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A SURVEY OF RECENT W O R K ON THE SQUARE ROOT 
OF THE INVERSE DIFFERENT 

by 

Boas EREZ 

We will give a survey of recent work done by several authors on the Galois-
hermitian module obtained by restricting the trace form of a Galois extension 
K/F to the ideal in K which -when it exists- is the square root of the inverse 
different of K/F. This is the only additive Galois module, apart from the ring 
of integers, whose structure is now fairly well known. 

Although the work exposed here has benefitted enormously by the tech­
niques developed by A. FRÖHLICH, M.J. TAYLOR et alia to study the structure 
of the ring of integers, we will not suppose here that the reader is acquainted 
with them, so that this paper can also serve as an introduction to their work. 

We shall begin by fixing the notations which will be in force throughout 
the paper and then we will define the object of our interest. Next an example 
is given to try to motivate our subsequent discussion. In Section 2 we analyze 
the situation for weakly ramified extensions, while in Section 3 we drop the 
restrictions on ramification but consider only abelian extensions. We also give 
some details concerning the proofs of several results discussed in Section 3 which 
are not to be published elsewhere. These are to be found in two appendices due 
to D . BURNS. 
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EREZ B. 

1. The square root of the inverse different 

Notations. 

The arithmetic side. Let us denote by : K/F a finite Galois extension of 
either number fields or finite extensions of a j>-adic field Q p , G — Gsl(K/F) its 
Galois group, TrK/F the bilinear trace form of K/F, ZL the ring of integers in 
L, D{K/F)~l the inverse different of K/F. 

The algebraic side. We will have to consider : FG (resp. TpG) the group 
algebra of G over F (resp. Z^),mG the multiplication form on FG for which 
the elements in G form an orthonormal basis. 

Recall that by a formula due to Hilbert (see e.g.[Sl] Chap. IV. 1, Prop.4) 
we can compute the order of the different D(K/F) at any prime P in K by 
means of the sequence {G, = G{(P,K/F)} of ramification sub-groups of G : 

oidP(D(K/F)) = E 
«>-1 

(ord(G.) - 1) . (1.1) 

As a consequence we have that for instance in an odd degree Galois extension 
K/F there exists a unique ideal A(K/F) such that 

A(K/F)2 = D(K/F)~1 . (1.2) 

We will call the ideal A satisfying (1.2) the square root of the inverse different 
(of K/F). 

Since G acts on K as a group of isometries of the trace form TTK/F 
and since the dual with respect to the trace form of an ideal B in K is the 
ideal B~LD{K/F)~X, we see that by restricting the trace form to the square 
root of the inverse different we get a self-dual integral ZirG-hermitian form 
(A(K/F),TIK/F). One would like to have a description of this form up to 
equivariant isometry (see [C-P] Question (V .4.3)). It is the aim of this survey 
to summarize what is known on this problem. 

1.1. Example 

We show how one can use the results on the hermitian module 
(A(K/F),TvK/F) to describe the structure of the module (ZK,TiK/F). 
Observe that 1K < A(K/F) < D(K/F)-\ Suppose that K/F is tamely 
ramified, that is all its first ramification groups are trivial. To ensure the 
existence of A(K/F) suppose K/F is Abelian of odd degree and for simplicity 
let F = Q. 
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THE SQUARE ROOT OF THE INVERSE DIFFERENT 

Since the degree of the extension i f /Q is odd, we know that there is a QG-
equivariant isometry between (A^Tr^/q) and (QG,?TIG) (see [B-L] for a proof 
under more general hypothesis). So (ZK,TTK/F) is isometric to a ZG-ideal M 
in QG which is locally free because we are supposing that K/Q is tame. We 
shall now define one such ideal M = M(K/Q) by defining its localizations 
Mp = Zp ® M for all primes p of Q. So fix a prime number p and a prime P 
in K above p, then choose a uniformizing parameter 7r in Kp. Let 6P := 0o,p be 
the injective character of the inertia group I(p) := Go(P, K/F) defined by 

0p(9) = 9{*)l* m o d -P 

(see [SI] Chap.IV.2 Prop.7). 6P generates the (cyclic) group of characters of J(p) 
and to each integer i between 0 and e(p) := ord(/(p)) we can associate in ZPG 
the idempotent e t > = (l/e(p))Ei(p)0ip(g)g-1 

Now form the sum £?p = e 0 > p + ei j P H + e m ? p where m = (e(p) — l ) /2 . 
Then we define M p to be Mp := {p,Ep)TpG. Of course if p doesn't ramify in 
i f /F (i.e /(p) = { 1 } ) , then Mp = 1PG so M is well defined. The interest of M 
stems from the following result -which is shown in [E-M]. 

THEOREM 1.3. Under the restrictions introduced above we have 

(i) M(K/Q)A(K/Q) = ZK. 

(ii) The following conditions are equivalent 

(a) (ZK,TrK/q) is TG-isometric to (M(K/Q),mG) 

(b) (A(K/Q),TrK/q) is IG-isometric to (ZG,mG). 

