint and nonnegative, we find that if | | denote the norm of trace, 
* —• |-Pt,r(z)| is decreasing. In particular, for any t > 0, for T > } , z e M 

(12.32) \Pt,T(z,z)\<\Pr,tT(z,z) . 

From (12.16), (12.31), (12.32), we find for * e]0, A],T > \, 

(12.33) \Pt,T(z,z)\<cTn'2. 

From (12.31), (12.33), we find that given A > 0, there exists c> 0 such that for 
0 < t < A,z e M, 

(12.34) 
|P*,T(*,*)| < c 

tn/2 
if 0 < T < 1 

t 
< cTn/2 if 0 < T < 1 

t 

Since exp(—tD\) is a self-adjoint positive operator, if z, zr G M , 

(12.35) | P * , T M I < \Pt,T{*>*)\* I ^ K * V ) I * • 

Take t > 0 which we fix once and for all. For m G N large enough, ^ €](Mo]-
If a; e B, and if z e BM{x,e), then 

(12.36) Pi,r(*,*) = 
MM_1 

i>x,r(«»«i)i>1L,T(a;x,«2) • • • 

PiT(im-i, z)dvM(zi) • • • dvM (arm-i) • 
m ' 
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Using (12.2), (12.29), (12.34H12.36), it is clear that given t > 0, there exist 
c' > 0, C > 0 such that if x G B, z G BM(x, e), T > 1, then 

(12.37) PuT(z,z)- / - P - L , T ( Z . X I ) •••P-L,T(xm-i,z)dvM (xi) 
J(B*'(«,e))—» ~ 

• • • ^ M ( x m _ i ) | < c'exp(-C'T). 

</(£M(*,e))TO-1 

Also the same argument as in (12.30)-(12.34) shows that given A > 0, there is 
c > 0 such that if t e]0, A],T > 0, then if z 6 BM(x,e), 

< A i f O < T < i 
(12.38) 1 1 

< cTn/2 if T > -. 
~ t 

(12.38) 
\PiDT^z)\ < - ^ r if O < T < -, 

< cTN /2 if T > -. 
- t 

So, by proceeding as in (12.35), we get for z, z' G BM(x, e), 

(12.39) \Pt

D

T(z,z')\ < \Pt

D

T(z,z)\1/2 \Pt

D

T(z',z')\1/2. 

From (12.11), (12.34), (12.37H12.39), we find that given t > 0, there exist 
c" > 0, C" > 0 such that for T > 1, 

(12.40) Pt,T(z,z)- f P?T(z,x1)..-P?T{xm.1,z)dvM(x1) 

•••dvM (xm-i) | < c"exp(-C'T). 

Moreover 

/ i>?,r(z,*i) 

(12.41) 

J P / T ( 2 » Z ) = / -PxT(-2
;,x1)---PxT(a;"i-i'2)rfvA/(a;i)---duA/(a;TO_i). 

J{B{x,e))m-i m ' 

From (12.40), (12.41), we deduce that given any t> 0, there exist c" > 0, C" > 0 
such that if z G BM(x,è), T > 1, 

(12.42) |(P t, T - P t

c

r ) (z,z)| < c"exV(-C"T). 

Let Q*£(ziz')(ziz' € 5TxM(0,6:)) be the smooth heat kernel associated with 

the operator exp(-^(.D^x M)2) and Dirichletboundary conditions on dBTxM(0,e). 
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One can prove as in (12.11) that there exist t0 > 0, C > 0 such that if 0 < t < to, 
there is c> 0 such that if z e J3T*M(0, e),T > 0, then 

(12.43) | (QlT - Q*$) (z,z)| < cexp(-CT). 

The obvious analogue of (12.34) holds. Moreover the kernel Q^T(z,z') is explicitly 
known by Mehler's formula [G1J, Theorem 1.5.10]. One can then easily obtain 
estimates at infinity for QxtT(z, z'), and show that the analogue of (12.37) holds. 
We deduce that given t > 0, there exist c" > 0, C" > 0 such that if z e 
BT*M(0,e),T>0, then 

(12.44) | (QlT - Qxt$) (z, z)\ < cexp(-CT). 

Finally, if z e BM(x, e), one has the obvious 

(12.45) PtDT(z,z) = Qxtf(z,z). 

Equation (12.10) now follows from (12.42), (12.44), (12.45). 

c) Proof of Theorem 7.11 

Here t > 0 is fixed. By Proposition 5.4, we get 

(12.46) Tr8 [/exp (-IDT)] = Tr8 /exp (-<Z>T)] • 

Moreover, 

(12.47) Trs [/exp ( - t ^ r ) ] = J Tr* [f(z)Pt,T{z, z)\ dvM{z). 

By Proposition 12.2, we know that there exist c> 0, C > 0, such that 

(12.48) 
M \UxeB BM (x,e) 

rTts[f{z)Pt^T{z,z)]dvM{z) 

Also by Theorem 12.6, there exist d > 0, C > 0 such that if x 6 B, 

< cexp(-CT). 

(12.49) / Trs [f(z) {PUT - QtT) (z, z)} dvM(z) 
JBM(x,e) 

< c' exp(-C'T). 
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Using (12.9) and Mehler's formula [G1J, Theorem 1.5.10], we get for y e TXM, 

(12.50) Qlr(y,y) = Te2tT 
2TT sinh(2*T) 

n/2 

exp {-Ttanh(<T)|y|2} exp {-2tT (N+ + md(x) - N~)} . 

Moreover by (7.12), if |y| < e, 

(12.51) f(y) = f(x) + 1/2 l(\y+\2-\y-\2). 

Then 

(12.52) 
BM(x,e) 

Tts [f(z)QlT(z,z)]dvM(z) 

= vk(F)f(x) 
|Y| < E 

Te2tT 
27rsinh(2̂ r) 

n/2 
exp { —T tanh(£T)\y |2 } dy 

+ rk(F) 
|y| < e 

1 
2 

y+ 2 y 2 Te2tT 
27rsinh(2*T) 

n/2 
exp {-Ttanh(<T)|y|2} dy 

TrsA(T*M) e-2<T(Ar++ind(x)-AT-) 

Also 

(12.53) 
|y|<e 

Te2tT 
27rsinh(2<r) 

n/2 
exp (-rtanh(ir)ly^) dy 

= 
1 

1 - e-2<T 
n 

lyl̂ TtanMiT)]1/̂  
e-|y|2 dy 

(TT)"/2 ' 

and so there exists c> 0 such that as T —• +oo, 

(12.54) 
|y|<* 

Te2*T 
27rsmh(2£T) 

n/2 
exp (-rtanh(<T)|y|2) dy = 1 + 0 (e_cT). 

Moreover 

(12.55) 
|Y| < e 

1 
2 

Y+ 2 _ 2 
- 2/ 

Te2tT 
27rsinh(2<T) 

n/2 
exp (-Ttanh(*T)|y|2) dy 

= 
1 

1 - e-2iT 
n 1 

2Ttanh(*T) lyl̂ ITtanhĈ T)]1/2̂  
_i_ 2 _ 2 

y - y 
e-M2 dy 

W2 
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From (3.80), (12.55), we deduce that there is c> 0 such that as Г -» +oo , 
(12.56) 

l»l<« 
1 
2 ( И 2 - И 2 ) 

Te2tT 
27Tsinh(2iT) 

n/2 
exp (-Ttaah(tT)\y\2)dy 

= 
1 

4T 
(n-2ind(x)) + 0(e-cT) 

Also, there is d > 0 such that as T —• +00, 

(12.57) Tr; A(T;M> ,-2tT(iV++ind(x)-iV-) = (_!)»««(*)+0(c-cT). 

