Astérisque

SAID ZARATI Derived functors of the destabilization and the Adams spectral sequence

Astérisque, tome 191 (1990), p. 285-298 http://www.numdam.org/item?id=AST 1990 191 285 0>

© Société mathématique de France, 1990, tous droits réservés.

L'accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

DERIVED FUNCTORS OF THE DESTABILIZATION and THE ADAMS SPECTRAL SEQUENCE

by Said ZARATI

Introduction

Let A be the modulo 2 Steenrod algebra, \mathfrak{M} the category of graded A-modules and A-linear maps of degree zero, and \mathfrak{U} the full sub-category of \mathfrak{M} whose objects are unstable A-modules. We denote by D : \mathfrak{M} ----> \mathfrak{U} the destabilization functor and by D_S, $s \ge 0$, its derived functors. We have a natural transformation : D_S ---> Σ D_S Σ^{-1} , $s \ge 0$, induced by the adjoint of the identity $\Omega D = D \Sigma^{-1}$ where Σ^m , \mathfrak{M} ---> \mathfrak{M} , $m \in \mathbb{Z}$, is the mth suspension functor and Ω is the left adjoint of $\Sigma : \mathfrak{U} ----> \mathfrak{U}$.

In this note we prove the following theorem wich will be more precise in section 2.3.

Theorem 1.1. Let M be a nil-closed unstable A-module. Then the natural map $\Omega D_s \Sigma^{-s} M \longrightarrow D_s \Sigma^{-s-1} M$ is an isomorphism for every $s \ge 0$.

Using the higher Hopf invariants introduced in [7] we prove the following property of the Adams spectral sequence, in the modulo 2 cohomology, for the group $\{X,Y\}$ of homotopy classes of stable maps from X to Y, in certain cases.

Theorem 1.2. : Let X and Y two pointed CW-complexes such that (i) $\widetilde{H}^*(X,IF_2) \simeq \Sigma^2 I$ where ΣI is an injective unstable A-module. (ii) $\widetilde{H}^*(Y;IF_2)$ is gradually finite and nil-closed. Then, the Adams spectral sequence for the group {X,Y} degenerate at the E₂-term : E₂^{S,S} \approx E_r^{S,S} for every r ≥ 2 and s ≥ 0 . Sum F.

Astérisque 191 (1990)

The infinite real projective space IR P^{∞} is an example of a space Y satisfying the hypotheses of theorem 1.2.

The organization of the rest of this note is as follows. In section 2 we give a characterization of nil-closed A-modules which allows us to prove the theorem 1.1 (see theorem 2.3.3). Section 3 gives the proof of theorem 1.2 and an application. We finish this note by a remark concerning the case p > 2.

All cohomology is taken with IF_2 coefficients. We write $H^*()$ for $H^*(; IF_2)$ and we denote by $\overline{H}^*()$ the reduced modulo 2 cohomology.

2. Derived functors of the destabilization

2.1. Let A be the modulo 2 Steenrod algebra. We denote by \mathfrak{M} the category whose objects are graded A-modules ($M = \{M^n, n \in \mathbb{Z}\}$) and whose morphisms are A-linear maps of degree zero. We denote by \mathfrak{V} the full sub-category of \mathfrak{M} whose objects are unstable A-modules (an A-module M is called unstable if Sqⁱx = 0 for every x in M^n and every i > n ; in particular $M^n = 0$ if n < 0).

The forgetful functor $\mathcal{U} \dashrightarrow \mathcal{M}$ has a left adjoint functor D : $\mathcal{M} \dashrightarrow \mathcal{U}$, called the destabilization functor, which satisfies : Hom \mathcal{M} (M,N) = Hom \mathcal{U} (DM,N) for every A-module M and every unstable A-module N. The functor D : $\mathcal{M} \dashrightarrow \mathcal{U}$ is right exact, we denote $D_s : \mathcal{M} \dashrightarrow \mathcal{U}$, $s \ge 0$, its derived functors. One of the motivations for the study of the derived functors of the destabilization is the following isomorphism :

(2.1)
$$\operatorname{Ext}^{S} \mathfrak{O} \mathfrak{H}(M,I) \simeq \operatorname{Hom} \mathfrak{N}(D_{S}M,I)$$

for every A-module M and every unstable injective A-module I.

