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INTRODUCTION

Axiom A diffeomorphisms and flows, introduced by Smale, are
generalisations of Anosov systems (extensively studied by the Russian school in the
1960s) which in turn are based on the prototypical hyperbolic toral automorphisms
and geodesic flows on surfaces of constant negative curvature. A standard method
for understanding these dynamical systems, introduced, at various levels of
generality, by Adler, Weiss, Ratner and especially Sinai and Bowen, is to model
them, via the introduction of Markov partitions, by shifts of finite type and their

suspensions.

In this work we adhere to this procedure and in so doing the initial chapters
develop some of the basic material of Bowen's and Ruelle's books [16], [82],

although even here many of our proofs are different.

The main substance of our effort, however, takes up where Bowen and
Ruelle left off, in that we are primarily interested in problems associated with
periodic orbits. These problems are intimately related to the analytic properties of
certain zeta functions which may be understood with the help of the Ruelle
(Perron-Frobenius) operator. Our point of departure from previous work is,
perhaps, our work on the complex Ruelle operator which enables us (at least) to
demonstrate the extendibility of a zeta functions up to a certain critical line in the
complex plane or even (at best) to obtain Haydn's optimal extension. Crucial to this
understanding is an elucidation of the relationship between the spectra of Ruelle

operators and the poles of zeta functions.
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This volume centres around three theorems which describe, in appropriate
settings, the distribution in “space, time and symmetry” of closed orbits for
hyperbolic systems. Each of these results is derived by methods inspired by

analytic number theory and involves the analysis of a general zeta function.

Temporal Distribution

A zeta function for the closed geodesics of surfaces of constant negative
curvature was first put forward by Selberg in 1956 in his work on the trace formula.
Huber made implicit use of this work when he established in 1961 an asymptotic
formula for the number of closed geodesics and a more general result (for the
variable curvature case) was announced by Margulis in 1969. The result we
present, proved in 1983, establishes a first order asymptotic for closed orbits of
general hyperbolic systems. Our proof, which is entirely analogous to Wiener's
proof of the prime number theorem, relies on analyticity properties of the zeta
function first defined and partially analysed by Ruelle. This zeta function is a
reduced version of the Smale zeta function for flows and is the natural analogue of
the Artin-Mazur zeta function for diffeomorphisms, whereas Smale's was inspired

by Selberg's.

To be specific the main result on temporal distribution is the following: If
@, is a topologically weak-mixing hyperbolic flow then the number of closed orbits
of least period no more than x is asymptotic to eh*/hx (as x - ) where h is the

topological entropy of the flow.
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Spatial Distribution

In 1972 Bowen proved that closed orbits of an Axiom A flow are uniformly
distributed, in the non-wandering set, with respect to a certain canonical measure -
the measure of maximum entropy. This result is reproved here, again with the use
of a Ruelle zeta function, together with a more general 'weighted’ spatial

distribution result.

Symmetrical Distribution

Here we take up the work of Sarnak (in his thesis) and Sunada to obtain an
analogue of the Chebotarev theorem in number theory. The number theoretical
result concerns the distribution of primes according to the way they split in a finite
extension field. Qur result concerns the distribution of closed orbits according to

the way they lift in a Galois extension. Our work generalises the Sarnak-Sunada

theorem from geodesic flows to Axiom A flows.

The early chapters include basic material on: shifts of finite type, Holder
continuous functions, the Ruelle-Perron-Frobenius theorem, the Lanford-Ruelle
variational principle, pressure, equilibrium states, the central limit theorem, periodic
orbits. However, one also finds the less familiar results on the spectral properties of
the complex Ruelle operator and an exposition of the analyticity properties of a very

general zeta function.

Once we have laid this groundwork we are in a position to prove the
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temporal (prime orbit), spatial and symmetrical distribution theorems. The final
chapters relate results which we have proved for suspended flows (over a shift of
finite type) to corresponding ones for hyperbolic flows on manifolds. We also take
up a number of miscellaneous themes among which are an optimal meromorphic
extension result for the zeta function (due to Haydn), the description of the Sinai-
Ruelle-Bowen measure (the ‘physical’ measure) and a generalisation (due to Adachi
and Sunada) of Chapter 8 to Z4 Galois extensions and its significance for

homology.

For the convenience of the reader we conclude with five appendices. The
first presents a proof of Ikehara-Wiener Tauberian theorem which enables one to
infer asymptotic results from properties of the zeta function. The second concerns a
result on unitary cocycles needed for the chapter on Galois extensions. The third is
an account of Bowen's theory of Markov partitions including the Bowen-Manning
counting lemma and the related correspondence between the zeta function of an
Axiom A flow and the zeta functions of associated suspension flows. Appendix IV
presents material on geodesic flows and the coding of geodesics and the final
appendix gives a brief account of the perturbation theory of linear operators reeded
for our analysis of Ruelle operators.

Our main aim is to present a reasonably unified account, between one cover,
of some of our joint and separate work since 1983 and, of course, to place it in its
proper context. Each of us has presented significant portions of this work to
graduate classes at the University of Warwick and, in the case of the first named
author, at the University of Maryland whereas the second named author presented

related material at the California Institute of Technology. We wish to acknowledge
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our gratitude to the participants in these courses and seminars. Particular thanks are
due to Jawad Al-Khal, Danrun Huang and Marianne James who gave some of the
lectures at Maryland and made extensive corrections to preliminary notes for this
work. At alater stage our notes benefitted from further corrections due to Anthony

Manning, Caroline Series and Richard Sharp for which we extend our gratitude.

David Ruelle very kindly gave us permission to use his rewriting of Haydn's
proof of the main theorem in Chapter 10. Almost all of this chapter (with the
exception of the example) is a verbatim copy of his notes. Our thanks are also due
to the U.K.-Portugal British Council “Treaty of Windsor” for financially supporting

the latter part of our joint work.

Above all we thank Alice Gutkind for her typing and for her patience and
good humour.






CHAPTER 1
SUBSHIFTS OF FINITE TYPE AND FUNCTION SPACES

We begin by introducing some of the basic objects that we shall need to
study. The full shift on k-symbols (k = 2) consists in the totality of all doubly
infinite sequences of k-symbols together with the shift map (usually denoted ©)
which moves each sequence one step to the left. The space of sequences has a
natural product topology, and can be viewed as a topological version of an
independent (Bernoulli) process. If we specify in advance that a finite number of
words (i.e. finite strings of consecutive symbols) shall not be allowed then we
obtain a o-invariant sub-process known as a shift of finite type. It is not difficult
to see that if we interpret certain words as new symbols there is no loss in generality
if we consider prohibited words of length two. (We need only replace words of a

given length by new symbols, cf. [63].)
We shall now be more precise. Let A be a k x k matrix of zeros and ones

(k=>2) where the (i,j)th entry is zero precisely when it is a prohibited word of

length 2. We define

X=X, = {x = (xn)::_w: x, € {1,..kl,n€ Z, A(x, x () = 1} .

If {1,..k} is given the discrete topology then X, is compact and zero-

dimensional with the corresponding Tychonov product topology. The shift
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0 =0, isdefined by o(x) =y, where y =x_, ie.all sequences are shifted one
place to the left. The pair (X,0) is called a shift of finite type (or topological

Markov chain).

We shall always assume that A is irreducible i.e. for each pair (i),
1 <1i,j £k, there exists n 21 such that A"(i,j) > 0, where A" is an n-fold
product of A with itself. Under this condition we define the period d of A to be
the highest common factor of {n: A"(i,i)>0,1<i<k}. When d=1, A is called

aperiodic.

There is a unique partition of {1,..k} into sets S,,..,S; such that
Ad(,j) >0 only if ij belong to the same set Sy and A¢ is aperiodic when
restricted to the index set S, xS, for each £ = 1,...d. Moreover, the indexing
S84 can be arranged so thatif A(i,j)=1 then i€ S, j€ S, where ¢' = i+1

(mod d). These results are fairly standard and a fuller account may be found in [86].

These properties of the matrix A translate back to the associated shift of
finite type. It is easy to deduce from these facts that X = X, can be partitioned
into closed-open sets X = X,U..UX, so that 6(X,) = X, (' = £+1 mod d) and
od| X, corresponds to an aperiodic matrix. This observation frequently allows us to
simplify proofs by replacing the irreducibility hypothesis by the stronger
aperiodicity hypothesis and then deducing a more general result, bearing the above

comments in mind.

10



SUBSHIFTS OF FINITE TYPE

To every (two-sided) shift of finite type we can associate a (one-sided)

shift of finite type (XZ, GZ) :

X" = X = {x = (gt ARy X,p) = 1,020}

+ . .
and 0*x = 6,x=y,y, =X_,,,n20 ie. all sequences are shifted one place to the

left, with the first term being deleted. As before, X* is a compact zero-

dimensional space with the Tychonov product topology.

An elementary, but important, difference is that whereas the (two-sided)
shift ¢ : X - X is a homeomorphism, the (one-sided) shift o : X* - X* is not
invertible (but merely a local homeomorphism with Card(c*)?(x) < k). There is a
natural continuous surjection 7 :X - X* with n(x) =y,y, =x,,n >0 ie. one

deletes the terms x, n < 0. This surjection clearly satisfies the identity no = 6™ .

. _ 00 . 0 1 '
For a point x = (xn)n=_we X we describe (xn)n=_°° as the 'past’, x; as the

present, and (xn)::;o as the future. To simplify our notation as far as possible we

shall write ¢ for both ©, o*. It should always be apparent from the context

whether we are referring to a one-sided or a two-sided shift.

Now that we have described the shifts of finite type we can move on to

11
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consider function spaces for X, X*. For future use it transpires that the most

interesting family of functions to consider are those that are H6lder continuous.

As before, we begin with X. Given 0<0 <1 we define a metricon X by

dg(x,y) = 6N, where N is the largest non-negative integer such that x; = y;, lil<N.

For a continuous function f:X -+ C and n 20 we define var, f =
= sup {if(x) - f(y)| : x; = y;, lil < n}. Itis easy to see that If(x) - f(y) < Cdg(x,y) if
and only if var, f<CO", n=0,1,....

LetFy = Fo(X) = {f: f continuous, var  f <C6" , n = 0,1,..., for some C > 0}

then we see that Fy(X) is the space of Lipschitz functions with respect to the metric

var_f

dg. For f& Fo(X) let Ifl, = sup {f(0)l: x € X} and Ifly = sup { — :n>0}.

Together these define a normon Fy by lifly = Ifl  +Ifly. (Notice that Ifl is merely

the least Lipschitz constant.)

12



SUBSHIFTS OF FINITE TYPE

The situation for X* is very similar. Given 0 <0 <1 we can define a

+
metric d; on X* by dg(x,y) = ON where N is the largest integer such that x; = y,,

0 <i< N. For a continuous function f: X* > € and n >0 we define var f=

var, f

sup {If(x) - f(y)l : x, = y;, 0<i<n}, Ifly=sup { In2 0}, and Ifl =

n

0
sup {f(x)l : x € X*}. Welet

F; = FZ(X“) = {f : f continuous, var, f <C6", n=0,1,..., for some C>0},

and again we define a norm on F; by lflly = Ifl , +Ifly .

+
PROPOSITION 1.1. The spaces (Fg, I lg), (Fy I lg) are Banach spaces.

Furthermore, if f,g € Fo (or Fy then lfgly < Iflglgl, + Il lgly and if f is

nowhere zero then I11/flly <11/ ;Iiffly .

The proof of this proposition is straight forward. (The proof of
completeness is simple since {f € Fy : lifly < C} is || -compact by Ascoli’s

theorem.)

Two functions f, g € Fo(X) are said to be cohomologous (f ~ g) if there
exists a continuous function h such that f = g+ h o 6 - h. Clearly this is an
equivalence relation on Fy(X). A function which is cohomologous to the zero

function is called a coboundary. In fact, in the above definition of ‘cohomologous’

13
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we can always choose h € Fy(X). (Cf.[16].)

PROPOSITION 1.2. If f € Fg(X) then there exist g,h € Fo4(X) such that
f=g+h-hoo and g(x) = gly) whenever x; =y, for all i20 (ie. g

depends only on ‘future’ co-ordinates).

Jy\ o0
1

PROOF. For each 1 <j<k choose an allowable sequence from the 'past’ ( n)n=_ o

such that iJ0 = j. Toeach x € X we can associate ¢(x) = x' € X with

xn,nZO

D=1 .
i,,n<0 and x;=]j.

i0
Thus ¢ replaces the ‘past’ of x by the sequence (i]r)n=_m where j = x, .

Define h(x) = 20 (f(o™x) - f(c™@x)). (This series clearly converges since
If(c"x)- f(c™@x)| < var_ f<Ifll;6”,n>0.) We note that
h(x) - h(ox) = 20 (f(o™x) - f(c"x)) - Zo(f(G“HX) - f(c"9ox))

= f(x) - [f((px) + nz;’o (f(o™1gx) - f(o"cpcx))] .

14



SUBSHIFTS OF FINITE TYPE

This can be rewritten as h(x) - h(ox) = f(x) - g(x), where g is defined by
the expression in square brackets. Evidently g depends only on future
co-ordinates, and all that remains is to show that h, and therefore g, belongs to
Fg2(X). It suffices to show that varyh < KON, N >0, for some constant K> 0 for
then var,y,h < (K/g%) (052N,

Let x,y € X where x; =y, for lil <2N then

lf(c™x) - f(o™y)l, If(c™px)- f(c"y)I<Ifly 62N-", 0 <n<N.

Forall n=0 we have

If(c™x) - f(c™@x)l, If(c™y) - f(c@y)l <Ifl, 6™ .

N 00
H h - h S 2 2N-n 2 n
ence |h(x) - h(y)l < 2lfl ,,2;09 +2ifly = +19
-N-1 N+1 N
0 -1 0 0
_ N2 - —_—
—2Iﬂee ( 01-1 )+2Iﬂ9 1-0 S4lﬂe 1-0°

which shows that h € Fg#(X), completing the proof.

15
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The map W : fp g in the above proposition is a linear and continuous map

+
from Fy to Fgt . Furthermore, g can clearly be identified with an element of Fyt.

When f e Fy already depends on future co-ordinates then W(f) = f. We can

express this as

Fo(X") & Fg(X) 2 Fgh(X").

We have a certain amount of freedom in our choice of 0 <6 < 1. Clearly if
f:X-> C is a-Holder continuous for dg(0 < o < 1) then it is Lipschitz with
respect to dea (i.e. replacing 6 by 6%).

Generally, we observe that if 0 <6 <8’ <1 then Fg(X) 2 Fo(X) (and

similarly for F; , F;, ). This gives us a 'filtration’ of the spaces of all Holder

continuous functions F = lg Fo(X) (or F* = Lg Fo(X*).
0<b<1 0<0<1

Finally, we want to consider a class of functions that lies in all of the F,

0<@<1 (or Fy,0<0< 1). Let
+ .
F ={f:X*>C:f(x)=f(y) if x, =y, for 0<n<m}
for m2>1 ie. F:n consists of locally constant functions depending on the terms
‘cFc.ad UFc | F
XgsrXp_q- Clearly, F,cF,c.. an 2 Fm€ ola< Fo-

16



SUBSHIFTS OF FINITE TYPE

Assume f € F:; , forsome 0 <8< 1, then clearly we can choose f,, € F:n

with If-f_|  <Ifl;.6™,m>0. (In particular, for each admissable word S S

we can choose z€ X with z, = x;,0<i<m-1 and define f(w) = f(z) whenever

w;=X%;,0<i<m-1.)

m
PROPOSITION 1.3. Forany 0<0<0'<1 we have that If-f_|o. <Ifly (—) ,m=0.

0
o
PROOF. We want to show var, (f-f, ) <Ifly 6™(8")k™ for k2 0.
For the case 0 <k <m we have
vary (f-f ) SIf-f, |, <Ifly.6™ < Ifly.6m(6")k-™
since (0)k™2>1.
For the case m <k <+ o we have

vary (f-f ) = var, f< Ifle.Gk < Iﬂe.Gm(B')k““

and the result follows.

m
In particular, we have [f-f,_lly < 2Ifl, (g-) ,m20.

17
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Notes

In a purely mathematical context shifts of finite type were introduced in [61]
(as "intrinsic Markov chains”). The term "subshift of finite type” was used in [95]
whereas the Russian school preferred "topological Markov chain”. However shifts
of finite type are closely related to the one-dimensional lattice gases extensively
studied in statistical mechanics (cf. Ruelle’s book [82]).

Details of the arguments about recoding can be found in the books of Parry-
Tuncel [64] and Denker-Grillenberger-Sigmund [28]. The reduction to the case of
aperiodic matrices is a standard procedure in matrix theory, and a nice account is
given in Seneta’s book [86].

The importance of Holder continuous functions on shift spaces is that they
correspond to Holder (or more narrowly, differentiable) functions arising in the
context of flows on manifolds. This will be explained in Appendix III. The Banach

space of Holder continuous functions is described in the books of Bowen [16] and
Ruelle [82].

Proposition 1.2 is originally due to Sinai [94], but the proof we give is due to
Bowen [16].

Proposition 1.3 is taken from Ruelle’s book [82].

18



CHAPTER 2
THE RUELLE OPERATOR

In the previous chapter we introduced the Banach space of Lipschitz

functions on subshifts of finite type. For X and X't the shift ¢ induces an

operator 6* : Fg- Fg or o* :FZ—) F; . However, in the case of F; we have the

possibility of introducing an important operator which is dual to 6* , in a sense

which can be made precise.

Let fe F; and define the Ruelle operator Lg : F; - F; (or more generally,

Lg: CXh) - Ccxh)) by (Lew)(x) = oyz;,x ef¥) w(y) . Itis easy to see that L is a

bounded linear operator. When f isreal and L¢l = 1 we shall sometimes say that

f or Lt is normalised. Furthermore we have the following:

PROPOSITION 2.1. (Basic inequality) Let f € F, with f = utiv. If L1 = 1

then

ILIflwleSClwlm+9nlw|9, forall we F;,nZO

where C>0 dependsonlyon f and 6.

19
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PROOF. We first show that |Lewlg <Cglwl+6l wlg, for some Cy> 0. Here

we choose d(x,y) < oN (then x; =y; for 0<i<N), and we note that

| Lew)(x) - Lew)(y) | < A(Z) /| efw(ix) - efYw(iy)!
1,Xg) =

< Zl ef(0x) _ ef@Y) || w(ix) |+ ZI ef0Y) 1) w(ix) - w(iy) |

(where ix denotes the sequence with (ix), =i, (ix),,; = X, , n 2 0), and the result

follows easily.

We proceed by induction: If | erlw lg <C Iwl,+6"wl, then

1L Wl = | Lf Lew)lg S C, I Lgwl,, + 07 Lew |y < C,lwl,, + 07(Clw,, + Olwlg]

= (C, +6"Cy) Iwl, + 6™ 1lwl, .

n

n+1 C
Thus we can assume C , =C + 0"C, = (kE'O Gk) Co= (%——) Cy < T(:) and the

C
result is proved if we take C = T(:) .

20



RUELLE OPERATOR

The above inequality is the first of two important ingredients in the

proof of the theorem below. The second is the elementary observation that D, =

{we F; :Iwlg <1} is compact in the uniform topology, as a subset of C(X*).

THEOREM 2.2 (Ruelle-Perron-Frobenius, R.P.F.) Let f € FJ(; be real valued and

suppose A is aperiodic.

(i) There is a simple maximal positive eigenvalue B of Lg : C(X*) » C(X*)

with a corresponding strictly positive eigenfunction h € Fy.

(ii) The remainder of the spectrum of L;: Fy— F, (excluding B>0) is

contained in a disc of radius strictly smaller than P.

(iii) There is a unique probability measure | such that L;u = Bu (ie.

JLvdp = Bfvdy forall ve C(X*)).

@iv) —15 L?v - hf vdu uniformly forall v € C(X*) where h is as above and
B

Jhdp = 1.

21
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PROOF. Let

n

g0
when x; =y,,0<i<n}.

A={geCX":0<g<1 and g(x) < g(y) exp ( o
It is easy to see that A is convex and uniformly closed. When x,y € X* withx; = y;,

0<i<n we have

n

lg0) - )l <lgy)| (exp (25 flg) - 1)

n n

0 0
<Igl, T exp (5 Hlo) g -

. . .. +
This allows us to draw two conclusions. The first is that A Fe . For the

second we observe that A is an equicontinuous family and by the Ascoli’s theorem

it is compact with respect to the uniform norm.

L¢(g+1/m)
Foreach n21 we may define L (g) = ———— for ge A. Clearly
1L (g+1/m)l

IL gl,=1 andfor x,y € X* with x,=y,,0<i<k,

k
Ly(g+1/n)(x) SLg(g+1/n)(y) exp (% )

22
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k
In particular, L_(g)(x) <L, (g)(y) exp (1%9 Ifle) andso L :A>A,n21.

Since A c C(X*) is a convex uniformly compact set we can apply the Schauder-
Tychonov fixed point theoremtoeach L : A-» A,n 21, to see that there exists

h_€ A with Lyh +1/n)=B h_, where B = ILyh, +1/m)l, .

n b

By the compactness of A we can choose a limit point h € A for {hn}:o=1

and by continuity L;h = Bh where B = ILg(h)l, .

To show B is positive we note that

B.h ()= 2, e (h (y)+1/n)2(@nfh_+1/n) ¢
oy =X

and so B (inf h )= (inf h + 1/n) e_lﬂ°° . We conclude that B, > e_lﬂ°° and so

B= e_lﬂ°°.

To show that h is strictly positive we can assume for a contradiction that

h(x) = 0 for some x € X*. Then

Y ™Dh(y) =P h(x)=0,n>1

n
cy=x

where f"(y) = f(y) + f(oy) +--+ f(o“'ly) . Inparticular, h(y) =0 whenever
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o™(y) = x, for some n2>0. Since A is aperiodic the set of all such y is dense in
X*, from which we conclude that h is identically zero. However, we saw above

that B = [L¢hl >0, which gives the required contradiction.

To show that [ is simple we may suppose that L; has a second (real-

valued) continuous eigenfunction g correspondingto B and let t = inf { % =
% , for some y € X*. Then g(y) - th(y) = 0 and g(x) - th(x) 20 forall x € X*.

By repeating the preceding argument we conclude that g - th = 0, i.e. g is a scalar

multiple of h. This shows P is simple, and concludes the proof of part (i).

With h,3 as above we define g=f-loghoo+logh-logf, then
L,= B A(h)* L;A(h) , where A(h) is multiplication by h. Moreover, Lg1 =1 so
that Lg is normalised. Since the spectrum of Lg is the spectrum of L; scaled by
1/B, it suffices to complete the proof under the additional assumption that L; is

normalised. The remaining statements then reduce to:

(i) The spectrum of L: FS—) F; , other than 1, is contained in a disc

with radius strictly less than 1.

.- *
(iii) There is a unique probability measure m such that Lym =m.
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(iv) For each w € C(X%), erlw -)fwdm , uniformly.

The operator L : C(X*)* -» C(X*)* preserves the convex compact (in the
f

weak * sense) subset of functionals corresponding to (o-invariant) probability

measures. In particular, by the Schauder-Tychonov fixed point theorem we can

find such an m with L;m = m. We complete the proof of (iii) by showing

uniqueness and also prove (iv) at the same time.

. . n . . . .
It is simple to see that {wa} is equi-continuous, since for all nk>1 we

have vark(erlw) <| Llf]w |y 0¥ < CO¥ Iwl,, + 8™k Iwly and therefore some convergent

.. . 2
subsequence {Lf w} has a limit w*, say. Since sup w2 sup Lyw 2sup Lyw 2 -

N
we have sup Lf w* =sup w*, N = 1,2,.... Let w*(xy) = supw* = Llflw*(xn) so that

Lol = 2 O wy) = wixg)
Yy =XN

then, since L; is normalised, this is a convex combination and we conclude

w*(y) = w*(x,) when oNy = Xy . Thus w* is a constant.
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Since L;m = m we see that w* = fwdm = lim f(Llf("w) dm . Because F;c C(X")
n-00

is uniformly dense we may assume w € C(X*). As we may repeat this argument

for any subsequence we see that lim L'f'w = fwdm (in the uniform norm). This
n-»oo

completes the proof of parts (ii) and (iii).

To prove (ii) it suffices to show L.|C" has spectral radius strictly less than
f

1 where:

Cc'= {w € F;:fwdm = 0} .
By Proposition 2.1 we have

| er\+kw le <d wa |oo +0n]| LfW |e <dl wa |00 +C9“|W|°° + en+k|w|e

k .
and Lyw converges to zero on the uniformly compact set {w € C':lwllg<1}. So

for large n,k we have some € >0 with |l LIfka ly<e<1 forall we C" with
Iwlly < 1. The spectral radius of L|C" is therefore no larger than €!/™ since it is

N

1/
given by inf {ll LI: I 0 N2 0} . This completes the proof.
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REMARK 1. (Perron-Frobenius theorem for matrices). In the special case where f
depends on only two coordinates, i.e. f(x) = f(xy,x,), and we can introduce a
k x k- matrix M(@i,j) = AGi,j)ef®),1<ij<k, and then B is the maximal positive

eigenvalue guaranteed by the Perron-Frobenius theorem. In this case h(x) = h(x,)

where _Zh(i) A(,j)ef®) = Bh(j), i.e. h(i) is the ith entry in the eigenvector for P.
1

If we define g(i,j) = log h(i) - log h(j) - log B + f(i,j) we see that the matrix

corresponding to Lg is

AGjhGe

N .. (i") -
P(,j) = A(G,j)ed™ = BnG) s

which is column stochastic, i.e. ZA(i,j)eg(i'j) = 1. The measure m on cylinders is
1

given by mlig,i;,....i)] = P(y,iy)...P(,_ i) p(i,), where Pp = p and Zp(i) =1
1

and we use the notation [ig,i;,...i ] = {x € X*:x;=1;,j=0,...n}.

REMARK 2. Notice that for v,w € L2(m) we have Li(v.w o 0) = (Lyv)w so that

L; is a partial inverse to the operator G* : w - w o G (when L; is normalised).

In particular, we have: (i) L;0* = identity; (ii) o*L;=E_(|c"'3") where B*

is the Borel c-algebra on X* and E_ denotes the conditional expectation for

08" © B". One should also note that L, is the L2(X*m) adjointof c*.
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. 0 * . . .
The measure m satisfying Lym = m when L; is normalised is clearly

o-invariant since for v,w € C(X*) we have Liv e 0.w) = vL;w and it follows

that fv oodm = f vdm.

We shall also denote by m the natural extension of m from X* to X. This is
again a o-invariant measure. (If v € C(X*) c C(X) we can define fv o 6%dm =

Jvdm and note that {ve6¥:k20,ve CX*)} isdensein C(X).) Since L.IC"

has spectral radius strictly less than p < 1 (where C c F; ), there is a constant K > 0

such that |l Llflw lg<Kpriwly,n=0,,.. forall we F; with fwdm =0.

By considering translates of F; c C(X) itis simple to show the following:

PROPOSITION 2.3. If v,w € L%(X,m) with [wdm = 0 then [v o 6"wdm >0 as

n-+o (ie. G isstrong mixing with respect to m).

PROOF. We can choose v(k), w(k) , k>0 with lv(k) - vll, , lw(k) - wll, > 0 as

k- + 00, where v(k), w(k) depend only on terms X j,....Xgs-»X} -

We can then write

v o 6™.wdml < [[V(k) o 6™ w(k)dm! + [[Tv(k) o 6™.w(k) - v o 6™.w] dm.

However, [[v(k) o 6™.w(k)dm| = [Tv(k) e 6¥] o 6™ [w(k) o 6¥] dml
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= [Ivao) o o¥IL] [w(k) o 6¥] dml < Kp™ Il w(k) o 5¥ ly Iv(k) o 6¥],,
which converges to zero as n- oo for fixed k. Moreover
|f (k) o 6™.w(k) - v o 6"wldml < [Ivll, liw-w()Il, + lIw()l, lv-v()l, ,
which can be made arbitrarily small.

REMARK 3. A simple modification of this argument also shows that ¢ : X* - X*

is exact i.e. ﬁ 0 o "B" is the trivial o-algebra.

If we assume v,w € Fy then we want to examine the rate of convergence to

Z€ro.

PROPOSITION 2.4. If v,w € Fy and fwdm = 0 then fv o 6.wdm - 0

exponentially fast.

PROCF. If v,we F; c C(X) with fwdm = 0 the proof is direct since

| Liwl, <Kp™lwly and so [[v o o™ wdml <Kp® Iwllg vl .
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More generally we need an approximation argument. Let v,w € F; with fwdm =0

then

k
ILT Wl < Kp™ Il Liw ly SKp™ (iwl,, (1+C) + 8¥lwl)

and if w depends only on the variables x,...,x, then

I} Wl S Kp™ (14+C) Il + 2wl,,) = K'p™wl,, where K’ = KI(1+C)+2].
In this case, with the convention C(X*) < C(X),
Ifv o o™*kwdml < K'pmiwl_Ivl,,

ie. 1Jvoonwookdml < K'ptlwo 6 M, , where wo c& depends on the

variables X_,...,Xg .
N . . n 'aN
By uniform approximation we have | fv o o™.wdml < K'p"lwl_.Ivl
whenever v depends on future coordinates, w depends on past coordinates and

v,w € C(X) with fwdm = 0.

Returning to the general case, assume v,w € Fg(X) with fwdm =0 and

choose v, ,w, depending on coordinates X _y,....Xg,....X, With fwkdm= 0 and
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v-v,| < Ivlg 6%, lw-w, | <Iwlg 8% . (For example, w, can be defined by averaging w
over cylinders [X_y,...Xg...% ], = {z€ X1z =x, -k<i<k} asa conditional
expectation for m.) Then

| fv, onw,dml = v, o 0% o 072w, o7%dml <K 'p™ 2K Iy, | Jw,].,
when n>2k since v, o 6* depends on the future and w, o 6% depends on the

past.
Hence for n = 2k,

|fv o 6™.wdml < If(v-vk) o o™ wdml + vak o o™.(W-w,) dml + vak o o™.w, dml
<Ok IVl Iwl, + 0K Iwlg vyl + K'p2 v | iw, |,
< OK IVl Iwl, + 6% Iwlg IVl + Ivlg 8K1+ K'p2k vl + Ivlg O¥1.0wl,, + Iwlg 6¥]

<OK IVl Iy + K'pn-2% vl Iwl, -

Finally, we can take k = [n/3] then lfvo"wdml < L(p1/3)n IvllgIwlly for
some constant L.> 0 and all n =20 (where we assume without loss of

generality that 6 < p).

