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DERIVED FUNCTORS OF THE DESTABILIZATION 
and 

THE ADAMS SPECTRAL SEQUENCE 

by Said ZARATI 

Introduction 

Let A be the modulo 2 Steenrod algebra, dVt the category of 
graded A-modules and A-linear maps of degree zero, and *U the 
full sub-category of dVt whose objects are unstable A-modules. We 
denote by D : dVt —> *U the destabilization functor and by Ds, s > 0, 
its derived functors. We have a natural transformation : Ds —> Z 
DSZ"1, s > 0, induced by the adjoint of the identity QD = D Z"1 

where LM, ©fVt —> dVt , m e 2, is the mth suspension functor and £2 
is the left adjoint of I : 11 —-> *U . 

In this note we prove the following theorem wich will be more 
precise in section 2.3. 

Theorem 1.1. Let M be a nil-closed unstable A-module. Then the 
natural map £2DSX"S M —> DSZ~S~1M is an isomorphism for every 
s>0. 

Using the higher Hopf invariants introduced in [7] we prove the 
following property of the Adams spectral sequence, in the modulo 
2 cohomology, for the group {X,Y} of homotopy classes of stable 
maps from X to Y, in certain cases. 

Theorem 1.2. : Let X and Y two pointed CW-complexes such that 
(i) H*(X,IF2) - Z2I where XI is an injective unstable A-module. 
(ii) H*(Y;IF2) is gradually finite and nil-closed. 
Then, the Adams spectral sequence for the group {X,Y} degenerate 
at the E2-term : E2S,S « Ers»s for every r > 2 and s > 0. 
S.M.F. 
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The infinite real projective space IR P°° is an example of a space Y 
satisfying the hypotheses of theorem 1.2. 

The organization of the rest of this note is as follows. In section 2 
we give a characterization of nil-closed A-modules which allows us 
to prove the theorem 1.1 (see theorem 2.3.3). Section 3 gives the 
proof of theorem 1.2 and an application. We finish this note by a 
remark concerning the case p > 2. 

All cohomology is taken with IF2 coefficients. We write H*( ) for 
H*( ; IF2) and we denote by H*( ) the reduced modulo 2 cohomology. 

2. Derived functors of the destabilization 

2.1. Let A be the modulo 2 Steenrod algebra. We denote by dVt the 
category whose objects are graded A-modules (M = {Mn, n e 
Z}) and whose morphisms are A-linear maps of degree zero. We 
denote by Ti the full sub-category of dVt whose objects are 
unstable A-modules (an A-module M is called unstable if Sqfx = 0 
for every x in Mn and every i > n ; in particular Mn = 0 if n < 0). 

The forgetful functor Ti —> <sfVt has a left adjoint functor D 
: <gfVt —> *U, called the destabilization functor, which satisfies : 
Hom<gfVt (M>N) = Hom^(DM,N) for every A-module M and every 
unstable A-module N. The functor D : dVt —> 11 is right exact, we 
denote Ds : dVt —> *U, s > 0, its derived functors. One of the 
motivations for the study of the derived functors of the 
destabilization is the following isomorphism : 
(2.1) Ext^tM,!) = Hom< (̂DsM,l) 
for every A-module M and every unstable injective A-module I. 

Let Zm : <s(Vt —> <sfVt , m G Z , the m"1 suspension functor 
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DERIVED FUNCTORS OF DESTABILIZA TION 
which associates to a module M = {Mn, n e 2} the module 
Xm M = {Mn"m, n Z}. The A-module structure on ZmMis given by 
Sq'(Zmx) = ZmSq'x, x in M. The computation of DgZ^M, where M is 
an unstable A-module, is done by Lannes and Zarati [5] for t < s. 
In this paragraph we will compute DSX"(S + 1̂ M for a particular 
unstable A-modules called nil-closed. First let us recall the 
definition and some properties of nil-closed unstable A-modules. 

2.2. Nil-closed unstable A-modules [1], [6] 

Definition 2.2.1 An unstable A-module M is called reduced if the 
cup-square Sqn : Mn —> M2n, x —> Sqnx, is injective for every n 
>0. 

Remark 2.2.2 We can verify easily that an unstable A-module is 
reduced if and only if it does not contain a non trivial nilpotent 
sub-A-module. An unstable A-module N is called nilpotent if for 

every x in Mn, there exist r > 0 such that Sq2 n Sqnx = 0. 