Let $\Sigma^m: {\rm stress} t$ ---> ${\rm stress} t$, $m \in {\mathbb Z}$, the m^{th} suspension functor

which associates to a module $M = \{M^n, n \in \mathbb{Z}\}$ the module

 $\Sigma^m M = \{M^{n-m}, n \in \mathbb{Z}\}$. The A-module structure on $\Sigma^m M$ is given by $Sq^i(\Sigma^m x) = \Sigma^m Sq^i x$, x in M. The computation of $D_s \Sigma^{-t} M$, where M is an unstable A-module, is done by Lannes and Zarati [5] for $t \le s$. In this paragraph we will compute $D_s \Sigma^{-(s+1)} M$ for a particular unstable A-modules called nil-closed. First let us recall the definition and some properties of nil-closed unstable A-modules.

2.2. Nil-closed unstable A-modules [1], [6]

Definition 2.2.1 An unstable A-module M is called reduced if the cup-square $Sq^n : M^n \dashrightarrow M^{2n}$, $x \dashrightarrow Sq^n x$, is injective for every $n \ge 0$.

Remark 2.2.2 We can verify easily that an unstable A-module is reduced if and only if it does not contain a non trivial nilpotent sub-A-module. An unstable A-module N is called nilpotent if for

every x in M^n , there exist $r \ge 0$ such that Sq^{2^n} $Sq^n x = 0$.

Definition 2.2.3. An unstable A-module M is called nil-closed if (i) M is reduced (ii) An element x in M of even degree is in the image of the cup-square if and only if $Q_i x = 0$, for all $i \ge 0$, where Q_i is the ith Milnor primitive in A.

Example 2.2.4 Let $\mathbb{B}\mathbb{Z}/2$ denote a classifying space of the group $\mathbb{Z}/2$. The unstable A-module $\operatorname{H}^{*}(\mathbb{B}\mathbb{Z}/2)$ is nil-closed indeed, as a graded IF₂-algebra $\operatorname{H}^{*}(\mathbb{B}\mathbb{Z}/2)$ is freely generated by one generator of degree one.

2.3.Computation of $D_s \Sigma^{-(s+1)}M$, M nil-closed and $s \ge 0$.

2.3.1 To state our result we use the functor $R_s : \mathcal{U} \dashrightarrow \mathcal{U}$, $s \ge 0$, introduction in [5] page 29 (see also [9]) whose main properties

are:

(i) The module R_sM is a sub-A-module of $H^*(B(\mathbb{Z}/2)^S) \otimes M$. In particular R_sM is an unstable A-module.

(ii) Let $H^*(B\mathbb{Z}/2) = IF_2[u]$ where u is of degree one. We denote by $L_s = H^*(B(\mathbb{Z}/2)^s)^{GL_s(\mathbb{Z}/2)}$ the Dickson algebra, that is the sub-algebra of $H^*(B(\mathbb{Z}/2)^s)$ of invariants under the natural action of the general linear group $GL_s(\mathbb{Z}/2) = GL((\mathbb{Z}/2)^s)$. The module R_sM is the L_s -module generated by the elements $St_s(x)$, x in M. These elements $St_s(x)$ are defined inductively by :

$$\begin{split} & \operatorname{St}_{O}(x) = x \quad , \qquad x \in M. \\ & \operatorname{St}_{1}(x) = \sum_{i=0}^{n} u^{n \cdot i} \otimes \operatorname{Sq}_{x}^{i} \quad , \ x \in M^{n}. \\ & \operatorname{St}_{S}(x) = \operatorname{St}_{1}(\operatorname{St}_{S^{-1}}(x)) \quad , \ s \geq 1, \ x \in M \end{split}$$

iii) Let $E_+ \mathfrak{S}_2^s$ be the disjoint union of a base point and a contractible space on which the symmetric group \mathfrak{S}_2^s acts freely. For any pointed space X, we denote by $\mathfrak{S}_2^s X$ the quotient of the space $E_+ \mathfrak{S}_2^s \wedge (X \wedge ... \wedge X)$, X is smashed with itself 2^s times, by the diagonal action of \mathfrak{S}_2^s (\mathfrak{S}_2^s acts on $X \wedge \wedge X$ by permutation of the factors). Let $\Delta_s : B_+(\mathbb{Z}/2)^s \wedge X -... > \mathfrak{S}_2^s X$ be a "Steenrod diagonal" determined by a bijection between $(\mathbb{Z}/2)^s$ and $\{1, 2, ..., 2^s\}$. The unstable A-module $R_s H^* X$ is the image of Δ_s in the modulo 2 cohomology.