Using (12.46H12.57), we get (7.23). The proof of Theorem 7.11 is completed. 
• 

179 





XIII. An estimate for Trs[f exp(-(tD + Tc(Vf))2)] 
in the range 0 < t < 1 , 0 < T < d/t 

The purpose of this Section is to prove Theorem 7.12, i.e. to establish an 
estimate involving Trs[/exp(-(*D + Tc(V/))2)] in the range t e]0,l],T G 
[0, j]. The results of this Section are essential in explaining the appearance of 
the term - JM9(F,gF)(Vfy^(TM,V™) in Theorem 7.1. 

The proofs rely on the Berezin integral formalism of Section 3, and also on the 
local index techniques we developed in Section 4. 

This Section is organized as follows. In a), we show that the problem considered 
in Theorem 7.12 is local on M. In b), we prove certain estimates on the kernel of 
the operator exp(-(*Z) + Tc(V/))2) in the range t G]0, 1], 0 < T < T0. In c), 
we extend these estimates to the range t G]0, 1],0 < T < j on compact sets of 
M\B. Finally in d), we prove Theorem 7.12. 

In the whole Section, the simplifying assumptions of Section 7 b) will be in force. 
Also we use the notation of Sections 3 and 4. 

a) Localization of the problem 

Let r > 0 be the injectivity radius of (M,g™). Take 6G]0,r/2]. 

Definition 13.1. For t > 0,T > 0, let SttT(z,z') (z,zf G M) be the smooth 
kernel associated to the operator exp(-(tD + Tc(V/))2) with respect to the 
volume element dvM> 

Comparing with Definition 12.1, we get 

(13.1) Si9T(z,z') = Pi24(z,z'). 
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Definition 13.2. Given z0 £ M, let S°j?°(z,z')(z,z' £ BM(z0,b)) bethesmooth 
kernel associated to the operator exp(-(lD + Tc(V/))2) and Dirichlet boundary 
conditions on dBM(z0,b). 

Proposition 13.3. For any d > 0 there exist c > 0, C > 0 such that if z0 G 
M,t G]0,1],T G [0,d/i],z G BM(z0,b/2), then 

(13.2) |(ftfT-55*°)(z,z)| <cexP(-C/*2). 

Proo/. In view of (10.2), and of the fact that [2?, c( V/)] is of order 0, the proof of 
Proposition 13.3 is the same as the proof of [BL2, Proposition 11.10]. • 

b) An estimate for the kernel of exp(-(tD + Tc(V/))2) in the 
range t € ] 0 , l ] , r e [ 0 , T 0 ] . 

In the sequel, dvM is considered as a section of An(T*M) ® o(TM). 

Theorem 13.4. For awy T0 > 0, f/zere acute c > 0 MC/I f/utf if z £ M,t £ 
]0,1],0 <T<T0, then 
(13.3) 

Trs[SuT(z,z)]dvM-ik(F)J exp(-BT2)-tdj \o(F,gF) exp(-BT2) <C*2 

Proof. Let ei, • • • ,e„ be an orthonormal base of TM. By Theorem 4.13 and 
Proposition 5.5, we know that 

(13.4) (tD + Tc(V/))2 = -t2Ae + *2ir 
4 + 

t2 
8 L<i,i,M<n 

ek,R™ (e,-,e,W 

c(ej)c(ej)c(ejfe)c(e*) + t2 
4 Ki<n 

(W(F,^(e,-))2 

-
*2 
8 1<i,j<n 

(c(ei)c(ei) -c(et-)c(ci)) (w (F,^))2^,-^,) 

-
*2 

4 1<i,j<n 
cfe) c(e,-) (Vjo; ( F , / ) (c,-) + Ve> (F,ffF) (e«)) 

—tTu> (F,gF) (Vf) + tT 
l<2,j<n 

Aei T*M df, ej c(ei)c(ei) + T2|d/|2. 
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Take z G M. We identify BT*M(0,b) with BM(z,b) using geodesic co
ordinates centered at z. Also if y G T2M, |y| < b, we identify TyM with 
TZM (resp. Fy with Fz ) by parallel transport with respect to the connection 
V™(resp.VF'e) along the geodesic s G [0,1] —• sy G M. Therefore if 
y G BM(x, b), (A(T*M) ® F)y is identified with (A(T*M) ® F)2. 

Let 7 be a smooth function K —• R+ such that 

7(s) = 1 if s < 1/2, 
(13.5) W " 7 

= 0 if s > 1. 
If y G TZM, set 

(13.6) p(y) = 7 |y| 
b 

Then 

(13.7) 
Р{У) = 1 if Ivi < b/2, 

= 0 if \y\ > b. 

Let Fz(resp.F2)0) be the vector space of smooth (resp. square integrable) 
sections of (A(T*M) ® F)z over TZM. Let ATzM be the Euclidean Laplacian 
on TZM. 

Let J '̂y be the operator acting on Fz 

(13.8) J}* = (1 - p*{y)) (-t*AT*M + T2) + p\y) (tD + Tc(V/))2 . 

Let S¡^(y, y')(y, y' e TZM) be the smooth kernel associated to the operator 

exp( - JtT) with respect to the volume element dvxx M • By Proposition 13.3, there 
exist c> 0, C > 0 such that if t €]0,1], T e [0, d/t], then 

(13.9) SttT(z,z) - SltT(0,0) < cexp C 
i2 

Let iït be the linear map 

(13.10) s(y)eFz^ s(l/T") € F 2 . 

Set 

(13.11) J2t^ = HT Jlt;THt. 
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Let ei, • • •, en be an orthonormal base of TZM, and let e1, • • •, e" be the 
corresponding dual base of T*M. For 1 < i < n, set 

(13.12) 
с<(е«) = 4 т - V t i e < ) 

Cf (e¿) = 
e* 
VT 

+ Vt i ei. 

Let Ĵ 'y be the operator obtained from J2£ by replacing the operators c(ej),c(e,) 
by c$(e;),cj(e,-) (1 < i < n). Let 5(3^(y,y')(y,y' € T2M) be the smooth kernel 
associated to the operator exp(-jf^). Then 5f^(0,0) can be expanded in the 
form 
(13.13) 

5^(0,0) = 
1 < ii < г'2 • • • < ip < n 
1 < i[ < ï2 • • • < ïp, < n 
1 < jl < J2 ' • • < ja < П 

1 < i[ < ï2 • • • < ïp, < n 

eh A • • • A e** A e*i A • • • A e'p' A tCii i 
Jq 

г e ¿'i 
i ej q' 

Q 
г1 ч'"грчг\ '"**lp' 
г1 ч'"грчг\ '"**lp' 1 я il ì"'3q di ">'"3qt 

*1 »•••»pj»! »""гр/ € End(Fz). 

Set 

(13.14) max S?;*(0,0)| = Qi,...„,i,...,„ G End(F2). 

By Proposition 4.11, it is clear that 

(13.15) Tra 5^(0,0)1 = 2n(-l)i£^m Tr fe(0,0) max 

Let r™,rF'e be the connection forms for V™,VF'e with respect to the 
considered trivializations of TM, F near z. By [ABoP, Proposition 3.7], we know 
that 

(13.16) 
TTM=l_RTM(y.) + 0{lyl2h 

TyF'e = 0(\y\). 
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In the sequel for m G Z, 0(|?/|m) denotes any matrix valued operator depending 
smoothly on y, which may also depend on t > 0, and is such that for any k G N, 
there is Cfc > 0 such that 

(13.17) |afcO(|y|m)|<Cfc|y|m-fc. 