Now, under the hypothesis of this example one can show that (ii-b) is true 
(see Theorem 2.9 and Remark 2.10 below), so that -in this particular case- we 
have a more precise description of (ZK, TrK/q) than in [Tl] (see [E-M] for more 
details). 

2. Weakly ramified extensions 

Our next result will give necessary and sufficient conditions for the square 
root of the inverse different A(K/F) to be locally isomorphic to Z/rG, in a way 
completely analogous to what is known as E. NOETHER's characterization of 
tame extensions (see e.g. [Fl] Theorem 3, p.26). 

DEFINITION 2.1. The Galois extension K/F is weakly ramified if all its 
second ramification groups (in lower numbering) are reduced to the identity. 
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EREZ B. 

Instances of weakly ramified extensions are 

(a) all tamely ramified extensions 

(b) absolute Galois extensions of odd prime degree. 

(c) the dihedral extension obtained as the compositum of Q((—3) 1 / / 2) and the 
(non-Galois) cubic field Q((2) 1 / 3 ) (see e.g.[C](16.29) and (17.31)). 

Observe that (Galois) sub-extensions of weakly ramified extensions are 
weakly ramified, but that the compositum of weakly ramified extensions is not 
necessarily weakly ramified : indeed if p is an odd prime, then the cyclotomic 
field Q(p 2) of p2-th roots of unity is not even weakly ramified over Q(p) although 
it is the compositum of Q(p) and the unique subfield of degree p over Q which 
it contains. 

THEOREM 2.2. Suppose ord(G) is odd. Then A(K/F) is locally free over 
ZpG if and only if K/F is weakly ramified. 

The necessity of a condition on the second ramification groups for any 
ambiguous ideal to be locally free over HFG has been shown by S.ULLOM in 
[Ul], 2.1. The converse is shown in [E2] by using the results of [U2]. 

Remark. The computations in [Mil] et [Mi2] show that the characterization 
of the first ramification group as "vertex of the ring of integers" has no 
analog even for the second ramification group -as one would hope in light of 
Theorem 2.2. (see also [Fl] Note 3 to Chapter 1). 

H I . HYPOTHESIS. In the rest of this section we will always suppose that 
the order of G is odd and that K/F is weakly ramified. 

To get more precise results in this situation - i.e., to investigate when 
A(K/F) is globally free over ZFG - we are led to describe the class defined by 
A(K/F) in the group Cl(TG) of stable isomorphism classes of locally free ZG-
modules (we will eventually have to restrict scalars from Zjr to Z). Recall that 
since the order of G is assumed to be odd, the stable isomorphism class defined 
by A(K/F) completely determines its isomorphism class. We now recall the 
description of ClCZpG) in terms of Galois homomorphisms (see (2.3) below). 
This description will allow us to express the class defined by A(K/F) in a way 
relating it to the arithmetic of the extension K/F. For ease of notation let 
R = 1F , A = Z F G , A = FG and C = center(FG). If M is a rank one locally 
free module over A, then for every (finite) prime p in R there exists mp in M and 
ra0 such that Apmp = Rp ®R M and Am0 = F®R M. SO for every (finite) prime 

136 



THE SQUARE ROOT OF THE INVERSE DIFFERENT 

p there exists bp in (Ap)x such that mp = 6 pm 0 . Note that since (Am 0 ) p and Mp 

coincide for almost all p, bp is a unit in Ap for almost all p. It follows that M 
is isomorphic over A to the ideal Ab in A defined at each local completion by 
Rp ® Ab = Apbp. These considerations lead to the idelic description of C7(A), 
which generalizes the idelic description of class groups of number fields. Sending 
b to the class (Ab) gives a surjective homomorphism from the ideles J (A) to 
C7(A) whose kernel can be computed (see [C-R]Vol.11 (49.22)). By taking the 
reduced norm to the center nrd = nrd^/c (and taking into account the infinite 
places) one obtains the isomorphism 

C7(A) s J(C)/C*nrd(!7(A)) 

where U(A) are the unit ideles of A (see[C-R]Vol.II(49.23)). Under this isomor­
phism the class defined by M corresponds to the class of the reduced norm of 
b. The final step in the description consists in the following. Choose E to be 
a "big enough" (finite) extension of F-at least Galois over F and splitting A 
and write RQ for the group of virtual characters of G. Recall that C = I IF (xO, 
product over a set of representatives of the orbits of absolutely irreducible char­
acters of G. We have an isomorphism / : CX = Hom^i?)(RG, EX) defined by 
f(Uci)(x) = Uf(ci)(x) and /(c,-)(x) = 1 unless x = X? ™ in the orbit of x,-, in 
which case /(c,-)(x) = Cwi. This isomorphism then extends to the idele groups 
and we only have to interpret the image of the reduced norm as so-called de­
terminant homomorphisms to obtain FRÖHLICH's Horn-description : 

C7(A) ~ Homo(F)(ÄG, J(E))/RomQ{F)(RG,Ex)Det (U(A)) (2.3) 

(see[C-R] Vol.11 (52.11), [Fl] II.l). Here the class defined by M corresponds to 
the ^-invariant homomorphism / which on an irreducible character x takes the 
idelic value (fp(x))P, where -in E* = (Fp ® E)x)-

fp(X) = detx(bp) (2.4) 

is the determinant of the matrix in GL(Ep) obtained by evaluating any 
extension of an JS-representation T = Tx with character x o n the (invertible) 
group algebra element bp. 