Definition 2.2.3. An unstable A-module M is called nil-closed if 
(i) M is reduced 
(ii) An element x in M of even degree is in the image of the 
cup-square if and only if QjX = 0, for all i > 0, where Qj is the ith 
Milnor primitive in A. 

Example 2.2.4 Let BZ/2 denote a classifying space of the group 
Z/2. The unstable A-module H*(BZ/2) is nil-closed indeed, as a 
graded IF2-algebra H*(BZ/2) is freely generated by one generator 
of degree one. 

2.3.Computation of DSX~(S+1)M, M nil-closed and s > 0. 

2.3.1 To state our result we use the functor Rs : *U —> *Uf s > 0, 
introduction in [5] page 29 (see also [9]) whose main properties 
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are: 
(i) The module RSM is a sub-A-module of H*(B(Z/2)S) <g> M. In 
particular RSM is an unstable A-module. 
(ii) Let H*(BZ/2) = IF2[u] where u is of degree one. We denote by Ls 
= H*(B(Z/2)s)GLs(z/2) the Dickson algebra, that is the sub-algebra 
of H*(B(Z/2)S) of invariants under the natural action of the general 
linear group GLs(Z/2) = GL((Z/2)S). The module RSM is the 
Ls-module generated by the elements Sts(x), x in M. These 
elements Sts(x) are defined inductively by : 

St0(x) = x , x <= M. 
n 

St1(x) = 2̂  u % Sqx , xe M . 
i=0 

Sts(x) = St-| (Stg.-i (x)) , s > 1, x e M 
iii) Let E+G2S be the disjoint union of a base point and a 
contractible space on which the symmetric group <S2S acts freely. 
For any pointed space X, we denote by GT2SX the quotient of the 
space E+(52s A (X A .... A X), X is smashed with itself 2s times, by 
the diagonal action of <S2S (<S2S acts on X A A X by permutation of 
the factors). Let As : B+(Z/2)S A X > G2S X be a "Steenrod 
diagonal" determined by a bijection between (Z/2)sand {1,2,....,2s}. 
The unstable A-module RSH*X is the image of A5* in the modulo 2 
cohomology. 

2.3 .2 Let n : *U -> % be the left adjoint functor of X : *U —> (UI 
that is : 

Hom^(M,ZN) = Hom |̂(QM,N) 
for every unstable A-modules M and N. 
We are now ready to state the main result of this paragraph which 
will be proved in 2.6 
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Theorem 2.3.3 : Let M be a nil-closed unstable A-module. There 
exist a natural isomorphism : 

DSX"(S+1) M = QRSM , s>0 

2.4.Some properties of nil-closed unstable A modules 

In this paragraph we give two characterizations of 
nil-closed unstable A-modules which allow us to prove theorem 
2.3.3 

2.4.1. The first characterization of nil-closed unstable A-modules 
is given in [6] page 314. 

Proposition 2.4.1.1. Let M be an unstable A-module. The following 
conditions are equivalent. 
(i) M is nil-closed 
(ii) Ext^ '^M) = 0 for every nilpotent N in *U and i = 0,1. 
(iii) There exist an injective resolution of M starting 

0 — > M —> K° — > K1 
where K° and K1 are reduced injective unstable A-modules. 

Remark 2.4.1.2. The condition (iii) of the proposition 2.4.1.1 can be 
replaced by the following (see [4] page 163) 

(iii)1 There exist an injective resolution of M starting 

0 ~> M-> II H'(BVo) --->IlH*(BVp) 
a P 

where Va and Vp are elementary abelian 2-groups. We have the 
following easy corollary. 

Corollary 2.4.1.3. Let M be an unstable A-module. The following 
conditions are equivalent. 
(i) M is nil-closed. 
(ii) There exist a nil-closed unstable A-module L containing M such 
that the quotient L/M is reduced. 
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2.4-2. Another characterization of nil-closed. 

Proposition 2.4.2.1 Let M be an unstable A-module. The following 
properties are equivalent. 
(i) M is nil-closed 
(ii) M and Q.M are reduced 

The proof of this proposition is based on the following technical 
lemma. Let Qj, i > 0, the ith Milnor primitive in A and Sq^ the 
cohomology operation defined by Sq^ x = Sqn"kx where x is an 
element of degree n of an A-module (Sqn"k = 0 if n < k). 

Lemma 2.4.2.2 Let M be an unstable A-module. We have the 
following formula : 

(Qi+1 oSq1)(x) = (Sqo0Qi)(x) 

for every x in M and every i > 0. 