The geodesic coordinate system y = (y1, • • • ,yn) defines a canonical trivi
alization of TM near x (which is distinct from the one considered before). It 
is well-known that in this trivialization, the Christoffel symbols of the connection 
V™ still vanish at y = 0. If e G TzM,y G TZM, \y\ < e9 let r(e)(y) be the 
parallel transport of e along the geodesic s G [0,1] —• sy G M with respect to this 
trivialization. It follows that 

(13.18) re(y) = e + 0{\y\2). 

Then by using (4.28), (4.31), (13.4), (13.8) and proceeding as in the proof of 
Theorem 4.20, we find that 

(13.19) j*$ = (1 - p\ty)) (-AT*M + T2) 

+p2(ty)L(vei+t20(]yn+t- £ ({R™(y,ei) + tO(\y\2))ek,ee) 
I ^ i<k,e<n 

({ekA-tiek) {eeA-tiet) - (e* A+*trJ (e* ATtiece12 +120 Clx/I)) ̂  

+1 E ((ek,R™(ei,eJ)ee) + tO(\y\)) 

4T 
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l<i,j,k,£<n 
(el A -tie.) [e? - tiej) (c* + <i^) (e* + *i^) 

l<i,j,k,£<n 

(e¿ - tiei) (gì + « - ) + Г 2 (|d/(z)|2 + tO(\y\)) 

5 E ( ( е г Л-<г е < ) ( е^Л-^ . ) -t 
l<i,j,k,£<n 

-pA+*tr<) (5 'A+tf-)) ((*, (F,3F))2(ei,ej) + iO(|y|)) 

((^ГМ4Г(*),е,-) + <0(||,|)) 
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+ 1 
4 l<¿,j<Tl 

(e'' Л -<ie<) (р Л +ti~) (v£wz (F, <?F) (e,-) 

+Ve>2 (F,gF) (a) + <0(|y|)) + T (w, (F,9F) (V/) + <0(|y|))] + i20(l) | . 

Now we use the notation of Section 3 f). Set 

(13.20) J03;* = -AT*M + 5T2, 

K3>Z - _ 1 
2 

1<t,j,fc,£<n 
<i?JM (y,ei)ek,et) 

(ekAet-t Ae^ Ve< + 1 
8 .<t,j,fc,£<n 

(ek,RTM (ei,ej)ei) 

(el Ae3 A [i^et A +ek A i~ ) - (ic,ej A +ef A iCi je^Ae^j 

+ T 
Ki.i<n 

(vf;Md/(z),ej) (e* A «e. - ieiPA) 

--
1 
8 K»,j<n 

(e«' AeJ - e*A e»") (w, (F,<?F))2 (e,-, e,) 

+ 1 
4 1<t,j<n 

e'AeO (AFei wz (F,gF) (ej) + VFuz (F,gF) (e.-))+Tu,, (F, <?F) (V/) . 

In the sequel, Or(t2) denotes a second order differential operator acting on 
Fz, whose coefficients are 0(t2) as t —• 0. From (13.19), we see that there 
is an explicitly computable matrix valued operator Lr(y), depending linearly on 
y G TZM such that as t -» 0, 

(13.21) jf* = J03;£ + t (k3,zo,t + ^ (y ) ) + 0T{t2). 

Let 5Q^(J/, y')(y, y' G T^M) be the smooth kernel associated to the operator 
exp(—JQ j.). Clearly, 

(13.22) 5Q?T(0,0) = 
1 

2n7Tn/2 
exp (-BT2^). 
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We define [5o'̂ (0,0)]max as in (13.14). From (13.22), we deduce that 

(13.23) 2n(-l) n(n + l) 
2 Tr 503;*(o,o) max 

dvM =-ik(F) 
B 

exp (-BT2jZ) . 

For t G [0,1], s > 0, let S^TS(y,y')(y,y' G T2M) be the smooth kernel 
associated to the operator exp(-sJfT). In particular, 

(13.24) 5?'* =S*£. 

If Ps{y,yf) denotes the standard scalar heat kernel associated with the operator 
exp(sAT*M), then 

(13.25) Sfe.M) =Ps(y,y')exp(-sBT2). 

By Duhamel's formula, we know that 

(13.26) S^s - Sfa, = 
0<si<¿ 

5f,T,5! (̂ 0,T Jt'r) ̂ 0,T,e-eidei' 

From (13.24), (13.26) we get 
(13.27) 

f s f . ' r -4 ' r ) (0,0) = 
0<S!<1 

«'r,Sl (J¡} - <т ) <т,1-в1) (0,0)^! 

4 
r0<5!<S2<l 

(5t3,T,5l (Jo,r - Jf,r)5o,T,52-5l (Jo,T - ^>T)S0>T,l-aa)(0,0)d*id«2. 

Take T0 > 0,s0 G]0,1]. By proceeding as in [BL2, Theorem 11.31], for any 
so > 0, one easily obtains uniform bounds in s G [so, 1], t € [0,1] 0 < T < To, on 
5f j. (y yf) together with its derivatives over compact sets of TZM x TZM, and 
also uniform bounds in s G [0,1], t G [0,1], 0 < T < T0, on St3£ as an operator 
acting on F^0. Incidently note that one here does not need the complicate system 
of L2 norms with weights depending on the grading which is used in [BL2], this 
essentially because in (13.19), (RjM(y,ei)^ek,ee) appears with the coefficient t, 
while in [BL2], a similar term appeared with the coefficient 1. The standard L2 
norm over F^0 is here quite enough. 

Similarly, using the techniques of [BL2, Theorem 11.30], or finite propagation 
speed methods, one can obtain adequate uniform control in s G [0,1], t G [0,1], 0 < 
T < T0, of the kernels S]^Si{y,y') as \y\ or \y'\ -> +oo. 
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From (13.21), (13.27), we find that as t -• 0, 

(13.28) (5Й-503;^)(о,о) 

= -* / TS fe,*, « ' г + *Т(у)) < ' r , i - J (0,0)d*i + 0T(t2), 
Jo<si<l v 4 ' ' 

and in (13.28), Or(f2) is such that there exists С > 0 for which if t € [0,1], 0 < 
Г < T0, then, 
(13.29) |Or(*2)| < Ct2. 

We now use (13.25). Since Lr(y) depends linearly on y, it is clear that for 
0 < «i < 1, 

(13.30) ^ . M l / f e - J (0,0) = 0 

Also by Proposition 3.10, BT2 is a sum of forms of type (p,p), and so for 
0 < *i < 1, 

(13.31) [exp (—SIBT*) ег Л e3 exp (—(1 — si)!?^)] max = o, 
exp (—SIBT*) ег Л e¿ exp (—(1 — s^B^i) max 

= o, 

exp (-5iJ5T3) e2 Л e-7 (г-<^ + ER exp (-(1 - si)BT2) max = o, 

[exp(-sißT2) (te<ej Л+е' Лге,-) e* Ле^ехр(-(1 - «О-Вт*)]' max = o, 

exp (—SIBT*) ег Л ¿Cj. exp (—(1 — SI)I?T2) max 
= 0, 

[exp (—SIBT*) iei A e3 Лехр(—(1 — SI)BT*)] max = o. 

So from (13.20), (13.25), (13.30), (13.31), we get 

(13.32) -2n( - l ) Tif Ti-4-1 ì 
2 

0<«1<1 
№ Л Т О + ^ Т ( У ) 5o,T,i-Sl (0,0)dei 

max 

= 
B exp (—Вт*) 1 

4 1<г,7<п 
e* Л 5 (VJW (F,gF) (e,) + Ve> (F, gF) (e,-)) 

+ Г ы ( ^ / ) (V/) 
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Using (4.73), (13.32), we obtain 
(13.33) 

n(n + l) 
_2"(-1)-4^Тг 0<si<l 

fe, fe + LT(y)) s&fl-., )(0,0)dSi 
i max 

dvM 

= 
В 

\ve{F,gF) + iT~ê {F,gF)) exp ( -Bp) . 