Remark. Of course all this goes through for more general orders A than 
group rings. 

We will now proceed to give a representative homomorphism for the class 
defined by A(K/F) in Cl(ZpG). Here E will also have to contain K and the 

137 



EREZ B. 

values of arithmetic functions needed. So fix local normal generators mp of 
A(K/F)P over ZjTpG and a normal generator ra0 of K over FG. Let bp be such 
that bpirio = mp. Define the idelic resolvent (ra|x) by letting its p-component 
be (m\x)P = K | x ) = d e t ( E G r ( 5 - 1 ) 5 K ) ) with T = Tx as after (2.4). 
Then Det x(6) = (m\x)/(rn0\x) (see [Fl] 1.4.1). Observe this is immediate for 
abelian characters, for which we get the classical Lagrange resolvents. Already 
because Zp need not be a principal ring we will restrict scalars from Zp to 
Z and consider A(K/F) as a ZG-module; this forces us to replace the above 
resolvents with norm-resolvents J^F/q(^\x) -which we will not define (see [Fl] 
Theorem 2 and (2.16)). We will make a full use of the Horn-description in 
that we will need the (second) Adams operation $ = $ 2 on RG • this is the 
endomorphism of RQ defined by ^ ( x ) ( ^ ) = x(<72) ( s e e e-g- [C-R] Vol. I, 12B, 
[K]). Let T(K/F,$) be the Galois-Gauss sum attached to the field extension 
K/F and the character $ of G (= Gsl(K/F)) (as in say [Fl] 1.5 or [Ma]). We 
now change the representative homomorphism above with the aid of the Gauss 
sum and \I>. 

PROPOSITION 2.5. ([E2] Theorem 3.6). Suppose (HI) is fulfilled, then 
the class defined by A(K/F) in Cl(ZpG) is represented by the Galois ho­
momorphism VK/F which on the character x °f RG takes the idelic value 
VK/F(X) = ArF/q(m\X)r(K/F, tf(x) - x ) " 1 . 

The proof of this proposition follows -as in the study of rings of integers-
from the fact that AfF/q(mo\x) a n d T(K/Fi * ( x ) ~ x ) behave in the same way 
under Galois action (see[Fl] III.3). 

Remark 2.6. One is led to consider the representative homomorphism given 
in the proposition after having noticed the decomposition in terms of the Jacobi 
sums T ( X ) 2 / T ( X 2 ) as given in [El] for absolute Galois extensions of odd prime 
degree. 

Now that we have a nice representative homomorphism we can try to 
show it lies in the denominator of the right hand side of (2.3). We have not yet 
succeeded in doing this in general although it is true for tame extensions (see 
Theorem 2.8 below), howewer in general we can prove the following. Let M be 
any maximal order in QG containing ZG and let D(ZG) denote the kernel of 
the (surjective) homomorphism from Cl(ZG) to Cl(M) obtained by extending 
scalars from ZG to M. We know that D(ZG) does not depend on M. 
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THEOREM 2.7. ([E2] Theorem 2.) Suppose (HI) is fulfilled, then vK/F lies 
in D(ZG), that is M ®IG A(K/F) is free over M. 

As with FRÖHLICH in his proof of the Martinet Conjecture for tame 
extensions (see [Fl] Theorems 5 and 23), we show that the components of 
the ideles AfF/q(™<\x) a n d T{K/F^{X) — x) a r e the same up to units, so 
that vK/F actually lies in Hom n(i?G, U(E)) and hence is zero in Cl(M) (see 
[Fl] 1.2.19). By using the functorial properties of the ideal A(K/F) and of 
the homomorphisms involved this amounts to a computation in local totally 
ramified extensions analogous to the one in [Fl], III.7 for the tame case, but 
involving non-abelian local characters in the wild case (see [E2]). 

THEOREM 2.8. ([E2] Theorem 3.) Suppose (HI) is fulfilled, but assume also 
that K/F is at most tamely ramified, then A(K/F) is free over ZG. 

Given Theorem 2.7 above and its proof ( !), this is an almost formal 
consequence of M.J. TAYLOR'S work on Galois-Gauss sums and on groups of 
determinant homomorphisms together with his joint work with Ph. CASSOU-

NOGUÈS on Adams operations (see [Fl] Theorems 30, 31 and 10, [CN-T] 
Théorème 1' and (2.7) or [T2] Theorems 8.1.2 and 9.1.2, [E2]). In the absolute 
abelian case we have a complete picture for the hermitian structure as well. 

THEOREM 2.9. ([E3] or [E-M] Theorem 4.1.) Suppose that F = Q and that 
G = Gal(K/fy) is abelian of odd order. Then the following are equivalent : 

(a) K/F is weakly ramified 

(b) for every prime p in Z the order of the inertia group GQ(K/Q,P) is either 
equal to p or prime to p 

(c) (A(K/fy),TiK/q) is isometric to (ZG, mG) 

(d) A(K/Q) is free overZG. 

