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ON THE SPACE OF MAPS BETWEEN R-LOCAL CW COMPLEXES 
by 

D.J. Anick1 and E. Dror Farjoun 

1. Summary of Results and Notations 

The papers [A1,A2] introduced and studied a differential graded 
Lie algebra (dgL) associated as a model to certain spaces. Building 
on that work, we construct in this note a simplicial skeleton for the 
space of pointed maps between two H-local simply-connected CW 
complexes (R ^ Q). The construction entails two steps. First is 
the construction, in the category of dgL'«, of a cosimplicial 
resolution and an associated "function complex" valid in a range of 
dimensions; and second is the connection with the topological mapping 
space via the above-mentioned models. 
1.1. A function complex for dgL's. Let R = Z[(p - l)!]""1 <= q for 
a prime p, and let L, M be free r-reduced dgL's over R having 
all generators in dimensions below rp (r > 1). We will construct a 
simplicial set, to be denoted hpjn(L,M), which serves in a range of 
dimensions as a function complex in the sense of Dwyer and Kan [DK], 
Our construction is explicit, in terms of generators and 
differentials; it is something which could be implemented on a 
computer. When L and M arise as models for finite spaces X and Y, 
this means that a simplicial model for the pointed mapping space Y 
is computable in a range of dimensions. 
1.2* The range of dimensions. When X and Y are R-local r-connected 
CW complexes (r > 1), whose dimensions m̂  and mv are bounded 
above by m and by rp respectively (m < rp), we may associate to 
them the dgL models Lx and Ly. Then Y has the d-type of 
hom(Lg,Ly), where 

d = min(rp - 1, r + 2p - 3) - m . 

"^Partially supported by a National Science Foundation grant. 
S.M.F. 
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Beyond dimension d, hom(Ly) is s t i l l defined, but its 
connection with the geometry becomes much hazier. 
1.3. Relation to tame homotopy. In view of [D] and [DK], one may 
associate to a pair of tame spaces (S,T) a function complex in the 
category of simplicial Lazard algebras. This function complex is 
homotopy equivalent (as a simplicial set) with the pointed mapping 
space T . When T is not tame, however, it is not obvious how one 
would obtain information about T through this technique. The desire 
to handle the non-tame case motivated this paper. Instead of 
requiring spaces to be tame, we require them to be R-local, and we 
restrict the dimensions where their cells may occur. 

(The referee has proposed that Dwyer's functor may be able to be 
specialized suitably to the category of r-connected simplicial sets 
generated in dimension < m. This specialization, call it S, might 
yield information about T when S belongs to CW . To accomplish 
this, one would attempt to use S in largely the same way that we 
have used L in this paper.) 
1.4. Notations. We work over a fixed subring R of the rationale, 
and we denote by p the least non-inverted prime, i . e . , 
p = inf {n«z+|n~1«R} . In general, then, Z[(p - l)!]""1 c R c q. 
As in tame homotopy, the relevant dimension ranges vary with a 
connectivity parameter r, where r > 1. Following [A1,A2] we 
introduce several categories. 
O SS denotes the category of simplicial sets. 
O TOP is the category of pointed topological spaces and pointed 

continuous maps. 
O CWn(R) denotes the full subcategory of TOP, consisting of r 

r-connected R-local CW complexes of dimension < n. "Dimension" 
means as an R-local cell complex, e.g., the local n-sphere 
belongs to 06CW°(R) even though it has topological dimension 
n + 1. 

O HoCWn(R) is the category obtained from CWn(R) by collapsing r r 
(pointed) homotopy classes of maps. 

D DGL(R) is the category of connected dgL's over R. A dgL is free 
if it is free as a Lie algebra (ignoring the differential); in 
this case we write it as (L(V),5), where the R-module of 
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generators V =̂ ¥jLv̂  is free and positively graded, and the 
differential 5 has degree -1. 

a DGL™(R) denotes the full subcategory of DGL(R) whose objects 
have the form (L(V),6) where V = .e V., i .e . , they are free 
with all generators occurring in dimensions r through m, 
inclusive. 