Now by Theorem 3.2, we see that 

(13.34) d J ±e{F,gF)exp(-BT2) 

= JB Q w (F,gF) + iT~e (F,gF)) exp (-BT>). 

From (13.15), (13.23), (13.28), (13.29), (13.33), (13.34), we get (13.3). The 
proof of Theorem 13.4 is completed. 

c) An estimate for the kernel of exp(-(tD + Tc(V/))2) in the 

range t e]0, 1 ] , T g [0, | ] 

Theorem 13,5. Take a > 0, d > 0. There exists C > 0 such that for any z e M 
with dM(z,B) > at for any t e]0,l],T G [0,d/t], then 

(13.35) Tr8 [St,T(z, z)] dvM - rk(F) J exp {-Вт» ) 

-td( JB\d{F,gF)exV{-BT,))\ < Ct\ 

Proof For uniformly bounded T, (13.35) was proved in Theorem 13.4. Toestablish 
(13.35), we will take advantage of the fact dM(z, B) > a. 

We may and we will assume that in Proposition 13.3, 6 < f. By (13.2), it is 
clear that to establish (13.35), we only need to work 'locally' near z G M. This 
exactly means that all the constructions in the proof of Theorem 13.4 remain valid. 

Set 

(13.36) ß= inf |d/l2(z)Al. 
d(z,B)>a/2 
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We will use Duhamel's formula as in (13.26), (13.27). The main point is that 
since T < | , the norm ofpointwise estimates on the kernels S*'£ can be improved 
by a factor exp(—s/3T2). This can be proved by using the Feynman-Kac formula. 

Alternatively, by proceeding as in [BL2, Section 11], one can show that for any 
k G N, for t G]0,1],0 < T < \, the estimates we established for the kernel 
S\]T(VI V') M Theorem 13.4 remain valid here for the kernel TkS*£(y, y'). 

Now JlT - JfT is quadratic in T. By proceeding as in (13.28), (13.29), it 
easily follows that (13.28), (13.29) hold uniformly in T G [0, d/t]. 

As in the proof of Theorem 13.4, we get (13.35). • 

d) Proof of Theorem 7.12 

In the sequel, the constants c> 0, C > 0 may vary from line to line. 
Take e G]0, small enough so that the metric gF is flat on [jxeB BM(x, e), 

and (7.12) holds on \JxeB BM(x,e). Clearly 

(13.37) TVS [/exp(-(fD + Tc(V/))2)] = J fTrs [St,T{z,z)\ dvM. 

Then 
(13.38) / f Ti* [SUT(z,z)]dvм 

J M 

= f fTra[St,T(z,z)]dvM+ f fTrs[St,T(z,z)]dvM. 
./{*;<*(*,B)>§} J{z,d(*,B)<i} 

Now by Theorem 13.5, for t e]0,1], 0 < Г < d/t, 
(13.39) 

/ / Trs [SuT(z, z)\ dvM- f f (vk(F) [ exp {-BT* ) 
l{z,d(z,B)>%} J{z,d(z,B)>%} \ J 

-td!B\e{F,gF)<*V{-BT>)\ < Ct\ 

Now, we use the notation of Section 12 a). If xeB, let A*T be the operator 
acting on Fx, 

(13.40) AIT = -*2ДТ*М + T2\y\2 - ntT + tT (N+ + ind(x) - N~). 
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With the notation of (12.7), AXT = t2(D^M)2. 

Definition 13.6. Let U?T(y,y')(y,y' G TXM) be the smooth kernel associated 
to the operator exp(-;4ffT). Let U?/{y,y')(y,y' G TXM, \y\, \y'\ < s) be the 
smooth kernel associated to the operator exp(—AXT), with Dirichlet conditions on 
dBM(x,s). 

By the same arguments as in the proof of [BL2, Proposition 11.10], which were 
already used in the proof of Proposition 13.3, we find that if t e]0,1], T € [0, j], y G 
BM(x,e/2), then 

(13.41) \{uxT - Ugf) (y,y)\ < cexp (C/T2). 

In Definition 13.1, we take b = e. Then 

(13.42) S°ix(y, y) = UtDix(y, y),ye BM(x, e). 

By (13.2), (13.41), (13.42), we see that if t G]0,1], T G [0, j], y € BM(x, §), 

(13.43) \{St,T - UtxT) (y,y)\ < cexp (-C/t2). 

So from (13.43), we see that if t G]0,1],T G [0, f ], then 

(13.44) / / (Trs [5«,T(y, y)] - TrB [UtxT(y, y)]) dvM < cexp ( - % ) . 
J\y\<e/2 \ 1 / 

Using Mehler's formula [G1J, Theorem 1.5.10], as in (12.50), with UfT = 
Qt*,T/t> weget 

(13.45) UlT(,,y) = ( ^ l ^ ) " ' 2 ^ ( - f <anh«T)|rf) 

Now 

(13.46) 

2irtsiah(2tT)/ 

exp (-2tT (N+ + ind(x) - AT-)). 

Trs [exp (-2<r (N+ + ind^) - N~))] 
rk(F) (1 - c-2tT^-ind(,) e_2trind(a;) (i _ e2tTyad(x) 
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Equivalently, 
(13.47) 

Trs [exp (-2tT (N+ + ind(x) - N~))] = rk(F)(-l)lnd(a;) (l - e~2tT)n . 

So by (13.45),(13.47), we get 
(13.48) 

Trs [Ut*T(y,y)] =(-l)ind^rk(F) T 
•Kt 

tanh(*T) 
n/2 

exp 
T 
t 

tanh(<T)|t/|2 

In particular, we deduce from (13.48) that for any T > 0, as t —> 0, 
(13.49) 

Trs [fUf,T(y,v)] = (-l)indWrk(F)/ f^-Y N/2 exp(-T2M2) + 0(*2), 

which fits with (13.3) and (13.43). 
Now using (13.48), we find that 

(13.50) 
rM<e/2 

/Trs [UlT(y,y)\ dy - (-l)»d<*>rk(F) 
I\y\<el2 

f T2 
7T 

n/2 
i 

exp(-T2\y\2)dy 

_ (_l)ind(x)rk^ 
|y|<«/2(? tanh(<T))1/2 

f t 
Ttanh(iT) 

1/2 
2/ 

exp(-|y|2) dy 
,.../2 y|<e/2T 

/ S 
T 

exp(-|y|2) dy 
W2 

Recall that y+,y~ are the projections of y € TXM on TxWs(x),TxWu(x). 
Then by (7.12), 

(13.51) f(y) = /(*) + i (|y+|2 - |y"|2) , \y\ < e. 

Set 

(13.52) T' = tT 

rhen 

(13.53) (T'tanh(T')) <T' . 

192 



AN ESTIMATE IN THE RANGE 0<t^l,0$T$d/t 

Moreover 

(13.54) 
|y| < TEX 

exp(-M2) 
dy 

W2 |y|<*(r'tanhr')1/2 
exp(-|y|2) 

dy 
7TN'2 

(̂T'tanh T'y'*<\y\<*£-
exp(-|y|2) dy 

7TN'2 

Now if 0 < a < 6 < +oo, 
(13.55) 

ll>|€[o,6] 
exp Htf I ) 

dy 
nn/2 

— Cn 
.6 

a 
exp (-r2) r^dr. < Cexp (-a2) 6n_1 (b - a). 