Notes

The Ruelle operator first appeared as the 'transfer operator’ in an article by
Ruelle on one-dimensional lattice gases [77], as a generalisation of the ‘transfer
matrix’ - but the related Perron-Frobenius operator is a standard construction.

The basic inequality (Proposition 2.1) is proved in Bowen's book [16].
Inequalities of this type were previously studied by Ionescu-Tulcea-Marinescu [43].
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Theorem 2.2 illustrates the reason for introducing the Ruelle operator in

+ o+
preference to the induced operator 6* : Fe—> Fe , (0*Nx) = f(ox) ,x € X:‘ . This

theorem is due to Ruelle, but we have drawn together proofs of its various parts
from different sources: Part (i) uses the proof in Pollicott’s article [71]; Part (ii) is
taken from Ruelle’s book [82]; Part (iii) is adapted from Bowen's book [16] and
finally Part (iv) is based on Walters' article [100]. Ledrappier introduces the useful
trick of ‘normalising’, which is closely related to Keane's notion of g-measures [49].

The Perron-Frobenius theorem for matrices can be found in Gantmacher's

book [35] and the content of our second remark occurs in an article by Ledrappier
[551.

Proposition 2.4 was proved in Bowen's book [16].
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CHAPTER 3
ENTROPY, GIBBS MEASURES AND PRESSURE

In this chapter we shall introduce some basic notions from ergodic theory

and related ideas originating in statistical mechanics.
Let T be a measure preserving transformation defined on a probability
space (Y,4,p) ie. T'2c 4 and p(T?A) = p(A) for A € 4. If y is a finite

measurable partition and Cc A4 is a sub-c-algebra we define the conditional

information of y given C as

1,010 = - & % logn(@0)

and the conditional entropy of 7y given C as

H,010 =1,010dp = [ - & p(@0)logp(ClOdp

where p(ClO) = Ep(xClC) and we use the convention x log x is zero at x = 0.

The information and entropy of T with respect to 7y are defined,

respectively, as I (T,y) = [,(#IT"0) and h (T.y) = H,({iT'Q)
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00 o]
where C= _\/OT"Y is the smallest G-algebra containing iUOT"\(.
1= =

The entropy of T is defined as hp(T) = sup h(T,y) where the supremum is
Y
taken over all finite measurable partitions Y. A well-known theorem of

Kolmogorov and Sinai asserts hp(T ) = h(T,y) when A is the smallest T invariant

(>
o-algebra containing y (i.e. if T is invertible and 4 = V Ty, or more

1=-00

generally if 4= 'VOT-LY ).
1=

We can also define Ip(x) = Ip(le"ﬂ) , when 4 is the smallest c-algebra

00

containing 'UOT-LY , and this is then independent of 7y. This definition only has
i=

real significance when T is notinvertible. When T is a continuous surjective

map of a compact metric space to itself the topological entropy of T is defined as

sup hp(T) , where the supremum is taken over all T invariant Borel probabilities p
P

We shall now restrict ourselves to (Y,4,p) = (X*,8",u) and T = 6, where
B is the Borel o-algebra for X*. We can let 7y consist of one-cylinders,
ie. y={lilj:i=1,..k} then from the above we have Iu(x) = I(y| o' 8" and

hu(o) = H(yl o™ 38"). In this context we can give a convenient expression for these
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quantities.

For almost all x € X* (with respect to ) we have plx,....x 1>0. We can

define a finite probability distribution on {1,2,...,k} foreach x,n by

il ox] ulilno™ [xy,...xp 1)
Hatt 1o X1 = (TTC b SRS & )]
pli,xy,ex ]

TIPS

= (il 6y v...v @ y)(x)

(where o v...v o, represents the smallest o-algebra containing all a;,i= 1,...,0).
We recall the following:

THEOREM 3.1. (Increasing Martingale Theorem)
With the above notation W [i | 67x] - u(lil| 6"8*)(x) a.e., foreach i=1,..k, so
that plil o] = u(l | 6'8*)(x) is, for almost all x, a well-defined probability

distribution on 1,2,...k .

As a consequence we have

k
L©OX) =- igﬁx[i] (x) log uli | o7x]

hy(0)  =[I, @0
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K
One can also see that for every g € C(X*), zlfg(ixl...)u[i loxldp = f gdu.
1=

To show this it suffices to consider g = xu _. and note that
0-ig
k
-21 Jeix,...) wli| o] dyt
1=

k
=lim X [g(ix;..) pp il o™l dp
no>+oo 1= 1

k ulix,..x ]
. . {1 Xp
= lim ig,lfg(lxl...) Nx—l":] du

T

Having introduced some of the more basic ideas from entropy theory we

want to relate this to the material in the previous section on the Ruelle operator.

A probability measure m on X* is called a Gibbs measure if there exists
g € C(X*) such that

A< mixg ... X | <B

n
C
8 (xXHn!

for n>0 and fixed constants A,B >0 and C € R. Here

g (x) = g(x) + g(ox) +-+ g(O’"'lx),

(We do not necessarily require that m should be c-invariant.)
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+
PROPOSITION 3.2. When f € Fgy is real and normalised we have the following

inequality:

-f(x
Il een< mix,..x le ®

~ omixg.x ]

eﬂ
<o

where L;m =m asin Theorem 2.2.

PROOF. mlX,....X | = f X (z)dm
[x1 X ]

Xy

oy=1 xO...Xn

-, em f(z)-f 1fl, 01
But e 8" <e®T™ < whenever zw e [xgs...ix ) . Thus,

n n
e Iflg®

f(x)
mlx,....x ] € <mlx,,...x Je " < mlx,....x | e

This completes the proof.

COROLLARY 3.2.1. m 1is a Gibbs measure for the constant C =0,
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PROOF. The theorem gives us a sequence of inequalities

mlx,..x ] _ n
oAo® MFo-*al -t _ g0
mlx,..x ]

Jiten-l milx,.x ] _ ‘ n-1
L L e e COML
mlx,..x |

-Ift -f(o™ Il
e °<mlx Je O™ <o

By multiplying together we have:

_gy mlx,..x ] -
e—|ﬂ9/(l 9)S 01 n Se|ﬂe/(l 0) .
n

£ x)
(+)

Thus m is a Gibbs measure.

COROLLARY 3.2.2.

]
iy - ef® | uniformly, and 1_(B"| 6B = - f(x).
mix,..x ]
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PROOF. The first part is clear from the theorem. Let B be the o-algebra on X*

+ + mlxg..x
formed from cyclinders of length n, then I (Bn lo! B, )(x) = - log (m[x " and
Xy

. +, 4 F ~ .. .
by the martingale theorem Im(anlo’gn)—v I (8" lc'B") ae. (m). Combining this

with the first part gives I (8" 678" = - f(x) ..

These results can easily be adjusted to deal with the case where f € Fg and

where we no longer necessarily assume that L. is normalised.

By applying the above theoremto g = f -log h o 6 + log h -log B, where
h,3 are the positive eigenfunction and eigenvalue guaranteed by Theorem 2.2 we

have

mlx...x ] ,

B £ (x)-nlogp B
€
forall x € X*. In particular, m is a Gibbs measure with C = log .

If we assume that f € Fy(X) then we can prove similar results by replacing

f by a function g € FJ(;1 2 © Fg(X) cohomologous to it.

We next want to consider the way in which invariant Gibbs measures are
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distinguished amongst all o©-invariant probability measures. This will lead us
naturally to consider variational principles. To begin this analysis the following

Lemma will prove useful.

LEMMA 33. If p,,...p, and q,...q, are two probability distributions on 1,...k
suchthat p;>0,i=1,..k then

k k
—glqilogqi+ igbqilogpiSO

with equality only when p; = q;,1= 1,..k.

PROOF. The left handside of the above inequality can be rewritten as

3 a2 oe %)

and as the function @(x) = - x log x (with the convention @(0) = 0) is strictly
k
- 93 . .
concave, itis less than or equal to ¢ (2 p; (p— )) = @(1) = 0, with equality only
i=1 i

when q,/p; are all equal i=1,..k. Hence g;=p,; forall i=1,.k

We use the above lemma as an ingredient in the proof of the following proposition,

which gives a preliminary version of the characterisation of m we want.
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PROPOSITION 34. If f€ F; is real with L; normalised and L;m = m, then for

any o-invariant probability measure | we have
h,(0) +ffdp <0
with equality if and only if | = m.

PROOF. Given a o-invariant probability measure | we can define a probability

distribution on 1,...,k by pli|o'x], for almost all x € X*, with respect to .

(

f(i
When we choose |L = m we have mlilo7x] = e *0*1) forall x € X+ .

In view of Lemma 3.3 we have (for almost all x)

k k
- 21 Wl | 7'x] log pli | o71x] + 21 uli | 67'x] f(ix gx,...) <0
1= 1=

with equality a.e. (1) if and only if plilo'x]=¢ (Wxgxy-) .

Integrating with respect to | gives:

k
h,(0) + 2_',1 Juti 1 o] fGixgx,...)dp = h (o) +[fdp <0,
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f(iX()Xl...)

with equality if and only if plilo'x]=e a.e. (1). The latter condition

implies | Qe 01 g(ix x,..)du = fgdu , when ge C(X*) ie. [Logdu = [gdu
1
or L;u = W. But by Theorem 2.2 (iii) we know that m is the unique ©-invariant

probability measure with L;m = m. This completes the proof of the proposition.

We can easily extend the above result to two sided shifts using the
correspondences discussed earlier in Theorem 2.2 and Proposition 1.2.
Furthermore, we can dispense with the normalisation assumption on the associated
Ruelle operator. Thus, by Proposition 1.2 we can find for each f € Fy(x) a
function ge F ol 72(X*) with f = g+uo 6 -u. By Theorem 2.2 we can then write

g=loghoo -logh+logP+k, where

* . . . . 0
L,m=m for L, normalised. By the above proposition for any oc-invariant

probability measure P we have:

h,(0) +/kdu <h, () +[kdm = 0
ie. hyo)+[fdu<h, (0)+[fdm

with equality if and only if g = m. We summarise as follows:

THEOREM 3.5. (Variational Principle) For f € Fg(x) (or Fe(X+))

h,(6) +[fdu <h, (c) +[tdm
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with equality if and only if | = m for a unique G-invariant probability measure

m.

If we denote P(f) = sup {h,(0) +fdu} = h, (0) + [fdm then P(f) = log B,
n

where B is the maximal eigenvalue for L, where f' ~f with f' € Fgl/z .

The quantity P(f) = sup {hu(c) +ffdu} is called the pressure of f (and
n

can be similarly defined for any f e C(X)).

A o-invariant probability measure p satisfying P(f) = hu(c) +ffdu is
called an equilibrium state. The above theorem tells us that for f € Fy there exists

a unique equilibrium state and that the pressure has an equivalent definition

as P(f) = log B.

There is a general theory of pressure and equilibrium states for continuous
functions with respect to a homeomorphism of a compact metric space, due to

Walters [101] and Ruelle [78], which we shall not require.

Next we want to describe some of the basic properties of P : C(X) » R with

P(f) = sup {hu(o') +ffdu} . These are easily seen to follow from the definition:

(i) P:C(X)- R is monotone increasing, i.e. if f,g € C(X),f<g then
P(f) <P(g);
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(i) P:CX)-R isconvex,i.e. for

0<A<1,PAf+(1-N)g) <AP®E) + (1-A)P(g) ;

(iii) If f~ g+c, for some constant c, then P(f) = P(g)+c;

@iv) P:C(X)- R is Lipschitz continuous, i.e. [P(f) - P(g)l <If-gl . For if
If-gl, = c then g-c <f<g+c sothat P(g) - ¢ <P(f) <P(g)+ ¢ by (i) and
(iii) above. Thus [P(f) - P(g) <If-gl, = c.

The following result shows that there is a one-one correspondence between
elements of Fg(X) (modulo coboundaries plus constants) and equilibrium states of

Fg functions.

PROPOSITION 3.6. If f,g€ Fo(X) and f~ g+c, where ¢ is a constant then f
and g have the same equilibrium state. Conversely, if f and g have the same

equilibrium state then f ~ g+c, where c is constant.
PROOF. For the first part we note that the equilibrium state m of f is defined by

h (o) +ffdm = P(f) . Therefore h (o) +fgdm =h_(0) +ffdm -c¢ =P()-c = P(g)

i.e. m is the equilibrium state for g.
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For the second part, let m be the common equilibrium state of f and g.
Since we are only interested in equating f and g up to the addition of a

coboundary and a constant we can assume that L, Lg are normalised (using

Proposition 1.2 and Theorem 2.2). Thus Ll=1, L,1=1 and Lim=m,

L’;m = m. In particular, [Lewdm = [wdm = [L wdm for all we C(X*). If we
let w=u.voo then fv L dm = fv Lgu dm . Thus L;= Lg from which it
follows ef® = fo[xO] (ox) = Lgx{XO] (ox) = e8® je. f=g (when L, L, are

normalised).

The above proposition shows that we may recover f € Fg(X) (up to a
coboundary and a constant) from its equilibrium state. The next result is in a similar
spirit, and essentially says that f € Fg(X) is determined uniquely (up to a
coboundary) by the sum of its values around periodic orbits. This result, due to

Livsic, will be considered again in Chapter 5.

PROPOSITION 3.7. (Livsic [56]) Two functions f,g € Fo(X) satisfy f~ g if and

only if f"(x) = g"(x) whenever o"x = Xx.
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PROOF. It suffices to show that if f"(x) = 0 whenever o"x = x then f is a

00
coboundary. Fix x, € X such that <o-nx0> isdensein X. We want to define
n=0

u € C(X) by u(c™x,) = f(x,) on this dense orbit. If y = 6™x;, and y’ = 6™™x; =
o™y then we can choose a periodic point 6™x = x with x; =y,,i= 0,.,m-1,
provided y and y' are sufficiently close. Assume that d(y,y’) < 6%, say, then we

have

|U(y) - U(y’)| = |f(0'n+m_lx0)+...+f(cnx0)l

= [f™(y) - f™(x)|
m-1
< ZO If(oiy) - (o)l
1=
(where we have used the fact that f™(x) = 0).

Since d(c™y,y) = d(y’,y) <6¥ we see that ¥; = Yism» for -k <i<k. In particular,

x;=y;, for lil<m+k.

Thus If(cly) - f(c'x)| < Ifl g 8¥*™-, for i = 0,....m-1 and hence

m-1 Ifl
! K+ 0 Ak
lu(y) - u(y")l < g,olﬂee 13—199 .

Thus u extendsto a continuous function on X. (In fact, we can see that
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ue Fy.)
If y=0"x, then u(oy) - u(y) = f“*‘(xo) - f(xy) = f(o™x;) = f(y). This identity

extends to all y € X by continuity.

Notes

Some basic ideas and results from ergodic theory can be found in [62],
including a proof of the increasing martingale theorem (Theorem 3.1).

The introduction of Gibbs measures into ergodic theory and dynamical
systems began with the important paper of Sinai [94]. Expositions of this theory
occur in the books of Bowen [16] and Ruelle [82]. Our treatment is probably closer
to that of Bowen, at least in terms of notation.

The variational principle (Theorem 3.5) originated in statistical mechanics.
See, for example, the work of Lanford and Ruelle [53]. Alternatives to our proof
occur in the books of Bowen [16] and Ruelle [82].

Following work of Ruelle [78], Walters produced the most general version of
the variational principle for homeomorphisms of compact metric spaces [101] (and
there is a shortened proof due to Misiurewicz [58]).

Basic properties of pressure, Gibbs measures and equilibrium states can be
found in the books of Bowen [16], Walters [102] and Ruelle [82]. Ruelle’s book also
describes a parallel theory in which functions are replaced by 'interactions’.

Proposition 3.6 was originally proved by Ruelle [82] using a different
approach involving "strict convexity of pressure”.

Livsic's theorem (Proposition 3.7) is taken from [56].
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CHAPTER 4
THE COMPLEX RUELLE OPERATOR

So far we have considered the Ruelle operator L; for f real-valued and
developed it as a tool to study pressure, equilibrium states, etc. In this chapter
we want to consider L; with fe Fy(X*)=Fg(X*,C). We then refer to
L;: Fg(X*) » Fy(X*) as the complex Ruelle operator. We shall assume that © is

aperiodic.
For convenience, we can assume that if f = u+iv then L is normalised,
ie. L,1=1. (Here uyve FO(X+, R) are the real and imaginary parts of f.) We

let m denote the equilibrium state of u (in particular, L:m =m).

In view of the basic inequality (Proposition 2.1), we have

ILgw llg < (C+1) Iwl,, + 07 Iwly < (C+1) lIwllg .

Thus by the spectral radius theorem we see that L : FO(X‘“) - Fy (X*) has spectral

radius at most unity.
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Our main concern will be the possibility that L; has an eigenvalue of
modulus one. To investigate this phenomenon it is convenient to introduce an
operator Vw = e 'w o ¢. This is defined on any of the three spaces L2(m), C(X*)

or Fo(X*), and is an isometry on the first two. The basic relationship between L;

and V is that L;Vw = w, VLw = M, . E_(w|6 8)). M, where M,w = ¢i*w.

[}

PROPOSITION 4.1. Either nO 0 V®LZ%(m) is trivial or it is one-dimensional.

Furthermore, the intersection is one-dimensional if and only if V has a simple

eigenvalue in LZ(m).

(>4}
PROOF. Assume that no 0 VPL2(m) is non-trivial, and let w # O lie in this
intersection. We can write w = Vw, =..=V?w_=V™lw . n=0,1,., sothat

.on . on+l
w=¢eV w ooh=e" w

n+i
n+t © c ¢

. s N+l . .
Hence,wooe™ =e™ w_ oo™! and wooe™/w=w,_ oo™ /w oo™ is
o~®+1) Bt _measurable for each n = 0,1,2,.... (We observe that w o 6.6V /w is

well defined since Iwl is 6™ B" measurable for n> 0. In particular, since G is an

exact endomorphism Iw| must be constant and non-zero.)

Since o is exact we conclude that w o 6.e7IV/w is constant and w o 6.V =

ow for a non-zero function w. If we have a second solution W' o 0.6~V = o'w’
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then w'/w is an eigenfunction for o*. However, ¢ : X* -+ X* is mixing so that
the only eigenfunctions are the constants, i.e. w = cw’ for some constant c. Thus
the intersection is one-dimensional, completing the proof of the first statement. In
the course of this argument we saw that non-triviality (or equivalently, one-
dimensionality) of the intersection implies that V has a simple eigenvalue. This

completes the proof.

o0
PROPOSITION 4.2. V has an L2(m) eigenfunction (or equivalently, nO 0 V™LZ(m)

is one-dimensional) if and only if V has an F; eigenfunction.

PROOF. Let w € L2(m) (Iwl = 1) be an eigenfunction for V then w o c.e™ = aw,

say. As we observed in the proof of the previous proposition w is non-zero so we
. s N n n + .

can write w o o"/w = o."e!¥ . Hence wLu(g/w) = (X.“Lfg forany ge Fe . Since

lal = 1 and L'flg is |l , equicontinuous (by the basic inequality, Proposition 2.1)

M

. n .
we can choose subsequences with o X converging to o* , say, and Leg

converging uniformly to g* € F;.

In view of Theorem 2.2 (iv) we see that L:(Wg) converges to fngm. This

gives the equation
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wfvT/gdm =o*g*.

Since w is assumed to be non-trivial we may choose g with fvflgdm #0

and conclude that w is a scalar multiple of g* a.e. (m). So the eigenfunction of

V may be chosen in Ft).

PROPOSITION 4.3. If V has no eigenfunctions (in L%(m), or equivalently, F-;)

then Llflg converges uniformly to zero for all ge F; .

. T n +
PROOF. Again we can use the equicontinuity of {Lfg},g € Fy, to choose a

n,
Kk
uniformly convergent subsequence L g- g*, g* € F:;.

n
If we L2(m), then fw.Lfkg dm - fwg*dm, ie. JV'*w.gdm - fwg*dm .
Since each V' kw has the same L2(m) norm there is a further subsequence (which

we again denote V' *w) such that V'¥w converges weakly in L2(m). As this

00

weak limit lies in nO VKLZ(m) it must be zero by Proposition 4.1, for we have
n=

assumed V has no eigenfunctions. Thus fwg*dm = 0 for arbitrary w € L2(m)

and so g* = 0. Thus we can conclude that Llf]g - 0 uniformly for ge F; .
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PROPOSITION 4.4. If V has no eigenfunctions (in L?(m) or, equivalently, in FJ(;)

then erl -0 inthe |lllg-operator topology, i.e. L; has spectral radius p(Ly) < 1.

PROOF. Let we D, = {w:lwl, <1} then ILwl_ <Iwl_ and by the previous
1 0 " 0 00

- n . L .
proposition |Lew |, converges to zero uniformly for functions in D, i.e. for all

€>0 thereexists N>0 such that | Llflw l, <€ forall we D, andall n>N.

Moreover, by the basic inequality (Proposition 2.1) applied twice:

N N N
ILf " wly < OLiwle+67 I Lewlg

N

<d Lyw l,, +6™ (Clwl, + 9N|w|9)
<Ce+07(C+0N)

<RC+e<1

(provided €< 1/(2C+1)) forall we Dy, when n is large. Thus ILf" ly <1,
and the proposition is proved.

The final thing we want to do is to relate the eigenvalue condition for V to

one for L. In particular, V has an L2(m) or F; eigenvalue if and only if L; has

an L2(m) or F; eigenvalue of modulus 1.
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. . ' + .
To see this, assume first that Vw = aw where w € Fy (or equivalently

L%(m)) and o is necessarily of modulus one. Thus w o ¢ = oeVw and therefore

L¢w = aw. Conversely, assume that Lyw = @&w (lol = 1) then L Iwl> Iwl a.e. (m),

. . . . * . .
where w € L2(m) . Since integration by m with Lm=m implies L Iwl =Iwl
a.e. we conclude that Iwl is constant a.e. (m). Because L,1 =1 and L (e'w) =
Gw wecan use a convexity argument to deduce that e"®w(y) = @w(x) for all

y with oy = x, foralmostall x. Thus Vw = aw , w € L2(m) . By Proposition

+
4.2 we can assume w € Fe.

This brings us to the main result of this chapter.

THEOREM 4.5. For f = u+iv € Fy we have p(L)<eP® . If L; has an

eigenvalue of modulus €?™ then it is simple and unique and L; = aML M,
where M is a multiplication operator and o € C, lal = 1. Furthermore, the rest
of the spectrum is contained in a disc of radius strictly smaller than e*® . If L;
has no eigenvalues of modulus e*™ then the spectral radius of L; is strictly less

than eP®

PROOF. Using Proposition 1.2 and Theorem 2.2 we can write u=u'+ wo - w + P(u),

where L, is normalised. If we let M represent multiplication by €™ then this

becomes L = "ML M", where g=u'+iv.
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The condition that L; has an eigenvalue of modulus eP® is equivalent to

L, having an eigenvalue of unit modulus. If L w = aw, w € F; ,lol = 1 then by

our previous comments we have Iwl = 1, say, and e = aw o 6/w and therefore

qu = Lu,(ei"q) = awLu,(w“.q) , forany q € F;.

The spectral properties of L, (and hence Ly) follow from those of L, described

in Theorem 2.2 (ii).

The condition that L; has no eigenvalues of modulus eP® is equivalent to
L, having no eigenvalues of unit modulus. The condition p(L;) < eP® comes

from p(Lg) < 1 by Proposition 4.4.

REMARK. In the case where f = f(xy, x,) depended on only two coordinates and
f was real-valued, Theorem 2.2 reduced to the familiar Perron-Frobenius theorem
for matrices. If we assume in the above theorem that f = f(x(, x;) we can reduce
the statement to Weilandt's theorem for the matrix M(i,j) = AG,j) ef®) , 1 <ij<k:
Let N be the positive matrix with N(@i,j)= | M(i,j)l 20 and let A >0 be the
maximal positive eigenvalue for N. The eigenvalues for M all have moduli
strictly less than A unless M has the form M = ¢®UNU", where 0<0 < 2n
and U = diag (eiel,...,eiek) with 0<6,,..,6, <2n . (An account of this result can

be found in Gantmacher [35].)
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In the previous chapter (Theorem 3.5) we interpreted the maximal positive
eigenvalue for L, when f € Fy is real valued, in terms of the pressure P(f). The
last theorem gives us a way of extending the definition to certain complex valued
functions and studying its regularity. The advantage of defining pressure in terms
of Ruelle operators is that we can make use of some standard results from the

perturbation theory of linear operators. The following result is particularly useful.

PROPOSITION 4.6. (Perturbation theorem). Let B(V) denote the Banach algebra
of bounded linear operators on a Banach space V. If L, € B(V) has a simple
isolated eigenvalue o, with corresponding eigenvector v, then for any € >0
there exists & >0 such that if L € B(V) with IL-Lyll<8 then L has a simple

isolated eigenvalue a(L) and corresponding eigenvector v(L) with a(Ly) = o,

v(Ly) = vo and
(@) L a(L), L v(L) are analytic for IL-Lyll <8
(ii) forllL-Lgyll < 3, we have la(L) - oyl < €, and spectrum (L) - {o(L)}

{z:lz-op| > €} .

(For a more detailed discussion of perturbation theory we refer to [8] or [44].

See also Appendix V.)
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. . +
We can extend the definition of pressure to functions f € Fe (for some

0<6<1), with the property that L;: F;-» F; has a simple 'maximum’ eigenvalue
A such that the rest of the spectrum of L is contained in a disc with radius strictly
less than IAl. For such functions f we extend the definition of pressure by P(f) =
log A. (Formally this definition can only be made modulo 2xi since log is multiple

valued, although we shall ask that P(f) be real-valued when f is real-valued.)

Locally f P(f) is well-defined. Furthermore, P(f) = P(g) + ¢ whenever f,g € FJ(;

and f~ g+ c+2niM where M is continuous and integer valued and c constant.

PROPOSITION 4.7. The domain of P (denoted dom (P) € F:)) is open and f b P(f)

is an analytic map from dom (P) into C.

PROOF. We need only prove analyticity. Since the perturbation theorem states that

L o(L) is analytic on the open set where it is defined it suffices to show that the

map fb Lg, F;-y B(F;) is analytic.

Consider the composition of maps, FJ‘; - Fz - B(F;) - B(FE) given by

frelpbMpLoM,
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where M is the multiplication (by ef) operator, and

w (ix) if A (i,xO) =1
Lw)(x) =

0 otherwise .

k
Each of these maps can be seen to be analytic. Finally, we note that L; = 21 L,eM
1=

and conclude that fi» L; is analytic.

We can naturally define an extension of P : Fg - R using the above

extension of P:F;-)IR to P:dom(P)»>C. Let W:Fg- F;m,fH WI{ be the

linear map from Proposition 1.2 for which f = Wf+f o 6 - f' (with f' € F61 2
+ +

and W=1I on Fec Fem).

We define Dom (P) = W dom (P) Fg(X,C), and P: Dom (P) - C, f» P(Wf) .

Since the choice of W in Proposition 1.2 is not unique we want to show that this

extension of P is independent of the specific choice. This requires showing that if

f=g+woo-w with f,geF; and w € Fy then weF;.

If x, =y,,n20 then w(0x) - W(x) = w(Cy) - wW(y)

w(02x) - w(ox) = w(o2y) - w(oy) .
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Thus for all n= 0, w(onx) - w(omy) = w(x) - w(y) . Since d(c"x,c"y)-> 0

we have w(x) = w(y), i.e. we F;. We can also see from the definition that when

f~g+c+2rniM (M integer valued) then P(f) = P(g) + ¢ . We summarise as

follows:

PROPOSITION 4.8. The domain of P (Dom P c Fy) isopenand fm P(f) is an
analytic map from DomP into € suchthat f~ g+ c+ 2niM (M integer
valued) implies that P(f) = P(g) + ¢ (mod 2mi) .

The extended definition of pressure leads quite simply to the following

results.

PROPOSITION 4.9. If f € Dom P then P(Rf) 2 RP(f) with equality if and only if

f is cohomologousto f' with p(Lg) = ePRD .

In the remainder of this chapter we shall be largely concerned with real

functions f,g € F:) with f normalised and with fgdm =0 where m is the

equilibrium state of f. In this situation we shall consider the perturbations of L,
given by Lg . (s small) and we shall need to be more precise about the
corresponding perturbations of the maximum eigenvalue 1 and the associated

eigenfunction 1 for the operator L.

Since 1 is a simple isolated eigenvalue of L, we have a projection valued
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analytic function Q(s), defined for small complex s, such that

Lf+ng(S) = Q(S)Lf.',sg

and hence

Lg, g W(S) = ePEsDw(s) @.1)

where w(s,x) = w(s) = Q(s)1 . Hence eP#8) is a (maximum) simple isolated

eigenvalue for the operator L if s issmall.

f+sg

Differentiating both sides of (4.1) at s = 0 and integrating with respect to

m yields

PROPOSITION 4.10. If f,g € Fg are real and if m is the equilibrium state of f
then

dP(f+

P'(0) = m ) | 0 =fgdm.

. . - . +
PROOF. It suffices to note that there is no loss in generality in assuming that f,g € Fy

and fgdm = 0, and the above computation shows that P'(0) = 0.
A second differentiation at s = 0 yields, after integration,

fg2dm +2 [gw'(0)dm = P"(0)
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and the same steps applied to

n
Lf+sg

W(S) - enP(f+sg)w(s)
leads to
Jem?dm + 2f g".w'(0)dm = nP"(0)

so that a simple application of the ergodic theorem gives

PROPOSITION 4.11. If f,g € Fy are real and if fgdm = 0 where m is the

equilibrium state of f then

P"(0) = lim ~ f(g")2dm .
n-oo N

PROOF. Modify f,g by the addition of coboundaries, for convenience, and apply

the procedure preceding the proposition.

If f,ge Fy arereal and m is the equilibrium state of f we define the

variance of the process {g o o™} withrespectto f (or m) by

PPEr | _ AP (e feam)

2
= P” =
of(g) © dr2 t=0 d2 I"t=0
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= lim %f(g“—nfgdm)zdm .

n- oo

We are now in a position to prove:

PROPOSITION 4.12. Let f,g € Fo then o4(g) 20 with equality if and only if g

is cohomologous to a constant. Hence t - P(f+tg) 1is convex - and strictly

convex ifo%(g) >0.

