Astérisque

Noam D. Elkies

Distribution of supersingular primes

Astérisque, tome 198-199-200 (1991), p. 127-132
http://www.numdam.org/item?id=AST_1991__198-199-200__127_0

© Société mathématique de France, 1991, tous droits réservés.
L'accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Article numérisé dans le cadre du programme

Distribution of supersingular primes

 Noam D. ElkiesLet E be a fixed elliptic curve over \mathbf{Q} without complex multiplication, and let j_{E} be its j-invariant. A supersingular prime for E is a rational prime p such that (i) E has good reduction $\bmod p$, and (ii) the reduced curve $E_{p}=E \bmod p$ is supersingular; observe that condition (i) excludes only finitely many primes (those dividing the discriminant of E), and condition (ii) depends only on j_{E}. Following [7] we define $\pi_{0}(x)$ to be the number of supersingular $p<x$, and ask for the asymptotic behavior of $\pi_{0}(x)$ as $x \rightarrow \infty$. A naïve heuristic suggests that, since (for $p \geq 5$) E_{p} is supersingular if and only if it has $p+1$ points over \mathbf{F}_{p}, while in general its number of \mathbf{F}_{p}-points could differ from $p+1$ by as much as $\pm 2 p^{1 / 2}$, each p is supersingular with "probability" roughly $p^{-1 / 2}$, and so (summing over $p<x$) the expected value of $\pi_{0}(x)$ should be roughly $x^{1 / 2} / \log x$. Refinements of this heuristic, together with numerical evidence gathered for several curves E, led Lang and Trotter to make the

Conjecture[7]: $\pi_{0}(x)=(C+o(1)) x^{1 / 2} / \log x$, for some explicit $C>0$ depending on j_{E}.

But it is not even immediately obvious that either $\pi_{0}(x)=$ $o(\pi(x))$ (that is, that the supersingular primes have density zero) or that $\pi_{0}(x) \neq O(1)$ (i.e. that there are infinitely many such primes). The former was proved by Serre in 1968 [8] by applying the Čebotarev Density Theorem to the number fields generated by the coordinates of the torsion points of E; later [9] he combined this idea with sieve techniques to obtain the upper bound
$\pi_{0}(x) \ll x / \log ^{3 / 2-\epsilon}$ (the exponent $3 / 2-\epsilon$ was recently improved by D. Wan [10] to $2-\epsilon$), and further proved that under the Generalized Riemann Hypothesis (GRH) for these number fields the same method would yield $\pi_{0}(x) \ll x^{3 / 4}$. The infinitude of supersingular primes was proved by me in 1986, and generalized in my thesis to curves defined over an arbitrary number field with a real embedding [2, 3]. The main purpose of this report is to describe recent progress on an upper bound for $\pi_{0}(x)$. We start, however, with a few remarks on the lower bounds that can be obtained from the methods of [2], both to put the upper bounds in context and to introduce some ideas that also figure prominently in these new upper bounds.

For positive $D \equiv 0$ or $3 \bmod 4$, let $P_{D}(X)$ be the minimal polynomial of the algebraic integer $j((D+\sqrt{-D}) / 2)$. In [2] it was shown that, if $\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ is a finite set of primes containing all of E 's primes of bad reduction, and $l \equiv 3 \bmod 4$ a sufficiently large prime of which all the p_{i} are quadratic residues (the existence of such l is guaranteed by Dirichlet's theorem on primes in arithmetic progressions), then one of $P_{l}\left(j_{E}\right)$ and $P_{4 l}\left(j_{E}\right)$ is divisible by a prime p_{n+1}, distinct from each of p_{1}, \ldots, p_{n}, which is a new supersingular prime for E. Iterating this procedure we not only obtain the infinitude of supersingular primes, but also an implicit upper bound on p_{n}, and thus equivalently a lower bound on $\pi_{0}(x)$: Dirichlet's theorem gives an effective bound on the least admissible l, and the absolute value of the numerator of $P_{D}\left(j_{E}\right)$ (and thus also its factor p_{n+1}) is easily bounded above by $O\left(\exp C \cdot D^{1 / 2} \log ^{2} D\right)$. Unfortunately this bound on p_{n} is astronomical-an n-fold iterated exponential!—unless we assume the GRH for real Dirichlet characters. Applying the standard explicit formulas for the number of primes in an arithmetic progression, we then find that $\pi_{0}(x) \gg \log \log \log x$; this bound, since independently discovered by Brown [1], has been improved
by R. Murty to $\pi_{0}(x) \gg(\log \log x)^{1 / 2}$. A better method is to assume that the $p_{i}(1 \leq i \leq n)$ already comprise all the supersingular primes less than x, and then use not only the first but all admissible primes $l \ll x^{1 / 2}$, obtaining many new supersingular primes between x and $x^{\prime} \ll \exp \left(C x^{1 / 4} \log ^{2} x\right)$, all distinct by [4]. Assuming again the GRH, we find that either $\pi_{0}(x) \gg \log x$ or there are enough admissible $l \ll x^{1 / 2}$ to ensure $\pi_{0}\left(x^{\prime}\right) \gg \log x^{\prime}$; either way we obtain the bound (Theorem 2 in my thesis):