From (13.55), we deduce that 

(13.56) 
£(T'tanhT')1/2<M<*£-

exp(-|y| ) 
m 
xn/2 

< C exp 
£2 
4*2 

T'tauh(T') eT 
2t 

n-l S 
2t 

(r '-(T'tanh(r'))1/2). 

Take now d > 0. Then there exist c> 0, d > 0, such that for T' G [0, d], 

r'-(T'tanh(T'))1/2 <cT'3, 
(13.57) " 

T'tanh(T')>cT'2. 

By (13.56), (13.57), we deduce that for T € [0,d], 

(13.58) 1 
t2 (̂T'tanhT')1/2<|i/|<^ 

exp(-|y|2) dy 
7Tn/2 

< c 
T' 
t 

n+2 
exp 

e2d T 2 
4 *2 

<C". 

Similarly, 

(13.59) 1 
t2 

t2 
rp'2 1T < FX 

(|y+|2-|y-|2)exp(-|y|2) dy 
W2 

t2 
T'tanh(r') \v\<à(T'tuA(T>))*/* 

(|y+|2-|y12)exp(-M2) 
dy 

wn/2 

< C 
1 

r'tanh(r') 
1 

J"2 
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1 
+ J>'2 ^(T'tanh(r'))»/2<|y|<^ 

(к+12-И2)ехр(-М2) 
dy 

Ndx2 

Also there is C > 0 such that if T' e [0, d], 

(13.60) 1 
T'tanh(T') 

1 
T1 

< C. 

Moreover by using (13.58), we get for T e [0, d], 

(13.61) 1 
J"2 ft(T,tanh(T'))i/a<|y|<^ 

( | » + l ' - l » - r ) « » ( - i » p ) ^ 
dy_ 

/2 

< 4 
- At2 ft(T,tanh(T'))i/a<|y|<^ 

exp (-M2) dy 
W2 

<c. 

By (13.50), (13.51), (13.54), (13.58), (13.59M13.61), we find that there exists 
C > 0 such that if t e]0,1], 0 < T < f, then 

(13.62) I / / [Tr8 [£Çr(y,y)]] - ( - l ) ^W A(F) 
\J\v\<i 

I / f — V exp(-T2|y|2)dy 
J\v\<i \ ж / 

< Ct2 

From (13.39), (13.40), (13.62), we see that there exists C > 0 such that if 
t €]0,1],0 < T < f, then 

(13.63) Tr8 /exp (-(tD + Tc(Vf))2)' 

B B 
-rk(F) / / / exp(-BT2)-t f fd f ±d{F,gF)exp(-BT2) < Ct2 

Also 

(13.64) J fd JB ^6 (F,gF) exp (-5T0 

= _ J J*] df\o{F,gF)exV(-BT>) 

= J jB \0 (F, gF) df exp ( -Bp) • 
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By Theorem 3.13, we find that 
(13.65) 

M 

B ±0(F,gF) dfexv (-BT2) = -
M * 

1 
2 0(F,gF) d/exp(-BT2). 

B 

From (13.63), (13.65), we get (7.24). The proof of Theorem 7.12 is completed. 
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XIV. The asymptotics as t -> 0 of 

Trs[/exp(-(*D + 2:e(V/))2)] 

The purpose of this Section is to prove Theorem 7.13, i.e. to calculate the 
asymptotics as t 0 of Trs[/exp(-(*£> + jc(V/))2)] . In this Section, we 
assume that the simplifying assumptions of Section 7 b) are in force. Also we use 
the notation of Section 13. 

The real number T > 0 is fixed in the whole Section. 

Proposition 14.1. Take a > 0. There exist c > 0, C > 0 such that for z e M, 
with dM(z,B) > ot1 and any t E]0,1], then 

(14.1) Stìz.(z, z) < с exp с 
í2 

Proof. In view of (10.2), the proof of (14.1) is identical to the proof of [BL2, 
Proposition 12.1]. • 

Clearly 

(14.2) Trs /exp (-(tD + ^ c ( V / ) ) 2 ) J = JjTts [s,ti(*,z)] dvM. 

It easily follows from (13.44), (14.1), (14.2) that there exist c> 0, C > 0 such that 
if t 6]0,1], then, 

(14.3) Trs /ехр(-(Ш + ус(У/))2 
xEB Y < T 

/(у) Tr. p*zG/,y)J dy 

< с exp С 
í2 
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Take x E В. By (13.48), we know that 
(14.4) 

Trs [с^(у,у)] =rk(F)(-l)indW (-^tanh(T))n exp ( - ^ tanh(T)|y|2) . 

Using (13.51) and (14.4), we see that 

(14.5) 1 
*2 

|y|<§ 
/(y)Trs [Ut x(y,y)l dy-vk(F)(-l)iad^f(x) 

= rk(F)(-l)ind(l> 1 
<2 /(*) 

|Y| < 1 (Ttanh(T))1/2 
i 

exp(-|y|2) dy 
7T"/2 - 1 

+ 1 
Ttanh(T) lvl<f (T tanh(T))1/2 

1 
9 

(|y+|2-|y-r)exp(-|y|2) m 
W 2 ' 

Clearly there are c> 0,C > 0 such that for < e]0,1], 

(14.6) 
|Y| < T/2 (Ttanh(T))1/2 

t 
exp(-|y|2) dy 

Tj-n/2 - 1 < cexp CT tanh(D 
t2 

Moreover by (3.80), 

(14.7) lim 
t->o 

1 
Ttanh(T) |y|<§ (Ttanh(T))1/2 

t 

1 
2 ( k + l 2 H ^ l V p ( - M 2 ) 

dv 
W2 

i 
Ttanh(T) TXM 

a (|y+|2-|y |2)exp(-|2/|2) dy 
tn/2 

= 
1 

Ttanh(T) 
n 
4 

ind(x) 
2 

In view of (14.3), (14.5M14.7), we see that 

(14.8) lim 1 (Trs [/ exp (-(tD + j2(V/))2)] - rk(F) Trf [/]) 

= (JXOT - i № ) ) y j ; ^ . 

This is exactly Theorem 7.13. 
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XV. The asymptotics of Trs[/exp(-(tD 4- T/t c(Vf))2)] 
for 0 < t < 1, T > 1 

The purpose of this Section is to prove Theorem 7.14, i.e. to obtain an estimate 
involving rTrs[/exp(-(tD+ jc(V/))2)] in the range 0 < t < 1,T > 1. 

As in Sections 13 and 14, we denote by Stz (z, z')(z, z' £ M) the kernel of the 
operator exp(-(tD + jc(V/))2). 

This Section is organized as follows. In a) we give an estimate for S^z(z, z) 
on the compact sets of M\B. In b), we show that near x 6 B, Stx. (z, z) is well 
approximated by the kernel £7.xz (z, z) defined in Definition 13.6. Finally in c), we 
establish Theorem 7.14. 

The organization of Section 15 b) is closely related to the organization of Sec
tion 12 b), although we work here in a different range of parameters. Also, in our 
proof of our main result, given in Theorem 7.1, we only need to establish Theo
rem 7.14 for t = e small enough. This simplifies the arguments of Section 15 b), 
where part of the difficulty is to extend the estimates in the range t e]0, *0] (with 
*o E]0,1]) to the range t e]0,1]. 