PROOF. Evidently the last statement follows from the first for if

ﬁ (E+1g) |

2
= h =
) =10 0 then °f+t0g(g) 0

so that g is cohomologous to a constant and then

&P (E+tg)
£ =0,
dr2

forall te R.

It is clear that if g is cohomologous to a constant then c? (g)=0. We

have to prove the converse. We assume fgdm =0.
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Suppose now that o-?(g) = 0. By Herglotz's theorem and exponential

convergence of correlations we may write
Jg o ong dm = [ ¢ AnrQUydA

where r is analytic on the circle K. Thus

0 =lim - f(g"2dm = lim % S 11 e An-112 1AM

n-oo n-o00

2
r(A)dA = r(1)

n

1-A
1-A

. 1
= lim ;l-f

n- oo

by a well known property of the Fejer kernel. Also,

rA) = fgzdm + Zl Ar+ A7) fg o o"gdm

and differentiation at A = 1 gives r'(1) = 0.
Since r(A) is analytic at A = 1 we therefore have, for A - 1 small,

) = A-1)% s

with s(L) analytic at A = 1. In particular
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1/2
- dA <o and LOPST Y'Y

f r(\)

/
Ix-11 -1

This shows that r!/2 (A) is a coboundary with respect to the unitary operator given
by multiplication by A. The cycle generated by r'/2 (L) and this operator are
unitarily equivalent to the cycle generated by g and the operator ¢* induced by
o. Consequently g is an L2(m) coboundary. By Proposition 4.2 we conclude that

g isan Fgy coboundary, which proves the first statement in the proposition.

The central limit theorem states that if f,g € Fg, c?(g) >0 and fgdm =0

where m is the equilibrium state for f then
G,(y) = m {x : g"//n <y} > N(y)

where N is the normal distribution with variance o2 = of(g) ie.
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For a proof based on the Ruelle operator cf. [82]. We shall also provide a proof

(taken from [23]) but with an approximation estimate of the order O (1—) and for

Jn

generic g of order o (-1—) . Related work appears in [50], [52]. (See also [35**]

Jn

and [76*].)

We shall say that g is generic if the equation F(ox) = e 8F(x) (with F

measurable or F€ Fy) has only the trivial solution t=0, F constant. When

fge FG , and f is normalised we have seen in Proposition 4.4 that this condition is

equivalent to the requirement that L has spectral radius less than 1 for all t # 0.

f+itg

THEOREM4.13. Let f,g € Fy and suppose c?(g) >0 and fgdm =0 where m

is the equilibrium state of f. Then

G,(y) = N(y) + O (i-)

Jn

uniformlyin y, andif g is generic then

2\ 2,2
Gn(y)=N(y)+Pj2)(1—yT)ey/2o +o(L).
6yn

)
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PROOF. Since we are not considering asymptotics of a higher order than o (IT)
n

we are entitled to modify f,g by the additional of coboundaries. In other words

there is no loss in generality in assuming that f,g € Fy and that f is normalised.

The proof of the Central Limit Theorem is based on a number of estimates.

First we write

1 = w(s) + sv(s) 4.2)

where w(s) = Q(s)1 and sv(s) = (I-Q(s))1 (since w(0) = 1). As
sv(s) € (I—Q(s))F; we have v(s) € (I—Q(s))F; and therefore -w'(0) =

v(0) € (I-Q(0)) F; . From this we see that fv(O)dm = 0 and conclude that

Jv(s)dm = sy(s), with y(s) analytic. (4.3)

We shall also need the expression

22 -
P(f+sg) = > + P6—(°) s3+5* os) “.4)

where 62 = G?(g) >0 and @(s) is analytic, which follows from the fact that

P)=P0)=0.
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2
Using (4.4) and the elementary inequality | e - (1+ib) | <zl e/ + b? (for

real b and complex z) we get

. 22
IenP(f+ltg/‘/;) _e T 72 (1 - it3P"'(0))| “.5)

6+/n

t4
t4 —lol 6

<P (E1o (7"_[1—) len 4o P"O1’) = 0 (1)

uniformly for Il < € /n if € is chosen small enough. The implied constant then

depends only on €.

From these estimates, and using the fact that

itgn/
X =Je® ﬁdm:fL'f‘mg,ﬁ 1dm
one obtains:

For suitably small € >0 we have

efn

J % 'Xn ) - e—02t2/2(

- i’P")ldt=0(3) 4.6)

6n



W. PARRY, M. POLLICOTT

where the implied constant depends only on €.

We define the distribution function

G,(y) = mix € X : g"(x)//n <y}

. .|
whose Fourier transform is X (t) = feug /J; dm . If G(y) has a continuous

derivative G'(y) whose Fourier transform y(t) satisfies y(0) = 1,y'(0) = 0 and if

G(-) = 0, G(0) = 1 then a well-known inequality (cf. [31]) asserts that

T
|G, (y) - G(y) | < % J % %, (® - ¥(® | dt + 21‘:—15‘ @7

where M is the maximum of G'(y), and T is any positive number.

Applying (4.7), with G(y) = N(y), the normal distribution with variance 62,

2.2 /2

sothat y(t) = e we get

1G,(») - Ny 150 (=) + 2 _o(L)

S/ medn

which proves the central limit theorem.
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Actually (4.6) enables us to prove the C.L.T. with a o (—1—) asymptotic

Jn

when g satisfies the generic condition. For in this case we define

2 2 /952
PO -y“/2
G(y) = Nip)+ 2 (1- L)V

6/n o

which has a derivative G'(y) whose Fourier transform is

(O = e—02t2/2 ( (- 0’ (0))

6yn

and (4.6) shows that

efn
Of S1%,® - Y0 ldt=0(3).

However, we shall see that

ayn
| —:—|X,n(t) ~y(®1dt>0

E¢n

at an exponential rate whenever o > €.
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From this it will follow that

24M

na./;

IG, (y) - G(y)|< O (%) +

for all oo > ¢ which will prove the theorem.

o/n
It remains, then, to prove j 1T I %, () - ¥(t) | dt » O exponentially fast or,
E¢dn
an
equivalently, that J —:— I %,(® |dt—> 0 exponentially fast.
e /n
But the latter integral equals
o o
. dy _ n dy
é[ lfexp (iyg™ dmlT = E" lJ.Lf+iyg 1 dm|7

and since g is generic Lf+iyg has spectral radius less than 1 forallreal y # 0.

So the proof of the theorem is complete.

Notes

The main result of this chapter is Theorem 4.5. This should be viewed as
the complex analogue of the Ruelle operator theorem (Theorem 2.2). This theorem
appeared in an article by Pollicott [71], developing a restricted version which
appeared in the article of Parry-Pollicott [66]. However, the proof we give here
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differs from the original.

The statement and proof of Weilandt's theorem for complex matrices
appears in Gantmacher’s book [35].

A comprehensive account of (analytic) perturbation theory appears in Kato'’s
well-known book [44]. A very nice account, which suffices for our needs, appears
in the notes of Bhatia and Parthasarathy [8]. The application of this theory to the
proof of analyticity of pressure is due to Ruelle [82].

Expressions for the first and second derivatives of pressure can be found in
Ruelle’s book [82] as exercises. (For the special case of locally constant functions
these computations were independently derived (but later) by Parry-Tuncel [64].)

Proposition 4.12 appears in Ruelle’s book [82].

For a brief account of Herglotz's theorem and the spectral density we refer
the reader to the appendix in [62].

The central limit theorem has a very long history: recent contributions in the
context of hyperbolic systems include those by Sinai [91), Ratner [74], [75], Denker-
Phillip [27]. The basic idea of using the Ruelle operator appears in [82] (cf. also the
articles of Keller [50] and Lalley [52].) The account given here follows [23] which is
close to that of J. Rousseau-Egelé [76*] and Guivarc’h and Hardy [35**] - as the
referee pointed out.
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CHAPTER §
PERIODIC POINTS AND ZETA FUNCTIONS

A convenient way of recording the number of periodic points of © is

through the zeta function defined formally by:

{(z) = exp 2 z A (ze €
n=1 1

where v, = FZ 1 = Card (Fix,) and Fix = {x:0"x =x}.
Xn

More generally, we can 'weight' periodic orbits by some function f € Fy

and define

{(zf) = exp 2 Z—n Z ef" (%),
n N Fix,

=1

In view of Proposition 2.2 we can choose g € Fe,}(X“‘) with f ~ g and
observe that {(z,f) = {(z,g) since f"(x) = g"(x) whenever 6"x = x. Thus we may

freely suppose that f is a function depending only on future coordinates.

The following proposition gives information on where {(z,f) is well-
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defined as a complex function.

00 n
PROPOSITION 5.1. The radius of convergence of 9, ZT ; ef'® js PO
n=1 x€Fix,

©0 n
when f is real. In particular, the radius of convergence of z z v, is e™
n=1

I

where h = P(0) is the topological entropy of ©.

PROOF. We shall actually prove a slightly stronger result, namely that:

llogZefn(")eP(f) as n»+00,
n Fix,

For any given € >0 and f € Fy we can choose a function g of finitely many
coordinates with If-gl, <€ . We may assume that g depends only on x,....X;,
otherwise we replace g by go o', for sufficiently large r. Next we can replace

words of length £ by symbols, if necessary, to assume that g is a function of x, x, .

Let A, be the matrix with entries A, (ij) = AG.) &) | Then

FZ egn(x) - xoz;‘,, xeg(xo.xl)es(xl.xz)mes("n-pxo) = Trace AI; = enP(8) + x;+...+):‘k
‘xn ---Xp-1X0

where eP®,L,,...,A, are the eigenvalues of A, and I\ <eP® i=1,.k (if we

assume that A is aperiodic).
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Clearly for such g, % log ; 8 ™5 P(g), as claimed.
Xn

Since e Y, e8"M < Y, "0 < ene Y 8"
Fix, Fix, Fix,

we have - +P(g)<lim L log Z ef"® <Tim L log Z ef'™<e+P(g).
n Fix, n Fix,

Finally, since P is Lipschitz, with Lipschitz constant 1, we see that -2¢ + P(f) <

-+ P(g) and €+ P(g) <2e+P(f). Since €> 0 is arbitrary the result follows.

When f is a function of finitely many coordinates we can always assume

f(x) = f(xq, x;) , after recoding, if necessary. We can then write:

0 n
C(Z’f) = exp 2 Z_ ; efn(X)
n=1 N Fix;

n

00 © n
= exp 2 ZT Trace A'; = exp 2 ZT (cnP(f) + 7‘;’“’“””"1()
n=1 n=1

(as in the proof of the above proposition).

Hence for |zl < e™P® |
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{(z.f) = exp - log [(1-zePD)...(1-z0)]

1
" detI-zAp)

As a special case we see that for |zl <e™,

1

@) = oAy

In each case, the closed form on the right-hand side gives a meromorphic extension

to € of the zeta function.
Before considering the meromorphic extensions of more general zeta

functions it is useful to make some observations that will prove useful later.

PROPOSITION 5.2. Let f € Fy and suppose f"(x) € Za, for some real constant a,

whenever o"x = x. Then f ~f' ‘where {' takes values only in Za.
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+
PROOF. By taking a cohomologous function if necessary, we can assume f € Fg}

(cf. Proposition 1.2). If a >0, say, then by adding a multiple of a we can assume

that f> 0. Next we can multiply by a suitable negative constant so that f <0 and

+
P(f) = 0. A further addition of a coboundary allows us to assume that f € Fgt and

L; is normalised (cf. Theorem 2.2). By Proposition 4.9 it is easy to see that

2mi
p(L 2mi ) = ep( K(HT f)) = 1. Thus by the comments preceding Theorem 4.5 we
f+—°f

2mi

can conclude that w(ox) = w(x)e @ , for some w € F:) with Iwl = 1. With w(x) =

e2™v() where v is real valued and continuous we have av o 6 = av + f + aM,
where M is integer valued. This completes the proof if a # 0. If a = 0 then, for

instance, f"(x) = 0 whenever 6"x = x and we have P(tf) = P(0) forall te€ R. It

follows from Proposition 4.10 that %}t:(m I = ffdm = 0, where m is the

1
equilibrium state for f. Thus we can deduce that P(f) = h (o) +ffdm =h (o) =

P(0) = h, (o), where m, is the measure of maximal entropy. In particular, f and
0 have precisely the same equilibrium state and thus by Proposition 3.6 we deduce

that f ~ 0. This concludes the proof. (See also Proposition 3.7.)

Our approach to the meromorphic extension of zeta functions makes

essential use of the following simple lemma on the spectra of Ruelle operators.
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LEMMAS53. Let f € F; be in the domain of P and suppose Lw(f) = e?Ow(f),

where w(f) is nowhere vanishing (by reducing the domain of P, if necessary).
Then there exists € >0 and N >0 such that for all ge D (f) = {g: If-glly < €}

and alln 2N thereexist g ,w, , functionsof Xy, X,,....X; such that
lg, gl KO, Iw -wl < K"
for some constant K (depending only on f) where

N
L, Wo=¢ ®w_ .

PROOF. By Theorem 4.5 and the perturbation theorem, we can choose a | iy

neighbourhood of f on which P is well defined and for which L w = eP®w |

where w = w(g) has an analytic dependence on ge F:;. We can also suppose that

w@lz2c>0.

We begin by choosing functions g’ , w' depending only on xg,...,x  such
that Ig-g' |, <lgly 6" and Iw-w' | <Iwlg 6" . Itis easy to see that
|ng—Lg'nw’nl°° S Clen

(for some constant C, depending only on f).

Define w, = e'P(g)Lg. w’_ and then it is simple to show that
n
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. P(g) ,
(Lg,nw n—ng)+e (w-w'))

ng - (ng—Lg,nw )

, IP(g ,
ILg,w n-ngI+e )Ilw—w nloo
-IP(g)l
e (8)

_<. C2en Py

c- Ing—Lg,nwnlm

for some constant C, depending only on f and for n sufficiently large. Writing

Wa' a_+ib . .
L e N with - < b, <m we see that la_ +ib | < C;0" (for some constant

Wn

C; depending only on f).

By construction we have, e’®w_= Lg.nw’ﬂ = Lg,n((w’n/wn) W)

= Lg’n+an+ibn(wn) .

Thus with g, = g’ +a, +ib, we have Ly Wa= eP®w_ and lg-g |, < K6" ,

lw-w_ | <K6" ,K constant and n sufficiently large.
COROLLARY 5.3.1. With the notation of the lemma we have
2 /2
lg- gnll91 ns K" , ||w-wn||91 S K'0" ", where K' depends only on f.

PROOF. We shall only deal with the first inequality, the second being somewhat

similar. By the lemma we know that llg-g_ll, SK6" so that
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n/2

Val‘k(g-gn)‘ < 2lg_gnloca <2K6

)

k/2 en/2

for k = 0,1,2,...,n. Whereas

var, (g-8;)
k/2

var g k/2
< <lgly " for k>n.
0 o</2

So we may choose K'2> 2K and then lgly < K’ for all g in an appropriate
neighbourhood of f. (This is similar in spirit to Proposition 1.3.)
To analyse the domains of zeta functions it is appropriate to examine the

series

00
Z(g) = z % g;‘ 8" |

n=1

for g in a neighbourhood of f € FJ(; , where PR(f) < 0. Our first result is

straightforward.

THEOREM S4. If f € Fy and PR(f) <O then there exists € >0 such that Z(g)

converges absolutely in D (f) .

PROOF. This follows from
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| FZ 8" Iun < (FZ e“gn("))l/n 5P RO < ePRpe < 1 |
Xn Xp

as long as P(Rf) < - € and g€ D(f).

The next result is similar to the above, except that we must deal with the

terms FZ e2"™ in a slightly more delicate way.
Xn

THEOREM 5.5. Let f € Fy then p(Lp) < eP®D (Theorem 4.5). Assume that

P(Rf) = 0.

() If p(Lp <1 then there exists €>0 suchthat Z(g) = 2 % ; g8
1x“

n=1

converges absolutely in D (f) .
(i) If p(Ly) = 1 or equivalently f~ Rf +ia +2niM with M € C (X, 2)),
00 1 n
then there exists € > 0 such that Z,(g) = z - (2 et ™ - e"P(g))
n=1 M ‘Fix

converges absolutely in D (f) .

PROOF. The proof of part (i) is simpler than the proof of part (ii). We shall give the

proof of part (ii) in detail and indicate the modifications needed for the first part.
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We assume that P is defined for f€ Fy(0<8 < 1) and suppose RP(D) =

PR(f) = 0. By perturbation theory there exist M, € >0 such that P is defined for
ge D', where D', = {ge F;% : ||g—flleu2 <2¢} and 1eP® - eP® < n, and the rest
of the spectrum of L, : Fg% - F;% is contained in {z| lzl< 1 - 2n}.

We can also assume that € >0 is chosen in accordance with the lemma, i.e.

. . . _ P _ P
we have functions g ,w_ of xy,x,,...,x; satisfying Lgnwn =e (g)wn, ng = eP@w

and Ilg--gnllel < K'0"2, ||w—wn||e1 < K'6™2 forall n=N, whenever lg-fllg <e.

Let 0 <a <1 (to be specified later) and denote V = [nal. Now consider n > % )

so that in particular V2N and n2N. If ge Dg(f) then

n n
1Y 68" - @ | <| Y o870 - Y, EVO |4 Y, BV _ TPy
Fix, Fixy Fixy Fixy

(observing that P(g) = P(gy)) .

n

L/ v

Moreover, ;I g8 _ 5V < ; nK'gY e HnK'®” o4 that
Xy B
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n
1/
T 2ol (e8"0 - &) 1< ou PO - prec< o
Xn

providing € > 0 is sufficiently small depending on .

On the other hand consider the finite dimensional operator L, which is the

restriction of L, to functions of v+ 1 coordinates. Each eigenvalue of L, is in
v

the spectrum of Lgv : F;% > F;% and since eP® is an eigenvalue of L, and P(g)

is close to P(f) we may suppose that the rest of the spectrum of L, consists of

eigenvalues of modulus less than 1 - 2n.

n

n n
However, FZ eg\'(x) = Trace L'\: , so that FZ cgv(x) - e™P® is the sum of
1X, lxn

the n'th powers of at most k¥ numbers of modulus less than (1 - 2n)n, i.e.

n
_ i/m 1/n
Timl FZ VO _ @ " < Tm(kY (1-2m)7) | = k* (1-21) .
Xn

(Here, k is the dimension of the incidence matrix A.) We now assume that o has

been chosen sufficiently small that k* (1-2n) < 1, and € = &(ct) satisfies 6%ef< 1.
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00
We have therefore shown that Y, 1 (2 8 ) _ enp(g)) converges
n=1 M ‘Fix,

uniformly in Dg(f) . This completes the proof of part (ii).

The proof of part (i) is similar, except that in this case one bounds all
eigenvalues away from the unit circle using the upper semi-continuity of
f Li p(Ly) ie. one chooses € >0 so that for g € D (f) we have p(Lg) <1. A

similar approximation argument is used, except that the term €""(®) does not appear.

The above theorem is the crux of our analysis of the zeta functions

C() = exp Z(f). We present below the result in its final form.

+
THEOREM 5.6. (Extension Theorem) Let f € Fe and assume P(®Rf) = 0, so that

pLy <1.

(@ If p(Lp <1 then there exists € >0 suchthat {(g) = exp Z(g) 1is

nowhere zero and analytic in D (f) .

(b) If p(Ly) =1 then { can be extended to a nowhere zero analytic

function in Ds(f) if L; doesnothave 1 asan eigenvalue, by defining

expZ,(g)

{—e'®

L@ =
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() If p(Lp =1 and L; has 1 as an eigenvalue then { can be extended
to a nowhere zero analytic function in D (f) - {g : P(g) = 0} by defining

expZ,(g)
&) = —= -
1-8®
PROOF. By theorem 5.5 we know that in each case we have defined a non-zero

analytic function. To show that these are actually the meromorphic extensions of

expZ(g) . p
exp Z(g) we need to check that exp Z(g) = g for RP(g) <0, i.e. leP®< 1,
1-¢

In this range each series is uniformly convergent and so this becomes a simple

manipulation.

The above theorem is far more general than we shall need for our
applications. For the analysis of hyperbolic flows and suspended flows we shall

need the following example:

EXAMPLE. Fix f € Fy with £>0 and P(-f) = 0 and define

() =L-sD =exp 3, + 2, e,
n=1 M Fix,

where s € €. We have seen that this is well defined, non-zero and analytic where
P(®R(-sf)) < 0, ie. R(s) > 1. When s, = 1+ity, {_; has a non-zero analytic

extension to a neighbourhood of s, when L_(1 +itg ) does nothave 1 as an
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eigenvalue. When 1 is an eigenvalue we know that { _((s) has a non-zero
analytic extension to D (1+ity) - {s : P(-sf) = 0} , where
D (1+ity) = {s € C: Is-(1+ity)l < €},

for sufficiently small €>0. To show that {_i(s) has a non-zero analytic extension
to D (1+ity) - {1+ity}, for sufficiently small &> 0, it suffices to show that 1 + it
cannot be a point of accumulation of {s: P(-sf) = 0} . If P(-sf) = 0 for infinitely
many s accumulating to 1 + ity then by analyticity P(-sf) = 0 in a
neighbourhood of 1+it,. Hence L_,; W, =w,, for t near t; so

—itf,

. . 2miv . .
w, 00 =e w, with lw|=1. Wecanwrite w =¢ ', with v, continuous and

real-valued, then v, 0G0 = - Et—f; +v,+M,;, M, integer valued. If _ffdu # 0, where

y is the equilibrium state of -f then we arrive at a contradiction since g ffdu =

fM‘du can only take a countable number of values. If ffdu =0 then P(-f)=0=
hp(o) -ffdu =h u(cs) . However, the entropy hu(o) cannot be zero, giving the

required contradiction.
Notes

The zeta-function {(z) for diffeomorphisms is discussed in the work of
Artin-Mazur 7] and Smale [95]. For subshifts of finite type calculations were made
by Bowen and Lanford [9]

The weighted zeta-function {(z,f) is studied in the work of Ruelle [80] and
Bowen [15].

Theorem 5.6 (b) was proved in an article by Pollicott [71], whereas Theorem
5.6 (c) comes from Parry's article [67] (containing also the constructions from
Lemma 5.3 and Corollary 5.3.1).

Theorem 5.6 (a) is implicit in the work of Bowen [15] (cf. also Ruelle's
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article [80]).

Ruelle proved an earlier partial version of Theorem 5.6 (c), where the
dependence on the second variable is restricted to one-dimension, i.e. (z,s) b {(z,sf)
(cf. [80]). This result of Ruelle was extended by Parry-Pollicott in [66], to obtain the
version described in the example at the end of the section. This was a preliminary
version of Theorem 5.6.

Under certain analytic hypotheses Ruelle was able to obtain a meromorphic
extension of {(zf) to the entire complex plane [79]. Similarly, in certain smooth
settings Tangerman has shown that {(zf) extends to the entire plane [99].
However, because of the lack of smoothness of the stable manifold foliations these
results are not immediately applicable to the context of hyperbolic flows except in
exceptional cases. For geodesic flows associated to compact manifolds with
constant negative sectional curvatures the associated zeta-function has a
meromorphic extension to €, using an approach of Selberg [85] (cf. [38]).
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CHAPTER 6
PRIME ORBIT THEOREMS FOR SUSPENDED FLOWS

In this chapter we shall introduce suspended flows and associate to them a
natural zeta function incorporating information about closed orbit periods.
Information on the domains of these zeta functions can be deduced from the more
general analysis in the previous chapter. We shall then explain the role of these zeta

functions in deducing asymptotic formulae for closed orbit periods.

Let o be the shift defined by A and let f € Fg(x) be strictly positive (with
0< 06 <1). We define the suspension space (relative to f) as
X;={(xy):x € X,0<y<f(x)}
with the identification (x, f(x)) = (0%, 0). An alternative definition is X, = XxR/Z

where Z is the group of maps generated by (x,y) b (0%, y-f(x)).

The suspension flow o (relative to f) is defined as the “vertical” flow on
X, given by O, x,y) = (x, y+t), for small t. (This condition makes sense for
0 <y,y+t<f(x) and can be extended using the identifications.) Equivalently, o,
is the flow on XxR/Z induced by maps (x,y) » (x,y+t). Clearly, these maps

commute with the group 2.

If f and f' are cohomologous functions and f' is also strictly positive it is
easy to see that (X, o;) and (X, Op) are topologically conjugate, for it suffices to

define a homeomorphism ¢ of XxR which commutes with the vertical flow and
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conjugates the two maps:
x,y) b (0x, y-f(x)) and (x,y) P (0%, y-f'(x)) .

For example, when f'(x) = f(x) + v(x) - v(ox) it suffices to define @(x,y) =
x,y+v(x)) .

In view of the above observation we can replace f by a function depending
only on future coordinates without making any essential change in the underlying

flow. We shall do this whenever it proves convenient.

If u isa o-invariant probability measure then we define a o ~invariant

probability measure |1, by

f(x)
| (J F(x,y)dy ) i (x)

[pan =%
% [fe0dn )
X

In other words, L is the normalisation of the measure on X, obtained by
taking the direct product of p with Lebesgue measure on R. In fact, it can be
shown that every o;-invariant probability measure on X; can be obtained in this
way from a o-invariant probability measure B on X. Furthermore, it is easy to
see that o is ergodic with respectto W, if and only if © is ergodic with respect

to .
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It has been shown by Abramov [2] (in somewhat more general

circumstances) that

h(o-f,t’ He) = It h(of‘lv Ke)

from which one obtains the natural definition of the entropy of the flow as
h(og, Wg) = h(o;, By and the definition of topological entropy as h = h(cy) =

suph(cy, ly) .
Ke

The work of Abramov also relates the entropy of o relative to L, to the

entropy h(o,n) of ¢ relativeto p by

h(o,}) .

h(og, Ke) = mu—

The notions of pressure and of equilibrium state for ©; are defined in
analogy to the case of the shift ©. In particular, if G € C(X;) we define the

pressure by
P(G) = sup {h(o;, o) +JGdp} .
A og-invariant probability measure L. is an equilibrium state of G if P(G) =

h(c;, Ky +deuf . We have used P to denote the pressure for continuous functions

onboth X and X, the context should make it clear which pressure is intended.
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There is a simple relationship between the two pressures and two

equilibrium states which we state as a proposition.

PROPOSITION 6.1. Let G e C(X) be areal valued function and assume that
f(x)
gx) = (J; G(x,n)dt € Fo(X) . Then P(G) = ¢ where c is the unique real number

suchthat P(g-cf) = 0. Moreover, if m is the unique equilibrium state of g-cf
then m; is the unique equilibrium state of G. In particular, if G =0, (g = 0)
then P(0) = h, the topological entropy of G;, and the measure of maximum

entropy my for ©; isunique, where m is the equilibrium state for -hf.

PROOF. By the variational principle we can see that since f > 0 the map ¢ b P(g-cf)

is strictly monotonic, with lim P(g-cf) = + oo, lim P(g-cf) = - 0o . In
CN-00 c/+o00

particular, there exists a unique constant ¢ with P(g-cf) = 0. Consequently,
0 = h,,(0) +J(g-c)dm 2 h,(0) +J(g-cO)dp
for all -invariant probabilities g with equality only when y = m.

Thus

o hm)+fgdm  hgu+fgdu
~ Jfdm T ) fdu

ie. ¢ =h(o,my)+[Gdm,>h(c, i) +[Gdp, with equality only when p = m (or

92



PRIME ORBIT THEOREMS

K¢ = my) . From the definitions we see that ¢ = P(G) and that equality only holds

when m; = W.

For the special case G = 0 we see that h = h(c;, m;) where m is the

equilibrium state for -P(G)f. This completes the proof of the proposition.

The close relationship between the pressure functions allows one to deduce
some results for P : C(X;) > R from results we showed earlier for P: C(X) > R .
For example, if W, G € C(X() , then P(G+W o O'f‘to-W+a) = P(G)+a , for a

constant.

As remarked earlier we can freely assume that f € F; (by moving to a

. . . +
conjugate flow). We can also interpret ©; as a semi-flow on the space X; =

{xy):0<y<f(x),x€ X*} with the usual identifications (x, f(x)) = (ox, 0) and

for t>0, of‘l(x,y) = (x,y+t) , 0 <y, y+t < f(x).
Let m be the equilibrium state for any u € F; and let m; be the usual
Lebesgue extension to X? , where we assume that f € FJ(;.

PROPOSITION 6.2. The following are equivalent:

(i) o; has an eigenfrequency a corresponding to an Lz(mf) function
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(i) o has an eigenfrequency a corresponding to a continuous function

(iid) w(ox) = ef®w(x), forsome we L%(m)
@iv) w(ox) = e ®w(x), forsome w € F;
) L, = e’ ®w , forsome w € L2(m), or F; .

Furthermore, if any of these conditions hold then a is isolated.

PROOF. We already know from Chapter 4 that (iii), (iv), and (v) are equivalent.
Suppose (i) holds, and that Wog, (x,y) = €®*W(x,y) ae. (mg) for

W € L%(m,) . In particular, W(x,y+(x)) = eif®W(x,y) where 0 <y <g, for some

sufficiently small €>0, a.e. (m;) and so by Fubini's theorem there exists y € [0,€]

so that

W(ox,y) = ef®OW(x,y) a.e. (m).

This shows (iii) to be true.

. + .
Assuming (iv) then we have w(ox) = e®w(x) , w € Fy. We can define

W(x,y) = w(x)e®Y and then

W(x,f(X)) = w(x)eiaf(") = w(ox) = W(ox,0) .
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We conclude that W(x,y) is well-defined and continuous on X From the
construction we have Wof‘[(x,y) = elW(x,y) . Thus (ii) is valid.
To see that any such a (occurring in the statement of the theorem) must be

isolated we proceed as follows. Let A be the least period of any closed orbit of o.

. 2
Thus om(x) = X for some x and w(x) = el w(x) . In particular, a € (—73) Z,

2
and we observe that the eigenfrequencies form a discrete subgroup of ddd 2.

A

The flow o is said to be weak-mixing if condition (i) (and therefore the other
conditions) implies that a = O and the only L? eigenfunctions are the constant
functions. (Conversely, ©; is not weak-mixing if condition (i) is valid with a

non-zero.)