2.3.2 Let $\Omega: \mathfrak{V}$ ----> \mathfrak{V} be the left adjoint functor of $\Sigma: \mathfrak{V}$ ---> $\mathfrak{V},$ that is :

$$Hom_{\mathcal{M}}(M,\Sigma N) = Hom_{\mathcal{M}}(\Omega M,N)$$

for every unstable A-modules M and N.

We are now ready to state the main result of this paragraph which will be proved in 2.6

Theorem 2.3.3: Let M be a nil-closed unstable A-module. There exist a natural isomorphism :

$$D_{s} \Sigma^{-(s+1)} M \simeq \Omega R_{s} M$$
 , $s \ge 0$

2.4. Some properties of nil-closed unstable A modules

In this paragraph we give two characterizations of nil-closed unstable A-modules which allow us to prove theorem 2.3.3

2.4.1. The first characterization of nil-closed unstable A-modules is given in [6] page 314.

Proposition 2.4.1.1. Let M be an unstable A-module. The following conditions are equivalent.

(i) M is nil-closed

(ii) $Ext_{\mathcal{N}}^{i}(N,M) = 0$ for every nilpotent N in \mathcal{U} and i = 0,1.

(iii) There exist an injective resolution of M starting

 $0 \rightarrow M \rightarrow K^0 \rightarrow K^1$ where K⁰ and K¹ are reduced injective unstable A-modules.

Remark 2.4.1.2. The condition (iii) of the proposition 2.4.1.1 can be replaced by the following (see [4] page 163)

(iii)' There exist an injective resolution of M starting

0 ---> M --->
$$\prod_{\alpha} H(BV_{\alpha}) ---> \prod_{\beta} H(BV_{\beta})$$

where V_{α} and V_{β} are elementary abelian 2-groups. We have the following easy corollary.

Corollary 2.4.1.3. Let M be an unstable A-module. The following conditions are equivalent.

(i) M is nil-closed.

(ii) There exist a nil-closed unstable A-module L containing M such that the quotient L/M is reduced.

2.4.2. Another characterization of nil-closed.

Proposition 2.4.2.1 Let M be an unstable A-module. The following properties are equivalent.

- (i) M is nil-closed
- (ii) M and ΩM are reduced

The proof of this proposition is based on the following technical lemma. Let Q_i , $i \ge 0$, the ith Milnor primitive in A and Sq_k the cohomology operation defined by Sq_k x = Sq^{n-k}x where x is an element of degree n of an A-module (Sq^{n-k} = 0 if n < k).

Lemma 2.4.2.2 Let M be an unstable A-module. We have the following formula :

$$(Q_{i+1} \circ Sq_1)(x) = (Sq_0 \circ Q_i)(x)$$

for every x in M and every $i \ge 0$.

Proof. The proof is done by induction on i using Adem's relations. Recall that the elements Q_i , $i \ge 0$, are defined by

$$Q_0 = Sq^1$$

 $Q_1 = Q_{1-1} Sq^{2^i} + Sq^{2^i} Q_{1-1}, i \ge 1$

The case i = 0. Let x be an element of degree n of an unstable A-module, we have :

$$\begin{split} & \text{Sq}^1\text{Sq}_1(x) = \text{Sq}^1\text{Sq}^{n-1}(x) = \left\{ \begin{array}{ll} 0 & \text{if } n = 0(2) \, . \\ & \text{Sq}_0x & \text{if } n = 1(2) \, . \\ & \text{Sq}^2\text{Sq}_1(x) = \text{Sq}^2\text{Sq}^{n-1}(x) = \\ \left\{ \begin{array}{ll} 0 & \text{if } 2 > 2n - 1 \, . \\ & \text{Sq}^2\text{Sq}^1x & \text{if } 2 = 2n - 2 \, . \\ & 1 & \text{if } 2 = 2n - 2 \, . \\ & 1 & \sum_{c=0}^{1} C_{n-2-c}^{2-2c} \, \text{Sq}^{n+1-c} \, \text{Sq}^cx & \text{if } 2 < 2n - 2 \, . \end{array} \right. \end{split}$$

$$= \begin{cases} 0 & \text{if } n = 1 \\ \\ Sq^{n}Sq^{1}x & \text{if } n \ge 2. \end{cases}$$