This is less involved than the previous results, the hardest part being 
the proof that (b) implies (c). We exhibit explicit self-dual normal bases -
taken from [El]- for special extensions K(p), one for each prime p ramified in 
i f /Q, so that : K is contained in the compositum L = UpK(p), the K(p) are 
arithmetically disjoint in pairs -hence (A(L/Q),Tr£/q) is the tensor product of 
the (A(K(p)/Q),TiK{p)/q) -, and also A(K/Q) = TrL/K(A(L/Q)). (Of course 
K(jp) can be chosen to be the field corresponding to the group Xp of p-parts of 
the Dirichlet characters associated to K (see [E-M]).) 
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Recall that by Section 1.1 this theorem gives the structure of the hermitian 
pair (ZX,TT^/Q ) in this special situation. 

Remark 2.10. The recent paper [E-T] deals with the hermitian structure of 
both the ring of integers TK and the square root of the inverse different A(K/F) 
in arbitrary odd degree tamely ramified Galois extensions K/F. It contains a 
generalization of the results of [E-M]. In particular it generalizes the definition 
of the "comparison" module M (K/F) of Example 1.1 above and it shows how 
to use Theorem 2.8 to get a description of the class that A(K/F) defines in the 
Grothendieck group of (locally free) hermitian modules over ZG. 

3. Very wildly ramified extensions 

Unless explicitly stated, in this section we will always assume. 

H2 - HYPOTHESIS. F = Q , G = Gal(K/F) is abelian and K/F is such 
that the square root of the inverse different A(K/F) exists. 

According to the results above, if K/F is not weakly ramified then on 
the one hand A(K/F) cannot even be locally isomorphic to ZG (Theorem 2.2) 
and on the other hand the trace form on A(K/F) cannot be the standard one 
(Theorem 2.9). To encompass these difficulties one compares A(K/F) to its 
associated order A, that is the order A(A(K/F)) in FG of elements stabilizing 
A(K/F). The local problem was considered by D . BURNS who showed 

THEOREM 3.1. Under (H2) A(K/F) is locally free over its associated order 
A(A(K/F)). 

A proof of this theorem is given in Appendix A below. 

Remark 3.2. There exist local cyclic extensions K/F/typ in which no 
fractional ideal is locally free over its associated order; for example if F is 
absolutely unramified, then this is so for any totally ramified cyclic extension 
K/F of degree rp2 with r > p2 (see [Bu2]). 

BURNS predicted that the local isometry class would only depend on the 
group structure of G together with its inertia subgroups. By using Theorem 3.5 
below, he and the author were able to show 

THEOREM 3.3. Let p be an odd prime and let K/Qp and K'/Qp be abelian 
extensions in which the inverse different has a square root. Suppose K/typ and 
K'/Qp are such that there exists an isomorphism between their Galois groups 
which restricts to one between their inertia groups, then there is an equivariant 
isometry between (A(K/Qp),TrK/qp) and (A(if'/Qp),Tr/r//q ). 
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Proof. We refer to the notation introduced in Appendix A for the proof of 
Theorem 3.1. By (A.2) the A decompose as 

A = e 
X 

e(x)A = e(l)A © l i s 
x-1 

(x)+e(x))A. 

These are orthogonal sums with respect to the trace form. The summand 
corresponding to the identity character is dealt with by Theorem 3.5 below : it 
corresponds to a cyclic ^-extension. We then observe that on the summands of 
the form (e(x)+e(x))A the trace form is even, hyperbolic and self-dual. By [Bas] 
(4.4), there is only one such form on a projective module over a commutative 
ring, so we are done by Theorem 3.1. 

Remark 3.4. It is shown in [E-M] that for two ZG-projective ideals in QG, 
say L and M, the forms (L, mo) and (M, mo) are locally isometric everywhere if 
and only if the "discriminant modules''' L^/L and M^/M are isomorphic (here 1} 
is the dual of L with respect to mG). Theorem 3.3 would also be a consequence 
of a result of this kind with ZG replaced by the associated order of the square 
root of the inverse different. 

The local structure is thus fairly well known, so let us consider global 
extensions. 

THEOREM 3.5. Suppose (H2) holds, and assume the order of G to be odd. 
If for every prime p of Q either Go(K/ty,p) is a p-group or has order prime 
to p, then there exists an equivariant isometry between (A(ii.yQ), TYK/Q) and 
(A(A(K/Q)),nG) where nG is a form on QG not depending on K. 