We return to our consideration of zeta functions, and consider the

implications of ¢, being weak-mixing or not. From our comments at the end of

the previous chapter we know that if f € F; with f> 0, P(-f) = 0 then C_f(s) is

nowhere zero analytic extension to R(s) = 1 Furthermore, C_f(s) has a nowhere

zero analytic extension to R(s) = 1 except for those s, = 1+it; where wo = e itofw

has a solution w € FJ‘; , w # 0. By Proposition 6.2 above the weak-mixing

assumption implies that this equality only holds when t; = 0. Thus when o; is
weak-mixing then C_f(s) has a non-zero analytic extension to R(s) = 1, except for

s=1.
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Next we show that s = 1 is a simple pole for { ((s). We know that

{_(s)(1-eP5D) is non-zero and analytic in a neighbourhood of s = 1 so we need

only observe that
(o FEsD RAG Y
lim ————— = lim
s»1  s-1 s-0 §
dP (-(1+s))
=- E I s=0
= -ftdm £ 0

where m is the equilibrium state for -f.

Summarising we have:

THEOREM 6.3. If o; is weak-mixing with f € Fy, P(-f) = 0 then {_(s) has a

non-zero analytic extension to R(s) 2 1, except for a simple pole at s = 1.

COROLLARY 6.3.1. If o; is weak-mixing, f€ Fy, P(-f) =0 then
C'(s)/€(s) = % + o(s) where os) is analytic for R(s)>1 .
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We can formulate a more general version of Theorem 6.3. Assume f, g, k €

Fg, where £>0 and ¢ >0 is the unique real number satisfying P(g-cf) = 0. Of
£(x) £(x)

particular interest will be the special case g(x) = (')[ G(x,y)dy, k(x) = 6[ K(x,y)dy

and ¢ = P(G).

THEOREM 64. If Of is weak-mixing then

00
£(s,2) = exp 2 1 Z exp (g"-csf"+zk™)
n=1 N x€Fix;

is a nowhere zero analytic function for R(s) > 1,z in a neighbourhood of 0
(depending on s), with a nowhere zero analytic extension to R(s) = 1 (s # 1),

for sufficiently small 1zl (dependingon s).

Furthermore, {(s,z) (1-eP®-Z) has a nowhere zero analytic extension

to s = 1,z sufficiently small (depending on s).

PROOF. This is essentially a corollary of Theorem 5.6. We need only check that
s = 1+it), t, # 0 does not occur as a singularity, for |zl sufficiently small. If this
were the case then Lg_(1 Hit gt would have 1 = eP(®&<D a5 an eigenvalue. But, as
explained in Chapter 4, this would correspond to ¢ having an eigenfrequency -tc
(by Proposition 6.2). Since we are assuming ©; to be weak mixing we conclude

that t; = 0. For s =1 we have, also by Theorem 5.6, {(s,z)(1-eP®-csf7) g
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nowhere zero and analytic in an (s,z) neighbourhood of (1,0).

COROLLARY 64.1. If {, denotes the derivative in the z coordinate then

£y(s.0) _Jxdm 1 ©
(.0 ~ o fdm -9
S Kdm,
= m + a(S)

where o(s) is an analytic function in R(s) 2 1, and m, m, are the equilibrium

states of g-cf, G respectively (and c = P(G)).
PROOF. Taking the logarithmic derivative (with respectto z) of {(s,z) gives

OP (g-csf+zk) | .0
560 3z

33. log {(s,2) | +01(s)

z=0= C(S»O) - (C-KS-CSO_ 1)
for s closeto 1. Since
. . 0 P(g-csf+zk)
@ lim > |,o=Jkdm,
s»10Z

where m is the equilibrium state of g-cf, and
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-P(g-csf) -P(g-cfs)
T - -1 _de _ -0P(g-cfs) _
(i) :g%——sjr——g lga1 = 3s |s=1—fcfdm
8,60 [kdm /of fdm ) Kdm,
we see that 0 = — +a(s) = oD + a(s)

where o is analytic in R(s) 2 1. This completes the proof.

For the special case G = K = 0 we retrieve the zeta function of a single

complex variable

C_pe(s) = exp YL Y s

n=1 N xeFix,

where P(-hf) = 0, i.e. h = P(0), the topological entropy of the flow ;. We

proceed to show that this zeta function can be expressed in other ways.

It is easy to see that there is a one-one correspondence between closed orbits
{x,0x,...,0"!x} for 6:X > X and closed orbits T of the flow o;. Let A = A(T)
denote the least period of the closed orbit T, i.e. om(x,O) = (x,0), and it is the
least such A >0. Then clearly A(t) = f(x) + f(6x)+-+f(6"1x) = f*(x) , where n
is the least positive integer such that o"x = x.

We can give an alternative expression for the zeta function as follows:
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C-hf(s) = exp 2:, l 2 e—hf"(x)s

n=1n Fix,

= exp - 2 log (1-¢™hA(ms)
T

= [Ta-emmmy?
T

(These manipulations can be performed for R(s) >1 where C_hf(s) converges.)

This final form is close to the classical definition of a zeta function, and

provides the motivation for the terminology.

Before proceeding to prove the distribution result for closed orbits of the
flow o itis instructive to consider the analogous, and simpler, problem for the

shift 0: X > X.

As we observed in Chapter 5 we can express the zeta function for ¢ in the

1

simple closed form § ,(z) = det (I-zA)

We can gain insight into the distribution

of closed G-orbit periods from the meromorphic domain of {,(z) .
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Following the derivation above we can express {, in the form

(@ = [ 1-220)",

where A(t) is the least period of a closed orbit t for ¢. Consequently,

o AT)n
CA(@) = exp PIP I , for l2<1/B
T

n=1 n

where h = log B is the topological entropy of ¢ and B is the maximal eigenvalue

for A.

Since det (I-zA) = (1-Bz) H (1-A,2), where the other eigenvalues of A
i

satisfy [\ | < B for an aperiodic matrix, we see that { ,(z) (1-Bz) is non-zero and

analytic in {z: |zl < e%/B}, for some €> 0.

Thus {',(@)/0,2) = 2 M@0 = TB_Bz o)

where o(z) is analytic in {z|lzl < e/pB}.

For notational simplicity we denote by T’ a multiple closed orbit t™(n = 1).
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(By a multiple closed orbit t" we mean a closed orbit T of least period A(T)
counted multiply as a closed orbit of period nA(t).) We write A(t') = A(t) and
A(T) = nA(T).

We therefore see that,

@ 1 1 -
A _ "o AT = n
CA(Z) == TZA(T )z 5 n§=1ﬁ“z +o(z) .
Hence,

f‘, ( P A@)-B) = 0@

n=1

In particular, the radius of convergence of this series is at least e¥/f . For a

possibly smaller €>0, we deduce that

. A(‘t’)—B")—»O as n- o0,

For x> 1 we define

@ -

v =, &A@ = 2 ( e

o B A -B")+B
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Clearly,

x+1
B -B
y(x)- E'_f

X
<P

T ex
€

) 6.1)

for some constant C >0, by rearranging the above expressions.

Next we introduce w'(x) = Z 1, which is simply the number of closed
AT)<x

orbits whose period is less than or equal to x and we proceed to relate m'(x) and

y(s):

X on .
(a) Y(x)= mf):s( A(T) [m] Sxm(x);
(b) If x=vy with y>1 then,

T'(x)= ' (y) + 2 1

y<A(T) £ x

, A7)
=m(y)+ —
A(g' x ¥

iy + YO
T(y)+ y
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so that X2 < 1y (Y)+ V&) .

X Yy X
B B B
We want to show that %)yl) - 0 whenever y' > 1, from which (together with
B
X)) v.B

(6.1)) it will follow that lim <
X+00 BX B-1

when y>7y' > 1, for then we shall have (again by (6.1))

m Xy y T\, vim YO vB
v SY}L“IW(BW—W)(BW Jsroy B

Furthermore (6.1) and a) imply

(6.3)

and since Y>1 can be chosen arbitrarily close to one the two inequalities (6.2) and

(6.3) will complete the proof of the following theorem.

X

B B

THEOREM 6.5. T'(X) ~ —— X as x- o,

B-1
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The step required to complete the proof is the following:

LEMMA 66. If Y>1 then E—%-)ao as y-»oo.

B

PROOF. We know that {,(z) converges for 12 < 1/B so

cut/8 = 11 - —)"*

YA(T
B

1
2 AT)y (1 * BYMT))

2(1 +—1-)"'(Y)

Yy
B
514+ X¥W, TQ)
Yy
p”  p”
Thus ivy):) is bounded for every y > 1, and so we deduce lt%) - 0foreveryy>1.
B B

Having dealt with the closed orbits for © we return to the analogous

problem for the closed orbits of o .
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We shall assume that f> 0 and that ¢; is weak-mixing. We define for
each closed orbit T of o; the norm of T tobe N(7) = eM® where h = P(0) is

the topological entropy of ;.

00

Since §(s) = {_y(s) = exp 2, 2 % N()~=n

we can take the logarithmic derivative to get

[Nk

£'(s) —sn
o ; log N(t).N(T)

1

=
([

-1
=ﬁ+a(5)

where o is analyticin R(s)2>1.

. 3 Y logx | .
Defining S(x) = log N(7) = n log N(t) (where n = ToaNco) | 1€ the
N@®) <x N()<x og

largest integer such that N(t)" < x) we see that

00

%((_SS)L -i[x‘st(x)=-——1-+0ﬁ(S)-

s-1
We shall need the following Tauberian theorem.
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THEOREM 6.7. (Ikehara- Wiener Tauberian Theorem.) (See Appendix I.)

00

Assume that the Steiltjes integral J x~3 dS(x) is defined and analytic in R(s) > 1
i

with an analytic continuation to R(s) 21 except for a pole at s = 1 with residue
00

1 (e J xSdS(x) = ﬁ -a(s), with a(s) analytic in R(s)=1) then
1 _

S(x) ~x as x>+ o,

By Theorem 6.3 and Corollary 6.3.1 we know that in our case {'(s)/{(s)
has the correct analytic domain and, as a logarithic derivative, the pole at s = 1

must have residue 1. Hence S(x) ~ x by applying the above theorem.

We conclude

log x ]
X~ 2 ——=— | log N(7) <log x.1t(x)
ND)<x [logN(’c)

where n(x) = Z 1. Hence ﬁ_rnmz 1.
N(t)x X

We want to obtain an asymptotic upper bound on m(x). Let y>1 and write

y = x'/T<x. Then
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=1+ 2 1smy)+ 2 28N
y<N(T)<x N(t)Ex logy

1

_ Y
= n(y) + Togx S(x) .
n(x) _ w(y) YS(x)
—_—<
So log x b yY Ylogy+ l

We shall show that ©(y)/yY-> 0 as y - + oo, whenever y> 1 (or equivalently,

n(y)/yY is bounded for each fixed y' > 1). It will then follow that

mlogxl"i_")gy, since. Tm ZOIO8Y _ i, (K logy _

Y Y/ vy
y y Y 'y Ty

and lim SLX)

Xx>+00 X

T(X)

limlog x ~ < 1. This is the desired asymptotic upper bound on w(x) . To

= 1 by the Tauberian theorem. Since y> 1 was arbitrary we have

complete the proof we need to establish the following lemma.
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(y)
y'

LEMMA 6.8. If yY>1 then is bounded for every large y.

PROOF. For y>1 observe that

ten=Ia -Nno* 2 Ha+ o™

Y N 5 T(Y)
2 11 any™=an™ =

n(y)
Y
y

Thus for all y large, is bounded by {(y) . Collecting together the

above estimates gives our main result.

THEOREM 6.9. (Prime Orbit Theorem). If f € Fg is strictly positive and O is

weak-mixing then m(x)~ as x o oo, where 7(x) =

log x N(t)<x

hx
Equivalently, #{t:A(t) <x}~ ;—x .
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The asymptotic formula 7(x) ~ gives some additional information on

log x
the distribution of A(t) in remote intervals. Specifically, we can use Stieltjes

integration with respect to n(x) to get

X

N elahA(™) - j yi2dn(y) , and after some easy manipulations one obtains
)X 1

ia

z eiahA(®)

N@<x (1+ia) m(x) -

Hence

x<AMT)<Xx+1 1+ia

hx h(1+ia) 1
eithh(D) o giax & [& 71
hx

and

hx

1~ (eh-1).
x<MT)<x+1 hx

Thus
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iahA(t)
< iahx = h(1+ia)
X<MT)Sx+1 € (e -

1)

~

1 (eh- 1X1+a)

x<MT)<x+1

If we choose ah = 2k ,k € Z then we get

2mikA(T)
€

x<MD<x+ _o2mikx D
h+2nik

1
X<MT)S<x+1

hy
translated

and the latter is the Fourier transform of the probability density

(e -1

through an angle 2mx .

In particular, if we let x—-+o00 (through Z) then we see that

hy
{A(1) : x <A(T) <x + 1} is distributed as the probability density

-1

Notes

The suspended flow construction is classical in ergodic theory. Suspended
flows over subshifts of finite type occur throughout the symbolic dynamics of
Bowen [15] and Ratner [73].

111



W. PARRY, M. POLLICOTT

Abramov’s work is contained in two articles published in 1961 [1], [2].
Proposition 6.1 occurs in the article of Bowen and Ruelle [17].

The equivalence of (i) and (ii) in Proposition 6.2 was shown by Bowen in
[15], by a somewhat different method.

Theorem 6.3, and Corollary 6.3.1, occur in the article of Parry and Pollicott
[66]. The first part of Theorem 6.4 occurs in an article of Pollicott [71], whereas the
second part occurs in an article of Parry [67] (as does Corollary 6.4.1).

The asymptotic analysis of y(x) and ='(x) are taken from the article of
Parry [65], dealing with locally constant suspended flows - but the method is
standard in number theory.

Theorem 6.9 and the preceding lemmas are taken from the article of Parry
and Pollicott. The proof is modelled on the classical proof of the prime number
theorem, for which good references are [30), [54]. The Ikehara-Wiener theorem is
proved in [30], [103], for example - and a proof is presented in Appendix I, for the
convenience of the reader.
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CHAPTER 7
EQUIDISTRIBUTION THEOREMS FOR SUSPENDED FLOWS
In the previous chapter we showed that there exists a very simple asymptotic
formula for the number of closed orbits of a weak mixing suspended flow. Here we
show that these closed orbits exhibit a regularity in a spatial sense. In particular, we
show them to be equidistributed relative to the measure of maximal entropy, in a
very natural way. We shall also prove weighted versions of these results

corresponding to more general equilibrium states.

We continue with the assumption that ¢ is weak mixing where f € Fy is

strictly positive. Let G, K € C(X;) be such that

f(x) f(x)
gx) = (')[ G(x,t)dte Fg  k(x) = 6[ K(x,t)dt € Fg .

In Chapter 6 we introduced the zeta function in two variables

0
{(s,z) = exp 2 l 2 g8 -osf™ 42k
n=1 N Fix,

where ¢ = P(G) >0, and showed in Corollary 6.4.1 that
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{,.0 JKdm,
U0 c(s-1)

+ ou(s)

n(s) =

where o(s) is analyticin R(s) 21 and m; is the equilibrium state of G.
The demonstration that {_;«(s) has an Euler product presentation (in

Chapter 6) can be easily modified to show a similar result for {(s,z). In particular,

if R(s)>1 and |zl is sufficiently small (depending on s) then

C_,(S,Z) = 11—[(1 _ e(XG(T)‘CSMT)"'ZAK(t»)'i

where Ag(T) = I G and Ag(t) = j K denote the integrals around the closed orbit T
T T

relative to Lebesgue measure. Hence,

{(s,z) = exp - 1;2 log (1 - e(’»g(“)-CSM‘CHZXK(t)))-l

00
1 -
= exp 2 2 ; e()vG(T) Csl(‘t)+z),K(1))n .
n=1 T

Logarithmically differentiating with respect to the z coordinate at z=0 we get
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M) = 2, 2 hy(r) e eHOn
n=11

demf

= _c(s—l) + ou(s) .

Our first step is to simplify this expression by showing that

>y A (T) Ag®-csMOm
T

n=2

is analyticin R(s)>1 - €, for some €> 0.

Since ¢ = P(G) we know that P(g-cf) = 0 by Proposition 6.1. Itis easy to
see that g-cf ~ -g’ where g’ is a strictly positive function, say g’'>3celfl, >0 .
By Proposition 1.2 g-cf is cohomologous to a function of future coordinates and
by the proof of Theorem 2.2 this function is cohomologous to one for which the
corresponding Ruelle operator is normalised which suffices to prove the function is

strictly negative. We can therefore assume that A5(T) - cA(t) < -3ecA(t) <0 .

Furthermore, we can assume for convenience that K >0, and with

R(s) = u> 1-¢& we can estimate,

© 2(Ag(1)-cul(t))

(xG(1)—cul(t))n < €
n§=: 2 Me(®e <lx(® Ag(1)-cul(z)
-€

<C 1;“(( 1) exG(t)—cl(t) - cA(t) (1-2¢) <C A e-3cMDE ch(t) - M) (1-2¢)
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A(T)- cA(T) (14€)
= CAg(m e €

(for some constant C; >0, provided u>1-¢).

Thus
Z 2 AK(T) e(?\G(!)-cu (t)n < C1 z A.K(‘C) exG(‘t)-c (1) (14€)
n= 2 T T
]
<C, 21 S e oG- (e m _ € (4e) <oo
m= T

Therefore we have the following (without necessarily assuming K 2 0).

JKdm,
c(s-1)

PROPOSITION 7.1. 1, (s) = > A () oD _ +ay(s) with o ,(s)
T

analyticin R(s)21.

Again assume (for convenience) that K >0, then defining
S = Y Ag@e'c® we have

cA (D)

e <X

=]

n,(s) = I[ x~5dS(x) .

We can apply the lkehara Wiener Tauberian theorem to the above

proposition and deduce that
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demf
S(x) ~ x. am as X 00, (7.1)

Taking the ratio of this quantity with the same expression with K =1 gives

the following estimates (without necessarily requiring K = 0).

An(T)
Ag(De

cA®T
<x

PROPOSITION 7.2.

@ -»demf, as Xx- o

or equivalently,

A1)
3 A e o

AT
XG(T)

Y M

A(T)=X

—»J’Kdmf , 45 X 00,

.. . . C . Ag(t
This is a weighted uniform distribution result, where the weights e 6t
determine the limiting measure, the equilibrium state of G.

From (7.1) we can also deduce that

CcX
Ag €
l(‘tz)ﬂx XK(T) € T demf
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from which we obtain

)"G(T) ~

CX
Ag(De = (e~ )fKdm

X<A(T)SX+E

and therefore we can again divide by the corresponding quantities for K = 1, to

deduce the following:

An(T)
Ag(De

PROPOSITION 7.3, SMUSx+e

ademf as x- 0,
l'G('C)
A(T)e

X<A(T)<X+E

When G = 0 then m; is the measure of maximal entropy and we have

an unweighted uniform distribution theorem.
PROPOSITION 7.4. If m; is the measure of maximal entropy then

hx

€
X%SXAK(thdemf, as X o

and
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A
x<Mrjsxte ademf , a5 X - 00

A(T)

X<A(T)<X+E
where h = P(0) is the topological entropy of the flow.

We can give a slightly different formulation of these equidistribution results.

Clearly, we can write

A (@

kM Ao 1 AGE)
>— A G,

ADx A(T) © x x(%"s:( k(® e

If we choose any Y > 1 and set y = x/7y then as with the estimates for Theorem

6.9 we have

Ag(D RECK A agm | 1

Moex M(T) =25y A © y y<$ex

Ag(D) exG(T)/ e .

If we choose 1 <Y <7y, then we estimate

A (T)
q CX § K A (1) - y A )
1 = G <yl Z G cyYy
;m X MO A1) © Y 1ym( eC(Y-Y')Y )x(x)Sy)“K(t)e /e

-— CX
+vY llxm -ea n X(;)Sx )\.K(’t)
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= 0+y/Kdm; .

A
( 7»(2); XK(‘E) e G(T)/ eYY is bounded for all y, by estimates on the zeta function.) In
O~

particular, we arrive at the following equidistribution results:

(D)
Y Og@A©R

X<A(T)SX+E

e ademf.
€
X<A(T)SX+E

In the special case G = 0 then m; is the measure of maximal entropy and

Y A D/A®)
X<AMT)SX+E 5 J’K dmf )

1

X<MT)SX+E

Throughout this chapter we have assumed P(G) > 0. However, as we shall
see in Chapter 11, the case P(G) = 0 is important. For this case we write G5 = G + 3
where 8> 0 is constant so that P(Gg) = 6 > 0. Applying Proposition 7.3 to Gg

we obtain
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@
KK(t)exG esut)

X< AT) S x+¢ Kdmf

-)
(1)
N (1:)3)\6 R

X< MT) S X+E

where my is the equilibrium state of G (which, of course, is the equilibrium state
of Gs). We get upper and lower estimates for the above ratio by replacing the

exponent A(T) by x and x + €. For example, the ratio is bounded above by

()]
2 )&K(T)C)\G
X < MT) £ x+€
Ag(D)

AT

X< MT) S x+€

ede .

Since &> 0 is arbitrary we see that Proposition 7.3 holds when P(G) 20 .

Notes

Spatial equidistribution results for closed orbits of suspended flows were
originally due to Bowen [14], [15]. Bowen proved these for hyperbolic flows
(without actual asymptotic estimates) and thus for suspended flows (by using the
embedding result in [11], say). The approach we take is based on [67].
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CHAPTER 8

GALOIS EXTENSIONS AND CHEBOTAREYV TYPE THEOREMS

In Chapter 6 we presented an asymptotic formula for closed orbits of a
suspended flow which has certain similarities with the prime number theorem.
Another classical result from number theory is the Chebotarev theorem; this
theorem gives asymptotic formulae for the way in which primes in a given number
field split in a finite extension field. We shall consider an analogous situation for
hyperbolic flows where instead of field extensions we consider covering or
extension spaces. Our aim is to study the distribution of the lifts of closed orbits in

terms of the associated Galois group.

Following our usual notation, (X,0) will be a subshift of finite type. With
G a compact Lie group we wish to define a G-extension of ©. Since G has a
faithful representation in the group U(d) of unitary d x d matrices (for some d)
we may suppose that G is a closed subgroup of U(d). For a continuous function

o : X -G we define

var, o = sup {lo(x) - a(y)l Ix; = y;,lil<n}

where | | denotes the Euclidean norm of a matrix.

For 0<6<1 let U(d,6) = {a : o is continuous and var, « <K6", for ne N

and some constant K} .
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We suppose o € U(d,0) and define & : X X , where X = X x G, and
6(x,g) = (ox,a(x)g) . We shall call & a (Galois) G-extension of o©. The
transformation 6 commutes with the (free) action of G on X , 8 x,h)p (x,hg);
thus we can identify o = 6/G. We assume, throughout this chapter, that & is
topologically transitive.

Given a suspension flow ©,=o; , f € Fg being strictly positive, we can

define in a similar spirit a (Galois) G-extension of this flow. Specifically, we

define an extension of f to ! )Z - R by }(x,g) = f(x) and let
X, ={xgn e XxR:0<t<T(x,g)l,

where we identify (x,g, %(x,g)) ~ (6(x,g), 0). We define the G-extension flow

locally by 6'f,l(x,g, u) = (x,g, u+t) and extend it using the above identifications.

As in the discrete case G actson X; by g: (x,h,t) - (x,hg,t) and since this
action commutes with &;  we can identify &; /G = o;, . In the special case where

G isfinite 8 : X » X is a subshift of finite type, and &, is a suspension flow.

We write T : )Zf—> X;, where m(x,g,t) = (x,t) . Given a closed orbit T for
Op, of least period A(T) we observe that for p € )Zf with 7(p) = p € T we have

(8% ryP) = P. This follows from the simple identity o¢n = nG;, .

In particular, there exists a unique element g € G such that gp = GfM)(f)) .

If we choose another point in X; which projects to p € T € X then it must be of
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the form hp, for some h € G. Since the action of G commutes with the flow we
have Gy hp = hgp = (hgh)hp . Thus the action of hgh™ takes the lift hp of p

to 6}, l(T)hf) .

Hence to any closed o¢-orbit T in X; we can associate a well-defined
conjugacy class [g] in G, called the Frobenius class of t. We shall denote the

Frobenius class of T by [1].

In this chapter we shall be interested in how closed orbits are distributed
according to their Frobenius classes. This involves some modifications to the
analysis of the previous chapters. Whereas the proof of the prime orbit theorem
uses zeta functions modelled on the Riemann zeta function we shall introduce for

this type of analysis analogues of Artin’s L-functions.

Let R, : G -» U(d) be a finite dimensional unitary representation of the
compact Lie group G, with character % : G-» C (i.e. ¥ = trace Rx)' We define the

L-function of y by

R [1] | Ll n
Lesy) = | Jdet(1- 22— = 1y
(50 = Taet Nms) w34 20

which can be seen to converge for R(s) > 1 by comparison with the zeta function

().
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The L-function only depends on the conjugacy class of Rx which is
determined by the character % . Thus although [t]* only determines an element of
G up to conjugacy it uniquely determines the value X[t]® . Functions on G which
are constant on conjugacy classes, such as characters, are usually called class

functions.

Given two characters ),,X, we note that

n n

= 1 x (T ) +x @)

logL(s, % +Xz) =2, = > -
=i N(@)

= lOg L(S, x1) + log L(S’ X2) .
We therefore have the following:

PROPOSITION 8.1. For characters X, X, wehave
L(Sax1 + Xz ) = L(S’ x1 ) L(57 Xz ) .

Furthermore, L(s, X, ) = {(s) where ) , is the trivial (principal) character
corresponding to the one-dimensional representation g—-» 1 for all g€ G. By
analogy with the zeta function we can use the correspondence between o©-periodic
orbits {x,0x,...,6""!1x} and o -periodic orbits T of least period A(t) = f"(x)

to write:
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L(s.x) = exp 21% 2 X(01, () e 8.1)

where o (x) = oo™ 1x)...a(ox) oux) .

To analyse the domain of (8.1) it is convenient to move to the setting of
one-sided shifts. As we have seen in Proposition 1.2 it is possible to assume,
without loss of generality, that f is a function depending only on future
coordinates. There is a similar result we can apply to the function o : X > G to
show that, without loss of generality, we may assume that o depends only on
future coordinates.

PROPOSITION 8.2. If o € U(d,0) then there exists y € U(d,GJf) such that:

o' = (Yo 0)' oy € U,0h)

depends only on future coordinates (ie. a'(x) = &'(y) if x, =y, for n20).

Hence, for any character 7, and 6"x = x, we have
x(@,(x)) = x(¥(x)™ o (%) Y(x)) = x(ex, (%))
The proof of this proposition (which is modelled on that of Proposition 1.2)

is given in Appendix II.
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In particular, we see that we may replace o by o' in (8.1) and assume f,a
depend only on future coordinates. The benefit of this is that we can introduce a

suitable variant of the Ruelle operator.

Let F+(ci,9) be the space of continuous functions k : X* » €4 for which

var k < Kom, for some K >0, where
var k = sup {k(x) - k(y)l :x;=y,,0<i<n-1}

(Here | | denotes the Euclidean norm on €94.)

The space F*(d,0) becomes a Banach space with respect to the norm:

kil = Ikl,, +kly where
Ik, = sup {lk(x)l : x € X*}, lkly= inf {K : var_ k <K6"}.

For a unitary representation R : G -+ U(d) we define

Lo 00 = X e Ro(y) wy).

As for the case of zeta functions (in Chapter 5) we can construct a meromorphic
extension of L(s,x) by first studying the spectrum of L p . By mimicking the

proofs of Chapter 4 we first get the following extension of Theorem 4.5.

THEOREM 8.1. For s = u+it and R a unitary representation in U(d) we have

p(L ) S ePCuhd),
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Since by Proposition 6.1 we know that P(-hf) = 0 and P(-uhf) <0 for

u>1 we deduce that p(Ls'R) <1 for u=1 and p(Ls'R) <1 for u>1.

As R is unitary we have ; e-shf"®y(q (x)) bounded by d I-Z e-uhf"(x)
lxl'l ‘xn

when s = u+it. Consequently if u>1 then we have in analogy with Theorem 5.4
that L(s,x) converges to a non-zero analytic function. For the case u=1 we have

the following version of Theorem 5.6:

THEOREM 8.2. Assume u =1 and p(L s'R) < 1. Then there exists € >0 such

that L(s,X) is nowhere zero and analytic in D(s) = {z€ C:ls-zl <€} .

It remains to consider the possibility that p(L ) = 1 for u = 1. We can

modify the proof of Theorem 4.5 to get the following result.

THEOREMB3. If u=1, p(L s‘R) =1andR(s) = 1 then LS_R has a (simple)

eigenvalue of modulus one.

Assume that s = 1+it,, then there exists w € F*(d,8) such that
LisigRY = e®w, b € R, by the above theorem. We can assume for simplicity that

R = Rx , where yx is irreducible.

By the usual convexity-type argument (as in Chapter 4) we conclude that
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e Mof R(o)w = eiPwos . 8.2)

To see this we must go through the usual argument of assuming Z e M = 1,
oy=x

by changing f by a coboundary, as in the proof of Theorem 2.2, and then

W = IL g% < WZ,X &) [R(a(y)). wiy)l <,

which can only be satisfied with the validity of (8.2). Define F(x,g) = R(g)“w(x)
so that F(ox,a(x)g) = e Mof®-PF(x,g). By comparing the coordinates of this
equation and using the topological transitivity of & we see that F(x,g) =

R(g)w(x) = 0(x,g)w, for some constant vector w, and continuous function 6.

Hence, by fixing x = x,, we deduce that R is one-dimensional since R is

irreducible. Thus:

e-ihiof y(oyw = eibw o 0, w € Fy. (8.3)
Summarising we have:

PROPOSITION 8.3. If L(s,x) has a pole on R(s) = 1 then Rx is one-

dimensional (i.e. Rx =.
Assuming (8.3) is satisfied we have two possible cases:

Case (a): (e # 1). The identity (8.3) is incompatible with the general criteria of
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zeta functions having poles at s = 1+it, , by Theorem 5.5. In particular, we see

that this case is void.