These formulas imply the case i = 0 because we have :

$$Q_1 Sq_1 x = Sq^3 Sq_1 x + Sq^2 Sq^1 Sq_1 x$$
$$= Sq_0 Sq^1 x$$
$$= Sq_0 Q_1 x.$$

Suppose $Q_i Sq_1 x = Sq_0 Q_{i-1} x$ for evry $i : 0 \le i \le j-1$ and for every element x (of degree n) of an unstable A-module. To prove this formula for i = j we consider :

$$\begin{split} Q_{j}Sq_{1}(x) &= Sq^{2^{i}}Q_{j-1}Sq_{1}(x) + Q_{j-1}Sq^{2^{i}}Sq_{1}(x) \\ &= Sq^{2^{i}}Sq_{0}Q_{j-2}(x) + Q_{j-1}Sq^{2^{i}}Sq_{1}(x) , \text{ (inductive assumption)} \\ &= Sq_{0}Sq^{2^{j-1}}Q_{j-2}(x) + Q_{j-1}Sq^{2^{j}}Sq_{1}(x). \end{split}$$

In the last equality we have used the following easy formula :

$$Sq^{k}Sq_{0} = \begin{cases} 0 & \text{if } k = 1(2) \\ \frac{k}{2} & \text{if } k = 0(2) \\ Sq_{0}Sq^{2} & \text{if } k = 0(2) \end{cases}$$

If remains to show :

$$Q_{j-1}Sq^{2^{j}}Sq_{1}(x) = Sq_{0}Q_{j-2}Sq^{2^{j-1}}(x).$$

Using the unstability of M and Adem's relations we prove :

$$\begin{split} & Sq^{2^{j}}Sq_{1}(x) = \left\{ \begin{array}{ccc} 0 & \text{if } n \leq 2^{j-1} \ . \\ & Sq_{1}Sq^{2^{j-1}}(x) & \text{if } n \geq 2^{j-1} + 1 \ . \end{array} \right. \\ & \text{This formula gives :} \\ & Q_{j-1}Sq^{2^{j}}Sq_{1}(x) = \left\{ \begin{array}{ccc} 0 & \text{if } n \leq 2^{j-1} \ . \\ & Q_{j-1}Sq_{1}Sq^{2^{j-1}}(x) & \text{if } n \geq 2^{j-1} + 1 \ . \end{array} \right. \\ & = \left\{ \begin{array}{ccc} 0 & \text{if } n \leq 2^{j-1} \ . \\ & Sq_{0}Q_{j-2}Sq^{2^{j-1}}(x) & \text{if } n \geq 2^{j-1} + 1 \ . \end{array} \right. \\ & = Sq_{0}Q_{j-2}Sq^{2^{j-1}}(x) & \text{if } n \geq 2^{j-1} + 1 \ . \end{array} \right. \end{split}$$

2.4.3. Functor R_s and nil-closed A-modules.

Proposition 2.4.3.1. Let M be an unstable A-module. If M is nil-closed then R_SM is nil-closed.

Proof: Let (*) 0 ---> M ---> $\prod_{\alpha} H^*(V_{\alpha}) ---> \prod_{\alpha} H^*V_{\beta}$ be the beginning of an injective resolution of the nil-closed unstable A-module M (see remark 2.4.1.2). The functor R_s is exact and comutes with products (see [6]) ; then, when we apply it to the exact sequence (*) we get the following exact sequence :

$$0 - \cdots > R_{s}M - \cdots > \prod_{\alpha} R_{s}HV_{\alpha} - \cdots > \prod_{\beta} R_{s}HV_{\beta}$$

The computation of R_SH^*V , where V is an elementary abelian 2-group, is done by induction on s (see [6] page 321). Let $V_S = (\mathbb{Z}/2)^S \oplus V, R_SH^*V$ is the sub-module of $H^*(V_S)$ of invariants under the action of the sub-group of $GL(V_S)$, denoted $GL(V_S,V)$, of automorphisms of V_S which induces the identity on V. The proposition 2.4.3.1 is now a consequence of the corollary 2.4.1.3 and of the fact that the sub-A-module $H^*(V)^G$, G < GL(V), of $H^*(V)$ is nil-closed (see [6] page 314).