In the whole Section, the simplifying assumptions of Section 7 b) will be in 
force. Also we use the notation of Section 13. In particular e > 0 is chosen as in 
Section 13 d). 
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a) An estimate for SF t (z, z) on compact sets of M\B 

Proposition 15.1. Take a > 0. There exist c > 0, C > 0 such that for any 
z £ M with dM(z,B) > a, and any t E]0,1],T > 1, then 

(15.1) Si,x(«,z) < cexp CT 
t2 

Proof We proceed as in [BL2, Proposition 13.1]. Let \St x.(z, z)\ be the norm of 
the matrix STT.(z,z) with respect to the trace. Since the operator (tD + jc(V/))2 
is self-adjoint and nonnegative, we find that for any (3 E]0,1], 

(15.2) Stz(z,z) < Stp^(z9z) 

Assume that t e]0,1], T > 1. By taking /3 = 1/VT in (15.2), we get 

(15.3) St X (г, г) < S_t_ ^T(Z,Z) 

Now t/Vt G]0, 1]. By Proposition 14.1, we obtain, 

(15.4) s t Ут (z,z) < cexp 
CT 
f2 

From (15.3), (15.4), (15.1) follows. 

b) The kernel S.t (z,z) near B and the harmonic oscillator 

Theorem 15.2. There exist c > 0,C > 0 such that if t e]0,l],T > 1, if 
xeB,ze BM(x,e), then 

(15.5) (stx. - U^T) (Z,Z) < cexP 
CT 
t2 

Proof Let S?£{z, z'))(z, z' e BM(x, e)) be the smooth kernel associated to the 
operator exp(-(tD + jc(V/))2), with Dirichlet boundary conditions on dBM(x,e) 
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We claim that there exist c> 0, C > 0 such that if t e]0,1], T > 1, x 6 B, z e 
BM(x,e), then 

(15.6) | (5tx - S£|f) (z, z) < cexp CT 
t2 

To establish (15.6), we use the notation and the methods in the proof of The
orem 12.6. Recall that ST x = PF2 T,S°? = P°'XT. By (12.15), we get for 
z,z' <EBM(x,e), 
(15.7) 

(stz-S°£)(z,z)=Pt*(z,z)ER'z,2*.> exp 
rp2 
t2 

1 

0 
\df(zs)\2ds)vf^T^ ls <i . 

By (12.16), there exists 7 > 0 such that if t e]0,1], T > 1, 

(15.8) vf^ <exp(7r). 

From (15.7), (15.8), we get 

(15.9) J (Stx - S?g) (z, z')\ < exp(7T)P<2(z, z')E<*' 

exp 
j>2 
t2 0 

\df(zs)\2ds\ls <i 

As in (12.18), we have 

(15.10) pt*(z,z')ERt?.*> jexp T2/T2 jf |d/(2s)|2 <*s j l<?<ij 

< p,2(z, z')£*'-' [exP {-72- j [ lrf/(^)|2 ds} ls<$\ 

+pT2(z,z')ERtt**' |exp{d-^ft-^ |4f(^)|2ds|li<5<i • 

By using time reversal, we find that the two quantities in the right-hand side of 
(15.10) are deduced from each other by interchanging z and z'. So we only need 
to estimate the first one. 

We still define the stopping time S" as in (12.19). By the analogue of (12.20)-
(12.22), we obtain for 0 < h < 1/4, 

2 
(15.11) PT2(z,z')ER'*.>' 

exp 
T2 
t2 0 

\df(zs)\2ds 15<} 
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< pt2(z, z')ERt*>' [S < 1/2,S' - S < h] + Pt2(z, z') exp <j>2 
Í2 

ßh 

Let R\ be the probability law of the Brownian motion z associated to the 

metric TM 
2t* 

, with ZQ = z. By [B2, Definition 2.4], we know that since h < 1/4, 
(15.12) 

Pt2(z,z')ER?-' [S < 1/2,5' -S<h] = ER%* [ l 5 < i / 2 ^ - 5 < ^ (¿3/4,^)] . 

For any s > 0, the operator exp(sAM) is positive. Therefore if J, zf € M, 

(15.13) p.(z, z1) < p\l\z, Z)ps 1/2 (z, z"). 

From (15.13), we deduce that there exists C > 0 such that for s €]0,1], z,? 6 M, 

(15.14) P.(?,2/)< 
C 

sn/2 

Moreover, by [V, proof of Theorem 5.1], we see that there exists c> 0 such that for 
any zeBM(x,e), 

(15.15) R* [S < 1/2, S'-S<h]< cexp e2 
32ht2/ 

So from (15.12H15.15), we obtain 

(15.16) Pt2(z,z')ERt*.» exp 
JI2 
t2 

l 

'0 
\df(za)\2ds ls<l/2 

< c 
tn exp 

e2 
Z2ht2 + exp 

rjy-2. 
t2 

(5h 

In (15.16), we take 

(15.17) h = inf e 
V32BT 

1 
4 

Then we find that there exist c > 0,C > 0 such that if i €]0,1],T > 0,a; e 
£,z,z' £BM(i,£), 
(15.18) 

pT2(z,z')E R t
2 

z,z' exp 
j»2 
*2 

1 

0 
Mf(*a)|2<h ls<l/2 < 

C 

tn exp 
CT 
t2 
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From (15.9), (15.10), (15.18), we deduce that there exist c > 0, C > 0 such that 
for t e]0,l],T >0,xe B,z,z'e BM(x,e), 

(15.19) I (St x - S£f)(*, 0 | < £tn exp ( " (C* " 7'2) | ) • 

Using (15.19), we find that there exist t0 G]0, 1] and c > 0, C > 0 such that 
for * €]0,to],T >0,x e B,z,z'e BM(x,e), then 

(15.20) |(5t,x - 5 # ) (*,*0| < ^exp ( - ^ ) . 

So (15.6) is proved for t e]0, *0]. 
By the same arguments as before, we see that if t e]0, t0], T > 0, x, x' € B, x ^ 

or', if 2 G 5M(a;,£),z' € BM(x',e), then 

(15.21) | ^ ( , , , ' ) | < ^ e x p ( - ^ ) . 

Also by (12.34), for any r > 0, there exists C > 0 such that for t e]0,1],T > 
T,Z e M, then 

(15.22) | s (x(? ,z) |<C'( ! )n/2 . 

Since exp(-(tD + jc(V/))2) is a positive operator, then if z, z1 e M, 

(15.23) l ^ i M l < |5tx(J,f)|1/2 \st^,Jt)\1/2. 

Clearly there exists m e N suchthatif t G [*o, 1], then ^ 6]0,<o]- Moreover, 
if zeBM(x,e), 

(15.24) St1 (z, z) = 
Mm-1 

S y/m ' ty/m (x, x1)... 

...s t T y/rn ' ty/rn (xm-uz) dvM (xi) • • • dvM (xm-i) • 

Using (15.1), (15.20H15.24), we see that there exist c> 0,C > 0 such that for 
*G [*o,l],T> l , i eB ,zeBM(i , e ) , then 

(15.25) Stx(z,z)-
(BM(ar,e))™-» 

5 t_ T •y/m ' ty/m (x; x1) ... 
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StT t (Xm-UZ) dvM (xx) • • • dvM (Xm-l) 
y/m ' ty/m 

< cexp 
CT 
t2 

By (12.38), we find that for any r > 0, there exists c > 0 such that for 
te]0,l],T> r, z eBM(x,e), 

(15.26) S^(z,z) \<c (^j T/t2 
n/2 

Also as in (15.23), if z, z' e BM(x, e), then 

(15.27) Sf¿*(z,*') < S?£(z,z) 
1/2 

Stx^(z',z') 1/2 

Using (15.20), (15.21), the fact that if t e [t0,1], then 1/vm e]0,to], and also 
(15.25), (15.27), we find that there exist c' > 0, C > 0 such that if * G [t0,1], T > 
l,xeB, z e BM(x,e), then 

(15.28) |(s<jZ - S?g) (z,z)\ < cexp (- CT/t2). 

Equation (15.6) follows from (15.20) and (15.28). 