O L denotes the model, introduced in [Al], which carries 
CW™+1(R) to DGL™(R) when m < rp. 

1.5. Distinguished morphisms in DGLm(R). The category DGL™(R) 
cannot be made into a closed model category, but we will find it 
convenient to distinguish three classes of morphisms anyway. Call 
fetforDGL™(R) a weak equivalence if it induces an isomorphism on 
homology of universal enveloping algebras. It is a cofibration if it 
splits as an inclusion of free Lie algebras (ignoring the 
differential), and it is a fibrat ion if it is surjective in 
dimensions above r. Trivial fibrations are simultaneously 
fibrations and weak equivalences. 
2- Function Complexes in DQ1*(R) 

We will now investigate the possibility of doing homotopy theory 
in DGL̂ (R). The dimension limitation, viz., the "m" in DGL™(R), 
spoils our hope of doing so in the sense of Quillen [QJ or even Baues 
[B]. We cannot dispense entirely with the bound m, because dgL's 
exhibit a variety of undesirable behaviors when generator dimensions 
are permitted to exceed rp. On the other hand, the canonical 
constructions of turning a map into a fibration or cofibration tend 
to increase the dimensions of generators, and thus they eventually 
bump us out of any fixed DGL™(R). 

An alternate approach is suggested in [T] and [Al]. We may 
define for m < rp a homotopy relation on morphisms by utilizing a 
certain cylinder construction, which raises by one the maximum 
generator dimension. The gap between m and rp then offers us a 
"breathing space" in which we can perform the standard constructions 
approximately (rp - m) times, and thus higher homotopy information 
is obtainable up to dimension (approximately) rp - m. This cylinder 
construction, known as the Tanre cylinder, is recalled next. 
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2.1. The Tanré cylinder. This is developed in [T] and [Al] so we 
provide here only a brief overview. Given a dgL L = (L(V),6) in 
DGL™(R), where m < rp, Tanré associates to it another dgL in 
DGL*+1(R)f denoted IL = (IL(V),IG). Taking the set of weak 
equivalences to be as in 1.5, the dgL IL is a valid cylinder object 
on L in the sense of [Q] or [B]. In particular, I comes with 

natural weak equivalences jn>Ji: id -+ u l an<* if ^ ír3 M are two 
morphisms in DGL°(R), then f and g are nomotopic if and only if 
fug factors through IL. Collapsing homotopy classes gives us a 
category which we denote by ffoDGL™(R). 

We remark that I is not a functor, although If: IL IM 
exists non-canonically for each f: L -» M in iforDGL̂ (R). However, 
I does satisfy the weak naturality condition If©jp(L) = JQ(M)of, 
IfoJ1(L) = Jx(M)of. 
2.2. Constructing the cosimplicial resolution. We construct next an 
initial segment of a cosimplicial resolution for objects in DGL™(R). 
We shall use it to define a function complex between two such dgL's. 
We follow as closely as possible the standard procedure, due to Dwyer 
and Kan [DK], for constructing cosimplicial resolutions in any closed 
model category. By a cosimplicial resolution for an object A we 
mean a (not necessarily functorial) diagram 

(1) A ^ A1k ^ A2A . . . ¿nA . . . 
satisfying the usual cosimplicial identities. In (1)» each arrow is 
a weak equivalence; the coface maps are cofibrations, while the 
codegeneracies are fibrations. (See [DK, Section 4.3] for a precise 
definition.) 

Let us review the Dwyer-Kan construction for a closed model 
category C. Given an object A, a cylinder on A is an object IA 
which provides the first stage of a cosimplicial resolution for A. 
That is, IA fits into a diagram 

(2) A Z=5 AuA S-> IA SL, A 
such that c is a cofibration, q is a trivial fibration, and both 
composites are the identity on A. This I( ) need not be a 
functor, but we do assume the compatibility of jQ = ci^ and 
j^ = ci^ with any If. Typically I arises by factoring the 

18 



ON THE SPACE OF MAPS BETWEEN R-LOCAL COMPLEXES 

folding morphism A»A V A into a cofibration followed by a trivial 
f ibrat ion. 