Remark 2.4.3.2. A different proof of the proposition 2.4.3.1 for s = 1 is given in [3]

2.5. Proof of the proposition 2.4.2.1.

2.5.1. First let us recall some properties of the functor Ω introduced in 2.3.2. Let Φ : \mathcal{U} ---> \mathcal{U} be the functor which associates to each unstable A-module A-module M, the "double of M", denoted Φ M, defined by :

$$(\Phi M)^{n} = \begin{cases} 0 & \text{if } n \equiv 1(2) \,. \\ & \text{and } Sq^{i}(\Phi x) = \\ M^{n/2} & \text{if } n \equiv 0(2) \,. \end{cases} \quad \text{and } Sq^{i}(\Phi x) = \begin{cases} 0 & \text{if } i \equiv 1(2) \,. \\ & \Phi Sq^{i/2} \,x \,\text{if } i \equiv 0(2) \,. \end{cases}$$

we verify that the map $Sq_0 : \Phi M \dashrightarrow M$, $\Phi x \dashrightarrow Sq_0 x$, is A-linear and that the kernel and the cokernel of Sq_0 are respectively $\Sigma \Omega_1 M$ and $\Sigma \Omega M$ where Ω_1 is the first and unique derived functor of Ω (see [5] page 30). We remark that an unstable A-module M is reduced if and only if $\Omega_1 M = 0$.

2.5.2. Proof the proposition 2.4.2.1. (i) ==> (ii). It suffices to prove that ΩM is reduced. Let y be an element of $(\Omega M)^{k}$ such that Sq₀y = 0. To prove that y = 0 we envision two cases :

(*) The case k = 0(2). in this case $(\Omega M)^k = (\Sigma^{-1} M/ImSq_0)^k = M^{k+1}$ then $y = \Sigma^{-1}x$ where x is an element of M^{k+1} . Sq₀y =

 Σ^{-1} Sq₁x = 0. This implies that Sq¹Sq₁x = Sq₀x = 0 and then x = o since M is reduced. This shows that y = $\Sigma^{-1}x = 0$.

(**) The case k = 1(2). In this case $(\Omega M)^k = (\Sigma^{-1}M/ImSq_0)^k$ = $(M/ImSq_0)^{k+1}$ then $y = \Sigma^{-1}[x]$ where x is an element of M^{k+1} . $Sq_0y = \Sigma^{-1}[Sq_1x] = \Sigma^{-1}Sq_1x = 0$ (Sq_1x is an element of M of odd degree) ; then, $Sq_1x = 0$. This implies that $Q_{i+1}Sq_1x = 0$ for every i ≥ 0 . Using the lemma 2.4.2.2 we get : $Sq_0Q_ix = 0$ for every $i \geq 0$ and then $Q_i(x) = 0$, $i \geq 0$, since M is reduced. Now x is an element of even degree of a nil-closed A-module M annulated by all the Q_i , $i \geq 0$ then x is in the image of Sq_0 and then $y = \Sigma^{-1}[x] = 0$.

(ii) ==> (i). Since M is reduced then M embeds in a reduced injective unstable A-module K (see [6] page 313). To prove M nil-closed it suffices to prove that the quotient K/M is reduced and to use the corollary 2.4.1.3. If we apply the functor Ω to the exact sequence 0 ---> M ---> K ---> K/M ---> 0 we get the following exact sequence : 0 ---> $\Omega_1(K/M)$ ---> ΩM ---> $\Omega(K/M)$ ---> 0. The module $\Omega_1(K/M)$ is trivial because it is a nilpotent sub-A-module of the reduced unstable A-module $\Omega M_*\Omega_1(K/M)$ is nilpotent because, by definition, it is concentrated in odd degree. This shows that K/M is reduced and then M is nil-closed