Let Ufyx(y,y') (y,y' G BTxM(0,e)) be the smooth kernel associated to the 
operator exp(—Af >T) with Dirichlet boundary conditions on dBT*M(Q,e). By 
proceeding as in (15.7M15.20), one finds that there exist t0 G]0,1], c > 0, C > 0 
such that if t e]0,*0],T > l,y,y' G BT*M(0,e), then 

(15.29) \(utz - U°£) (y,y')\ < cexp (-CT/t2. 

Moreover the kernel £/xx (y, y') is explicitly known by Mehler's formula [G1J, 

Theorem 1.5.10]. One can then easily obtain estimates at infinity for Utx.(y,y') 
and show that the obvious analogue of (15.25)—(15.28) holds. As in (15.6), we deduce 
that there exist c' > 0, C > 0 such that for any t G]0, l ] , T > l , y € BT* M(0, e), 

(15.30) | (U?tz - U?g) (y,y)\ < cexp C'T 
*2 

Finally, if z € BM(x,s), one has the obvious 

(15.31) S??{z,z) = U?£(z,z). 
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Using (15.16), (15.30), (15.31), we get (15.5). The proof of Theorem 15.2 is 
completed. • 

c) Proof of Theorem 7.14. 

Clearly, 
(15.32) 

Trs / е х р ( - ( Ш + jcXV/))2' )] = Lf(<Z)Tls [SiMz>z">]dvMW-

Now by Proposition 15.1, we know that 

(15.33) 
{z,d(z,B)>e} 

f(z)Ti8 [Si9f(z,z)\ dvM(z) < cexp 
CT 
t2 

Moreover if x E B, by Theorem 15.2, we get 

(15.34) 
Iwl<« 

/(у) Тт. [(St x - l^x) (У,У)] dy < c'exp 
CT 
í2 

Also by (14.4), we have 

(15.35) 
lvl<e 

f/(y)Tr8[^x(y,y)]dy 

= (-l)ind(a:)rk(F) 
|y|<f(Ttanh(T))i/2 

f t 
(Ttanh(T))1/2 y exp(-|y|2) dy 

W2 
Equivalently, using (13.51) and (15.35), we find that 

(15-36) / f (y)Trs\u?x(y,y)]dy 
J\y\<e ' * J 

= Tk(F)(-l)iDd^l f(x) 
|y|<f(Ttanh(T))i/2 

exp(-|y|2) dy 
7r"/2 

+ 
t2 

Ttanh(T) |y|<f(Ttanh(T))»/a 
1 
3 

(|y+|2-|y-|2)exp(-|y|2) dy 
W2 

Clearly, 
(15.37) 

1 -
|y|<f(Ttanh(T))i/2 

exp(-|y|2) dy 
W2 |y|>f(Xtanh(X))>/' 

exp(-|y|2) dy 
_n/2 
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So there exist c> 0, C > 0 such that if t e]0,1], T > 1 
(15.38) 

1 
t2 1 -

M<f(Ttanh(T))V3 
exp(-|y|2) dy 

W2 
< cexp CT 

t2 

Also by (3.80), 

(15.39) 
TXM 

1 
2 

(k+r-b12)exp( -M2) dy 
7T"/2 = 

1 
4 n — 

1 
0 

ind(a:) 

From (15.39), we deduce that 

(15.40) n 
t2 

t2 
Ttanh(r) |j/|<f(Ttanh(T))i/2 

1 
3 ( k T - l r f ) 

exp (-|y|2) dy 
j.n/2 

*2 
T 

1 
4 n — 

[ 
2 ind(x) 

= -
1 

Ttanh(r) |j/|>f(Ttanh(T))i/2 
1 
2 (\y+\2-\y-\2)ew(-\y\2) dy 

W2 

+ 
1 
T 

1 
tanh(T) 

- 1 1 
4 n — 

1 
2 ind(a;) 

Clearly, there exist c > 0, C > 0 such that for * e]0,1], T > 1, 

(15.41) 1 
Ttanh(T) |y|>*(Tt«»h(T))Va 

1 
2 

(|y+|2-|y-|2)exP(-|y|2) dy 
W2 

< cexp CT 
t2 

Moreover as T —• +oo, 

(15.42) 
1 
T 

1 
tanh(T) - 1 = 

1 
T O (e"2r). 

Using (15.36), (15.38), (15.40M15.42), we find that there exist c> 0,C > 0 
such that for any x € B, t e]0,1], T > 1, 

(15.43) 1 
t2 \v\<e 

/(y)Tr. Ux T (y, y) dy 

-rk(F)(-l) ind(x) /(*) + 
*2 
T 

1 
4 n — 

1 
2 ind(x) < cexp(-CT). 
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From (15.33), (15.34), (15.43), we see that there exist c> 0, C > 0 such that if 
t e]0,l],T > 1, then 

(15.44) | i JTr. [/exp (-(tD+ f W ) ) 2 ) ] 

- r k ^ ^ t / l - ^ ^ x ^ - i x W J j l < cexp(-Cr). 

The proof of Theorem 7.14 is completed. 
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XVI. A direct proof of a formula 
comparing two Milnor metrics 

Let M be a compact manifold. Let F be a flat vector bundle on M, and let 
gF be a smooth metric on F. 

Let f,g : M —• R be two Morse functions. Let goM,g'0™ be two smooth 
metrics on TM, and let X, X\ be the gradient vector fields of f,g with respect 
to the metric goM,g'0TM. 

We assume that X and X1 verify the Smale transversality conditions. 
Let B and Br be the zero sets of X and X*. As in Section 7 a), let 

II llK*(M,F) md II llK'*(M,F) betheMilnormetricsonthelinedetiy(M,F) 
determined by the #f (x G S) and the g^,{xf e Bf). 

Let g™ be a smooth metric on TM, and let V™ be the Levi-Civita 
connection on (TM,gTM). 

Theorem 16.1. For any smooth metric g™ on TM, the following identity holds 

(16.1) Log 
M,л" 
det ff*(M,F) 
det H*(M,F) 

2 
= 

M 
e (F,gF)X *V ( TM, V™) 

-
M 

Ö ( F , / ) I V ( T M , V ™ ) . 

Proof Clearly (16.1) is a trivial consequence of Theorem 7.1. Here, we will give a 
direct proof of (16.1). 
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By Proposition 6.1 and Theorem 6.3, we see that the right-hand side of (16.1) 
does not depend on the metric g™. 

Assume first that f = g. Then X and X' are gradient vector fields of / . 
Observe that one can modify / so that X and X' are still gradient vector fields 
for / , and / takes distinct values on B. By Proposition 6.1, 

(16.2) / 0 (F, gF) X* V (TM, V™) - / 0(F, gF) X*i> {TM, V™) = 0. 
J M J M 

In the Appendix, Laudenbach constructs a smooth path t G [0,1] —• Xt of 
gradient vector fields for / , which verify the Thom-Smale transversality conditions 
except at a finite set {tu• • • ,tq} C [0,1], with 0 < h < • • • < tq < 1. For 
* i t1• • • let (C*(W,F),dt) be the Thom-Smale complex associated to 
Xt. As the notation indicates, the Z-graded vector space C*(W, F) does not 
depend on t, only the chain map dt depends on t. 