Assuming one has such an I, let AQ be the identity functor 

and let A be the functor A A = AnA. Then let A be the push-

out of A 4— A A —» IA A. It is obvious how A A serves as the 
first stage in the cosimplicial resolution (1). 

Inductively, suppose the first (n - 1) stages of (1) have been 
constructed. Let F^ be the functor from the category of faces of 
the simplicial complex AU and inclusions among them (see 3.2) to 
C, which takes a k-simplex to A A, and an inclusion to the 

appropriate arrow of (1). Let A A be colim(FA) and let A A be 
the push-out of 
(3) A <— AnA • Î nA . 

We wish to perform the Dwyer-Kan construction in the category 
DGL̂ (R), which is not a closed model category. Let us check 
precisely which axioms are used. Assuming the existence of I, we 
need: closure under finite colimits for diagrams of cofibrations; 
that the push-out of a (resp. trivial) cofibration exists and is a 
(resp. trivial) cofibration; that two out of three of f and g 
and gf being weak equivalences makes the third a weak equivalence; 
and the left lifting property for cofibrations with respect to 
trivial fibrations. When we take I to be J, the category DGL™(R) 
satisfies these four axioms, for m < rp. 

However, as we have noted, the Tanre cylinder construction I 
applied to a dgL L having some m-dimensional generators will have 
some (m+1)-dimensional generators. Inductively, AnL lies in 

DGL™+n(R). This dimension shift, along with the constraint 
m + n < rp, is what confines us to an initial segment of a 
cosimplicial resolution (1). 
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We have actually verified 
LEMMA 2*3. When m + n < rp, there are constructions 

An, 4 N+1 DGLm(H) -. DGLm+n(R). 
Applied to a dgL LeOoDGL̂ CR), they come with homomorphisms that 
provide the first rp-m stages of a cosimplicial resolution (1) for 
L. 
Definition 2.4. For LeOoDGL1" ( R) , MeOfcDGL(R), let An be as in  r 
Lemma 2.3 for n < rp - m. Define the function complex between L 
and M, denoted hom(L,M), to be the simplicial set consisting of 
HomnQî Rj(̂ nL,M) in dimension n when n < rp - m, and consisting 
of degeneracies only, above dimension rp - m. 
Remark 2.5. Definition 2.4 may depend upon choices made during the 
construction of AnL. The results that we are interested in will 
hold regardless of which choices were made. More importantly, the 
definition depends upon m and r, in the sense that the relevant 
dimension range will vary according to which DGL™(R) we view a 
given L as lying in. In practice, of course, we will want to use 
the largest possible r and the smallest possible m. In this 
paper, the intended r and m will always be apparent from the 
context. 

3_. Constructing the Simplicial Map 

Having constructed hom(L,M) for dgL's, we turn our attention 
to its connection with the pointed mapping space Y . We have 
mentioned the dgL model L for pointed R-local CW complexes. We 
will define a simplicial map L from a skeleton of Y to 
hom(L(X),L(Y)). 
3.1. The model L. In [Al] the first author showed that for any 
XeOfcCW™+1(R) with m < rp there exists LeObDGL™(R) such that UL 
is an Adams-Hilton model for X. We write L(X) for this L. One 
has a similar assertion and notation for maps. The passage from X 
to L is not functorial, since X does not canonically determine 
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L; nor does a map f: X Y uniquely determine L(f), even after 
L(X) and L(Y) have been fixed. However, L(f) is determined up to 
homotopy, and hence L(X) is determined up to homotopy type. In 
spite of this indeterminacy, the function complex between such models 
always does the right thing up to a certain dimension. 

The main advantage of L as a model for X is that it is built 
directly from a cellular decomposition of X, so it is fairly small 
and accessible to computations. 
3.2. Review of Y . The pointed mapping space Y may be viewed as 
the simplicial set 
(4) YX = {HomTOp(|4n|KX,Y)}nj0 . 
Here An is the standard simplicial complex whose geometric 
realization is the standard n-simplex, and K denotes the 
half-smash. The subcomplex of An obtained by removing the 
n-simplex is denoted, as usual, by An. 