Case (b): (e =1). As ¢ -ihtof x(@)w = woo we define F: X-C by F(x,g) =

x(g")w(x) to obtain
EG(x,g) = e"hof®) F(x,g) . 8.4)

Finally, if we define H : if» C by H(x,gt) = e Mot F(x,g) then we have HE; =
et .

If we make the additional assumption that G, is topologically weak-mixing (i.e.
HG;, = e®H, has no non-trivial continuous solutions) then this condition is

contradictory, and this second case is also void.

THEOREM 84. If &;, is topologically weak-mixing, then for any non-trivial

irreducible character L(s,X) is nowhere vanishing and analytic in R(s) > 1.

When ¥ is trivial L(s,x) reduces to {(s) and we know {(s) has a simple

pole at s = 1 by Theorem 6.3.
If &;, is not topologically mixing then the situation is slightly different.

We shall postpone a discussion of this case until we have explored the implications

of the above theorem for the distribution of closed orbits.
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Distribution of Frobenius classes. We can use Theorem 8.4 to prove the
following result about the distribution of closed orbits for 6, according to their

Frobenius classes:
THEOREM 8.5. (Chebotarev theorem, weak-mixing case.)

If &; is topologically weak mixing then for each continuous class function

F € C(G,C) we have

N(%Sx F(l) ~ n(x) [F(g)dg (8.5)

where dg denotes the Haar measure on G. (We recall that a class function is

constant on conjugacy classesin G i.e. F(ghg?) = F(h) forallh,ge G.)
PROOF. The method of proof is similar to that of the prime orbit theorem in Chapter
6. It suffices to prove (8.5) for linear combinations of characters since these span

the space of class functions. Without loss of generality we may also assume F > 0.

If x =1 is the trivial character then f[ydg = 1 and

(8.6)
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By Theorem 6.3 we see that this is analytic for ®(s) 21, except for a simple pole at

s = 1.

For x # 1 we have fxdg = 0 and the logarithmic derivative takes the form:

L(s,y) n=171 2@ N .7

N
Assume that F = i;) ajy;, with x, = 1. We see that f Fdg = a;, and from

(8.6) and (8.7) we get:

b a
2, 2 LN pgmy - 04y, (8.8)
n=1 1t N(‘E)m s-1

where y(s) is analytic in the region R(s) = 1.
As in Chapter 6 we may write the lefthand side of (8.8) as ft‘sdnp(t) ,

where Tg(t) = 2]"; log N(t) F((t]"). By applying the Ikehara-Wiener Tauberian
Nt )<t

theorem (Theorem 6.7)

mp(t) ~ at = (JFdg)t . 8.9)
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Following the arguments in Chapter 6 we see that (8.9) implies N%)St F(t])) ~

(Fdg)yn) .

We return now to the situation where G is weak-mixing but &; is not

weak-mixing. Regarding the expression (8.3) (in case (b)) we cannot automatically

discount non-trivial solutions.

In particular, if 6™x = x then X(cta(x)) = €™ | where a = ht, . Since
we can write A(T) = f*(x) this expression is equal to x([t]) = e¥*® | for all closed

orbits T of o;.

Conversely, if x(t]) = €M | for all closed orbits T then we can deduce

w(ox) Y(oUx)) = eiaf®w(x), for some w € Fy, by Proposition 3.7 of Chapter 3.

We shall call a one-dimensional representation % : G » € special if there
exists some real number b such that x([tl) = ¢®*® | for all closed orbits T. The

set of such characters is an abelian group. We write ), for such a character.
The values b correspond to eigenfrequencies for &;, and so the existence

of non-trivial characters x, entails §; being not weak-mixing (with b = ht, in

case (b) above).

134



CHEBOTAREV THEOREMS

Since we assume &; is topologically transitive the map b b ), is well

defined. For otherwise we could find a non-zero character x with y(t]) = 1, or

equivalently w(ox) . x(ou(x)) = w(x) for some w € FJ(; , as explained above. By

defining f(x,g) = x(g)w(x) we havea G-invariant function on X and therefore,

this function must be constant, i.e. ¥ must be trivial, giving a contradiction.

Consider those b € R which give rise to the trivial representation 1: G-» C

(i.e. the kemel of b %, ). Any such b will satisfy e®*® = 1 for all closed orbits

: +
t and as before, we can deduce w(ox) = e Mw(x), for some w € Fy. If we

define F:X;> R by F(xt) = elPw(x) then Fo;, = e®F | ie. b is an

eigenfrequency for o;. In conclusion:

PROPOSITION 8.4. If &; is topologically transitive, a necessary and sufficient
condition for the existence of non-trivial special characters is that &; is not
weak-mixing. There is a homomorphism from the eigenfrequencies of &; to the

special characters, whose kernel consists of the eigenfrequences of ©; .
If &, is not weak-mixing then we would not expect a simple asymptotic

formula like (8.5) to be valid. If y, is a (non-trivial) special character we can

write

_ ibA(7)
N(ET,)SX PR N(XT,EXe .
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ib

By our estimates in Chapter 6 this expression is asymptotic to n(x) .

X
(1+ib)

When &; is not weak-mixing L(s,Xp) = {(s-ib/h) and since {(s) has a
simple pole at s =1 clearly L(s,x,) must have a simple pole at s = 1 + ib/h

which explains the non-uniformity of distribution when &; is not weak mixing.

There is one very simple situation where the assumption that o, is weak-
mixing forces & to be weak-mixing. This is the case where G is a finite group.

In particular, we have the following version of Theorem 8.5.
THEOREM 8.6. (Chebotarev density theorem - finite extension case.)

If G is finite and &; is a topologically transitive G-extension of O

then for each class function F:

N%Sx F(1)) ~ n(x) [F(g)dg .

In particular, for each conjugacy class C of G

#{t:N(1) <x,[1]= C} ~ n(x) %.

(The asymptotic formula for n(x) is given in Chapter 7, and depends on whether

O, Is weak-mixing or not.)

We have deduced Theorem 8.6 from the general case of Theorem 8.5.
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However, it is possible to give a direct proof in keeping with the original
Chebotarev theorem (for finite extensions) in number theory. We shall briefly

indicate the main ideas.

Since G is finite so is the set of irreducible characters. If we define

= Ila-no:

Id=c

then with

Ls.x) = ] det @-Ry(fx) e-0)

we have:

, il 1 L0
Lo/ &(8) = 1 2@ gy » for 8€C.

(By expanding the logarithmic derivatives and using the orthogonality of the

characters.)

When x # 1 the analogue of Theorem 8.4 applies and we have {'.(s)/ Cc(s)

is analytic for R(s) = 1, except for a simple pole at s = 1 with residue %
(coming from the zeta function {(s) = L(s,1) when % = 1). Theorem 8.6 then

follows closely the derivation of the original prime orbit theorem in Chapter 6.
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Notes

The results in this chapter are based on the article of Parry-Pollicott [68].
Earlier results for constant curvature geodesic flows are due to Sunada [98] and
Sarnak [84], and for variable curvature geodesic flows the results were proved by
Adachi-Sunada [3].

The motivation for these extension results is the Chebotarev density theorem
in number theory (cf. Cassels-Frohlich [22]).

The case of extensions by compact Lie groups, which forms the bulk of the
chapter, was dealt with in sections 9 and 10 of the article of Parry-Pollicott [68].

The finite extension case, which we briefly describe at the end of the chapter
as a corollary to the compact case, is analysed in detail in [68].
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CHAPTER 9

APPLICATIONS TO HYPERBOLIC FLOWS

To date we have concentrated on analysing zeta functions and proving
distribution results for closed orbits in the context of suspended flows. In this
chapter we shall show how these ideas and results can be transferred to the "more
natural” setting of hyperbolic flows. These include as special cases Axiom A
flows (as studied by Smale) and Anosov flows (as studied by the Russian school),
and in particular the canonical example in ergodic theory - the geodesic flow on the

unit tangent bundle of a compact manifold with negative sectional curvatures.

The transition from the theory of suspended flows to that of hyperbolic
flows follows standard lines based on ideas of Bowen, Ratner, Ruelle, Sinai and
others. The idea is to introduce Poincaré sections for the flow with an additional
"Markov"” property. This enables the Poincaré map between the sections to be
closely modelled by a subshift of finite type. The return time between the Poincaré
sections then corresponds to a roof function. In this way we can model the
hyperbolic flow by a suspended flow, of the type we have already described. For
the convenience of the reader we have summarised this standard, but somewhat

complicated construction, in Appendix III.

In studying properties of a hyperbolic flow the basic procedure we follow is
to establish the corresponding result for an associated suspended flow, and then to

transfer the result back to the hyperbolic flow. In the preceding chapters we have
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established a number of results on zeta functions and closed orbits for hyperbolic
flows. In this chapter we shall establish the corresponding results for hyperbolic

flows.

We begin by recalling the definition of a hyperbolic flow ¢,: A-> A ona
basic set A:
Let ¢,: M>M bea C! flow onacompact C*® manifold and let A c M

be a ¢@-invariant compact set such that

(i)  There exists a splitting TM = EO®ES®EU such that
(a) there exist constants C,A >0 with DI, De_[ Il < Ce-Mt>0
(b) EO is one-dimensional and tangent to the flow.

(ii) A contains a dense orbit.

(iii) The periodic orbits in A are dense (and A consists of more than a

single closed orbit).

o0
(iv) There exists an open set U D A suchthat A = . N ouU.
= -00

We observe the connection with Smale’s work on Axiom A flows: A C!
flow ¢,: M-> M on a compact manifold satisfies Axiom A if the non-wandering
set Q = {x € M : for each neighbourhood U 3 x, there exists t, 7 +o00 with
(0N nU N U # 0} satisfies (i) and (iii) above. In particular, Smale showed that for an
Axiom A flow € is a finite union of basic sets, hyperbolic closed orbits and

hyperbolic fixed points.
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PROPOSITION 9.1. @,: A > A has a unique measure of maximal entropy which we

denote by m.

(The proof of this result is given in Appendix III.)

We say that the hyperbolic flow of ¢,: A A is (topologically) weak-
mixing if there is no non-trivial solution to F¢, = ¢i2'F, a € R, F € C(A). We
denote the topological entropy of @,: A- A by h(¢) = sup {h (¢y): 1 is a

¢-invariant probability measure}.

We summarise below how a suspended flow (of finite type) associated to a
hyperbolic flow via the Markov sections closely models the original flow. For the
reader’s convenience we have sketched the proofs of these results in Appendix III,

where references can also be found for complete proofs.

LEMMA 9.1. We can associate to a hyperbolic flow ¢,: A > A a suspended flow

O¢,: X¢- Xy and a continuous map n:X¢- A such that

(i) = issurjectiveand Q%= TOg, .

(ii) = is bounded-one, and one-one on a residual set.

(ili) = 1is an isomorphism (with respect to the unique measures of
maximal entropy) and in particular, they have the same topological entropy
h(op) = h(@) = h.

(iv) ¢ is topologically weak-mixing if and only if ©¢ is topologically

weak-mixing.
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At the measurable level o, : X¢- X; is a perfect model for ¢,: A - A,
namely an isomorphic representation and at the topological level @, and G, are as
close to being conjugate as one can reasonably expect. (In general, we cannot
expect T to be a homeomorphism since X; is always one-dimensional, whereas

A need not be.)

We want to present the main results of these notes for hyperbolic flows and

we begin with the results for zeta-functions.

Let T denote a closed @-orbit of least period A(t). There is a denumerable
infinity of closed orbits and we define the zeta-function to be the function of a

complex variable s € € given by the Euler product:

Co(s) = [ (1-e-srm)t.

(We shall show below that this converges to a non-zero analytic function for ®(s) >

h(e).)

Of course, the map 7 does not, in general, give a one-one correspondence
between closed orbits for ¢ and o©; and so an identification of the zeta function
Co(s) and Cof(s) is generally impossible. However, there is a very explicit

relationship of the following form:
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LEMMA 9.2. There exists a finite family of suspended flows oy, (i=1,..,N) with

h(o‘fi) <h(og) = h(g) such that

P
l__[1 SO
C¢(S)=C0f(s) - O.1)
iZp+t o1,

(The proof is outlined in Appendix III.)

By the results of Chapter 6 we see that (g f.(s) is non-zero and analytic for R(s) >
1

h(¢) - € = max {h(ofi)}. (This also proves our claim that C(p(s)‘ is non-zero and
1

analytic for R(s) > h(¢@).) In particular, Lemma 9.2 and Lemma 9.1 (iii), (iv) give

the following analogue of Theorem 6.3.
THEOREM 9.1.

If ¢ is topologically weak-mixing then Cq,(s) has a non-zero analytic

extension to a neighbourhood of R(s) 2 h(¢), except for a simple pole at s = h.

There is a weighted version of the zeta-function, which we define as

follows. Let F: A-» R bea C° function. We define

Co(s.F) = [Tc-e ARD-sAD)y 1
T
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A(T)
where Ag(t) = _[ F(px)dt, for any point x € T.
0

We define the pressure P(F) = sup {h,(¢y) + deu : W is ¢@-invariant

probability measure}.
The natural generalisation of Lemma 9.2 is also true:

LEMMA 9.3. There exists a finite family of suspended flows O, and functions F; =

Fom; (where w;: Xfi - A is as defined in Appendix II) with P(F,) < P(F) and

P
Lo(s.F) = G, (SF e m) St 9.2)
]:[ ch.(s'Fi)
i=P+1 1

This leads to the following extension of theorem 9.1.

THEOREM 9.2. Cq,(s,F) is non-zero and analytic for R(s) 2 P(F) except for a

simple pole at s = P(F).

We turn now to the three distribution results for closed orbits. (For the

suspended flow these are contained in Chapters 6, 7 and 8.) There are two
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alternative methods for establishing these results for hyperbolic flows. The first
approach is to repeat, almost verbatim, the proofs in Chapters 6, 7 and 8 for
suspended flows after replacing the necessary conditions on the zeta-functions for
suspended flows by the corresponding results for the hyperbolic flow in Theorems
9.1 and 9.2. The second approach is to show that counting functions for the
hyperbolic and associated suspended flow are asymptotic. This is true since the

(negligible) difference is due to closed ¢ orbits which pass through the boundaries

of Markov sections.

Our first result is the analogue of Theorems 6.9 and 6.5 for hyperbolic

flows. Let 7'(x) be the number of closed orbits of least period A(T) <x,x >0.

THEOREM 9.3. (Prime orbit theorem for hyperbolic flows.)

(@) If ¢,: A> A isa topologically weak-mixing hyperbolic flow then

ehx
W(t)"’ﬁ .

(b) If ¢,: A> A isnot weak-mixing then

eh ehll]
Ty~ — —.
eh -1 [t]

(where [t denotes the integer part of t).

We consider next the appropriate analogue of the equidistribution theorems.
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In view of the above result and Lemma 9.1 (iii) we have the following version for

hyperbolic flows.
THEOREM 9.4. (Equidistribution theorem for hyperbolic flows.)

Let ¢,: A> A be a hyperbolic flow and let G: A-> R be a Holder

continuous function with equilibrium state m. If F € C(A) then

(1)
2 )»F('t).elcT

AT)st _;J‘de as t->o00; and
Ag(v)
2 At e

ATt
AT  Ag()
—.¢e
AT)

Mt e _,dem, as tH» oo,

e
A(T)<t

We observe that if p is the unique equilibrium state for the suspended flow of and
Gom:X;- R then by Lemma 9.1 (iii) we have [Fdm = [(F o m)dy, which makes

the deduction from Chapter 7 straightforward.

COROLLARY 94.1. Let ¢,: A-> A be a hyperbolic flow with unique measure of

maximal entropy m. If F e C(A) then:
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2 M

Mo<t L, [Fdm, as t-o; and
2 A7)
MT)st
1 7»1:(‘5)

—_— _— Fdm, as t> o0 .
O adL: MO »f ”

Finally, we want to give the Chebotarov density theorem for hyperbolic

flows.

Let G be a compact Lie group and let @, : A > X be a (Galois) G-
extension of the hyperbolic flow ¢,: A+ A with projection ®: A > A. Given a
closed orbit T< A and p € T there exists for a lift p € X (n(P) = p) a unique
element g€ G with gp = §,(;)P € A. We call the conjugacy class [g] in G the
Frobenius class of T, which we denote by [t]. We have the following analogue of

Theorems 8.5 and 8.6.

THEOREM 9.5. (Chebotarov theorem for hyperbolic flows.) Let §,: A > X be a

Galois G-extension of a hyperbolic flow @,: A A.

(@) If § is weak-mixing then for every continuous class function

Fe C(G,C) (i.e. F(hgh") = F(g), forall h € G) we have

1
0 ug’g F(td) "f F(g)dg, as t> .
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(b) If ¢,§ are topologically transitive and G is finite then for every
class function F € C(G,C) we have

1
0) x(g‘st F(x)) » JF(g)dg, as t->o0.

(In part (b) the condition that ¢ is weak-mixing forces both ¢ and the associated
G-extension of the suspended flow &; to be weak-mixing. In part (a) § is weak-

mixing if and only if &; is weak-mixing, cf. [15] for details.)

Applications to geodesic flows: In the three distribution theorems given above we
have dealt with hyperbolic flows. A special case is the geodesic flow ¢,: M-> M
on the unit tangent bundle of a compact manifold V with strictly negative sectional
curvatures. These geodesic flows are always weak-mixing. There is then a one-
one correspondence between the closed orbits and the (directed) closed geodesics.

(The least periods of the orbits being the lengths of the closed orbits.)

Thus ='(x) is the number of closed geodesics on V of least period at most
x, and Theorem 9.3 gives w'(x) ~ ehx/hx. (This result for closed geodesics was

originally proved by Margulis [57].)
Let F: Vo R be acontinuous function. If p: M > V is the natural

projection of the unit tangent bundle onto the manifold, then we can apply Theorem

9.4to Fop todeduce:
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1
@O UY)<x

JFdt [Fd(p*m)
where 7y denotes a (directed) closed geodesic of least period £(Yy), fYFdI denotes
the integral of F around the geodesic 7y with respect to one-dimensional Lebesgue

measure, and p*m is the projection of the measure of maximal entropy.

Finally, let Mk denote the bundle of k-dimensional (oriented) frames over
V. (The special case M! = M is the unit tangent bundle.) We define an extension
¢, : Mk MK of @,: M> M by parallel transport of the frame around the geodesic
associated to the orbit of ¢. The flow § is a G = SO(n-1) extensionof ¢,: M > M ,
where n is the dimension of V. Each closed geodesic <y gives rise to a conjugacy
class [yl in G corresponding to the holonomy group (i.e. the elements of G which
come from parallel translations of a frame around vy). From Theorem 9.5 we see

that whenever ¢ is weak-mixing we have, for any continuous class function

F e C(@G,0):

1
(M) KP<x F(ly) -» [Fdg .

There are geometric criteria on V for the associated frame flow ¢ to be

weak-mixing (cf. [20] for example).
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Application to twisted orbits. Let ¢,: A—> A be a hyperbolic flow on a basic set.

We denote the k-dimensional frames corresponding to E‘; (where k = dim E¥) by

F and write F = A @ B, according to the orientation of the frames. We say that a

closed orbit T is twisted if D@y)Ax = By (and D@y )Bx = Ay) for x € 1.

There is a natural Z,-extension §,: A - A of ¢, defined by the effect of

D¢, on the orientation of EY .

Clearly, @ is topologically weak-mixing if E" is not orientable. Theorem
9.5 (b) then shows that closed orbits are equally distributed between those which are

twisted and those which are not.

Notes

Lemmas 9.1 and 9.2 appear in the work of Bowen [15].

Zeta functions for Axiom A flows were introduced in [95] based on the
Selberg zeta function for geodesic flows. The definition we give follows Ruelle’s
(80] which is a close analogue of the Riemann zeta-function.

Theorem 9.1 (a) appears in [15] and Theorem 9.1 (b) was proved in [66] as a
generalisation of a result in [80].

Theorem 9.2 can be deduced from [67] and [71].

Theorem 9.3 was proved by Parry and Pollicott. Earlier asymptotic results
for geodesic flows were proved in [42] and [57]. Less precise growth rates were
proved in [92] and [15].

Theorem 9.4 was first proved in [14]; the proof we present may be found in
[671.
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Theorem 9.5 is due to Parry and Pollicott [68]. This work was motivated by
the earlier work of Adachi and Sunada [3].

The application to frame flows is described in [68].
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CHAPTER 10
FURTHER EXTENSION RESULTS

We have now completed the derivation of the main theorems concerning the
asymptotic formulae for closed orbits. For their proofs it was sufficient for us to
know the analytic domain of the appropriate zeta-functions in a neighbourhood of
the line R(s) = h. However, with only a little more work one can prove a much
stronger result on the meromorphic domain of zeta-functions (although in general
this will not lead to additional asymptotic results). The original extension (Theorem
5.6) required relatively weak estimates on the spectrum of the Ruelle operator
(Theorem 4.5). Our improved estimates will result from a more detailed analysis of

this spectrum. Using the notation of Chapter 4 we shall consider the Ruelle

+ i+ ) ) +
operator L.: F,- F, corresponding to f = u+ive F,.
p ' g™ Ty P g 0

Let T:B - B be a bounded linear operator on a Banach space B. The
essential spectrum esp (T) of T consists of those A € sp(T) € € for which any

of the following three equivalent statements is valid:

(i) Range (AI-T) isnotclosedin B

(ii) A is alimit point of sp(T)

00
(iii) U1 ker (7LI—T)r is infinite dimensional
r=

153



W. PARRY, M. POLLICOTT

(cf. Browder [21]). In particular, esp(T) does not contain isolated eigenvalues of

finite multiplicity.

The essential spectral radius is defined to be p,(T) = sup {IAl : A € esp(T)}.

There is a useful formula for p,(T) due to Nussbaum [60]:

PROPOSITION 10.1. po(T) = lim IT™’", where ITl, = inf {IT-KI: K : B> B isa
n-» oo

compact operator}.

Our first result deals with the spectrum of L.

. + + + ;
THEOREM 10.2. For f = u+iv € Fy the spectrum of L : Fg- Fy consists of two

distinct parts:
(i) The essential spectrum consisting of the whole disc {z € C : |zl < eP?™}

(ii) Isolated eigenvalues (of finite multiplicity) contained in the annulus

{z€ C:0eP® <zl <eP@},
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PROOF. We can assume L is normalised (i.e. eP®™ = 1). We begin by showing

that p,(Lg) <6. For n > 1 let C denote a cylinder of the form C = {ze X;| z, =X,

0<i<n-1}, where A(x;,x;,) =1,0<i<n-2. We can write ICl = n, and

. + ‘g .
associate to each cylinder C an element xo € C< X, . (The specific choice made

will be unimportant.)

We define an operator E_ : F;-) F; ,n21, by E_(f)(x) = I;:.n Xc(®)£(x0) ,

where the sum here is clearly finite.
We can make the following explicit estimates:

(M If-E (Ol < sup {xsé“é lEG0)-f0x I} <l 6

i) If-E (Dl <Ifly
(since for k > n, var, (f-E_(f)) = var, (f) and for k < n, var, (f-E_(f)) <Ifl 6,

by estimate (i)).

+  + e . .
The operator E, : Fq -+ Fy has a finite dimensional range, and hence is

n + + . .
compact. Therefore K, = L E : Fg-» Fg,n 21, is also compact, since the

composition of a compact operator with a bounded linear operator is again compact.

By the basic inequality (Proposition 2.1) we have
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I(Lg-K)hlg = IL; (h - Eph)lg < (C+1) | h - E (W), + 67 | h - E ()],

< (C+1) Ihlg 67 +Ihly 67 < (C+2) lhll, 6™ .

.. . n 1/n
Thus by Proposition 10.1 we have p_(Ly) < nlgnw IL; -K I""<8.

Part (ii) of the theorem follows from the definition of essential spectrum and our

estimate p,(Ly) <6 . Assume that I\l < and choose h € F; such that h £ 0 but

00
L,h=0. We can define ge F; by g= 2 e hoo™™ and observe that
n=0

Lf(g) = ;‘g .

Thus for a judicious choice of h with g# 0 we have A lies in the (essential)
spectrum of L¢. By the compactness of the spectrum we see that |zl = © also lies in
the (essential) spectrum. This completes the proof.

This result on the spectrum leads to a meromorphic extension of the zeta-

00
function {(f) = exp 2, % Y "™ The principle is essentially the same as that
n=1 n

O X=X
in Chapter S. Howeyver, since we have very precise information on the spectrum of
the Ruelle operator from Theorem 10.2 it is appropriate to translate this into an

extension result for {(f) with as much care as possible.
To prepare for the main result of this chapter we choose p>6 such that L;
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has no eigenvalues of modulus pe? where P = P(®f). Clearly p can be chosen as
close to 6 as we wish, and there are only finitely many eigenvalues (each with
finite multiplicity) of modulus greater than pe? . Moreover the projection Q onto
the part of the spectrum of L inside {z:lz < peP} commutes with L; and QL;

has spectral radius strictly less than pe? .

Evidently L can be expressed as

z

-2 (I)ZB Vo L& 4w + QLw (10.1)

where AD (i = 1,...,N) are the eigenvalues of L; with modulus greater than peP,

vg) belong to the corresponding eigenspaces, ug) belong to the dual eigenspaces

and ug)( (5 3, ,aaB . The matrices L®, of course, are in Jordan normal form

and the multiplicity of the eigenvalue A® is V® = trace L®. Iterating (10.1) we

have

N
Liw = igl)\'(i)m L g)r;ug) fQL,
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Fixing m > 0, we denote by Z:l the sum over all permissible words of
length m such that the periodic concatenation N* = v 1M v ... is permissible and
we denote by Zn the sum over all permissible words of length m. Define n* = n*
when M* is permissible and otherwise define n* arbitrarily subject to n v n*
being permissible. Finally we let the word M stand for the cylinder it defines so

that is the characteristic function of the set of points which begin with 1.

We shall be especially interested in
=2 Y .
Cm = I;me Y= chxpf"‘(n ).
Notice that

L[fnxn(x) =exp f™(n v x) if M vx is permissible

=0 otherwise, (10.2)

and therefore

o =Zq(Lpx,) VA

N . . .
= 21’1 [1;1 A (Hm > vg)(n vn®) Lg)"';lug)(xn) + <QL;an) mvn® ]
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(i)m ()
LaB“ﬁ

= g" x(m%

0
= Cm +

C(r;)+ 2) where

'Mz

—

C(,?,) Y Hm

-

z 2 Bm 2[;

& =2 (Quiy,) v,

4

C(O) +

Our aim is to estimate m

Cm =

LEMMA 10.3. There is a constant such that

| CS]) | < const. (peP)™.

PROOF. One first verifies

L@ aom %:L“)g‘ g)

from which we obtain

159
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1 ()
-~ Z o Fr (- Syl avn)

N

S YD (B i o (I OPA)

1= o

—

i=1

N ,
Y ; ”Sz)( m (l) mvg))

where K is of finite rank and since I L™ - K Il < const. (peP)™ the lemma is

proved.

. 2
LEMMA 104. There is a constant such that | C(m)l < const. m(peP)™ .

PROOF. Let 1j(m-k), n(k) denote the words formed from the first m-k symbols
and the last k symbols of the word m of length m, respectively, so that

n = A(m-k) v n(k) . We need to assign, once and for all, a sequence to follow
(permissibly) each symbol i - clearly i* will do. Moreover for every M of length

m and for every 1 <k <m, n(k) v n(1)* is permissible.

We define for 1 <k <m the functions

X o) = €xp = M) v (1)*). (LX) O

and for 2<k<m
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Y (%) = X = X))
= X k-®) fexp fM(k) v x) - f(n(k) v n(1)*)I - 1}
if n(k) v x is permissible

= 0 otherwise .

We also define Y =X

n(1) n)

It is easy to show that

IX gl < const. and 1Y, 4, llg < const. ok
where the constants are independent of m, m, k.

Evidently

2
C()

m b

2 exp 701 v NOMQXYM v ) = (QUyxy) (1 v 1Y) =

and hence

D= 3 exp £m(n v n(1)).QX, )N v I*(D)
n

+ ; exp f(n v n(1)*) {(QX,)(n v n*) - (QX (v n(1)*)}

= A + B, say.
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Notice that

A= % exp M v (1)) { 2, @&y~ W gy + Wy VD)

Msa
=M

exp £7(n v N(1)*).(QY ) (N v N(1)*)

-2  £XP 7 (1=K v 1) v I )-QY o) Tm-k) v 1K) v (1)),

and also notice that

ﬁ(;_k)exp fm-k (M(m-k) v T](k) v n(l)“).(QYn(k))(ﬁ(m—k) vnk) v n(1)#)

= L7 QY )M v (D).

So we conclude that

A= Z X e i v (L Q¥ pep0) V(1))

and

A< X 2 exp REMO) VD] Lf o 1Y, gl S const. m(peP)™.
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On the other hand we have

Bl < 2% exp /7(1 v D QXM v 1) - @Kl VD) |

< 2. exp &N vn(1)*) IQI X, l,6™ < const. (8eP)™.
n

The lemma is therefore proved.

We are now in a position to prove

+
THEOREM 10.5. For f € Fe and
00

2@0= 2 = L0 = 2 2L,

the function exp - Z(z,f) extends to an analytic function in the region of C x F;

where 0 1zl < e P |

PROOF. Let v, be the multiplicity of the eigenvalue A, where A]> peP > 6eF ,
i=1,.,N then

n

(> © N w .
Z’ ZT 0)) Z L -21 vons = nf_,l_i_ (C“) N C(2))

n=1 i= n n
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and by lemmas 10.3 and 10.4 the latter series converges when |zl peP < 1. On the

0 N
0 .
other hand, exp (- 21 %— Cf])) extends to the analytic function _1_1[(1—zli)v‘ . We
n= 1=

conclude therefore that

N
exp - Z(z,f).i[l[(l—zki)_\‘i = ¢(z.f)

extends to an analytic function in the region |zl peP(%) < 1. In other words,

N
(p(z,f).l—ll(l—z)».i)Vi is the required extension when |zl peP(®) < 1. Finally we
i=

observe that we may choose p>0 as close to 6 as we please. That

N
(p(z,f),]._!(l —z?»i)\'i is analytic follows from Appendix V.
i=

At the end of Chapter 5 we gave an application of our original extension
00 " n
(theorem 5.6) to the zeta-function C_,_f(s) = exp 2 Py ; e SF'®) | where s € C,
n=1 X

for fe F:) with f >0 and P(-f) = 0. We can improve this result by using

Theorem 10.5 as follows:

COROLLARY 10.6. {_«(s) has a non-zero meromorphic extension to the half-plane

R(s) > 1-g, where € >0 is given by the identity P(-(1-€)f) =|log01.
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(We recall that since f > 0, t » P(-tf) is a strictly monotonic descreasing

homeomorphism of the real line, and clearly |log 61>0.)