Theorem A: Under GRH for real Dirichlet characters, $\pi_{0}(x) \gg$ $\log \log x$.

It occurred to me in 1987 that these ideas might be useful for getting an upper bound on $\pi_{0}(x)$; one version of this idea, mentioned in my thesis, is the

Observation (with R. Murty): If, for some positive θ, each supersingular prime p of E divides $P_{D}\left(j_{E}\right)$ for some $D \ll p^{\theta}$, then $\pi_{0}(x) \ll x^{3 \theta / 2} \log x$.

Indeed, by the above estimate on the size of $P_{D}\left(j_{E}\right)$, the product of all of E 's supersingular primes less than x would divide the product of the numerators of $P_{D}\left(j_{E}\right)$ over $D \ll x^{\theta}$, which is bounded by

$$
\prod_{D \ll x^{\theta}} \exp \left(C \cdot D^{1 / 2} \log ^{2} D\right) \ll \exp O\left(x^{3 \theta / 2} \log ^{2} x\right)
$$

so the sum of these primes' logarithms would be $\ll x^{3 \theta / 2} \log ^{2} x$, and their number $O\left(x^{3 \theta / 2} \log x\right)$. [Several remarks are in order here: First, that for this Observation to be of any use we must have θ strictly less than $2 / 3$; second, that this proof fails only when E has complex multiplication, because that's exactly when one of the $P_{D}\left(j_{E}\right)$ vanishes (and fail it must in that case, since for a CM curve $\left.\pi_{0}(x) \sim \pi(x) / 2\right)$; third, that the bound $\pi_{0}(x) \ll x^{3 \theta / 2} \log x$ would be unconditional, not depending on GRH or other unproved hypotheses, provided the same was true of the proof of $D \ll p^{\theta}$; and last,
that we can save a factor of $\log x$ by more carefully estimating the size of $\Pi_{D \ll x^{\theta}} P_{D}\left(j_{E}\right)$, obtaining $D \ll p^{\theta} \Rightarrow \pi_{0}(x) \ll x^{3 \theta / 2}$.]

Thus the problem of estimating θ, which I raised in [2] in the context of computing large supersingular primes, assumes a new theoretical significance. Now p divides $P_{D}\left(j_{E}\right)$ if and only if the supersingular curve E_{p} has complex multiplication by $(D+\sqrt{-D}) / 2$, that is, if the quadratic order $Z\left[\frac{1}{2}(D+\sqrt{-D})\right]$ imbeds into the endomorphism ring A of E_{p}, or equivalently if A contains an endomorphism α whose discriminant $(\alpha-\bar{\alpha})^{2}=\operatorname{Tr}^{2}(\alpha)-4 \operatorname{deg}(\alpha)$ is $-D$. Thus the least D such that p divides $P_{D}\left(j_{E}\right)$ is the smallest nonzero value attained by the positive-definite quadratic form ($4 \mathrm{deg}-\mathrm{Tr}^{2}$) on the rank-3 lattice $A_{1}=A / Z$. In [2] I used a simple geometry-of-numbers argument to estimate this value: A_{1} has covolume $2 p$ (this follows from Deuring's theorem that A has reduced discriminant p), so it must contain a nonzero vector of norm at most $2 p^{2 / 3}$. Unfortunately this gives only $\theta=2 / 3$, the smallest useless value of θ.