Denote by ad(An) (resp. sd(.4D)) the first barycentric 
subdivision of An (resp. 4n). Whenever X€OoCW™(R), then an easy 
Kunneth formula argument shows that |sd(4N)|KX and |sd(4n)|><X 
belong to OfeCW™"hn(R) (cf. 4.4 for a discussion of CW structures). 
As long as m + n < rp, a model L(|ad(AU)|*X) exists for |4n|*X. 
LEMMA 3.3. For Xc06CWm(R), m + n < rp, one can choose models such 
that there are isomorphisms 
(5) L( |sd(<dn) |KX) « ADL(X) , and 

L( |sd(> + 1) |KX) « >+1L(X) . 
Furthermore, the model L applied to the coface and codegeneracy 
maps 

\sd(An) |KX |sd(̂ in + 1) |KX 
may be taken to be the coface and codegeneracy homomorphisms 
mentioned in Lemma 2.3, for L = L(X). 
Proof. This is easily deduced by induction on n. At each stage, L 
can be chosen to commute with colimits of inclusions of CW complexes 
[Al, Theorem 8.5i], with cylinders [A2, Lemma 5], and with push-outs 
in which one map is CW and the other is an inclusion into a cylinder 
[A2, Lemma 6]. 
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PROPOSITION 3.4. Let X€ObCW™(R) where m < rp, and let 
Y€06Cw£D(R). There is a homomorphism of simplicial sets 
(6) 2: (YX)rp""m - hom(L(X) ,L( Y) ) . 
The source of (6) is the (rp-m)-skeleton of the simplicial set ( 4 ) . 

X f p—JH /S 
For each f€(Y ) , L(f) may be interpreted as a valid L-model 
for f. 
Proof. We build L dimension by dimension. Assume we have the 
simplicial map 

Ln~l: (YX)n""1 hom(L(X) ,L(Y) ) . 
For each element f: |4n|xX -» Y, view f as a map from the CW complex 
|sd(^iN)|KX' to Y. Consider 
(7) AQL(X) by *5) » L( |sd(^n) |KX) LF, L(Y). 
This composite belongs to the dimension n part of hom (L(X),L(Y)) 
if n < rp - m. Thus we may extend Ln~l to Ln: (YX)n -+ 
hom(L(X)•L(Y)) by defining Ln(f) to be the composite (7). The 
only subtlety is the requirement that Ln is to be a simplicial map. 
i .e . , compatible with faces and degeneracies. This in turn requires 
that we utilize the flexibility inherent in our choices for L(f). 

We are supposing that Ln * is simplicial, i .e . , these choices 
have been made compatibly below dimension n. Given f:\AU|KX -» Y, 
let f denote the restriction f: |sd(«dN)|KX Y, and for 0 < i < n 
let f±: |sd(<dn-1) |KX Y denote the further restriction to the ith 
face of |^n| half-smashed with X. By our inductive assumption, 
the L(fi) are compatible with faces; by [Al, theorem 8.5j] their 

colimit serves as a valid choice for L(f). Lastly, use [Al, theorem 
8.5h] to extend this choice for L(f) to some valid model L(f). By 
Lemma 3.3, the resulting choice for L(f) remains compatible with 
faces and degeneracies. 

22 



ON THE SPACE OF MAPS BETWEEN R-LOCAL COMPLEXES 

PROPOSITION 3.5. Let X€OfcCW*(R), Ye06CW P̂(R), where 
t = min(rp - 1, r + 2p - 3). Then L induces a bijection 

ir0(L): TT0(YX) ^ tr0(hom(L(X),L(Y))). 
t + 1 ~ If instead XeObCVir (R), then ^Q(L) is a surjection . 