We can give a fairly simple example to show that the meromorphic extension in the
above corollary (and hence the theorem) is essentially sharp with respect to the

given data.

EXAMPLE 1. Given €>0 and 0<6<1 wecanconstruct 6:X, X, and fe€ F;

with f > 0 such that C_(:} has an essential singularity at s = s, € R with

llog 8| < P(-sghf) <|log 6 |+€.

00
Let 6:X X be the full shift on n-symbols, i.e. X, = 1(:[{1,2,...,n} .
Let B, ,B>0(m=0) besuchthat |B-B_|<CO™ forsome constant C>0. We

define f € F'; by:

o Bm if x;#n,0<i<m-1, and X, =1.
X) =
B if x;#n, forall i20.

For sufficiently small o.>0 we can choose B, B>0 as
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(m-1)

logn - ologl(1+8" /m) /(140" */m-1)] if m>2

Bm = { logn - alog (1+0) if m=1
logn if m=0

and B = logn.

em-l

m
Since |log [(1+86™/m) / (1+6™~1/m)] | S% + o this sequence satisfies

the required condition.

Assume o¥z = z and that the gaps between the occurrence of the symbol n

are kl,...,lg where k,+..+k = N and then

£(z) = (k-N) By + g,l By +By++By).

For s € € we can define g€ C(X,) by:

—sBm+log(n—1) , ifx=10<i<m-1),x =2

g(x) = -SBO , if Xp = 2
-sp+log(n-1) , if x;=1 forall i20.

We clearly have the simple identity
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DI 2 T YA N (10.9)

k
6 x=x€ X, 6 x=x€ X,

For any N >0 we can define a square matrix by

e e e TN e
~sBy .
€

PN— ‘Sﬁl O
0 (@De | . .
B 0 T (n—l)e_SBN_l (-1 ¥|

k
so that ; et ™ = trace (P, provided N>k.

O X=X

For R(s) large we can find the explicit expression:

1/8_{s) =exp —l;l% er 8 @ (using (10.9))

O X=X

trace (PN)k

|-

00
= lim exp - z
k=1

Nooo

= 1. I - P
Nl_f’nm det ( N
N-1
= Nim_ (1-(a- ™) (1 B 2 (n-1)e _S(Bo+"'+Bk)) - (n-l)Ne"s(B+Bo+“-+BN-1)
No-ooo “
= (1 -(n-l)e-SB) (1 — 2 (n-l)k e-s(B0+...+Bk))
k=1
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= (1-@-1)/0%) (1- 3, (-1 / 00D (146%/1)% - 1/n¢)
k=1

The entropy h corresponds to the first positive pole, i.e.

00

1= (n-1)k /7 nh®+D (149K /k)*h 4 n-h
k=1

To find an extension for C_f(s) it suffices to find an extension for

F(s)= 3, (n-1k / nsk+D (140K /K)o
k=1

We can write F(s) =~ Y [(n-1)/nki(1+6%/0% - 1] + — D For
n k=1 n (1—(n—1)/ns)

[a+6%/k)™ 1)
sO /k

O0<s<h wecanbound A< <B, A,B>0 andso:

Ao GO
" 1og(1-6(n-1)/n%)

(n-1)

<B, where F(s) = sG(s) + : <
n (1-(n-1)/n)
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Consider s = s, such that G(n—l)/nsl =1 thenas ss, we have IG(s)l» + o0,

but (s-s,) G(s) » 0. We conclude that each of these functions, but particularly

log(n-1)  llog#l
logn logn °

{_(s) must have an essential singularity at s, =
Since o : X - X has topological entropy log n it is clear from
Abramov's theorem that h(c;) approaches 1 as n increases. Welet h = h(c)),

then P(-hf) = 0 and _((s) has an essential singularity at s, = s, /h.

Thus P(-sghf) = P(-s,f) <logn -s, (logn - o)

! - !
~logn - [ og(n-1)  llog6l

logn Tgn] (logn - @)

=|log 01+ log (L) + ogln-1él

n-1 logn

We can assume that n is sufficiently large that (n-1) 6> 1 and log (n/(n-1)) < €/2
and then o> 0 can be chosen sufficiently small that o log [(n-1) 6]/logn<¢€/2 .

Thus P(-s,f) <|log 81+ ¢€, as required.

The results in this chapter show that the zeta functions always have a non-
zero meromorphic extension beyond the region where they naturally converge to
non-zero analytic functions. A natural question is to what extent is this extension
also analytic. In particular, for the case of the zeta function ?;_hf(s) (o; weak-

mixing, f>0) is the extensionto 1 -€& < R(s)<1: Is l;_hf(s) analytic (except for
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the simple pole at s = 1)? The next example gives a negative answer.
(]

Example 2. Let X, = H{1,2} and consider f:X, - R defined by:
0

o if xg=1

f =
) B if xy=2

where o, >0 and o/ isirrational. By direct computation we can see that

e—as e_ﬁs
2 &0 = twrace PO, where P() = | . s’

C X=X [ €

Thus {_g(s) = exp % kz st = exp Z %lrace (P(s))¥
k=1" o x=x k=1
= __1__ = _a-0s _ o-Ps
rE TN 1/(1-e e P8,

The topological entropy h(c,) for 6; can be determined from the position

of the first positive pole for { ((s), i.e. €™M +e"Bh = 1. The poles for {_,(s) are

determined by the simple condition: e + eBhs = 1. We observe that the

assumption o/f is irrational implies that { ,(s) has no other poles on R(s) = 1

other than s = 1. In particular, we can deduce that o, is weak mixing (cf.

Theorem 6.3).
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Consider the trigonometric polynomial Q(s) = e +¢=Bhs _ 1 For £>0
we see that for any 1-€ < 6 <1 the function t Q(o+it) (t € R) takes values
arbitrarily close to zero. Since Q(s) is a complex almost periodic function this
implies that Q(s) has zeros arbitrarily close to any line R(s) = ¢ (or equivalently,

C_ps(s) has poles arbitrarily close to this line). (Cf. [24].)

In particular, we can conclude the following: The zeta function {_(s) has

polesat s = o +it, where 6, <1 and ¢, 7 1.

The corollary 10.6 and the two examples above all describe the domain of
zeta-functions {_, (s) for suspended flows o;. In keeping with our general
philosophy these can be used to give results for hyperbolic flows. In particular,
given a weak-mixing hyperbolic flow we can reduce the analysis of its zeta
function {(s) to that of appropriate zeta-functions for suspended flows (Appendix
III). Conversely, to construct (counter) examples of hyperbolic flows it is
frequently easier to construct first suspended flows with the appropriate properties
and then to use the “embedding theorem” to construct corresponding examples of

hyperbolic flows (Appendix III).

In view of these two approaches we can simply translate the corollary 10.6
and examples 1 and 2 from the context of suspended flows to that of hyperbolic

flows to deduce the following result.
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THEOREM 10.7.

(DLet ¢, : M > M be a weak-mixing hyperbolic flow (with topological
entropy h > 0) then there exists € >0 suchthat {(s) has a non-zero
meromorphic extension to R(s) > 1-¢€.

(ii) There exist examples of hyperbolic flows for which {(s) does not
extend meromorphically to the entire complex plane.

(iii) There exist examples of hyperbolic flows for which {(s) does not

extend analytically to the strip 1-8 < R(s)< 1, forany 8>0.

In parts (i) and (ii)) of Theorem 10.7 it is difficult to give a useful
quantitative estimate for the size of the extension, or the position of essential
singularities. This is simply because the characterisations in the suspended flow

setting do not conveniently translate into appropriate terms for hyperbolic flows.

Notes

The definition of the essential spectrum and essential spectral radius is
originally due to Browder [21].

Proposition 10.1 is due to Nussbaum [60].

Theorem 10.2 is due to Pollicott [72). A similar result for interval maps by
Keller appears in [51].

Theorem 10.5 and its related lemmas and Corollary 10.6 are due to Haydn
[36]. Our account is based on a version of Haydn's proof provided by Ruelle. Prior
to Haydn's result there were weaker versions of this theorem due to Ruelle [82] and
Pollicott [72].
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Example 1 is taken from Pollicott's article [72], which in turn is a
development of earlier examples of Gallavotti [34] and Pollicott [71].

Example 2 was discovered independently by Ruelle [83] and Pollicott [71].

Finally, Theorem 10.7 can be found in [36].
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CHAPTER 11
ATTRACTORS AND SYNCHRONISATION

In the preceding chapters we were mainly concerned with results for general
hyperbolic flows. As we shall see it is sometimes appropriate to take into account

the ambiant manifold M.

A basic set A for a hyperbolic flow ¢, : M > M is called an attractor if

there exists some open neighbourhood U > A such that A = . DO o.U.

This amounts to a strengthening of the hypothesis A = thR ¢, U in the

definition of a basic set. The geodesic flow for a manifold with negative sectional
curvatures is an example of a hyperbolic flow with A = M so that with the choice

U = M it is clearly an attractor.

The complementary notion is that of a repellor A where one requires an

open neighbourhood U D A such that A = tDO ¢,U. There is a trivial

correspondence between repellors and attractors, in that if y, : A 5 A is the
hyperbolic flow given by y,= ¢_, (i.e. by reversing the time direction) then an

attractor for ¢ is a repellor for Wy and vice versa.
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In chapter 9 we described equilibrium states for Holder continuous functions
on basic sets. Of particular importance was the measure of maximal entropy

(associated to the function F = 0).
For attractors there is a second, more geometric, canonical equilibrium state.

For each point x € A and t> 0 we can consider the map D¢, : T,M - T(ptxM

and its restriction D¢, : E: - E;x . We define Av(x) = limO % log Det (DQyE, ),
t-

t

which we call the expansion coefficient of ¢ at x € A. Thus we have a well-

defined map Av: A - R.When ¢, is C? it is known that the splitting x > E:: @ Ei

is Holder continuous (cf. [39]) and so we see that x +» AU(x) is Holder continuous.

The value AY(x) has an intuitive interpretation as the infinitesimal
expansion along the unstable bundle as the point x moves along its orbit. We can
associate to -A" aunique equilibrium state m supported on A. This measure is

called the Sinai-Ruelle-Bowen measure (S.R.B.-measure).

We define the basin of attraction B(A) c M of an attractor ¢, : A> A by

B(A) = {x € M : d(¢x,A) >0 as t-+ oo} (or equivalently, B(A) = . (L;JAWS(X))’

The following result gives the most important characterisation of m:
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THEOREM 11.1. For almost all x € B(A), with respect to a Riemannian volume on

T
M, we have % jF((p,x)dt—» f Fdm as T -+ o, whenever F € CO(M).
0

PROOF.

Let U c B(A) be an open set with tﬁo o.U = A andlet Fe CO%A). For

T
any >0 let E@)={xeU: Eﬁl,—;— jF((ptx)dt— dem | > 3}. We want to show
0

that the volume of E(8) is zero, then the result is immediate.

We choose € > 0 sufficiently small that for d(x,y) <€ and 0 <t < 1 we have

n
IF(9:x) - F(@y)l < /4. Tf we define Cp(c) = &xe U:11 JF((ptx)dt ~[Fdm|> a3,

a >0, then
T 3
E(S)CNGOnyNC“(Z ) (11.1)
1 3 3
and ij on QNCH(Z S)CE(I 5 . 11.2)

We fix N2 1 and construct a family of finite subsets S, € C,(8/2) " A,n2>N,

such that S, is a set of maximal cardinality satisfying:
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(@ ByEm)NBy(ek)=F,xeS,,yeS;,N<k<n

(i) By(en)NB,(en)=g,xx' €S, ,x#x'

where B, (e,T) = {ye M:d(px,9y)<e, forall 0 <t<T}. Choose €>a >0
such that B (o) = {ye M:d(y,A)<a}cU.

00 3 00
LEMMA 112. BA(@) N QNC“(I d) < ) QN ] yska(2e,k) .

PROOF OFLEMMA 112. If y € BA(0) N Cy(3 48), n2 N, and y € Wi(e), with

z€ A, then ze€ C,(8/4) N A. By the maximality of {S,} we conclude that

B,(€,n) "By (g,k) # & for some x € S, N <k <n. Therefore,

y € W,(e)  B,(en) B, (2e,k).
The proof of the following technical lemma can be found in [17]:

VOLUME LEMMA. Forevery €> 0 there exists A = A(€)>1 with

Volume(B, (¢,T))

.<.——T——— <A, forall xe A, T20.

€xXp - j)'u((Ptx)dt
0

> =
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Combining these two lemmas we see that:

Volume (BA(@) N l;JNcn(% 8)
k
(11.3)

<A i Y, exp- [Au(gxdt.
0

00
We next define V= |J N US B,(g,k), where the union, as we have observed,
k=Nxe
k

is disjoint.

lim volume (Vy) = 0.
No o

LEMMA 11.3.

PROOF. For x € S « C(8/2) we have B,(gk) c C,(8/4), from the definition
(11.4)

of £>0. Thus VN& G’ch(a/4) .

Since m is ergodic, m(E(8/4)) = 0 by the ergodic theorem. Thus

0= mE(E/4) 2 m ( Nﬁ . RU"N Ci(3/4) (by (11.2))

= lim m(k:Gch(a/4)).

N +o0
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and the result follows from (11.4).

By the volume lemma we can write:

k
00
mVi)2A >, Y exp- [Au(px)dt>0 as Now,
k=N x 0

ESk

and substituting directly into (11.3) we conclude that

. x 3
lim Volume (B (@) N QNC,,(z 8)=0.

N o

Therefore, by (11.1) we have Volume (B 5() N E(8)) = 0. To remove the B ,(a)

we observe that:

i) o¢E@®), forall t20
and (ii)) ¢,Uc B,(a) forall sufficiently large t,

so we deduce that Volume (E(8)) = 0.
To complete the proof of the theorem, we need a uniform result for

F € CO(M). By a standard argument it suffices to take a countable dense family

{F,} <CO(M) and the union of the sets E(8) still has zero volume.
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If A =M and there exists a ¢-invariant measure V which is equivalent to
the volume then by comparing the above Theorem with the usual Birkhoff ergodic
theorem we see that vV is the SRB-measure. Therefore, for the geodesic flow

example the SRB-measure is precisely the Liouville measure.

We now have two canonical measures for C? attractors; the measure of
maximal entropy M, and the SRB-measure m. In certain special cases these two
measures will coincide, but generically they will be different. When these two
measures are the same we shall say that the flow is synchronised. A trivial
sufficient condition for a flow on an attractor to be synchronised is that the function

AU is constant.

EXAMPLE 1. Consider the hyperbolic toral automorphism

(X,Y) + 22 » (2x+y, x+y) + Z2,
and let r:[R2/Z2- R* be a constant function. For the associated suspended flow
¢,:M-> M the manifold M is an attractor for which A" is constant, and
consequently the measure of maximal entropy and the SRB-measure M are both

equal to the (normalised) Lebesgue measure on M.

EXAMPLE2. Let S be a compact surface of constant negative curvature K = -1,
Such surfaces have an associated geodesic flow ¢, : M - M on the unit tangent
bundle M to S. This is a hyperbolic flow with A = M (cf. Appendix IV). The
algebraic presentation of this flow takes the form M = G/T" where +1e I'c G =
SL(2,R) and I' is a co-compact subgroup. The flow is written ¢,(gl') = ggl’,
where g, = diag (et,e™) (cf. Appendix IV).
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The unstable manifolds for ¢ are the orbits of the horocycle flow

corresponding to the matrix h, = ((1) tl) , t€ R. By simple algebra we see gh, =

hsetg[ . Letting s -» 0 we have Det (D@,| E,) = e'. Thus Au(x) = limo% log (eY) = 1.
t->

We conclude that At = 1 and the two canonical measures coincide, and are equal

to the Liouville (or Haar) measure on M.

When the two canonical measures are not coincident it is possible to

reparameterise the flow so that the resulting flow is synchronised.

Let o : A-» R+ bea strictly positive continuous function and define a map

t

k:AxR->R by k(x,t) = J.oc((p“x)du . This map has a unique ‘inverse’ defined by
0

k(x,2(x,t)) = £x,k(x,t)) = t forall x € M, t € R. We define a new flow y,: A-> A
by W(X) = @gx,(x) . This flow has the same orbits in A as the old flow ¢, : A > A,
but with a different parameterisation. At each point x€ A wehave D,y =

ax)? D,@, by the chain rule. In particular, o(x)™ represents the ‘change in

velocity’ between the two flows.
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For any ¢-invariant probability measure Vv there is a corresponding

o(x)

. . - . 4
y-invariant probability measure V' with vV ~ V' and such that ((ll—v(x) = Tody

Using Abramov’s theorem we can related the entropies of the measures V and V'

(with respect to the flows ¢ and W, respectively) by h(y,V’) = h((p,v)/f adv.

If T is a closed orbit for ¢ of least period A(t) then it is again a closed

AT)
orbit for y of y-least period j o(ex)dt (x € T).
0

PROPOSITION 11.4. If a Ck hyperbolic flow @,: A - A is reparameterised by a

Ck function o.: A- R+ then the resulting Ck flow is also hyperbolic.

1

(X.o(pu

00
PROOF. We define a function z: A x ES-» R by z(x,§) = a(x) J F,( ) du,
0

which converges to a continuous function since & € Ei . We introduce a new
bundle Ff( = {€ + z(x,8) Es? : €€ Ei }. To show this bundle is invariant under v,

we want to show Dwst( = st . or equivalently, Dy (&+z(x,8) E;? )=
s

0
D& +z(px, Do &) E(p[x where t = £(x,s) and s = k(x,t), as before.

183


file:///iMeast

W. PARRY, M. POLLICOTT

To establish this identity it suffices to differentiate both sides, and the

equality corresponds to (§+z]5‘f)(a) = oz', where we differentiate with respect to

x,£) P (o, D@,E). The validity of this equality comes from substituting the above
definition of z. The Dy invariant bundle F$ can easily be seen to be uniformly

contracting.

Similarly, it is possible to construct a Dwy-invariant bundle F* which is
uniformly expanding (for example, by repeating the above construction with ¢@_,
replacing ¢,). Therefore, W, : A » A has the hyperbolic splitting T ,\M = EO®F@®F,
The other properties required for y to be a hyperbolic flow follow immediately

from those for .

u u
We can relate the expansion coefficients lq) , l‘l’ : A-> R+ for the flows ¢

and v, respectively, using the above proof of the proposition as follows:

Dy, 0
The maps v b v + z(x,V) E’? — DoV + z(px, Do &) Eq,[x Do, v have

jacobians G(x), Det (D\|ts IFl;) , G(px)" respectively and the composition

v Dov has jacobian Det (D(pll El;) .
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t
If we write QU(x,t) = Jl:lp((pux)du = log Jac (D(ptl E:) | and
0

S
Yu(x,s) = j?»w(\vux)du = loglJac (D\|l5|F::)I then we deduce that
0

PU(x,t) = YU(x,8) + g(x) - g(9x),
with g = log IG(x)!, and
YU(x,5) = QU(x,E(x,9)) + g(Wex) - g(x).

We return to the problem of reparameterising a flow so that the new flow is
synchronised. It is useful to make the following standing assumptions: The flow

¢,: Mo M is of class C2 and the hyperbolic splitting T\M = E0 @ Es @ Ev is

C! (and thus so is the map 7&;: A-RY).

We come to our main result on synchronised flows:

THEOREM 11.5. For a hyperbolic flow ¢,: A - A on an attractor, with the above
properties, reparameterising by o(x) = K/A%(x) for any K> 0, gives a C!

synchronised flow.

PROOF. With the choice ai(x) = K/Au(x) we have yu(x,s) = @U(x,I(x,s)+g(WX)-g(x)
= Kt + g(yx) - g(x). In particular, the weighting associated to each closed orbit T
takes the form yu(x,A(1)) = KA(t) (x € T). However, if we lift this to a modelling

suspension we see that the functions whose equilibrium states correspond to the
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measure of maximal entropy and the SRB measure have the same values around
closed orbits. It follows by Livsic's theorem (Proposition 3.7) that these functions
differ by a coboundary. Therefore, we conclude that the equilibrium states on the
suspension and thus the canonical measures on A coincide. Thus the flow Y is

synchronised.

In chapter 9 we considered various distribution results for closed orbits T
relative to their least periods A(t). (In particular, the spatial distribution of these
orbits is relative to the measure of maximal entropy.) However, we can now
consider a parallel analysis where we replace the least period of T by the weight

A1)

ou(T) = j 7»‘(;((ptx)dt, which represents the total expansion in the unstable direction
0

around the orbit 1. By the preceding theorem we can also interpret it as the least
period of the closed orbit T relative to the new flow W, when K = 1. This latter
interpretation allows us to reformulate some of the asymptotic formulae for

hyperbolic flows (from chapter 9).

THEOREM 116. Let ¢,: A-> A be a hyperbolic flow on an attractor and let T°(t)

= Card {t: @u(t)<t}, for t>0. Then

either () ~ e/t

e e[l]
or Tu(t) ~ o1 —[ﬁ

(depending on whether vy is topologically weak-mixing).
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Here we have used the fact that h(y) = 1.

THEOREM 11.7. Let ¢,: A-> A be a hyperbolic flow on an attractor with SRB

measure |L .

MO o'
) C

X<MT)<x+¢&

adeu, as x> +oo, forall Fe CO(A).

u
e ® @)

X<MT)SXx+E€
This follows immediately from remarks at the end of Chapter 7.

The hypothesis that the splitting E0 @ ES@ Ev is C! was largely made for
convenience. It is satisfied for certain well-known examples, the most important
being geodesic flows for negatively curved surfaces. However, as was observed by
Plante, it is frequently false. In these cases many of the results of this chapter
remain valid, except that we must deal with the possibility that y : A+ A is only

Holder continuous, which proves to be only a technical complication.

Notes

The SRB measure originated in the work of Sinai on Anosov systems and
Gibbs measures in 1972 [94]. Ruelle extended Sinai's work to the context of Axiom
A attracting diffeomorphisms [81]. Finally, Bowen and Ruelle developed the
parallel theory for Axiom A attracting flows in 1975 [17]. It is in this last article that
the proof of Proposition 11.1, including a proof of the omitted "Volume Lemma’ can
be found.

The idea of synchronisation may be found in [69].
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A good reference for the algebraic definition of the geodesic and horocycle
flows is Cornfeld, Fomin and Sinai [25].

The proof of Proposition 11.4 for Anosov flows is due to Anosov and Sinai
[6]. The modifications for the general case appear in the appendix to [69].

The distribution results for weighted orbits are due to Parry [69].
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CHAPTER 12

CHEBOTAREV THEOREMS
FOR SOME NON-COMPACT GALOIS EXTENSIONS

In Chapter 8 we considered equidistribution results for compact Galois
extensions of flows of finite type and in Chapter 9 we applied these results to
compact Galois extensions of hyperbolic flows. Here we shall consider certain

non-compact Galois extensions.

The canonical case will be a Galois extension by Z9,d>1.Let 6 : X, » X,
be an aperiodic subshift of finite type. Consider the extension & : X 4 x Zd-X, x 24
defined by &(x,z) = (Ox, g(x) +z),z € Z4, where g:X, - Z4 is a locally constant
function. Without loss of generality we may assume g is a function of two

variables, i.e. g(x) = g(xg, X).

Since Zd is an abelian group we need only consider the case of one-
dimensional representations (i.e. characters) y : Z4 - {z € C : |zl = 1}. Following
the approach in chapter 8 we introduce an L-function associated to the suspended

flow oy, : X¢- X defined by a strictly positive function f € Fg .

We define
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Lex =exp 2+ 2 x(gn(x)eh"® (12.1)
n=1 n

X=X

where fM(x) = f(x) + f(0x) +-+ f(c™1x), gn(x) = g(x) + g(oXx) +--+ g(c™1x) and
h = h(oy) is the topological entropy of the flow. The complex function (12.1) can
be seen to converge to a non-zero analytic function for R(s) > 1 by comparison

with the usual zeta-function (cf. Chapter 6).
Since y o g: X, - C satisfies Iy o gl = 1 we can write o g(x) = e27k(X),
for some function k € Fg (determined up to an element of C(X,,Z). By

+
Proposition 1.2 we can replace f by a function in Fg which differs, at most, by a

coboundary, and in particular defines the same L-function. (We shall maintain the

same notation.)

We write L(s,x) = {(-shf + 2mik), where { is the general zeta-function

studied in Chapter 5, and by theorem 5.6 we note the following:

PROPOSITION 12.1. L(s,x) has a non-zero analytic extension to a neighbourhood of

R(s) 21 except for poles s = 1+it where k - g'—: is cohomologous to an element

of C(X,2).

The characters ¥ : Z4» C are elements of the torus dual space Z4¢ = Rd/Zd

of Z4. The map X L(s,X) can easily be seen to be analytic (on the torus) using
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the identity L(s,%) = {(-shf+2mik)) and Theorem 5.6. When we take ) = ) to be
the principal (trivial) character then L(s,Xo) = {(s) reduces to the usual zeta-
function. Since {(s) has a simple pole at s = 1 we see that (s,x) b L(s,)) is

singular at (1,X¢) .

To proceed we shall make two assumptions about the domain of L(s,X)

which we shall later justify in certain cases.

) L(s,x) is analytic at (1+it,x) # (1,%0) , R(s) = 1.
(II)  Inaneighbourhood of (1,x,) thepole s= s(x) for L(s,x) (with

s(xo) = 1) is smooth as a function of y and Vs(y)| X=X, = 0 and
det. V2 'J((s(x))lx=x0<0, where V and V2 denote the gradient

and the Hessian matrix, respectively.

The logarithmic derivative of L(s,)) is

Le/Lsp=- X ¢ 5 150 ko e-shiken. (12.2)

X=X
If o, € Zd then we have an orthonormality relation:
[ xcox®ax=1  ifa=p
R/Z"
=0 if a#PB
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(integrating with respect to Haar measure).

If we fix o0 € Z4 then applying this orthonormality relation to (12.2) gives:

I

nes) YL Y hikx)esnifo
k=1k «

g X=X
A ) =a

L(s.0)
j x(-o) —=== dy, (12.3)
RY/z L(s,x)

(where n(s) converges for R(s)>1).

By assumption (I) and the compactness of R4/Z4 we see that n(s) is analytic in a
neighbourhood of {1+it : t #0} . If we choose a small neighbourhood U of ¥%j

then

L(s x)
j x(-o us x)

is analytic in a neighbourhood of the half-plane R(s) = 1, by Proposition 12.1 and

assumption (I) again. It remains to analyse the contribution to m(s) from

L(s

Jx( a) ’x) dx, for small neighbourhoods U of %, and s close to 1.
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For y € U, we can use the notation of (II) to write

L'(S’X) = A 2.4
o - Gos00) +F(@s.0) . (12.4)

where A # 0 and F(s,x) is analytic for R(s) 2 1 and the hypotheses on > s(%)

in assumption (II) allows us to apply the Morse lemma: We may introduce

coordinates (0y,...85) € U c Rd4/2d satisfying s(x) = 1- (9?+---+9ﬁ) (with

X = (04,...,84)) . In particular, we can write:

Lisx) _ B
LOX (o) (o +--+63)

+ G(s,x) (12.5)

where B # 0 and G(s,)) is analytic for R(s) 2 1, by substituting into (12.4). To

summarise, we have:

PROPOSITION 12.2. N(s) is analytic for R(s) 2 1, except for a singularity at s = 1

of the same order as

AGs)=B | > d0;..d0, .

U (s-1)+(ef+.--+ed)
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We may restrict attention to neighbourhoods U of the form U = {(6,,...,6) :

e%+...+eis €2}, for €> 0 arbitrarily small and the evaluation of A(s) becomes an

exercise in integration.
LEMMA 12.3.

()  Ford=1, A(s) = Cy(s-1)""2
(i)  For d=2, A(s) = C, log (s-1)
(iii) For d =3, A(s) = C3(s-1)'?
(iv) For d24, A(s) = Cy(s-1)42/2

(up to lower order terms) with Cy constants independent of U.

Now we have familiarised ourselves with the behaviour of mn(s) in the

domain R(s) =1 we are in a position to study
(1) = X' 1

where the summation is restricted to those x € Fix, for which eh*®) <t and

x(gk(x)) = . The function

Vo) = 2 hik(x),

where the summation is similarly restricted, is a Stieltjes function for n(s). In other
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words

) = [ = dya(®
1

for R(s)>1.

To use the method of Chapter 6 to derive asymptotic formulae for n, we
need to invoke a more general Tauberian theorem than the one due to Ikehara and

Wiener. The following is due to Delange (cf. [26]).

THEOREM 124. Let y(t)20,t2>0 be monotone non-decreasing with M(s) =

00

It—s dy(t) analytic for R(s) 21 except for a singularity A(s) at s =1 (see
{

Lemma 12.3).

go(s)
0 B + g,(s) where gy,g, are analytic for R(s) = 1
(s-1)

(6] If A(s) =

with C=go(1) # 0 and Be R - {-Z+} then wy() ~ Ct -
T'() (log 1)

(where I'(s) denotes the gamma function).

@i) If A(s) = Clog(s-1) + g(s) where g, (s) is analytic for R(s) > 1

C
and C+# 0 then y(t ~E.
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By combining Lemma 12.3, Proposition 12.2 and Theorem 12.4 we can arrive at
asymptotic estimates of W (t) in all cases except d = 2V, with vV > 2. However,

we can deal with these missing cases as follows:

We introduce the function:

E(s) = Z % kE nV(hfk(x))w1 e-sh%() | for R(s)>1,
k=1 OX=xX
X&) =

then since we can write

v 00
_4dYLso_ vy 1 . o
(m%mk;HZMWWWW

OX=X

we have the identity

v
_ _ _d ) LGy
&) = nd{de( o[- %) Ty

by the orthonormality relation.
As before we can choose coordinates (8y,...,.05) € U < R4/24 in a neighbourhood

U of %o to arrive again at the identity (12.5). However, since 2V =d we can

explicitly integrate
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1 <

S-1

— d8;..d0g = <=+ G(5)

U (s-1)+ (ef+..-+ed)

where U = {(0,...,.8) : 9?+-.+ 93 <€2},C+ 0 and G(s) is analytic on a

neighbourhood of R(s) = 1.