The proof of this theorem was obtained in two steps. First in [B-E] the 
Hermitian pair (A(K/ty),TrK/q) was studied in detail in the special case of 
cyclic /^-extensions totally ramified at p. For instance if the order of G is pn 

with p ^ 3 and n even, we have that (A(K/Q),TrK/q) is ZG-isometric to 
an orthogonal sum < 1 > ®B2 © B4 © ... © Bn where the B{ = B{{p) are 
indecomposable, even bilinear forms independent of K with a nice description ; 
their root system is (pl~2 +p* - 1 )A p _ i (standard notation). Later C. BACHOC 
observed that the results of [B-E] together with an explicit description of the 
associated order A ( A ( / i 7 Q ) ) were sufficient -via a construction like that given 
for Theorem 2.9 above- to prove the theorem in the general case under the 
stated restrictions. Details can be found in [Ba], where a description of nG is 
also given. 

Remark. We observe that in all the situations so far considered the form 
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(A(K/F),TTK/F) always turned out to have a very "symmetric" system of 
minimal vectors. 

In light of Remark 3.2 one couldn't hope for such a precise description 
in the relative case (F ^ Q), but even for absolute extensions -and quite 
unexpectedly- D. BURNS was able to prove the following 

THEOREM 3.6. Given any integer n, there exist infinitely many abelian 
extensions K = JCn/Q with a square root of the inverse different satisfying the 
following : let GK = Gal(.KyQ) and let M. = MK denote the maximal order in 
QG/<-. Write MA(K/fy) for the smallest M-module in K containing A(K/Q). 
Then the order of the class of MA(K/Q) in the locally free class group of M 
is greater than n. Moreover, given any odd prime p, one can even choose the 
extensions iiT/Q to be of p-power conductor (and hence cyclic). 

This theorem shows that the analog of LEOPOLDT's Hauptsatz in [L] is 
false for the square root of the inverse different. In Appendix B the reader will 
find a complete proof - by BURNS - of the fact that the unique extension of 
absolute degree 39 and conductor 132 is the smallest example of an extension 
K/Q for which «MA(iiyQ) is not free over M. 

In conclusion we can say that, although many results on the square root 
of the inverse different we have discussed have perfect analogues concerning 
the ring of integers, some have not and we hope that the parallels that can be 
drawn will help to throw a different light on this area of research. 

Appendix A. Sketch proof of Theorem 3.1 

We follow D. BURNS. For the proof it will be sufficient to consider local 
extensions and by functoriality properties (see e.g. [Be], 2.1) we can even restrict 
our attention to totally ramified extensions. So let K/F be a local totally 
ramified Galois extension over Q p with Galois group G = Gal(K/F). Let 
A = A(K/F) and let A be its associated order in FG. The strategy of the 
proof is the following : we show that A is weakly self-dual, that is we show that 
A is isomorphic to its linear dual A* = iJora(A,Zir). By [F2] Theorem 10 on 
page 211, this will imply that A is isomorphic to A. To show the self-duality 
of A we shall use Theorem 2 of [Bui] which relates local isomorphism to two 
other equivalence relations on lattices : factor equivalence (also discussed in 
[F3]) and G-o-equivalence. (To use this theorem we need to know that F is 
absolutely unramified). To check these equivalence relations we will need a 
precise description of the maximal order M in FG and of A. 
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To begin with, G decomposes into a direct product G = P x C, where P 
is the p-Sylow subgroup in G. Let r (resp. pn) be the order of C (resp. P) . It is 
well known that r divides p — 1. 

Case I: p odd. Here G is cyclic and by Hypothesis (H2) r is odd. For i 
between 0 and n, let H(i) be the subgroup of order p% in P and let e(z) be the 
corresponding "trace" idempotent defined by 

p*e(i) = Ej5r(.t-)Ä. 

(A.l) We record the fact that if k > I then e(k)e(l) = e(k). Let also 
P =< g > and / = g - 1. 

(A.2) For any character x of C let : 

e(x) = (Scx(c_ 1)c)/r. 

Observe that e{\) is in ZjrC so any G-module M decomposes into M = 
©e(x)M, with the sum taken over all characters \ °f C- I n particular the 
maximal order M decomposes in this way and by work of A.-M. BERGE a 
basis of e(x)M is given by the set 

{e(x)e(i)fm} (A.3) 

where 0 < i < n and j(i) runs over a suitable range (see [Bu2]). Let us now 
check that A = A*. Since G is cyclic in this case, A is factor equivalent to A* 
and so by Theorem 2 of [Bui] it is sufficient to check G-o-equivalence. More 
precisely, for all "trace" idempotents e corresponding to subgroups of G, we 
must show that both (A*) € and A e have the same associated orders in FGe (see 
[Bui] Section 2). But, for any lattice M, the associated order of M equals the 
associated order of its linear dual M* and there is also a natural identification 
(M*) e = (eM)*, and hence we must only check that for each "trace" idempotent 
e : 

eA equals the associated order of A e in FGe. (A.4) 

Now, if e belongs to A, then (A.4) is easily verified ; so (A.4) certainly holds for 
all idempotents e corresponding to subgroups of C, since these are sums of the 
idempotents e(%) and e(x)A < A by the above observation. Moreover, a simple 
computation shows (or see [B-E] Proposition 2.3.4) that : 

(A.5) for even i, the idempotents e(i) are in A, 

(A.6) for all i, fe(i) is in A. 
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So we are left to check (A.4) for e = e(i) with odd i. In view of the 
description (A.3) and of (A.6) it suffices to consider elements m (in M) of the 
form m = £A.>i+irafce(x)e(fc), but since m = e(i + l)m by (A.l) , m belongs to 
the l.h.s. of (A.4) if and only if it belongs to the r.h.s. of (A.4). 