Proof. For L, M€OfeDGL̂ p_1 (R) , fug: Lit L M extends over IL if 
and only if it extends over <d1L. Thus wQ (hom(L.M) ) coincides with 
the (Tanre-induced) set of homotopy classes [L;M]. Also, this 
diagram commutes: 

(8) 

*0(YX) " ,,vx,i, VL) 
— wQ((Y ) ) H0(hom(L(X),L(Y))) 

fis as 

[X;Y] [X; Y] 
U). 

[L(X)îL(Y)] 

where we have put m = rp - 1. By [A2, Theorem 3] the arrow (L)s 
of (8) is a bijection. When dim(X) = t + 1, use (Y ) in place of 
(Y )y1 in (8); then the upper left arrow and (L)s are surjections, 

/\ 
hence so is TTQ(L). 

4. The d-tvpe of Y 

We conclude by showing that the simplicial map L of (6) is a 
homotopy equivalence in a range of dimensions. We fix the notation 
(9) t = min(rp - 1, r + 2p - 3). 
4.1. Simplicial d-type. Let A and B denote simplicial sets, and 
let d > 0. A d-eouivalence is a simplicial map g: A -* B such that, 
for every choice of base point 3Q€(A)Q , g induces a bijection on 
7T for n < d and a surjection on w ,. We say that B and B1 have n o 
the same (d-l)-type if and only if there is a simplicial set A 
which comes with d-equivalences B ft r T IA B'. "Same (d-l)-type" is 
an equivalence relation because, if B" «— A £-» B +-£rf ft A* B' are 
d-equivalences, letting A" be the fiber-homotopy pull-back of g 
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and g' leads to d-equi valences A «- A" -•A*. (For an alternate 
approach to (d-l)-type, see [B, p. 364].) Note that the skeleton 
inclusion Â  -* A is always a d-equivalence. Lastly, the condition 
on 7TQ amounts to the requirement that g induce a bijection on 
path-components (resp., a surjection, if d =0) . 

Two spaces having the same d-type tells us that their homotopy 
groups nn( ) are isomorphic for n < d, but it tells us much more 
than this. For instance, the spaces S and CP xS have 
isomorphic 7î  for all n; they have the same 2-type (S «- S vS -» 

CP xS ) but not the same 3-type. 
We assert (see 4.7) that Y and hom(L(X),L(Y)) have the same 

d-type, for a certain d. 
4.2. Relative homotopy in DGLm(R). We need the concept of a 
relative homotopy, for dgL's. First let us review the concept for 
spaces. Let W be a pointed space and let X be a subspace; we fix 
a pointed map +: X Y. Denote by HomTOp(W,Y)̂  the set of all 
extensions of * over W. Two maps in HomTOp(W,Y)# are nomotopic  
rel X. denoted f j g, if and only if there is a homotopy F: Wx[0,l] 

Y such that F|Wx0 = Flwxl = *• and F<w»s) = *(w) for W€X' 
Denote by [W;Y]̂  the set of j-equivalence classes. We will be 
especially interested in the case where W is a CW complex and X 
is a subcomplex. 

Let L -> K be a cofibration in DGL™(R) , m < rp; we identify L 
with a sub-dgL of K. Let MeO&DGL(R), and fix a dgL homomorphism 
A: L -» M. Denote by HomDGL(R)M Â tne set of a11 extensions of 
A over K. 

Although we have stressed that the Tanre cylinder I is not 
natural, there is a cofibration JL IK which extends the given 
cofibration LuL -» KuK. Let q : IL L denote the trivial 
fibration which extends the fold map LuL L. Two dgL 
homomorphisms in HoiDDGL(R) ^ K* M̂  A are noino*opic re* L • denoted 
f a g , if and only if there exists F: IK -» M whose restriction to 