If we denote p,(t) = Y'nV(hfk(x))¥+! then the Ikehara-Wiener Tauberian

theorem applied to

Es) = [ tsdpq(®
1

which is analytic for R(s) 2 1, except for a simple pole at s = 1, gives p,(t) ~ Ct.
By a repeated application of the Abel summation formula we can deduce that
WD) ~ Cyt/(logt)Y .

We summarise our conclusions as follows:

PROPOSITION 12.5.

(i)  Ford=1,yyt)~Cit/(logt)!/2
(i) Ford=2,ygt~C,t/logt.
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vee t
(iii) For d23,y,(t) ~Cq4 Togh /2

’
It is more natural to obtain asymptotic estimates for m,(t) = 2 1. By modifying
FiXk

the arguments at the end of Chapter 6 one derives the following:

THEOREM 12.6. Under assumptions (I) and (II):

. t

a For d=1,n,(t)~C, Togn 3/2
.. t

(i) For d=2,my(t)~C, Togh 2

t
(111) For d23, n',a(t) ~ Cd md/2+1 .
We return now to examples for which the hypotheses (I) and (II) are
satisfied. We observe that when ) = %o assumption (I) requires the flow to be

weak-mixing (cf. Chapter 6).

Let ¢,: M > M be a geodesic flow for a compact surface S of negative

curvature, with genus g > 2. The first homology group for S is H,(S,Z) = Z22 .
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Let Ty,...,Ty be Markov sections for the flow. For any fixed point s € S
we choose curves o; :[0,1]1-5 S,1<i<k, with a;(0) = p and oy(1) in the
projection of T; € M to S. Whenever A(i,j) = 1 we choose geodesic arcs 1;;

from the projection of T; to the projection of T;, and associate a closed curve c;; =

4
aj o Yl_] o Oy based at P-

Let 0:X, > X, be the associated subshift of finite type, with suspended

flow o, : XfA-> XfA. We define an extension & : X, x Z28» X, x Z28 by G(x,g) =

(ox,g+g(x)), where g(x) = [c, 4 1€ H(S,Z) =228

XQX 1

One can see that conditions (I) and (II) are satisfied as follows: For (I) we
observe that L(1+it,x) = {(-(1+it)f + 2nik) has a pole for t # O if and only if Y is
a special character (in the sense of Chapter 8). However, this imposes constraints
on the lengths of closed geodesics {f*(x)} which can easily be discounted. For (II)
we begin by observing that s()g) =1 and Rs(x) <1 from condition (I) so that we
immediately have Vﬂ(s(x)lx=xo = 0. Rather than only showing Vls(x)lx=x0 =0 we
can see that Is(y) = 0 for geodesic flows. This is a consequence of the existence
of an involution i: M- M which reverses the direction of the geodesics. Since i

carries closed orbits to closed orbits of the same period and % o i = ¥ we deduce

L(s,x)= L(s,x) and the claim follows.

Finally, we can write at the symbolic level det. V29(§.(x)lx=,(0 = Co2(-hf) < 0,

where C < 0. However, this must be a strict inequality since otherwise f is
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cohomologous to a constant, which puts constraints on lengths of closed geodesics

{fn(x)} and this again can be discounted. Applying part (iii) of Theorem 12.6 we

deduce:

THEOREM 12.7. Let S be a compact surface of negative curvature with genus g =2

and closed geodesics Yy of length k() representing an element [yl € H,(S,Z) .

For any element o € H,(S,2)

ht
Card{y:[yl= o, L(y) <t} ~ CZ_+1
t

(for some constant C > 0).

Finally we want to compare Theorem 12.7 to a result of S.M. Rees on

Fuchsian groups. (But see also the notes to this chapter.)

2 2
dx + dy

Let [D? denote the unitdisc {z€ Cllzl< 1} andlet ds? = —5—33
(1-&x+y))

1
4
denote the Poincaré metric on [D2 . We recall that a Fuchsian group is a finitely
generated discrete subgroup I' < Isom ([D2,ds2?) of the isometries of (D2, ds2).
The disc [D? has constant curvature k = -1, relative to the metric ds2, so that the

same is true of the quotient surface S = D2 / I', with respect to the induced

metric.

Let Ty <" be a normal subgroup then there is a corresponding covering
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surface D2 S » S, where S = D2/I, . We shall make the following two

assumptions on I" and Ty

@) S = D2 /T isacompact surface ;

(i) T/Ty=29, forsome d=1.
(In particular, S is non-compact, and does not even have finite area.)

Let ¢, : M > M denote the geodesic flow on the (compact) unit tangent
bundle M of the surface S. This flow is hyperbolic (cf. Appendix IV). Let
Ty,....,Tx denote a family of small Markov sections for ¢,:M-M and let
, M -5 M denote the geodesic flow on the unit tangent bundle M of the (non-
compact) covering surface S. If n:M-> M is the canonical projection
(corresponding to the projection map S S) then we can lift the sections Tyoeees Ty
to M. We denote this new family by (T;,),1<i<k and n € 2¢. This

construction is similar to that in Chapter 8.

Next we want to introduce a complex function, associated to the groups I’
and T, called the Poincaré series. We fix a pointin [D2 (which, without loss of
generality, we can take to be 0 € [D2) and let d(g0,0) denote the distance of the
point O from its image g0 under the action of g € Isom ([D2) relative to the

Poincaré metric. We define:

PGsT)= 2, e-sd@00)
gerl
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P(sTo) = ), e-sd(z00)
g € ro

where s € €. (These series can readily be shown to converge in the half-plane

R(s)>1.)

The group I is said to be of divergence type if the limit of P(s,I'y) does

not exist as s v 1, and of convergence type otherwise.

THEOREM 12.8. T is of divergence type if and only if T'/Ty = 29 with d =1 or
2 (cf. [76]).

The behaviour of P(s,I'g) is closely related to that of the function mn(s)

(with the choice o = 0). We can write

fi(s) = 2, M) eA®
3

where % denotes a closed orbit for ¢ of least period A(%). In particular, f{(s) will
have the same divergence and convergence properties at s = 1 as Nn(s) (because of
the standard argument about contributions from boundaries of sections and
"auxiliary shifts”) and we observe that h = 1 (cf. Appendix III). To relate Ti(s)

and P(s,I'y) we observe the following:
@) There is a natural bijection between closed orbits T for @ and
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conjugacy classes [g] in I’y . Furthermore, there exists ¢ > 0 such that
A(%) - d(0,g0)l < c. (The bijection comes from the isomorphism 7;(S) =T
and ¢ <2 diameter(S).)

(ii) There exist constants A,B > 0 such that the number of elements

n(g) in the conjugacy class satisfies: A < % <B.

(For (ii) we note that by an observation due to Milnor the length A(%) is related to
the word length, for a fixed set of generators, which by a result of Nielson is related

to n(g).)

Clearly, (i) and (ii) show that j(s) and P(s,I'g) have the same divergence
properties as & v 1. However, the behaviour of f{(s) (or more precisely m(s)) is
given by Lemma 12.3. In particular, we see that these functions diverge if and only

if d=1,2.

We can now consider the consequences of the subgroup I’ being of
divergence type or not. Let S = D2/T then we say the associated geodesic flow
$:M->M (on the unit tangent bundle M of §) is 'ergodic’ if the only
(,-invariant subsets of M are those of zero measure (relative to the volume) or

their complements are of zero measure.

These properties are related by the following: The geodesic flow §, : M-M
is ergodic if and only if T is of divergence type cf.[96].
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In these cases there exists a unique probability measure m on the unit circle
K called the Patterson measure, such that the action of the group I'; : K- K

satisfies g*m = Ig'lm, where g€ I'; and the prime denotes differentiation [70].

In the case of I this measure can be constructed from the symbolic
dynamics of Series, as follows: Series constructs an interval transformation f : K»K
such that when f is restricted to certain arcs I(y) € K it corresponds to the action

on K of an associated generator g€ I [89].

Let L : CO(K) » CO(K) denote the Ruelle-Perron-Frobenius operator
defined by:

W= X 2D we ).

We know the following standard result for expanding interval maps: There exists a

unique probability measure m such that L*m = m, and m is equivalent to

Lebesgue measure (cf. [25]).

It is easy to see that L*m = m implies that f*m = Iflm. In view of the

construction of f: K- K we see that m is precisely the Patterson measure.

To complete this chapter we shall state a more general version of Theorem

12.7 due to Katsuda and Sunada.
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Let ¢, : M> M bea C® Anosov flow which is weak-mixing. The
winding cycle ® for ¢ is a functional on 1-forms w such that ®(w) =
fw(X)du, where X is the vector field generating the flow and p is the measure of

maximal entropy. The covariance form § is defined by

t
S(w.w) = lim <[ [w(X(9,0du - @(w)] duo) .
[ I

We can identify characters x € Hom (H;(M,2Z), €) with elements of H!(M,Z)
(and 1-forms by deRham).

PROPOSITION 12.9. VZ,HO Rs(x) = 4n28 and VIS(X)IX:X0 = & (cf. Katsuda and
Sunada [46)).

Let b be the rank of H* < H!(M,Z) corresponding to the subgroup
H* € H{(M,2Z) generated by closed orbits.

THEOREM 12.10. If @ vanisheson H* then

ht
€

b/2+1
t

Card{t:[tl=a,A(0) St} ~C foreach o€ H

(for some constant C > 0).

Notes

The results in this chapter on non-compact extensions are intended to
complement the results in Chapter 8 on compact extensions. Most of the material
we present is derived from work of Katsuda and Sunada [45], [46]. These authors
give a fairly comprehensive analysis, part of which we summarise at the end of the
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chapter. Preliminary results for geodesic flows appeared in [47].

The result of Mary Rees on divergence type appears in [76]. (The referee
has kindly pointed out that Guivarc’h also obtained this result. See [35*].) The
Patterson measure was introduced in [70] and the connection between divergence
type and ergodicity is described in [96] and [97]. The role of the Ruelle operator in
describing the Patterson measure is explained in the last section of [88].
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APPENDIX I
THE IKEHARA-WIENER TAUBERIAN THEOREM

We need some standard facts from the theory of the Fourier integral. (See,

for example (48].)

For f e L!(R) the Fourier transform is defined by

(]

00 = [ gy e dy
0= [gody.

(I.1)  The Fourier transform f is uniformly continuous and Illim i’(x) =0
X| - 00

(the Riemann-Lebesgue lemma).

(12) When f,fe L\(R) then

-~

1 % -
o f(-x) = f(x) .

If f isintegrable and g is bounded or integrable, or if f,g are measurable

and non-negative their convolution fxg is defined by
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frg00) = [ fx-y) gly) dy .

(1.3) When f,ge LI(R) then

N -
fxg = f.§.

We shall use the Fejer kernel

2
1 (s
KN(X) = _i—n-ﬁ ( sin(x/2) ) el ([R), N = 1,2,...

whose Fourier transform is
@4 Ky®={1-Y) when <N
. N N -
=0 when tI>N.
(L5) If fe LY(R) then fxKy-f inthe L'(R) normas N- .
(L6) LEMMA

If pe L°(R) and ¢(x)» A as x- oo then gx@(x)-> Ag(0) as x - o
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forall g e L\(R).

PROOF. Evidently

lgro(x) - AZO) = | [g(x-y) 0(y)dy - [g(x-y) Adyl

x/2 00
<! [ g(x-y) (o(y)-A)dyl + /J2|g<x~y)| lo(y)-Al dy

x/2 Y
<lip-Al, jlg(x—y)l dy+e Jlg(x—y)l dy (f x islarge)
-00 x/2

[+
<lg-Al, | lg@w) du+elgl,
x/2

and this latter expression converges to € ligl; as x - oo.
(I7) WIENER'S TAUBERIAN THEOREM (Weak version) (cf. [103].)

If g€ L*(R) and K\*¢(x)»> A as x- oo for each N= 1.2,.., then

g+@(x)» Ag(0) as x-» o forall ge LI(R).
PROOF. We have the following inequalities,

gxp(x) - AB(0)l < Ig*p(x) - Ky*gx@(x)l + K yxg+p(x) - AZ(0)l
dlg - Kyrgll, llgll, + K+ g+p(x) - AZO)I.
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If N is large then llg - Ky*gl, is small and by the lemma, for fixed N,
IKpn*g*@(x) - Ag(0)l -0 as x> .
Hence Igx@(x) - Ag(0)l» 0 as x> .

(I.8) THE IKEHARA-WIENER TAUBERIAN THEOREM (See, for example [103].)

Let a(x) be a monotonic non-decreasing and continuous from above with

a(1) = 0. Suppose

00

[ x*dax) = s‘_‘—l +¢(s)
1

for R(s) > 1, where the integral is absolutely convergent and where the
continuous function @(s) converges uniformly on bounded intervals as R(s) N 1

so that @(1+it) is continuous. Then a(x) ~ Ax as x> 00.

00 00 00
PROOF. Integration by parts yields j x~*dou(x) = [x‘sa (x)]l + sj xsla(x)dx and
{ i

the hypotheses ensure that [x'SOL(x)]1 =0, when ®(s)>1. Hence
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00 [

j x~Sdou(x) = s_[ e (-Dxg(eX)e*dx .
i 0

In particular

00 00

1 I xSdx=s j e~ Dxgx
=1 § 0

so that

FI _ [ -6-Ur(aee*-Aldx.
0

With p(s) = i"(si) we have

p(1+eit) = [ e et (a(e)e*-A) X () dx
-00 [0,00)

and defining y(x) = e™® (a(e*)e™-A) X (1) , pg(t) = p(1+e+it) and A (x) =
[0,00)

Ae ¥ X (x) for €20, we see that for €>0
[0,00)
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V() = A () +pe(®) .
(Note that y, A € L'(R) when £>0.)

A, is bounded and we shall now prove that y, is bounded.
Notice that for fixed N, \|7€.I€N = AE.KN + pe.IEN
so taking inverse transforms we have

N
1 . Wy
Y Kn(x) = A +Ky(x) + P _i p(1+e+it) ( 1 _ﬁ) et dt

and by the monotone convergence theorem

N
1 . ) .
YorKN(x) = A p*Kn(x) + ™ _l p(1+it) (1 - ﬁ) eixt dt .

The limit of this last integral is zero, as x - oo, by the Riemann-Lebesgue lemma.

Hence

00

lim yorKy() = lim [ Ky(x-y)A dy
X - 00 X 0
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X
= lim  [KyWAdu

X = 00 _g

=A.
Let a>0, then

Xx+a

Tm wooe | Kyx-y)dy

X - 00

X+a

<Tm [ Ky&oy)woly) dy

- 00 X
<Iim yxKyx)=A.
X - 00

(Here we have used the fact that ,(y)e¥ is increasing with y.)

We see therefore that Iim y(x) is finite so that ai(e*)e™ is bounded.
X = 00

From the above we have y, - A, is bounded and

N
. W\
(Vo - Ag)*Ky(x) = 2L1t I p(1+it) (1 —N—) eXtdt
N

which tends to zero as x - o by the Riemann-Lebesgue lemma. Hence, by the

Wiener Tauberian theorem  j*f(x) - A%(O) as x- oo when fe LI(R).
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Now let f=f, and f=f, in turn where f,.f, are non-negative with

o0 00
supports in [-€,0] and [0,€] respectively and Jfl(x)dx = jfz(x)dx = 1. We use
-00 -00

the fact that eYy,(y) is increasing. Clearly y(y) < efyy(x) if x-€ <y <x and
ety (x) Syo(y) if x Sy <x+e. Hence e®f,xy (x) < yy(x) < eff +y(x) .

Therefore

e AL (0) < im y (x)< Tim  y,(x) SefAT,(0).
X - X - 00

Thus lim w,(x) = A. Inother words a(e*) ~ Ae* as x> .
X - 0
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APPENDIX IT
UNITARY COCYCLES

This appendix is devoted to the proof of Proposition 8.2 which says, in
effect, that a continuous unitary matrix valued function defined on X is
cohomologous to another such function which depends only on future coordinates if
the initial function has n’th variations decreasing to zero at an exponential rate.

To be precise let (X,0) be a shift of finite type and let U(d) denote the
group of d x d unitary matrices equipped with the usual topology. If F : X » U(d)
is continuous we define its n'th variation by

var, F = sup {IF(x) - F(y)| : x; = y;, lil < n}

where || denotes the Euclidean norm on matrices. For 0<0< 1 let

U(0,d) = {F: X->U(d) : F is continuous and for all n=>0

var F<K@" for some constant K}.

Here we prove the following analogue of Proposition 1.2:

(IL.1) THEOREM. Let F € U(0,d) then there exists G,F' € U(0*,d) such that

F'(x) = F'(y) whenever x; =y, forall i20 and such that
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F'(x) = G(ox)"F(x)G(x) .
We shall first need the following elementary

(I1.2) LEMMA. Let U,...,U_, uy,....u,, VooV, voeev,  be unitary matrices of

the same dimension. Then

-1 -1

4 1
IUO---Un g = VeV Vvl

k k n n
< Y IU-VI+ D v+ D U-ul+ D) Vv
i=0 i=0 i=k+l i=k+l

PROOF. To see this one uses the fact that the norm of a unitary matrix is 1. For

example

4 4 4 A
IUO...Un u Uy - VO...Vn Vn...vol

4 - - -1 - -1
<IVUU U, Uy ugugVy - UpUp gyl

1 4 4
+ IUI...Un un...ul - Vl---vn Vn...Vll

Bl 1 El Kl -1 1
SIVOUO-I|+Iu0V0 -1+ IUl---Un Uy = Vi Vy Vvl

In this way we see that the initial quantity is dominated by
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k
El El El El
IV,-U/ +i_20 Vi-ul +10,, U ey = Vi, oV, Voo Vier |

M=

i=0

The last term in this latter quantity, however, is dominated by

n n
i=k+t i=k+l

as can be seen by the introduction of the identity matrix, using the triangle

inequality and performing elementary manipulations.

0
As in the proof of Proposition 1.2, for each state i let <J;> be an
-00

A
allowable sequence such that Jj = i and define, for each x € X, @(x) € X by
A
¢o(x), =x, for n20 and @(x), =], (=xy) for n<O0. Define the function
G, : X->U(d) by

G, (x) = F(x)™--F(c"x)" F(c™@x)-F(¢x) .

Consider two points x,y € X such that d(x,y) S0% i.e. x, =y, whenever hl <2k.

Clearly

[F(c"x) - F(c"y)l  <IFlg6%™ for n<2k
IF(c™¢x) - F(c"gy)l < IIFII(,OZI"n for n< 2k
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and [F(o"z) - F(c"gz) <IFl40" forall nandz.

Writing U, = F(o"x),u, = F(c"¢x), V, = F(c"y), v, = F(c"@y) and applying

lemma II.2 we see that

IG,(x) = G () < 2lFllg (87%+-+6¥) + 2lIFllg (0%*1 + §%+2+-..)

ek ek+l
<Pl 25 + 2l S
k
<4IFly .

From this inequality it is clear that {G_} is a uniformly equicontinuous sequence of

functions which converges to a continuous function G. Moreover G also satisfies

the inequality

k
IG(x) - G(y)| < 4IF %

for d(x,y) <0%, sothat G € U®*,d).
Now define

F (x) = G,(0x)"F(x)G (x)
= [F(ox)"-F(6™!)" F(6"gox)--F(oox)I* FX)F(x)™F(6™x) "F(c"gx)-F(¢x)
= F(pox)™-F(c"¢ox)'F(c™ x)--F(ox)F(x)F(x) - F(c"x) "F(c"@x)--F(¢x)

218



UNITARY COCYCLES

= F(pox).--F(c"pox) 'F(c™ x)F(c"@x)--F(@x) .

Apart from the central term in this last expression, namely

F(o"gox)'F(o™x)

we have a form which depends only on the future coordinates of x. It is a simple

matter to show that the exceptional central term is increasingly negligible as n - oo,

so we see that F' converges to a function F' such that

F =(Go0)'F.G

and such that F'(x) = F'(y) whenever x; =y, forall i20. The proof of Theorem

II.1 is therefore complete.
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APPENDIX III

HYPERBOLIC DYNAMICS, MARKOY PARTITIONS
AND ZETA FUNCTIONS

In this appendix we shall collect together several results on hyperbolic
systems and symbolic dynamics which were needed in the main text. We shall state
the principle results and refer the reader to the appropriate sources. In most cases
we shall attempt to present a sketch of the proofs which convey the main ideas,

without becoming too involved in technical details.

§1.  Markov partitions and symbolic dynamics. An important feature of
hyperbolic systems is that they can be effectively modelled by symbolic dynamics,
i.e. subshifts of finite type for hyperbolic diffeomorphisms and suspended flows for
hyperbolic flows. We have been principally concerned with hyperbolic flows.
However, the construction of the symbolic dynamics for these flows is more
complex than that for hyperbolic diffeomorphisms. For this reason we shall begin
by describing the constructions for hyperbolic diffeomorphisms as a precursor to

the flow case.

§1.1. Axiom A diffeomorphisms. Our account is a summary of Bowen's work in
[10). Let M bea C® compact Riemannian manifold and let f: M > M be a c!

diffeomorphism.

DEFINITION. We call a point x € M wandering if there exists an open
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neighbourhood U of x such that f"U "U = & for n> 1. The non-wandering
set Q is the complement of the union of the wandering points and is closed and f

invariant.

The diffeomorphism f satisfies Axiom A if:

(a) Q is hyperbolic, i.e. there exists a continuous splitting ToM = E* @ ES
into a Whitney sum of Df-invariant sub-bundles and there exist C>0,0<A < 1
such that

IDf(w)Il < CArlvll for v € Es, n 2 0 and IDf-n(v) < CAnlivll forv e E¥,n20.

(b) The periodic points of f are dense in Q.

(II.1) PROPOSITION. (Smale spectral decomposition).

The non-wandering set Q has a decomposition Q = _01 Q, where the
1=

Q; are closed, f-invariant disjoint sets and fIQ; is transitive.

n@i . .
One can also decompose each €; as ; = _U1 Q: where the Q: are closed and
)=

disjoint with Q' = QJ:H (1 £j<n(i)-1) and fl Qf‘(i = Q.l . Moreover fn@ ; Q?-» Q'
1 1 1 1 1

is topologically mixing.
The above proposition allows us to restrict our attention to f: ;- Q;.

More generally, one can consider any diffeomorphism f: M > M with a
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closed invariant set A € M such that:

(a) f: A-> A is hyperbolic;
(b) f: A-> A is transitive;

(c) the periodic points of fl, aredensein A;

(o]
(d) there exists a neighbourhood U D A with A = . 0 oof"(U) .

We call f: A > A ahyperbolic diffeomorphism, and our principle

examples are f: Q; - Q; . Henceforth we shall assume that A is not a single
closed orbit.
STABLE AND UNSTABLE MANIFOLDS AND LOCAL PRODUCT STRUCTURE. The
splitting of Ty\M is reflected in the existence of certain submanifolds in M itself
which exhibit expansion and contraction under the action of f. For € >0 we
define the (local) stable manifold for x € A by

Wi(x) = {y € M : d(f"x, foy) <& for all n 0}

and the (local) unstable manifold for x € A by

u
We(x) = {y e M:d(f"x,f"y)<e forall n20}.

Hirsch, Pugh and Shub [39] showed that for € >0 sufficiently small WZ(x)

and W,(x) are C! embedded discs with T,W,(x) = E and T,We(x) = E, .
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There exists & = 8(g) > 0 such that whenever d(x,y) < 8, x,y € A then

Wz(x) N Wz(y) # ¢ . Furthermore, this interesection is a single point of A, which

we denote by [x,y] . This property defines a so called local product structure, and

correspondingly a local map (x,y) - [x,y] .

MARKOV PARTITIONS. The underlying idea is to cover A by a finite number of

closed sets, numbered from 1 to k, say. A point x € A with orbit ....f-2x, f-1x,

+00

X, fx, £2x,... will give rise to a sequence from H {1,...,k} , where the ith term of

~00
the sequence will correspond to the index of the set containing fix. We want to
choose sets which give rise to particularly simple sequences which accurately model

the diffeomorphism f: A- A.

DEFINITION. A set R C A is called a rectangle if whenever x,y € R then [x,y] € R

and properif R = (int R).

ce k .
We want to construct a "partition’ of proper rectangles {R;};_; for A, in the
P prop Hi=1

sense that A = _llei and int Ry NintR; = @ for i# j. In order that the
1=

+00

sequences in H {1,....k} corresponding to f-orbitsin A should take a particularly
-00

simple form we require an additional condition:
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DEFINITION. The proper rectangles {R;} ::1 form a Markov partition for f: A-> A
if

(a) For x € intR; with fx € int R; then f(Ws(x,R;)) < Ws(fx,Rj)
and (b) For x € intR; with f'x € int R; then f(Wu(x,R))) CW“(f"x,Rj)

where we write WS(x,R;) = Wi(x) \R;, W8(x,R)) = W,(x) N R; .
(Note. We shall always concern ourselves with the case diam.(R;)<<e<<diam.({2) .)

(I1.2) PROPOSITION. For a hyperbolic diffeomorphism f: M > M there exists an

arbitrarily small Markov partition for A.

PROOF. (cf. [10]) We can assume A < 7, otherwise we replace f by fN with AN < 7 .

Let n >0 be a constant, to be specified later. As a first approximation let <R(i)>

.. 0 . .
be a finite cover for Q2 where R, = [S? , U?] , with S? , U(i) being closed subsets

of (local) stable and unstable manifolds, respectively, with diam (S? v U(l)) <n.

0 . .
Generally, {Ri} will not be a Markov partition. For a second

approximation (incorporating first order corrections) we choose
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S} = S? v {[S? , fS;)] sint R? N f(int R?) # ¢} and

10 frey® O 0 i 0
U; = Uy o {0 U] ineR{  £1Gne Ry) # 9]

and set R =[5}, U!]. Here §! 5], Ul U and [,] is always well-defined if

1N is small enough.

Inductively we define, for each k> 1:

k k-1 k-1 k-1 . 0 Y
S.=Si U{[Si ,ij ]:mtRimf(mtRj)#fo} and

1

1

Ul; = U:H v {[f"U;(_1 , U]iH] sint R? A fi(int R(j)) # ¢} and R:( = [sl: , Uk]

Hence S‘i‘ > S‘iH , U]: ) U:(~1 and [, ] is well-defined, again, if 1 is small

enough. By construction: diam S'i( , diam UJ: < Nn.K (1+C(2AM)+C(21)2+--) which

can be made arbitrarily small by our choice of 1. (Here K > 0 is a constant

independent of k.)
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[~

(o]
Therefore, we can take S?o = l;J 0 S].( ,U?o = l_=J 0 U‘: and setR’; = [S:o , Uﬂ.

The rectangles R’; satisfy a ‘Markovian’ condition, but do not necessarily have
disjoint interiors nor are they necessarily proper. To overcome the first problem we
take suitable intersections of overlapping rectangles from R’; to arrive at a family
{R";}. Furthermore, since the intersection is relative to the interiors of rectangles

the family {R";} is the desired proper Markov partition.
The above ‘proof’, due to Bowen [10], is a generalisation of Sinai’s proof for

Anosov diffeomorphisms [92]. There is an alternative proof, also due to Bowen, in

[16] (cf. also [90)).
k
Let <Ri>i— 1 be a 'small’ Markov partition. We definea 0-1k xk matrix A by:

1 if f(ntR)N(intR)) # &
A(I’J) =

0 otherwise.

and we let 6: X A~ X, be the associated subshift of finite type.

(UL3) PROPOSITION. The map m:X, - A defined by mx)= [l fR is
n [o o]

well-defined.
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m
PROOF. Let B,(x)= (1 f"R, for m20. Clearly B,, OB, for p>m and
n m

diam B, < KAm for some constant K > 0. Therefore =n(x) is at most a single
point. We show n(x) is non-empty inductively: Assume for x € X A that B (x) # &.
Choose w € f'B,,(0x), z € B, (07"x), then [w,z] € B,,;(x). In particular,
B1(x) # 8. Proceeding inductively, B (x) # # for all p20 and therefore
n(x) # &.

The effectiveness of ¢ : X A2 Xy in modelling f: A-> A is summarised in

the following theorem:

(111.3) THEOREM (Bowen).
(i) = is Holder continuous and surjective.
(i) = isone-one on a set of full measure (for any ergodic measure of full
support) and on a dense residual set.
(iii) = is bounded-one.

(iv) frn = no.
PROOF.

(i) Since diam B <KA™ we see that ©t is Holder continuous with Holder
exponent a = (log A/log 6) where 0 <6 <1 is chosen in defining the metric on

X,. Since X A® and hence n(X A), is compact and w(X A) is dense we see that & is

surjective.
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(ii) 7 only fails to be one-one when fnx € dR, for some n where

00
dR = |JoR;. Since oR is closed and nowhere dense, U MR has a dense
1

n=-oo0

residual complement, by the Baire Category theorem.

If OR;={x€R;: WoxR) NintR; # 2], 3'R; = {x € 3R;: Wix.R) N

intR, # ¢} then oR; = IR, U O"R; . If R = UlasR, o'R = U oUR; then
i

fosR € o°R and f'0UR € 9uR. Since 9°R,dUR are nowhere dense they have zero

measure for any ergodic measure of full support.

2
(iii) We shall show Card nt''(x) <k2. Otherwise, choose {x(l)} € l(x)

to be distinct. Next choose N > 0 sufficiently large that {( a I)\I xl(\l))}:( +11 are

distinct (2N+1)-tuples. But (by the pigeon-hole principle) there mustbe 1 <i<j <

N
k2+1 with x() = (J) and = Y We can choose y®e [ f-%intR_O),
N=*N- 2N X0
) N
yve Nf‘°l int R,0 by the Markov condition. Then [fey® , f* yd)] e
o= - o

PN WENYD, R 0) R 0 and (290, f2y0] € N W0, R0 € R0 for

-N<a<N. Thus (XEII)\J,---’X% = (xg)\l,xg) , contradicting our hypothesis.
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00

(iv) This follows directly by construction since fm(x) = f( N f'nRxn) =

n = -0

00
n _fR, = (o).

n=- 1

It is easy to see that since f: A > A is transitive then sois ¢ : X X, If

Ay,...,A, are the irreducible component matrices of A then foreach 1 <i<n, we

. , .
can write A; = Ai@---eaA'i‘('), where AJ(1<i<n, 1<j<n()) are cyclically

moving classes of symbols. We take Q;= n(X A.) (1<i<n) and Q; = n(X A~j)
1 1

(1 £j <n(i)) (cf. [16] for more details) .
The original proof of Proposition (II1.1) by Smale involved stable manifold theory.