Case II: p = 2. There really are two subcases here depending on whether 
G is cyclic or not, but if G is cyclic, then we can argue as in Case I. So let G be 
non-cyclic. Then G is a 2-group of type ( 2 n _ 1 , 2 ) : G —< a > x < b > where a 
is of order 2 n _ 1 and b of order 2. We can compute the valuation of the different 
by means of Hilbert's formula and results on the ramification sequence (see e.g. 
[Le], page 147). We find that : 

(A.7) if n is even, then A is ZirG-isomorphic to ~LK and so the result follows 
from (4.2.7) of [Bu2] ; 

(A.8) if n is odd, then A is isomorphic to X = 
p(ord G)/2 

1 K where PK denotes 
the maximal ideal in Z#. 

Again we must consider G-o-equivalence : here, between X and its associ­
ated order A, this is easy so we will not go into it. In view of [Bu2] it suffices to 
prove that the so-called factorisable quotient function is trivial on the character 
group G° = Hom(G,C x ) of G. By definition this means we have to check the 
equality 

[A :t(A-)] = IW(A,*)(£>) (A.9) 

where here i is any injective homomorphism from X into A with finite cokernel, 
D runs over all divisions in the character group G° , and / (A, X)(D) is the ideal 
of F defined by Möbius inversion from the ideal f(A,X)(C) = [A€H : (iX)eH], 
with C the cyclic subgroup (G/H)° of G° (i.e. if / = / ( A , X ) and if fi{D/C) 
denotes the Möbius function of the order of < D > /C, then by definition 
f(D) = Hc<Df(Cy(D/c)). Since we already know about G-o-equi valence, 
Lemma (2.11) of [Bui] tells us that [A : i(X)] divides IlDf(A,X)(D). Also 
by the (general) Theorem 7 in [F3], page 64, we know that Zj< is always factor 
equivalent to Z^G, so [Z^G : ZK] = UDf(ZpG^ZK)(D). 

Hence we are left to check that 

[A:lFG] = (IlDf(A,lFG)(D))Pp1 (A.10) 
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(the PF

l comes from the factorisable quotient function f(J.R,X)). But the 
product over divisions in (A.10) equals 2 o r d G , and one can show that here (n 
odd) A contains the order {M(FG(2)), ((1 - a ) / 2 ) e < a 2 ) 6 > } Z F G where 
G(2) = < a > and M(FG(2)) is the maximal order in FG(2). So (A.10) follows 
since \M(FG(2)) : 2FG] = 2 o r d G ^ ~ \ 

Appendix B, by D. Burns : A surprising example 

Let K be an abelian extension of Q such that in K there exists the square 
root of the inverse different A(K) = A(K/Q). In Section 3, it was noted that 
whilst A(K) is always locally free over its associated order (Theorem 3.1) 
its global structure depends critically upon the ramification of the extension 
A"/Q. In particular, setting GR = Ga l (J iYQ) with MR the maximal Z-
order in the Q-algebra QGR it was claimed - in Theorem 3.6 - that even the 
lattice MRA(K) may have a non-trivial structure in the very wildly ramified 
case. In this appendix, rather than giving a proof of the full Theorem 3.6 we 
reduce technicalities to a minimum by discussing an explicit example in which 
MRA(K) can be shown to have a non-trivial MR-structure. In fact, it is not 
difficult to verify that amongst extensions in which MRA(K) has a non-trivial 
structure the example given here has the minimum possible absolute degree. 

For simplicity we shall only consider extensions Ji'/Q which possess a 
unique ramified prime (which is therefore totally ramified in the extension 
i f /Q) . For p an odd prime, n a positive integer and r an odd divisor of p—1 there 
exists a unique abelian extension K = K(p, rc, r) of Q of degree pnr in which p is 
the only ramifying prime. Furthermore, since the degree of any such extension 
K is odd, we know that the square root of the inverse different A(K) exists. 
Now, by the Horn-description of the locally free class group CI(MR) of MR 
(see (2.3)), the global structure of a locally free .M^-module X is determined 
by a function g = gx defined on the character group G°K = Hom(GR,Cx) and 
satisfying at each character 9 in G°K 

gx(Q) is an element of the ideal class group C7(Q(0)) of Q(0) (B.l) 

with for each u in Gal(Q(0)/Q) 

9x{ßY=gx[P). (B.2) 

Now, if K = K(p, n, r) is such that MRA(K) is not free, then by Theorem 3.5 
we shall certainly require that r ^ 1. Since we also want C7(Q(#)) ^ 0 checking 
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a table of class numbers now reveals that the smallest possible degree of such an 
extension occurs withp = 13, n = 1, and r = 3. Indeed we know that C7(Q(39)) 
has order 2 whereas C7(Q(3)) and C7(Q(13)) are both trivial. In this appendix 
we shall prove the 

THEOREM B.3 : ForK = if(13,l ,3) the class (MKA(K))Mk has order 2. 