Proof. The proof is done by induction on i using Adem's relations. 
Recall that the elements Qj, i > 0, are defined by 

Qo = Sq1 
2' 2' 

q = Q. _ 1 Sq + Sq q _ 1 , i > 1 

The case i = 0. Let x be an element of degree n of an unstable 
A-module, we have : 

Sq1Sq-,(x) = Sq1Sqn"1(x) = 
0 if n s 0(2). 

Sq2Sq-i(x) = Sq2Sqn'1(x) = 

Sq0x if n - 1 (2) . 
0 
Sq2Sq1x 

if 2 >2n - 1 , 
if 2 = 2n -2. 

1 
I C2'f Sq"^ Sq°x 
^ n-2-c ^ ^ c=o 

if 2 < 2n - 2. 
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0 if n = 1 

SqnSq1x ifn>2. 

These formulas imply the case i = 0 because we have : 

Ql Sq-f x = Sq3Sq-| x + Sq2Sq1 Sq-j x 
= Sq0Sq1x 
= SqQQ1x. 

Suppose QjSq-|X = Sq0Qj.-|X for evry i : 0 < i <j-1 and for every 
element x (of degree n) of an unstable A-module. To prove this 
formula for i = j we consider : 

QjSq^x) = Sq2^Qj.1Sq1(x) + Qj^Sq^Sq-, (x) 

= Sq2 SqQQj_2(x) + Qj.-j Sq2Sq-| (x) , (inductive assumption) 
J-1 2' = Sq0Sq cyxj + c^sq 

J z Sq,M. 

In the last equality we have used the following easy formula : 

SqkSqG = 
0 if k ̂  1(2) 

Sq0Sq 

k 
2 if k - 0(2) . 

If remains to show : 
21 2H 

Q Sq Sq^x) = SqQ2Sq (x). 

Using the unstability of M and Adem's relations we prove : 
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Sq Sq.(x) = 

0 if n < 2J"1 . 

2H 
Sq^q (x) if n > 2H + 1 . 

This formula gives : 

2j 
C^Sq Sq1(x) = 

0 if n<2J"1 . 

2j"1 
QHSqiSq (x) if n > 21"1 + 1 . 

0 ifn<2H . 

Sq0Q.2Sq (x) if n > 2*"1 + 1 , (inductive assumption). 

2J-1 
Ŝq̂ Ĉ .gSq (x) 

2.4.3. Functor Rs and nil-closed A-modules. 

Proposition 2.4.3.1. Let M be an unstable A-module. If M is 
nil-closed then RSM is nil-closed. 

Proof : Let (*) 0 --> M — > n H*(Va) —> n H* Vp be the 
beginning of an injective resolution of the nil-closed unstable 
A-module M (see remark 2.4.1.2). The functor Rs is exact and 
comutes with products (see [6]) ; then, when we apply it to the 
exact sequence (*) we get the following exact sequence : 

O - - - > R M - > I I R H * V —>riReH*vR • 
s s a AA s p 

a P 292 
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The computation of RSHWV, where V is an elementary abelian 
2-group, is done by induction on s (see [6] page 321). Let Vs = 
(2/2)s e V,RSH*V is the sub-module of H*(VS) of invariants under 
the action of the sub-group of GL(VS), denoted GL(VS,V), of 
automorphisms of Vs which induces the identity on V. The 
proposition 2.4.3.1 is now a consequence of the corollary 2.4.1.3 and 
of the fact that the sub-A-module H*(V)G, G < GL(V), of H*(V) is 
nil-closed (see [6] page 314). 

Remark 2.4.3.2. A different proof of the proposition 2.4.3.1 for s = 1 
is given in [3] 

2.5.Proof of the proposition 2.4.2.1. 

2.5.1. First let us recall some properties of the functor Q 
introduced in 2.3.2. Let O : *U —> Vl be the functor which 
associates to each unstable A-module A-module M, the "double of 
M", denoted OM, defined by : 

(0>M)n = 
0 if n - 1(2). 

Mn/2 if n ^ 0(2). 
and Sq'(Ox) = 

0 if i = 1(2). 

<DSqi/2 x if i - 0(2). 

we verify that the map SqQ : OM —> M, Ox »—> SqQx, is A-linear 
and that the kernel and the cokernel of SqQ are respectively XQ-|M 
and £QM where ii-j is the first and unique derived functor of Q. (see 
[5] page 30). We remark that an unstable A-module M is reduced if 
and only if £2-|M = 0. 