But computations suggested that this bound might not be best possible. Indeed, recently Kaneko obtained [6]:
Theorem: E_{p} has an endomorphism of discriminant ($-D$) for some positive $D \leq 4 \sqrt{p / 3}$.

Sketch of proof: Note that while in general a supersingular j invariant in characteristic p need only lie in $\mathbf{F}_{p^{2}}$, the j-invariant of E_{p} is necessarily in \mathbf{F}_{p} (though most of its endomorphisms can only be defined once we extend scalars to $\mathbf{F}_{p^{2}}$). Thus A contains a square root ϕ of $-p$, namely the Frobenius endomorphism. Kaneko now uses Ibukiyama's classification [5] of such quaternion algebras A to show that A / \mathbf{Z} contains a rank- 2 sublattice of determinant $4 p$, whence the Theorem follows. This sublattice consists of the lattice vectors orthogonal to the image of the Frobenius endomorphism ϕ
in A_{1}. When Serre read this he remarked that the order of magnitude of the determinant of the sublattice, and thus the bound $D \ll \sqrt{p}$, could be easily obtained by "pure thought" without invoking the explicit classification in [5]: the Galois involution of $\mathbf{F}_{p^{2}}$ induces an involution ι of A (conjugation by ϕ) whose invariant subring A^{+}is either $\mathbf{Z}[\phi]$ or possibly $\mathbf{Z}\left[\frac{1}{2}(1+\phi)\right]$ if $p \equiv 3 \bmod 4$; let $A^{-} \subset A$ be the anti-invariant sublattice $\{\alpha: \iota \alpha=-\alpha\}$ of rank 2 . Then $A^{+} \oplus A^{-}$is of bounded index in A (the quotient is an elementary abelian 2 -group of rank at most 4), so since A has determinant p^{2} and A^{+}has determinant at least p, the determinant of A^{-}with the quadratic form $\operatorname{deg}(\cdot)$ is $\ll p$. Also A^{-}is orthogonal to A^{+}and so in particular to 1 , whence any $\alpha \in A^{-}$has trace zero and determinant $-4 \operatorname{deg}(\alpha)$. Therefore the image of A^{-}in A / \mathbf{Z} is again a rank-2 lattice of determinant $\ll p$ and we are done.

Either way we thus have $\theta=1 / 2$ and conclude:
Theorem B: $\pi_{0}(x) \ll x^{3 / 4}$.
Note that this is exactly the bound obtained by Serre under GRH; it is unclear what if any significance this coincidence has.

Details of the analytic estimates used in the proofs of Theorems A and B will appear elsewhere.

References

[1] Brown, M.L.: Note on supersingular primes of elliptic curves over Q. Bull. London Math. Soc. 20 (1988), 293-296.
[2] Elkies, N.D.: The existence of infinitely many supersingular primes for every elliptic curve over Q. Invent. Math. 89 (1987), 561-567.
[3] Elkies, N.D.: Supersingular primes for elliptic curves over real number fields. Compositio Math. 72 (1989), 165-172.
[4] Gross, B. H., Zagier, D.: On singular moduli, Jour. für die reine und angew. Math. 335 (1985), 191-220.
[5] Ibukiyama, T.: On maximal orders of division quaternion algebra of the rational number field with certain optimal embeddings. Nagoya Math. J. 88 (1982), 181-195.
[6] Kaneko, M.: Supersingular j-invariants as singular moduli mod p. Osaka J. Math. 26 (1989), 849-855.
[7] Lang, S., Trotter, H.: Frobenius distributions in GL $_{2}$ extensions. Lect. Notes Math. 504, 1976.
[8] Serre, J.-P.: Abelian l-adic representations and elliptic curves. New York: Benjamin 1968.
[9] Serre, J.-P.: Quelques applications du théorème de densité de Chebotarev. IHES Publ. Math. 54 (1981), 123-201.
[10] Wan, D.: On the Lang-Trotter Conjecture. J. Number Th. 35 (1990), 247-268.

Noam D. Elkies
Department of Mathematics Harvard University
Cambridge, MA 02138 USA