Henceforth we shall write K = If(13,1,3) with O = ZK, G = GK, 
M = MK and A = A(K). Now, by the above remarks one knows that if X is 
any locally-free M-module and 0 is an element of G°, then gx(Q) is trivial if the 
order of 0 is not 39. On the other hand, any two elements of G° of exact order 
39 are conjugate under the action of Gal(Q(39)/Q) and hence (by condition 
(B.2)) give the same evaluation of gx- In this case we shall therefore refer 
to the class (X)M as being represented by (the class of) a suitable fractional 
ideal of Q(39). Set E = Q(3). In E the rational prime ideal (13) splits as a 
product (13)Z# = pip2 and we let Pi (respectively P2) denote the unique prime 
of Q(39) lying above pi (respectively p2). The numbering is to be understood 
as follows. Let F denote the local completion of K at the unique prime of 
residue characteristic 13. We can and do identify G with the local Galois group 
Gal (F/Q13). Fix a character 0 of G° of exact order 39. Let t be an embedding 
of Q(39) into an algebraic closure Q£3 of Q13. Composing 0 with t gives a 13-
adic character which we denote by 0(t). Decompose G as G = 5 x C where 
S is the subgroup of G of order 13 and C is the complementary subgroup of 
order 3. Accordingly the character 0{t) decomposes as 0{t) = \1> x q Let 7r be 
any element in F generating the maximal ideal of Z^ . The map sending g in 
G to p(7r)/7r gives an isomorphism 0O (independent of the choice of 7r) from C 
to a subgroup of the units of the residue field of Q13. Let x = x(F) denote 
the element of the group of 13-adic characters C° that induces by passage to 
the residue field the isomorphism 0O- Since \ generates C° we can define an 
integer M($) = 1 or 2 by $ = XuQ Then we choose our numbering in such a 
way that, if the embedding t\ (respectively t2) corresponds to the prime ideal 
P1 (respectively P 2) and 0(U) = % x then = x(^) 1 for i = 1 or 2. The 
following lemma reduces the proof of Theorem B.3 to an exercise in explicit 
class field theory. 

LEMMA B.4 : The class (MA)M is represented by the ideal P\. 

To prove the result of the lemma we first note that if we denote by AM 

the largest M-lattice in K contained in A, then 

(MA)M = (AM)M • (£.5) 
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Indeed by definition A is a self dual lattice from which it follows that MA 
is a lattice dual to AM. But now, equation (B.5) follows as a consequence of 
the general theory of the Horn-description (see for example [Fl] Section 1.2, 
Example 1) together with the fact that C7(Q(39)) admits no non-trivial 
automorphism. On the other hand, Theorem 2 and Lemma (2.3) of [Bu3] 
together imply that 

OM = M (B.6) 

since O is known to be locally free over its associated order in QG. Now, from 
(B.5) and (B.6) the explicit Horn-description of Cl(M) implies that the class 
(MA)M is represented by the ideal 

h(0) := hiMA)(9) = ([(Z[0] ®z A)9 : (Z[0] ® z 0)e]m)-\ (B.7) 

It is immediate that h(6) has support only above the rational prime (13). 
However, to compute expression (B.7) precisely, we go over to the local extension 
F/Qi 3 . Let A' = A(F/Q13) and O = 1F. Write Z' 1 3 for the valuation ring of 
the local field obtained by adjoining a primitive 13th root of unity 77 to Q13. 
For any embedding t of Q(39) into QJ3 one has 

h\d(t)) := h(6Y = ([(Z' 1 3 ®z 1 3 ATt} : (Z' ; 3 ®z 1 3 O ' ) ^ ] ^ ) - 1 . 

If now 6(t) decomposes as 6(t) = \I> x $ and if e(0(t)), e(\&) and e($) denote 
the corresponding idempotents of Qn(ri)[G], Qi3(^)[5] and Z i 3 C respectively, 
then of course e(9(t)) = e(^)e($) in Qi3(//)[G]. Since $ is non-trivial, one 
checks that both (Z' 1 3 ®z 1 3 A ' ) ' W = <0W)(T'iz ®z 1 3 A!) and (Z' 1 3 ® Z l 3 O')9^ = 
e(#(£))(Z'13 ®Zi3 O'). But, if e is the identity character of 5, then 

( l - e ( £ ) ) e ( $ ) = E 
xJ 

e(ö(t))u' sum over u in Gal(Qi 3(7/)/Qi 3) 

and hence for the norm N from Qi3(7/) to Q 1 3 we have the expression in terms 
of Zi3-indices 

N(h(0Y) = n 
w 

ti(6{ty) = [e(e)e{$)0' : e{e)e{$)A)/[e{$)0' : e($)A']. (B.8) 

To evaluate the expression (B.8) we recall that to every 13-character $ of C we 
have associated an integer w($) (= 1 or 2). Let x be a non-zero element in F. 
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Of course, since e($) is in Zi 3 C, one has for the valuation vF(x) of x 

vF(e($)x) > vF(x). (B.9) 