A 
KuK is fug and whose restriction to IL is AqT. Denote the set of 
^-equivalence classes by [K;M] . A A 
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PROPOSITION 4.3. Let W€OoCW*(R), let X be a subcomplex, and let 
Y€06CWrp(R) . Fix a map *: X -> Y and fix a model r 
A = L(#): L(X) L(Y). Then L induces a bijection 
(10) flo(L): [W;Y]# -> [L(W);L(Y)JA , 
in which a a-class [f] is sent to the a-class [L(f)J. If instead 
W€05CW*+1(R), then (10) is a surjection. 
Proof. One may easily adapt the proof of [A2, Theorem 3] to cover 
this situation as well. One needs only to be careful always to 
choose L(f) for f: W Y so as to extend the model A for f | x . 
4.4. Homomorphisms induced by L. We intend to study the 
homomorphisms induced by the L of (6) on homotopy groups. Let 
X«06CW™(R), m < rp, and Y€06CW^P(R). Fix a map X Y and view 
YX as the simplicial set (4); thus *€(YX)Q. Fix n > 0 and take 
as base point the 0*n vertex v^e|sd(jn +^)|. Henceforth, when we 
write S N , we will intend S N to be viewed as the CW realization 
|sd(4 n +*)| with base point v̂  ( i .e . , as a CW complex, S N has one 

* n+1 n cell for each non-degenerate simplex of ad(A )). Let W = S KX. 
The CW structures on S N and on X give us a CW structure on W; 
note that W€OfeCWin+n (R) . We identify X with the subcomplex v.xX r u 
of W. Clearly, [W;Yl makes sense. 

We consider the same setup in DGL^P(R). Let LeOfcDGL™(R), 
m < rp, M€O60GL(R). When m + n < rp, AnL is defined, and we may 
include L into AnL "at the 0 t h vertex" (see (1)). Thus L is 

viewed as a sub-dgL of K = An+lL, and [K;M]̂  makes sense for any 
given A: L M. When L = L(X), we may by Lemma 3.3 identify K 
with L(W). Then the inclusion of the sub-dgL L into K is a 
valid L-model for the subcomplex inclusion X W described above. 

Now let X€ObCWm(R), m < rp, Y€OfcCw£p(R), as above. Choose an 
L as in Proposition 3.4. Let A = L(*), which is a valid L-model 
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for *. For n < rp - m, consider the diagram 
HoiPss(iin+1.v0; (YX)rp~m,*) (1-L> HOBSS(/+1,V0; horn (L(X),Z.(Y)),A) 

al 
Ho'»ss^n+1'vo; yX» *) 

(11) »{ {* 
Ho-TOp(|>+1|KX Y), HomDGL{H)(>+1f.(X),i.(Y))A 

= | J* 
HomTOp(W,Y)# LL - - -. HomDGL(H)(L(W),Z-(Y))A . 

Because all the vertical arrows in (11) are bijections, there is a 
unique L' which makes the diagram commute. The following lemma 
follows easily from the construction of L. 
LEMMA 4.5. For any choice of L as in Proposition 3.4, the functii 
L• of (11) satisfies this: for any f€HomTQp(W,Y)̂  , L'(f) is a 
valid L-model for f. 

The reader may now check that the equivalence relations that w< 
have on the various sets in (11) are compatible with the arrows, am 
lead to the diagram 

irn((YX)rp"m,#) L • n (hom(L(X),L(Y)),A) 
la* 

trn(YX,*) 
(12) |» 

HomTOp(W,Y)̂ /(?) HomDGL(R)(f,!+lL(X)'L(Y))A/(S> 
T (L')# r [W;Y]̂  1 > [L(W);L(Y)]A . 

The following two facts are also clear. 
LEMMA 4.6. (a) In (12), (L')# coincides with Ho(L) of (10). (b 
In (12), is bijective if m + n < rp and surjective if 
m + n = rp. 
THEOREM 4.7. Let XeOdCW™(R), m < t + 1, Y€0/>Cw£P (R) . Put 
d = t - m (cf. (9)). The simplicial map L of (6) is a (d+1)-
equivalence. Consequently, the simplicial sets Y and 
hom(L(X),L(Y)) have the same d-type. 
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Proof. The condition on 7TQ is actually given by Proposition 3.5. 
When t - ID > n > 0, (D# of (12) is bijective, by 4.3 and 4.6. 
When n = t - m + 1, (L)# of (12) is surjective, again by 4.3 and 
4.6. 
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