2.5.2. Proof the proposition 2.4.2.1. (i) ==> (ii). It suffices to prove 
that £2M is reduced. Let y be an element of (QM)k such that Sq0y = 
0. To prove that y = 0 we envision two cases : 

(*) The case k s 0(2). in this case (QM)k = (I"1 M/lmSq0)k = 
Mk + 1 then y = Z"1x where x is an element of Mk+1. Sq0y = 
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E"'Sq-|X = 0. This implies that Sq'Sq-jx = SqQx = 0 and then x = o 
since M is reduced. This shows that y = X~1x = 0. 

(**) The case k ^ 1(2). In this case (QM)k = (X"1 M/lmSq0)k 
= (M/lmSqQ)k+1 then y = X~1[x] where x is an element of Mk+1. 
SqQy = Z'1[Sq-|X] = X~1Sq-|X = 0 (Sq-jx is an element of M of odd 
degree) ; then, Sq-|X = 0. This implies that Qi + 1Sq-|X = 0 for every 
i>0. Using the lemma 2.4.2.2 we get : Sq0QjX = 0 for every i > 0 and 
then Qj(x) = 0, i > 0, since M is reduced. Now x is an element of even 
degree of a nil-closed A-module M annulated by all the Qj, i > 0 then 
x is in the image of Sq0 and then y = X~1[x] = 0. 

(ii) ==> (j). Since M is reduced then M embeds in a reduced 
injective unstable A-module K (see [6] page 313). To prove M 
nil-closed it suffices to prove that the quotient K/M is reduced and 
to use the corollary 2.4.1.3. If we apply the functor Q, to the exact 
sequence 0 ---> M —> K —> K/M ---> 0 we get the following 
exact sequence : 0 —> Q-|(K/M) —> QM —> QK —> Q(K/M) —> 
0. The module O1 (K/M) is trivial because it is a nilpotent 
sub-A-module of the reduced unstable A-module QM,iii(K/M) is 
nilpotent because, by definition, it is concentrated in 
odd degree. This shows that K/M is reduced and then M is 
nil-closed 

2.6. Proof of the theorem 2.3.3 

Let M be an unstable A-module. Consider the following 
exact sequence introduced in [5] page 32 : 
(*) 0 --> QDSZ"SM —> DSX~(S+1)M — > Q-iDg.-jX^M —> 0 
When M is reduced, the module DSX'SM is naturally isomorphic to 
RsM (t5l Proposition 4.6.2). The exact sequence becomes : 
(**) 0 —> £2RS M --> DS£~(S+1)M — > Q-iDg^S^M --> 0 
The proof of the theorem 2.3.3 is done by induction on s.For s = 0 it 
is the identity DS"1 = QD. Suppose that : (Hk) DkX~(k+1)M = QRkM 
for every k : 0 < k < s-1 and every nil-closed A-module M. 
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To prove (Hs) it suffices to remark that since M is nil-closed then, 
by the proposition 2.4.3.1, RS_-|M is nil-closed. This implies that 
£2Rs_-jM is reduced (proposition 2.4.2.1), that is : Q-|£2RS_-|M = 0. 
The exact sequence (**) and the inductive assumption give, for M 
nil-closed, the following natural isomorphism : DSX"(S+1)M -
£2RSM. 

3. Applications. 

The topological applications of this note are based on the 
higher Hopf invariants introduced by Lannes and Zarati in [7]. Let X 
and Y be two pointed CW-complexes. We donote by {X,Y} the group 
of homotopy classes of stable maps from X to Y. The Adams 
spectral sequencee, in the modulo 2 cohomology, for the group 
{X,Y} is denoted {Ers>s = Ers's (X,Y), s > 0, dr}r>2; dr : Ers's—> 
Ers+r,s + r-1 jS the differential. We have the following theorem 
which will be proved in the section 3.4 

Theorem 3.1 Let X and Y be two pointed CW-complexes such that : 
(i) H*(X) - X2I where XI is an injective unstable A-module. 
(ii) H*(Y) is gradually finite (dim|F2Hn(Y) < + «>, n > 0) and 
nil-closed. 
Then, the Adams spectral sequence, in the modulo 2 cohomology, 
for the group {X,Y} degenerate at the E2-term E2S,S « Ers>s for 
every r > 2 and s > 0. 

Remark 3.2 In [8] (see also [7]) there exist an analogous property 
of the Adams spectral sequence as in theorem 3.1 in the following 
two cases : 
(3.2.1) (i) H (X) is a reduced injective unstable A-module. 