The importance of the integer u($) is that one has 

vF(e($)x) = vF(x) if and only if vF(x) = u($) modulo (3). (B.10) 

Let now F" denote the subfield of F of degree 3 over Q13, let O" denote its 
valuation ring and P" the unique maximal ideal of O". By Hilbert's formula 
one computes that A' = (13)" 1 /* 2 so that e($)A' = e($)(13)- 1 P / 2 and 
hence e{e)e{$)A! = e($)(13)- 1 P" = e($) (13)- 1 P , , w W, where for the last 
equality we have used (B.9) and (B.10). Similarly, one has e(e)e(<&)0' = 
e($)0" = e($)P""W and hence [e{e)e($)0 : e{e)e{9)A!\Zlz = (lS)'1!^. 
Using the same type of argument one has e($)(13)^4/ = e ($)0 ' = e($)P' 2 

if u(Q) = 2, and e($)(13)A' = e ( * ) F 4 and e($)0 ' = e($)F if ti(*) = 1. So 
[e($)0 / : e ( $ ) A , ] Z l 3 = (13" 1 3 )Z 1 3 or (13" 1 2 )Z 1 3 according as tx($) is 2 or 1. 
Finally therefore (B.8) becomes 

N(h(eY) = (13 1 2)Z 1 3 ifti(*) = 2 and 
= (13 n )Z 1 3 if ti(*) = 1 . (B.ll) 

With the convention of the numbering of primes introduced before the state­
ment of the lemma, (B.l l) implies that h(0) = (PiP2)"12-Pi. Now PXP2 is in­
flated from Q(13) and hence is a principal ideal so that in fact the class (MA)M 
is represented by the ideal Pi. But this is precisely the statement of Lemma B.4. 

Having proved Lemma B.4 we are reduced to a problem of explicit global 
class field theory - namely to verify that Pi is not a principal ideal of Q(39). 
In general of course, such problems are very difficult but in this case we are 
saved by reinterpreting the Hilbert class field of Q(39) as a ray class field of an 
imaginary quadratic subfield of class number one. To be more precise we write, 
for each integral ideal J or E, E(J) for the ray class field of E modulo the ideal 
J. Writing H for the Hilbert class field of Q(39), one has a diagram of fields 
and degrees 
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£(13) 

E{V2) 

H 

2 
Q(39) 

12 

E' 

2 

Q 

Pu Pi 

PUP.2 

(13) 

The key to our computation is the observation that 

£(13) = H. (B.12) 

But Q(39) is the compositum of E and Q(13) and so is included in E(13) 
and hence to prove (B.12) we need only to demonstrate that the extension 
i?(13)/Q(39) is unramified of degree at least two. Of course, one knows a priori 
that i?(13)/Q(39) can be ramified only at either Pi or P2. We shall show that 
there is no ramification above Pi (with an exactly similar argument proving 
the same for P 2 ) . Well, pi is unramified in the extension E(p2)/E and totally 
ramified in the extension Q(39)/2? which is of degree twelve. To conclude, we 
shall merely compute the degrees \E(p2) : E\ and |i?(13) : E\. But E has class 
number one and hence, for any integral Z#-ideal P, one has an exact sequence 

I*E — • (1E/P)X —> Gal (E(P)/E) — • 0 (B.13) 

where here fiE = (ZE)X and the second map is derived from the Artin reciprocity 
law (by choosing a generator of each ideal of ZE that is coprime to P) . In 
particular, therefore one has 

\E(P) : E\ = card (cokernel (fiE — • (lE/P)x) 
= card ((1E/P)X) card ( / ^ ( P ) ) / card (fiE) 

where we have used the notation /jLE(P) for the set of elements in µE which are 
congruent to one modulo P. From here one computes that \E(p2) : J57| = 2 and 
|£(13) : E\ = 24 and it now follows that £(13)/Q(39) is an extension of degree 
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two in which P\ is unramified. A similar argument dealing with P2 allows us to 
deduce equality (B.12). We note that this argument also proves that any prime 
ideal of E(P2) lying above pi is totally ramified in the extension E(13)/E(P2). 

Now by (B.12) together with the prime decomposition law of class field 
theory we have the equivalence of the following statements : 

- Pi is a principal ideal of Q(39) 

- Pi is split in the extension £(13)/Q(39) 

- pi is split in the extension E(p2)/E 

- if px = (7T)ZEI then 7T is in the kernel of the Artin map (for P = p2) 

- 7T is congruent modulo p2 to an element in (B-14) 

where for the last equivalence we have used the exact sequence (B.13) 
with P = p2. Setting now z = - ( 1 + ( - 3 ) 1 / 2 ) / 2 we can take n = 1 — 3z 
so that p2 = (7r — 5)Z#. But card (//£•) = 6 and modulo p2 we have 
7r6 = 5 6 = (—l) 3 = —1 so that condition (B.14) cannot be satisfied. Finally 
therefore one deduces that Pi is not principal in Q(39) as was to be proved. 
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