§1.2. Hyperbolic and Axiom A flows. The above approach for Axiom A
diffeomorphisms can be used for Axiom A flows by adapting these constructions to
the Poincaré map on certain transverse sections to the flow. Let M be a compact

C* manifoldand ¢,: M->M a c! Axiom A flow.

DEFINITION. We call a point x € Q wandering if there exists an open
neighbourhood U of x suchthat ¢, UN U = & for all sufficiently large t > 0.
The non-wandering set Q is the complement of the union of the wandering points

and is closed and ¢-invariant.

The flow ¢ satisfies Axiom A if
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(a) Q is hyperbolic, i.e. there exists a continuous splitting ToM =
EO® EU@ES into a Whitney sum of D@-invariant sub-bundles and there exist

C>0,A >0 such that:

ID,(v)Il < Ce-MiIvll, for ve Es, t20;
ID@_,(v)Il < Ce-Mivll, for ve Ev, t20

and EO° is one dimensional and tangent to the orbits of @.

(b) The closed orbits are dense in Q.
(I11.5) PROPOSITION (Smale spectral decomposition). We can decompose € =
iQIQi , where Q; are closed, @-invariant disjoint sets and ¢ | <, is transitive.
The original proof used stable manifold theory (cf. [15]).
The above proposition allows us to restrict attention to ¢, : ;- Q;.

More generally, we can consider any differentiable flow on a closed

invariant set A € M such that:
(a) ¢,: A- A is hyperbolic;

(b)  @,: A- A istransitive;

(c) the periodic orbits of ¢l, are densein A;
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0

(d) there exists a neighbourhood U D A with A = . n ¢ U).

= —-00

We call ¢, : A-> A a hyperbolic flow, and our principle examples are
¢, : ;> Q; . Henceforth we shall assume that A is neither a single closed orbit or

a fixed point.

STABLE AND UNSTABLE MANIFOLDS AND LOCAL PRODUCT STRUCTURE. As for the
case of diffeomorphisms the hyperbolic splitting of T ,M under the flow gives rise
to stable and unstable manifolds. An additional 1-dimensional sub-manifold is

contributed by EO.

For € >0 we define the (local) stable manifold for x € A by

W(x) = {y € M: d(@x, 9y) <¢, forall t>0and d(¢x, p.y) - O as t » +o0}
€ % O ¢,

and the (local) unstable manifold for x € A by

Wg(x)={yeM :d(Q_x,0_y) <&, for all t 2 0 and d(@_x,p_y) - 0 as t - +oo}.

For € >0 sufficiently small these form C! embedded discs with TXWZ(x) =

S u S
E_ and T,W_(x) = E_ (cf. [39]and [90)).
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The local product structure for hyperbolic flows refers to the following

property: for every &> 0 there exists m >0 such that whenever x,y € A with

d(x,y) < mn there exists unique It < & such that W:(cptx) N W:(y) # 4.

Furthermore, the intersection is a single point of A which we denote by <x,y>.

MARKOV SECTIONS. The basic idea is to construct transverse sections for the flow
which have a special Markovian property. We require that the Poincaré map
(induced by the flow) on these sections should transform them in a similar way to

that of a hyperbolic diffeomorphism and a Markov partition.

. n .
We choose C! transverse sections {Di}i=1 € M and subsets S;cCintT;

n
T, < (intD;) " A. We assume that U ¢,0)5; = A, for some real number o >0
1

=1
and we choose M = N(8) according to 8 << dis; (D;D) . If (xy) € T;xT; the
i#]

image <x,y> need notlie in T;. However we may project <x,y> to [x,yl € T;
along the orbits of the flow (providing « is sufficiently small).
DEFINITION. A set R € T, is a rectangle if whenever x,y € R then [x,y] € R and

properif R = (int R).

We want to construct sections {Rj} < OlTi which satisfy U‘P[o aRj=A,
1= ] ’
say,and (intR;) N (intR;) = & for i # j.
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>

Generically, a point x € A will generate a sequence in H {1,..k} asit

-00

traverses sections under the flow. Here Hnx € int Rxn, where H: URj - U R; is
J J

the Poincaré map. In order that these sequences correspond to a subshift of finite

type we impose an additional condition.

k
DEFINITION. The proper rectangles {Ri}i -1 are Markov sections for @,: A- A if

(a) For x € intR; with Hx € int R; then H(Ws(x,Ri))CWS(Hx,Rj) , and
(b) For x € intR; with H'x € int R, then H'(W¥(x,R;)) € Wu(H'x,R,),

where we write Ws(x,R j) , W“(x,Rj) for the projections of W::(x) , Wg(x) onto

0 g,

=t

The Poincaré map is discontinuous, so it is preferable to replace H as

follows. We choose T >> a such that Ce-MT-®<< 1. We can choose open sets

{U;} such that llJSiC LJ)UjC Ll}Ti and each U; is sufficiently small that

O1U; € 91,0185y and @_tU; € @19 58y ;) -
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This gives maps H; :Uj> S;;) and HJ_ :Uj> Sy (by projecting along orbits of
the flow) which are continuous on their domains and ’‘hyperbolic’, for suitable
1 <i(), k() < k. The final refinement is to replace {U;} by a smaller cover {Vj}
(whose diameter is small compared with the Lebesgue number of {UJ-}). Then for

- each Echoose j = j(f) with V< Uiy . This induces H*: V- S5 ,H™: V5 Sy .

Working with these maps we can repeat the constructions of Proposition

(I11.2) to find rectangles {R;} which are Markovian with respect to H*, H- : LLR;-

.liJ.Ri . (The rectangles can be made disjoint by flowing backwards or forwards
incrementally under the flow.) If H*,H- correspond to at most n iterates of

the Poincaré map H: J';LRi") J:LRi we may replace {R;} by

{H‘“R,-_n n---nRiOn---r\H"Rin} (again made disjoint, if necessary, by flowing for an

increment of time). These final sections are Markovian (with respect to H).

(IIL.6) PROPOSITION. For a hyperbolic flow ¢,: A > A there exist (arbitrarily

small) Markov sections for the flow.

The only minor complication in the above proof is that in constructing {R;}
from {V,;} the new Markov sections may interfere with the Poincaré map on the
old sections, i.e. encroach on the area between sections. (This would complicate the
final step.) However, by a few extra technical assumptions this possibility can be

eliminated (cf. [15] for full details).
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We define a subshift of finite type ¢ : X A X, by the k x k matrix

1 if H(@intR)N(int Rj) £
A(i,j) =

0 otherwise

00

and define 7 : X, - UT; by n(x) = . n H_n(intRxn). By analogy with the
1 = -0

diffeomorphism case:
(01.7) PROPOSITION. T is a well-defined map.

Let r(x) = inf {t >0 : @n(x) € th} for x€ X, . We can define a

suspended flow o:: X;—» X:\ and extend T : XL-) A by n(x,t) = r(x).

The effectiveness of 6: in modelling ¢ is summarised in the following

theorem.
(II1.8) THEOREM (Bowen).

1)) T is continuous and surjective
(i) T is one-one on a set of full measure (for any ergodic measure of
full support) and on a residual set

(iii) 7 is bounded-one
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@iv) n6:= o (forall t€ R).

The proof of this theorem parallels that of theorem (III.3), by working with

0:X, X, and H: WL T;,> WL T,. (For full details, cf. [15].)
1 1
Since @,: A-> A is transitive it is easy to see 0 : X - X is transitive.
§2.  Zeta-functions. To construct meromorphic extensions of zeta-functions for
hyperbolic systems it is convenient to work at the level of symbolic dynamics. We
can define zeta-functions for the symbolic systems which are explicitly related to
the zeta-functions for the hyperbolic systems they model. By proving results on

their domains at the symbolic system level we can infer results about their domain

for the hyperbolic system.

As before, it is instructive to study the diffeomorphism case before

considering the situation for flows.
§2.1. Zeta-functions for hyperbolic diffeomorphisms.
Let f: A-> A be a hyperbolic diffeomorphism.

DEFINITION. The zeta-function for f: A-> A is the complex function
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Card {x: f'x = x}
n b

00
C(z) = exp 21 zn zeC.
n=

(This converges to a non-zero analytic function for |zl < e™®, where h is the

topological entropy of f: A- A as explained in Chapter 6.)

The zeta-functionfor ¢ : X A~ XA is the complex function defined by

hod n
L) = exp ZIZ" Card {x: 0 x = x} zeC.
ns=

n
(The zeta-function is again well-defined for lzl<e-h.)

The zeta-function for ¢ : X A X, is clearly a simpler object since

1
det(I-zA) °

00
Card {x : onx = x} = trace (A") andso {(z) = expnz,l Z—:— trace (AD) =
In general there is not a one-one correspondence between closed orbits for

f and o (and so we cannot expect to identify the zeta-functions for ¢ and f).
The problem arises from periodic points for f lying on the boundaries of Markov
partitions. However, Manning produced a combinatorial argument to account for
these (see for example [33], [90]). Assume fix = x € T; 1(\---r\Tim then x is the

image under w of distinct periodic points x!,...,xm with periods Nj,..,N_, with

nIN;@ = 1,...,m) . Furthermore {)ﬂl]} :n= .= {x;)} m

i=1°
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(I1.9) LEMMA. Foreach j€ Z, x; # xjs where 1<r<s<m.

The proof is very similar to that of Theorem (III.3)(iii), except now m<k.

In particular, although f"x = x, we can only deduce that the (ordered)

family of rectangles in (G = 1,...m) is a permutation of ij G=1,..m). Let vy
n 0

denote the associated permutation and ¥ = (Yy,...,Yq) be the decomposition into
cycles. (Clearly the number of xj of period exactly n is precisely the number of
1-cycles.) Cycles of different lengths correspond to xi whose periods are
multiples of n. To compensate for this we need to introduce more subshifts. We
let T gc2" denote an (unordered) set of rectangles with non-empty
intersection and ltl the number of rectangles in t. For pairwise disjoint 1y,...,T, ,
with T,U--UT, containing rectangles with non-empty intersection (i.e. the

rectangles in the union contain a common point), we denote T = (Ty,...,T,) .

Given an n-tuple of positive integers i = (iy,...,i;), where n= Ny, with

lil = ij+-+i, <k we want to define a subshift 6():X > X, whose symbols are

Al

elements ¥ with It = i;, 1 <j<n. The matrix A® is given by:
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AORR)=

1 ifforeach 1<j<n, there exists a permutation B with A(R Ru (1)) 1

(1<1<l) whcre't-{R' R]} {R' R'}

1, (3] 19 (31

0 otherwise.

There is a unique map 7, : X, ;- A corresponding to T : X A A.

Al

(II1.10) LEMMA (Manning).

Forfry=ye A, ;(—1)"@)+1‘Card{(0@))"x =X€ X, MK = y} =1.

This only involves pairing indices i = (iy,....0y) and i’ = (iy,...,ip , m = lil).
This gives a cancellation (because of the difference in sign of (-1)"@)+1 s (—1)"@7”)

except for i = (m), which contributes the 1.

The next proposition follows directly from this lemma.

(IL11) PROPOSITION (Manning). {((2) = | rgd 0@/ J1 C0@|8e@ . In

1 lileven
i# (m)

particular, {«(z) has a meromorphic extension to € as a rational function.

There is a slightly sirhplified version of the proof above (due to Bowen)

given in ((18]).
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§2.2. Zeta functions for hyperbolic flows.

Let ¢,: A> A be a hyperbolic flow restricted to its non-wandering set. Let

Gt: X;-a Xf\ be a suspended flow modelling ¢ .

T
DEFINITION. The zeta function Ccr(s) for ©,: X"A—> Xi\ is the complex function

Ccr(s) = H(l -e-sMW)1 s € €, where the Euler product is over all closed orbits T
T

r . . .
for O, . (This converges to a non-zero analytic function of s for R(s) >h, where

h is the topological entropy of G7.)

One may also write this as

Cor(s) = exp - Z log (1_e—sk(t)) = exp z El(e-sut))n /n.
T

T n=

The zeta function for ¢, : A > A is defined similarly. Each of-periodic orbit 1
corresponds to a periodic orbit {x,0x,...,6""!x} of least period n, say, with A(T) =

Mm(x) = r(x) + r(ox) +-+r(c"-1x).

o K
Therefore, Ccr(S) = exp kgl ) z ',1;(,; : )
e

X =X
k = least period
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= exp z % z esTM(x)n

m
C X=X

(where we take m = kn).

As in the case of diffeomorphisms there is not a one-one correspondence
between closed orbits for ¢ and o7, and so QO, and {, cannot be immediately
identified. The difficulty arises with ¢ periodic orbits passing through the
boundaries of Markov sections. Bowen showed how Manning's combinatorial
argument for the discrete case could be modified for flows. (There are extra
complications for flows over and above those for diffeomorphisms. We want to use
the Poincaré map on sections to apply Manning’s lemma. The disjointness of the

sections suggests the need for a slightly more involved construction.)

For each rectangle R;(i = 1,...k) let P; = {pn(x) : t € [0,r(x)), xo = i} be
the "parallelogram” swept out by R;. Given anindex i = (ij,...,i;) (an n-tuple of
positive integers with |il =i;+-+i;<k) we define a set of symbols %=

Ry 5 TyoeensTy) With Ty,..,7, C 2 Rp-Rih disjoint, but whose sets have a common

intersection, and Card 1; = i;(j = 1,...,n), with Ry < _01 T; . Furthermore, we
J =

require that R, , be the ‘leading rectangle’ in the natural sense. We define a

transition matrix indexed by © by
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AGGR) < ! 1ij1 Tj,jlgl’tj differby Ry, R, with ARg,R’,) = 1

0 otherwise.

There is a corresponding subshift ol : X A X460 and induced maps r;: X 5= R*,

Al Al

NiIXA@)—)A.

(Il.12) LEMMA (Bowen, after Manning). For a closed ¢-orbit T of least period £

we have

1= 2 ()"0 Card {1, m(1) = 1, A(r) = &

[.
(where t; denotes a closed orbit for ci').

The proof is essentially the same as that of Manning’s lemma (except that

there are slightly more details to pay attention to).
The following result follows directly from the above lemma.

(II.13) PROPOSITION (Bowen, after Manning).
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Lo = ugd Lo/ Co0®) Ce®,

i1 ileven
i# (m) )
where {(s) correspondsto o) with i = (m).
(We refer the reader to ([15]) for full details of proofs.)

Notes

§1.1. Anosov diffeomorphisms were originally introduced by D.V. Anosov, under
the name of C-diffeomorphisms, in 1962 [5]. Smale proposed the generalisation to
Axiom A diffeomorphisms, see for example his 1967 survey paper [95].

The stable manifolds and local product structure were examined in a series
of papers by Hirsch, Pugh, Shub, et al., culminating in their 1975 book [39].

The construction of Markov partitions for Anosov diffeomorphisms was
done by Sinai in 1968 [92]. This followed the highly illustrative but special case of
two-dimensional toral automorphisms studied by Adler and Weiss. The
generalisation to Axiom A diffeomorphisms is due to Bowen [10]. There is an
alternative approach using the 'shadowing property' in Bowen's 1975 book [16].
Ruelle proposed a further generalisation to Smale spaces in his 1978
Thermodynamic Formalism book.

§1.2. Anosov flows were introduced by Anosov (as C-flows) and were studied
extensively by him in his thesis, published in English in 1967 [5]. They were
intended to be generalisations of geodesic flows on compact surfaces with strictly
negative sectional curvatures. Smale proposed the more general Axiom A flows.
See, for example, his survey paper [95].

The stable manifold theory and local product structure are dealt with in the
work of Hirsch, Pugh, Shub [39].

For 3-dimensional manifolds the symbolic dynamics for Anosov flows were
constructed by M. Ratner in 1969 [73]. The generalisation to any dimension by the
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same author followed in 1973 [75]. Bowen's construction of symbolic dynamics for
Axiom A flows, extending his own work on Axiom A diffeomorphisms, appeared
in the same year [15].

§2.  The question of rationality of {(z) for Axiom A diffeomorphisms was
originally posed by Smale in his article [95]. The problem was completely solved by
A. Manning in his 1972 Ph.D. thesis. Earlier partial results, include those by
Guckenheimer and Williams. For topological approaches, based on some form of
Lefschetz fixed point theorem, see for example Franks [32] (cf. also Fried's paper
[33]). The extension of Manning's proof to flows is due to Bowen [15].
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APPENDIX IV

GEODESIC FLOWS

Probably the single most important example of an Axiom A flow is the
geodesic flow on the unit tangent bundle of a compact manifold with strictly
negative sectional curvatures. We now want to give some indication as to why
these flows satisfy Axiom A (where the entire unit tangent bundle is the non-

wandering set).

Assume M is an n-dimensional C® compact Riemannian manifold whose
Riemannian metric <,> has strictly negative sectional curvatures. The geodesic
flow ¢ : T M>T,M (on T/M = {(x,v) € TM : <v,v>, = 1}) is defined as

follows:

Given (x,v) € TM let y:R - M be the unique unit speed geodesic
through x € M in the direction v attime t =0 (i.e. Y(0) = x, ¥(0) = v) then set
@o(x,v) = (Y(1),¥(1)). (Thus ¢, moves the tangent vector from y(0) to y(t) along

the geodesic determined by v.)

To establish hyperbolicity we need a better understanding of D¢, : T(T,M) -

T(T;M). For convenience we shall consider TM rather than T, M.

The map n: TM > M given by n(x,v) = x has a derivative Dri vy

T(x’v)(TM)-> T,M . We can define a second (linear) map K : T(x,v)(TM) -TM
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by first choosing for £ € Twv(TM) acurve Z: (-€,€)-> TM tangent to € at time
t = 0. For the composite curve o = moZ: (-£,€)» M, say, wecan set K§ =V Z

(i.e. the covariant derivative of Z along o attime t = 0).

For each (x,v) € TM we can decompose T(X'V)(TM) = (Ker D) @ (Ker K)
(cf. [5] for a detailed account).

Using the Riemannian metric <,> for M we can define a metric for TM

by <&My = KD7E, DN, + <K& KnD>, , for En € T, ,(TM).

Returning to the flow, we have for every point (x,v) € TM an associated
geodesic y with y(0) = x, ¥(0) = v. Given € T, (TM) we associate with it the
Jacobi field Y, along v such that Yg(x) = D&, V. Ye(x) = KE. The map &p Ye

is a linear isomorphism from T ,,(TM) to Jacobi fields on 7y (where 7y is

(x,v

determined by (x,v)).

The derivative of the flow D¢, : T(TM) -» T(TM) is described by
DrDe &)l = Y (v(1)) and K[Dg,(E)] = (V,Y)(¥(1)).

To check the hyperbolicity condition it is convenient to introduce an adapted
frame field for the geodesic 7y i.e. a system of parallel orthogonal vector fields
€;(1),....e,(t) along y with y tangentto e (1) at t=0. A C® vector field Y on

y is identified with an (n-1)-tuple (y,(t),....,y,_,(t)) of C* functions y;: R-> R
n-1 n-1

(i=1,...,n-1) by Y(y(v)) = 21 y;(De;(t) and VYY('y(t)) = z,l Y (e, .
i= i=
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The sectional curvatures of M (with respect to <,>) have an important
influence on Jacobi fields Y, and hence on D¢,. Let R denote the curvature
tensor for M. (Recall R(X,Y)Z = [V\Y,VX]- V[x,Y]Z-) We can define an
(n-1) x (n-1) matrix by Rij(t) = <R(e, (1), e;(1) e (1), ej(t)>, foreach te R. A
perpendicular Jacobi vector field on 7y is defined by t Y(y(t))x, where x € R~-!

and Y(y(t)) is a solution of the (n-1) x (n-1) matrix differential equation

Y"(y(®) + RMY (Y1) = 0.

(For a surface, this reduces to a single differential equation, where R(t) is the
curvature of the surface at y(t).)
Since the solutions to this equation are uniquely determined by the initial

conditions, there are 2(n-1) independent perpendicular Jacobi vector fields.

The entries Rij for the matrix R are sectional cuvatures for the manifold
M, which by hypothesis are all strictly negative. This is the main point since the
solutions either decay exponentially fast (in (n-1) dimensions) or blow up
exponentially fast (in (n-1) dimensions) cf. [5]. In our previous discussion this

corresponds to the hyperbolicity of ¢ : T M- T M.

CONSTANT CURVATURE AND FUCHSIAN GROUPS. There are alternative,
somewhat more canonical, ways of constructing suspended flows in the case of
geodesic flows for compact surfaces of constant negative curvature. The origins of

this approach lie in the work of Morse and Nielsen [59]. The refined version we
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shall describe is due to Series some of the initial steps having evolved from joint

work with Bowen. Cf.[19], [87]. Closely related work is due to Adler and Flatto [4].

Assume that S is a compact surface of constant curvature x = - 1. Let
¢, : N> N be the associated geodesic flow on the unit tangent bundle N = T,S.
The universal cover S for S, with the metric lifted from S, can be identified with

the interior of the unitdisc D = {z€ C:lz < 1} with the Poincaré metric ds2 =

% (dx2+dy?)/(1-(x2+y?))2, where z = x+iy. The deck transformations for the

projection ®:D - S form a discrete group I' of orientation preserving isometries
of (D,ds). Such a group is called a Fuchsian group. For the Poincaré metric every
isometry takes the special form of a linear fractional transformation of the

type g:zb (az+b)/(bz+a) where a,be C,lal?-Ibl = 1.

The geodesics in (D,ds) take an especially simple form. As a point-set they
are circular arcs in D which meet the unit circle K = {z : |zl = 1} perpendicularly.
In particular, a pair of distinct points (x,y) € K x K-diag. (K x K) determine a
unique (directed) geodesic ¥ in D by specifying its asymptotic points, i.e. Y(+00) =

Y, Y(-0) = x.

Clearly we can identify S = D/I". However, there is a canonical ‘copy’ of

S in D.

Forany ge ' wecall C(g) = {ze D:lg'(z)l = 1} the isometric circle of
g. (This set is a geodesic arc in D.) Since (g'g)'(z) = 1 = (g")'(g2).g'(2) we
observe that gC(g) = C(g™). There exists a (non-unique) special choice of (finitely
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many) generators I'g € I' such that, in particular, the compact region of R exterior
to all of the arcs {C(g): g € I'j} represents a copy of S in D (with piecewise

geodesic boundaries). R is called a fundamental region of T'.

Let ¥ denote a directed geodesic on S then 7y will have many lifts to D.
Assume, for the sake of argument, we choose a lift ¥ on D with ¥ N R+ 4. Let
¥ have base points (x,y) € K x K (i.e. ¥ is forward asymptotic to y, say, and

backward asymptotic to x).

The geodesic flow ¢ : T;S-T,S lifts’ to a geodesic flow §,: T,D- T,D
on the unit tangent bundle T;D of D. Consider the action of @, on the lifted
geodesic Y. If v is a tangent vector for R N ¥ then the geodesic flow @, will

transport v to the boundary of R and then into a new region gR, g€ I';, say.
Observe that the action of g” moves this region back to R and that ¥ is

replaced by g'y with new base points (g, g'y). The 'Markov partition’ and

'symbolic dynamics’ we want to describe are association with this action on K x K.
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Series shows how to construct a (finite) partition of K into intervals (or
arcs) {I(g):ge Iy} (in particular, I(g) lies in the part of K interior to C(g)) and
defines f* : K- K by f*|I(g) = g. (There is a minor ambiguity at the finite set of
endpoints.) Without loss of generality assume that R was chosen with boundary

pieces which meet perpendicularly (cf. [89]), then relative to a suitable sub-partition

{I~}]i‘=l of {I(g): g€ Iy} the endomorphism f* : K » K becomes Markov, and we

1

can write y =nﬁ 0 (f")™I, , say. Similarly, we can define a second endomorphism

Yn’

f-: K-> K by f~|J(g) = g (for a partition {J(g) : g € I'j}) which is Markov

relative to some subpartition {J;} :(=1 of {I(g):ge Ty}, and we can write x =

nij (f_)-n an )

The sequences z = (..., X,, Xy, Xg, ¥g» ¥q»-) correspond to a (two-sided)
shift X, . For z€ X, we can associate the directed geodesic ¥ with base points
(x,y). For "most” geodesics ¥ N R # & and we define r(z) = length (¥ N R)e R
and let m(z) € T DI0R be the tangent vectorto ¥ as it enters R. (For a detailed

account of all cases, including the case ¥R = &, cf. [89]). We extend to

n:X AN by n(x,t) = @,n(x) (with obvious identifications). Finally, we have the

following analogue of Lemma 9.1:
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(1IV.1) THEOREM (Series)

6)] T is continuous and surjective.
(ii) T is one-one on a set of full measure (for every ergodic measure of
full support)

(iii)  m is bounded-one (in fact, at most 4-to-one)

. r
@iv no, = Q7.

Notes

The proof that geodesic flows for compact manifolds with negative sectional
curvatures are Anosov was proved by D.V. Anosov in his thesis [5].

Coding geodesics by generators, for surfaces of constant negative curvature, has
historical roots in the work of Nielsen, Hadamard, Koebe and Morse. The
foundations for the ergodic theory of geodesics flows were laid by Hedlund [37] (see
also [41]).

The systematic account we describe is basically due to C. Series. This
started with a collaboration with Bowen, which was completed after his death in
1978 [19]. However, a version of the symbolic dynamics as we describe it did not
appear until her later 1981 paper [87]. In another paper Series gives an alternative,
and perhaps more appealing, way of constructing the intervals on K [89].
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APPENDIX V
PERTURBATION THEORY FOR LINEAR OPERATORS

Here we present a brief account of the analytic perturbation theory referred
to in earlier chapters. Complete details may be found in Kato's book [44] or

(sufficient for our needs) in Bhatia and Parthasarathy's lecture notes [8].

Let B be a complex Banach space. A map f: C- B is said to be analytic
if Lof:C—-C is analytic in the usual sense for any bounded linear functional
£:B-C. If B, ,B, are complex Banach spaces then g: B, -» B, is said to be
analytic if gof:C- B, is analytic for any analytic map f:C - B, . These
notions may be localised and in particular one may define real analyticity for maps

of open subsets of real Banach spaces into real Banach spaces.

Let L : B - B be a bounded linear operator on a complex Banach space (if
B were a real Banach space we could take its complexification and extend L

accordingly) and define
SpL) = {A € € : (AI-L) is not invertible}
to be the spectrum of L.

If the closed bounded set Sp(L) = 21 U] 22 is decomposed into disjoint
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non-empty sets 21 , 22 and if T 1is a closed simple curve in € disjoint from
sp(L) which has 21 in its interior and 22 in its exterior then the bounded linear

operator 1t : B> B given by

R B PR
m= - rJ(z L)'dz

is a projection i.e. lInl = 1 and n? = m. Moreover we can writte B = B, ® B,
where B, = n(B) B, = (I-m)B are closed L invariant subspaces and sp(LIB,) = 21 ,

sp(UBz) = 22 .

Assume now that Zl = {A} consists of a single simple eigenvalue isolated
(by T') from the rest of the spectrum of L then for any bounded linear operator
L': B- B sufficiently close to L the spectrum of L' may be written sp(L’) =
Z'l v 2'2 where Z'l = {A'} consists of a single simple eigenvalue isolated from
2'2 by I'. The projection = associated with Zl = {A} is called the
eigenprojection of A and the map L'» ' which associates the eigenprojection to

the operator is analytic in a neighbourhood of L.

As a consequence the map L' - A’ which associates the eigenvalue A’ to
the operator L' is analytic in a neighbourhood of L. A further consequence is that
2'2 remains within a preassigned neighbourhood of 22 if L' is sufficiently close

to L.

Finally we remark that if A is an isolated eigenvalue of L of finite

multiplicity n, then for sufficiently close operators L' the spectrum of L' within
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I' will consist of eigenvalues A’;,..,A, and L'- ' will again be analytic.

However one cannot assert that individual eigenvalues are analytically dependent on

L' butonly that Trace L' = A';+-+A/, and det L' = A’;--A’ are analytic.
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RESUME
Ce volume a pour sujet principal trois théorémes qui décrivent, dans leurs contextes
appropriés, la distribution dans "l'espace, le temps et la symétrie" d'orbites fermées
pour les systemes hyperboliques. Chacun des résultats est dérivé par des méthodes
inspirées de la théorie analytique des nombres, et implique aussi 1'analyse d'une
fonction générale zéta. La fonction zéta en question est une fonction génératrice
pour les orbites fermées et pondérées de la suspension d'un déplacement de type fini
(ou d'un flot hyperbolique). Pour déterminer les propriétés analytiques et
méromorphiques de cette fonction z€ta, on étudie les valeurs caractéristiques d'un

opérateur "Ruelle-Perron-Frobenius" associé.

Les chapitres précédents étudient les propriétés de base de déplacements de
type fini, le théoréme Ruelle-Perron-Frobenius, les états d'équilibre et la pression.
De 13, on passe aux relations entre les propriétés spectrales de 1'opérateur ci-dessus,
et aux orbites périodiques d'un flot suspendu. Les méthodes classiques (théoréme
d'Tkehara) nous permettent ensuite de prouver, dans des conditions modérées, une
formule asymptotique pour le nombre d'orbites fermées, et aussi un résultat
d'équidistribution spatiale (pondérée) pour les orbites fermées. On prouve aussi un
analogue du théoréme de Chebotarev, dans le contexte d'extensions de groupe

compactes de flots hyperboliques.

Les autres sujets abordés sont
@) le transfert des résultats d'un contexte symbolique a un contexte de variétés,
(i)  unrésultat optimal pour les extensions méromorphiques de la fonction zéta,

(i)  les changements de vélocité et la relation entre la mesure Sinai-Ruelle-
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Bowen, et la mesure d'entropie maximale, finalement
(iv)  les théorémes de type Chebotarev pour les extensions Z 9, et la mesure

Patterson-Sullivan.
On conclue avec des appendices sur le théoreme d'lkehara, les cocycles

unitaires, les partitions de Markov, les flots géodésiques et la théorie des

perturbations.

268