(ii) H* (Y) is gradually finite. 
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(3-2.2) (i) 5>f (X) is an injective unstable A-module. 
(ii) H (Y) is a reduced gradually finite unstable A-module. 

Corollary 3.3. Let X and Y be two pointed CW complexes which 
verify the hypothesis (i) and (ii) of theorem 3.1 and such that the 
Adams spectral sequence for the group {X,Y} converges. 
Then, the natural map : 

h : {S1X,Y} —> Hom<̂ (H*Y, X H* X) 
is surjective. 

Proof. Theorem 3.1 shows that the term E20'1 = Homu(H*Y, ZH*X) 
persists at the infinity. Since the Adams spectral sequences for 
{X,Y} converges, then the natural map h : {S1X,Y} —> 
Homu(H Y,ZH X) is surjective. 

3-4- Proof of the theorem 3.1 

Consider the following diagram whose commutativity is 
proved in [7], [8]. 

Z2,~ 

Es,s 
Hs,s 

Hom.yjRgH* Y, £2I) 

\l 
HomupRgH Y, Mi) 

E2S>S -Ext^Vt^I-s-^V, XI) 
H 

5,5 ® 

a 
Homu(Dsrs'1H*Y)II) 

(zj'̂ oo is the inverse image of Ê f in E2, etf ̂ and AF2 are the Hopf 
invariants at the E^-level and the E2-level respectively). The 
isomorphism 1 is clear since E2S>S = E x t s ^ (£"s H*Y, E2I) = 
Ext<̂ Vt S(X"S_1 H* Y,SI). The isomorphism 2 follows from the fact 
that El is an injective unstable A-module. The isomorphism 3 is a 
consequence of the theorem 2.3.3. 
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By definition of the differential dr : Ers"r's"r+1 — > Ers's we have : 
lmdr <z Z*'^ and Z^1oo = Z^^/ltn dr (see, for example [2]). It 
follows from the commutativity of the previous diagram that Z^oo 

-> Ê S and then the differential dr : Ers'r»s"r+1 — > Ers>s , r > 2, 
is trivial. To prove that the differential dr : Ers»s —> Ers+r's+r_1, r 
> 2, is trivial we use the following isomorphism E2s,t(X,Y) = 
E2s,t+1 (X,SY) which allows us to use the results of [8] (see remark 
Q.2). 

4. The case p > 2 

In this note we can't replace 2 by an odd prime p since the 
proposition 2.4.2.1, which is the main algebraic result of this note, 
is false for p > 2. Here is an example ; the unstable A-module H = 
H*(B(Z/p) ; IFp) is the tensor product, E(u) <g> IFp[v] of an exterior 
algebra on one generator u of degree one and of a polynomial 
algebra generated by v the Bockstein of u. We know that H is 
nil-closed (see [6]) but QH is not ^-projective (X is the 
analog of SqQ for p > 2) ; the element Z"1 v2 of degree three of QH 
is such that : MI"1v2) = Z"13P1 v2 = 0. 

297 



ZARATI 

REFERENCES 

[1] C.BROTO and S.ZARATI : Nil-localization of unstable 
algebras over the Steenrod algebra, Math Z. 199, 
525-537 (1988). 

[2] H.CARTAN and S.EILENBERG : Homological algebra, 
Princeton Univ. Press 1956. 

[3] J.H.GUNAWARDENA, J.LANNES et S.ZARATI : Cohomologie 
des groupes symétriques et application de Quillen, 
preprint 1986. 

[4] J.LANNES and L.SCHWARTZ : Sur la structure des 
A-modules instables injectifs ; Topology vol. 28, N°2, pp 
153-169, 1989. 

[5] J.LANNES et S.ZARATI : Sur les foncteurs dérivés de la 
déstabilisation, Math. Z. 194, 25-59 (1987). 

[6] J.LANNES et S.ZARATI : Sur les U-injectifs, Ann. Ec. Norm. 
Sup 4 e série, t. 19, 1986, p. 303 - 333. 

[7] J.LANNES et S.ZARATI : Invariants de Hopf d'ordre 
supérieur et suite spectrale d'Adams, C.R.A.S t. 296 
(1983) p. 695-698. 

[8] J.LANNES et S.ZARATI : Same title, to appear. 
[9] W.M.SINGER : The construction of certain algebras over the 

steenrod algebra, J. of pure and applied algebra, 11 
(1977), 53-59. 

S.ZARATI 
Universite de Tunis 

Faculté des Sciences 
Département de Mathématiques 

1060 TUNIS - TUNISIA-

298 