2.6. Proof of the theorem 2.3.3

Let M be an unstable A-module. Consider the following exact sequence introduced in [5] page 32 : (*) $0 \xrightarrow{-->} \Omega D_S \Sigma^{-S} M \xrightarrow{-->} D_S \Sigma^{-(S+1)} M \xrightarrow{-->} \Omega_1 D_{S-1} \Sigma^{-S} M \xrightarrow{-->} 0$ When M is reduced, the module $D_S \Sigma^{-S} M$ is naturally isomorphic to $R_S M$ ([5] proposition 4.6.2). The exact sequence becomes : (**) $0 \xrightarrow{-->} \Omega R_S M \xrightarrow{-->} D_S \Sigma^{-(S+1)} M \xrightarrow{-->} \Omega_1 D_{S-1} \Sigma^{-S} M \xrightarrow{-->} 0$ The proof of the theorem 2.3.3 is done by induction on s.For s = 0 it is the identity $D\Sigma^{-1} = \Omega D$. Suppose that : $(H_k) D_k \Sigma^{-(k+1)} M \cong \Omega R_k M$ for every k : $0 \le k \le s-1$ and every nil-closed A-module M. To prove (H_S) it suffices to remark that since M is nil-closed then, by the proposition 2.4.3.1, R_{S-1}M is nil-closed. This implies that $\Omega R_{S-1}M$ is reduced (proposition 2.4.2.1), that is : $\Omega_1 \Omega R_{S-1}M = 0$. The exact sequence (**) and the inductive assumption give, for M nil-closed, the following natural isomorphism : $D_S \Sigma^{-(S+1)}M \simeq \Omega R_S M$.

3. Applications.

The topological applications of this note are based on the higher Hopf invariants introduced by Lannes and Zarati in [7]. Let X and Y be two pointed CW-complexes. We donote by {X,Y} the group of homotopy classes of stable maps from X to Y. The Adams spectral sequencee, in the modulo 2 cohomology, for the group {X,Y} is denoted $\{E_r^{S,S} = E_r^{S,S}(X,Y), s \ge 0, d_r\}_{r\ge 2}; d_r : E_r^{S,S-...>} E_r^{S+r,S+r-1}$ is the differential. We have the following theorem which will be proved in the section 3.4

Theorem 3.1 Let X and Y be two pointed CW-complexes such that : (i) $\overline{H}^{*}(X) \simeq \Sigma^{2}I$ where ΣI is an injective unstable A-module.

(ii) $\overline{H}^{*}(Y)$ is gradually finite $(\dim_{|F_{2}}H^{n}(Y) < + \infty, n \ge 0)$ and nil-closed.

Then, the Adams spectral sequence, in the modulo 2 cohomology, for the group {X,Y} degenerate at the E_2 -term $E_2^{s,s} \approx E_r^{s,s}$ for every $r \ge 2$ and $s \ge 0$.

Remark 3.2 In [8] (see also [7]) there exist an analogous property of the Adams spectral sequence as in theorem 3.1 in the following two cases :

(3.2.1) (i) \overline{H}^{*} (X) is a reduced injective unstable A-module. (ii) \overline{H}^{*} (Y) is gradually finite. (3.2.2) (i) $\Sigma \overline{H}^*$ (X) is an injective unstable A-module. (ii) \overline{H}^* (Y) is a reduced gradually finite unstable A-module.

Corollary 3.3. Let X and Y be two pointed CW complexes which verify the hypothesis (i) and (ii) of theorem 3.1 and such that the Adams spectral sequence for the group $\{X,Y\}$ converges. Then, the natural map :

is surjective.

Proof. Theorem 3.1 shows that the term $E_2^{0,1} \simeq Hom_u(\overline{H}^*Y, \Sigma\overline{H}^*X)$ persists at the infinity. Since the Adams spectral sequences for {X,Y} converges, then the natural map h : {S¹X,Y} ---> Hom_u(\overline{H}^*Y,\Sigma\overline{H}^*X) is surjective.

3.4. Proof of the theorem 3.1

Consider the following diagram whose commutativity is proved in [7], [8].