Clearly dt is constant on the intervals [0,fi[,]ti,t2[, • • • ,]tq, 1[- For 1 < i < q, 
let (Cm(W,F),d^.) and (C#(T ,̂F),<9+) be the Thom-Smale complexes on the left 
of t{ and on the right of t{. By a result of Laudenbach given in Propositions 9 and 11 
of the Appendix, there is an invertible linear map A, acting on the Z-graded vector 
space C*(W,F), which is a chain homomorphism from (C*(W,F),d^.) into 
{C*{W^F)^df.) and which identifies canonically the corresponding cohomology 
groups. By the Appendix, it is clear that for 1 < j < q, the determinant of the 
action of A on each Cj(W,F)(0 <j<n) is equal to 1. It then follows from the 
previous considerations that for 1 < % < q, 

(16.3) M, X 
det H*(M,F) ~-

u,xt+ 
det H!(M,F) * 

We deduce from (16.3) that 

(16.4) det #«(M,F) — det/f»(M,F) ' 
Using (16.2), (16.4), we see that if X and X' are the gradient vector fields of a 
common Morse function / , both sides of( 16.1) are equal to 0. 

Since the Milnor metric det H*(M,F) depends only on / , we will write 

det H*(MiF) instead of det H*(M,F)' 
Let now / and g be arbitrary Morse functions. Let t G [0,1] —• ft be 

a smooth Cerf path [Ce] of smooth functions mapping M into R, such that 
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/o = /> /1 = 9> which are Morse, except at a finite set of parameters ¿1, • • •, tq 
such that 0<*i- - -<<g<l , where two critical points y't and y" of index j and 
j + 1 (0 < j < n — 1) appear or disappear at a birth or death point y £ M. The 
form of ft(x) near (¿¿,2/) is given by Laudenbach in the Appendix, equation (8). 

We claim that the continuous function t £ [0, l]\{*i, • • •, tq} —• JM 0(F,gF) 
(V/*)* V(TM, V™) £ R extends to a continuous function t £ [0,1] —• R. In 
fact we only need to consider the case where t = tt-(l < i < q). If 0{F,gF) 
vanishes near the birth or death point y £ M, it is clear that U is also a point of 
continuity. More generally, there is a closed form 0'(F, gF), which vanishes near 
y £ M, which is cohomologous to 0(FygF)9 i.e. there exists a smooth function 
V : M -+R such that 

(16.5) 0' (F,gF)-6(F,gF)=dV. 

By using the equation of currents (3.33), we see that if t £ [0, l]\{*i, • • •, tq} and 
if Bt is the set of critical points of fu then 

(16.6)/ e{F,gF)(Vft)*^(TM,S7™)= O f{F,gF)(yfty^{TM,V™) 
JM JM 

+ / Ve (TM,V™) - S2 (-l)ìnd{x)V(x). 
JM 

xetft 
Now the first two terms in the right-hand side of (16.6) are clearly continuous at 
t = ti. Assume that when t increases, y is a birth point of two critical points, of 
index j and j + 1. Then 

(16.7) J2 (-l)ind(x)^) = (-l)ind{x)V(x) + V(x)-V(x). 
xeB tt J xeB J 

Equivalently, the function YlxeBt (-l)ind^V(x) extends to a continuous function 
near ti. Of course this is still true if y is a death point. We have thus proved that 
JMe(F,gF)(Vfty xl){TM,V™) extends to a continuous function on [0,1]. 

By Proposition 6.4, we know that 

(16.8) 
d 
dt M 

0(F,gF) (V / trV(TM,V^) 

M 
0(F,gF) ( V / c O ( ™ , V ™ ) ) 
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£ ( - l f D < * ) 0 ( F , ^ ) 
x€Bt 

дх 
dt 

on [0 , l ] \{ í i , . . . , í j . 

On the other hand, it is clear from the equation of ft(x) near (¿¿,y¿) given in the 
Appendix, equation (8), that the right-hand side of (16.8) is an integrable function 
on [0,1]. Since the function t G [0,1] -+ JM0(F,gF)(Vft)*il;(TM, V™) -
JM 0(f> 9F)(Vfo)*ip(TM, V ™ ) is continuous, we have the equality of distribu
tions on [0,1], 

(16.9) 
д 
dt M 

e(F,gF) (V/<)>(TM,V™) 

- M 
0{F,gF) (V/o)*V(TM,V™) 

xEBt 
(-iy*d(x)0(F,gF) dx 

dt 

Take t G [0, l]\{*i, • • •, tq}, and let g™ be a smooth metric on TM, such 
that the corresponding gradient vector field Vft verifies the Smale transversality 
conditions. Then for t' G [0,1] close enough to t, V/*, still verifies the Smale 
transversality conditions, and the Thorn complex (C* (Wti, F), d), for V/f can be 
identified to the complex (C* (Wtj F), d) for V/*, but of course, the identification 
is in general not isometric. In fact one has the easy identity 

(16.10) a 
dt Log det HM(M,F) 

M,/0 
det H*(M,F) 

2 

= 
xEBt 

(_l)-d(^ ^flFjg)F dX 
at 

on [0,l]\{ti, ••-,«,}. 

We claim that the function t £ [0, l]\{*i, • • •, tq} —• Log( det H*(M,F) 
det tf #(M,F) 

)2 GK 

extends to a continuous function from [0,1] into R. Take i, 1 < i < q and let 
g™ be a smooth metric on TM taken as in the Appendix with respect to . Then 
for t ^ U and t near ti9 the Thom-Smale complex (C*(Wt,F),d) is constant on 
the left and the right of ti. Assume again that y G M is a birth point of two critical 
points y\, y" of index j an j + 1. In particular, for t > t{ close enough to ti, we 
may identify Fy/ and Fy» to Fy by using a flat trivialization of F near y. 
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Let (C*(F), d') be the complex concentrated in degree i and i + 1 

(16.11) О —> Fy> —• Fy» -* 0. 

In (16.11), d' denotes the canonical identification of Fy/ and Fyn. Of course 
(C;(W,F),df) is acyclic. 

Then by Propositions 8 and 11 of the Appendix, there exists a linear automorphism 
A of the Z-graded vector space C9(Wt-, F) © C*(F), which has determinant 1 
in every degree, such that 

(16.12) (c* {W+,F) ,a) = ( c ( f ( r , f ) e c ^ n A - ^ a e a O A ) , 

which induces the canonical identification of the cohomology groups. Also the 
identification (16.12) identifies the metrics. Since A has determinant 1, it preserves 
the obvious metric on det(C* (W£, F) © Cj(F)). Clearly 

(16.13) det (C# {Wf^F) 0C;(F)) = det C# (Wti F) ® det Cy;(F). 

Using (16.12), (16.13), we see that 

(16.14) detC# (W+ti, F) = detC* (Wf^F) ® detC;(F). 

Now gFy and gFyi can be considered as metrics on Fy. Also det C*(F) has a 
canonical section (dete)')-1, and moreover 

(16.15) II ( d ^ T 1 111 detCJ(F) = det 
gFY' 
gFy* 

(-i)* 

In particular 

(16.16) lim 
t>ti 
t>ti 

(detd') -l 
detCJ(F) 

= 1. 

Using (16.12H16.16), we find that 

(16.17) Log 
M,/ f1 
det H»(M,F) 
M,/ f1 
detH»(M,F) 

2 
= 0. 
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We have thus proved that Log( det Hm(M,F) 
'det H«(M,F) )2 extends to a continuous function 

of t G [0,1]. As in (16.9), we deduce from (16.10) that we have the equality of 
distributions on [0,1], 

(16.18) 
a 
dt Log 

M, ft 
det H*(M,F) 
H,/0 
det#»(M,F) 

2 
= 

x E B1 
(-l) ind (*) 0 (F,5F) dx 

at 

From (16.9), (16.18), it is now clear that for t G [0,1], 

(16.19) Log det H9(M,F) 
M,/0 
det #*(M,F) 

2 

= 
M 

0(F,9F) (V / t rV ( rM,V™)-
M 

0(F,gF) (V/o)*V(TM,V™). 

By taking < = 1 in (16.19), we get (16.1). 
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