$$E_{\infty}^{s,s} \xrightarrow{\mathcal{X}_{\infty}^{s,s}} \operatorname{Hom}_{U}(R_{s}\overline{H}^{*}Y, \Sigma^{2}I) |_{\mathcal{X}} \operatorname{Hom}_{U}(\Omega R_{s}\overline{H}^{*}Y, \Sigma^{2}I) |_{\mathcal{X}} \operatorname{Hom}_{U}(\Omega R_{s}\overline{H}^{*}Y, \Sigma^{2}I) |_{\mathcal{X}} \operatorname{Hom}_{U}(\Omega R_{s}\overline{H}^{*}Y, \Sigma^{2}I) |_{\mathcal{X}} \operatorname{Hom}_{U}(\Omega R_{s}\overline{H}^{*}Y, \Sigma^{2}I) |_{\mathcal{X}} \operatorname{Hom}_{U}(D_{s}\Sigma^{-s-1}\overline{H}^{*}Y, \Sigma^{2}I) |_{\mathcal{X}} \operatorname{Hom}_{U}(D_{s}\Sigma^{-s-1}\overline{H}^{*}Y) |_{\mathcal{X}} \operatorname{Hom}_{U}(D_{s}\Sigma^{-s-1}\overline{H}^{*}Y) |_{\mathcal{X}} \operatorname{Hom}_{U}(D_{s}\Sigma^{-s-1}\overline{H}^{*}Y) |_{\mathcal{X}} \operatorname{Hom}_{U}(D_{s}\Sigma^{-s-1}\overline{H}^{*}Y) |_{\mathcal{X}} \operatorname{Hom}_{U}(D_{s}\Sigma^{-s-1}\overline{H}^{*}Y) |_{\mathcal{X}} \operatorname{Hom}$$

By definition of the differential $d_r : E_r^{s-r,s-r+1} \dots E_r^{s,s}$ we have : $Imd_r \subset Z_{r,\infty}^{s,s}$ and $Z_{r+1,\infty}^{s,s} = Z_{r,\infty}^{s,s}/Im d_r$ (see, for example [2]). It follows from the commutativity of the previous diagram that $Z_{2,\infty}^{s,s}$ $\dots \to E_{\infty}^{s,s}$ and then the differential $d_r : E_r^{s-r,s-r+1} \dots E_r^{s,s}$, $r \ge 2$, is trivial. To prove that the differential $d_r : E_r^{s,s} \dots E_r^{s+r,s+r-1}$, $r \ge 2$, is trivial we use the following isomorphism $E_2^{s,t}(X,Y) \approx$ $E_2^{s,t+1}(X,SY)$ which allows us to use the results of [8] (see remark 3.2).

4. The case p > 2

In this note we can't replace 2 by an odd prime p since the proposition 2.4.2.1, which is the main algebraic result of this note, is false for p > 2. Here is an example ; the unstable A-module H = $H^*(B(\mathbb{Z}/p) ; IF_p)$ is the tensor product, $E(u) \otimes IF_p[v]$ of an exterior algebra on one generator u of degree one and of a polynomial algebra generated by v the Bockstein of u. We know that H is nil-closed (see [6]) but Ω H is not λ -projective (λ is the analog of Sq₀ for p > 2) ; the element $\Sigma^{-1} v^2$ of degree three of Ω H is such that : $\lambda(\Sigma^{-1}v^2) = \Sigma^{-1}\beta P^1 v^2 = 0$.

REFERENCES

- [1] C.BROTO and S.ZARATI : Nil-localization of unstable algebras over the Steenrod algebra, Math Z. 199, 525-537 (1988).
- [2] H.CARTAN and S.EILENBERG : Homological algebra, Princeton Univ. Press 1956 ·
- [3] J.H.GUNAWARDENA, J.LANNES et S.ZARATI : Cohomologie des groupes symétriques et application de Quillen, preprint 1986.
- [4] J.LANNES and L.SCHWARTZ : Sur la structure des A-modules instables injectifs ; Topology vol. 28, N°2, pp 153-169, 1989.
- [5] J.LANNES et S.ZARATI : Sur les foncteurs dérivés de la déstabilisation, Math. Z. 194, 25-59 (1987).
- [6] J.LANNES et S.ZARATI : Sur les \mathcal{U} -injectifs, Ann. Ec. Norm. Sup 4 e série, t. 19, 1986, p. 303 333 .
- [7] J.LANNES et S.ZARATI : Invariants de Hopf d'ordre supérieur et suite spectrale d'Adams, C.R.A.S t. 296 (1983) p. 695-698.
- [8] J.LANNES et S.ZARATI : Same title, to appear.
- [9] W.M.SINGER : The construction of certain algebras over the steenrod algebra, J. of pure and applied algebra, 11 (1977), 53-59.

S.ZARATI

Universite de Tunis Faculté des Sciences Département de Mathématiques 1060 TUNIS - TUNISIA -