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A Canonical Brauer Induction Formula 

Robert BOLTJE 

Introduct ion 

Throughout this paper G denotes a finite group, R{G) the character ring of G and (—, —) the 

usual inner product of R(G). 

In 1946 Richard Brauer proved (cf. [Brl]) that each virtual character \ of G can be expressed 

as a linear combination 

X = E 
t 

zi nd ghicpi 

where zi € Z, Hi < G and tpi G Hi = Hom(if,, C*). Brauer was motivated by the question 

whether Artin L-functions of any virtual character have a meromorphic extension to the entire 

complex plane. This was known for one-dimensional characters, and it was also known that the 

Artin L-functions are invariant under induction. So Brauer's induction theorem gave a positive 

answer to the above question, and this is a very typical example for the applications of the 

theorem in number theory. However, Brauer's theorem is a mere existence theorem, and it 

remained the question for an explicit formula, associating to each virtual character x an integral 

linear combination as above. A first result in this direction is again due to Brauer, who gave in 

1951, cf. [Br2], an explicit formula to Artin's induction theorem, i.e. a formula which induces 

from cyclic subgroups and has rational coefficients. It was not before 1986, that there appeared 

V. Snaith's explicit version of Brauer's induction theorem, cf. [Sn]. His formula is based on 

topological invariants, in particular on Euler characteristics of quotient spaces of the unitary 

group U(n). 

Here we give an explicit and canonical formula for Brauer's induction theorem by algebraic and 

combinatorial methods. 'Canonical' means that this formula is unique among all the expressions 

for x 35 above, if a certain functorial behaviour with respect to G is required. To state this 

functorial property it is convenient to introduce the free abelian group R+(G) whose basis is 

S.M.F. 
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R. BOLTJE 

given by the G-conjugacy classes of pairs( h,cp), where H < G and <p G H, cf. [De], p. 11. 
We consider a formula as a map from R(G) to R+(G), such that it becomes the identity, if 
the symbols (H,<p) are replaced by md^(p € R(G). It turns out that R+(G) carries a lot of 
structures, which we investigate in section 1. Using the results about R+(G) we define the 
formula aG : R(G)—• R+(G) and prove its natural properties, cf. theorem (2.1) and cor. 
(2.12). In section 3 we apply the methods developed in the previous sections to obtain an 
induction formula which induces only from subgroups of a fixed type T, cf. theorem (3.2). In 
this case however, we don't have integral coefficients any longer. For the type of cyclic groups 
we obtain again Brauer's explicit version [Br2] of Artin's induction theorem. The cases in which 
the formula is integral are determined in (3.12) and (3.13). Unfortunately the formula is not 
integral for the type of elementary groups. For the type of cyclic groups we obtain that the 
"worst" denominator in the formula for the characters of G coincides with the Artin exponent 

of G. 
The formula aG we introduce in section 2 is different from Snaith's formula in [Sn], but there is 
a relation between them which can be found in [Bo], chap. IV. 
I am grateful to G.-M. Cram for his proof of proposition (2.24). 

1. T h e ring R+(G) 

For a finite group G we consider the set MG of all pairs (H,<p) where H < G and <p G H = 
Hom(#, C*). G acts from the left on M.a by componentwise conjugation: \H,<p) := (9H, Sp) 
where gH = gHg"1, V := <p(9~l-9)t f°r 9 £ G. We denote the G-orbit of (H,ip) by (H,<p)G and 
the set of 6?-orbits by A4G/G. Let R+(G) be the free abelian group with the basis AiG/G, then 
we have the well-defined map into the character ring R(G) 

(i.i) ba :R+(G)—>R(G), (H cp) indgh cp 

bG is surjective by Brauer's induction theorem [Brl]. We want to construct a map 

(1.2) aG : H(G) —> R+(G), X» 
(Hcp) 

E 
G£MG/G 

a (Hcp) a (x)(Hcp) a 

with bGaG = id#(G), i.e. 

(1.3) X = E 
(H,cp) GeMG/G 

g (tf,v>) 
<?(x)ind£v? 
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CANONICAL BRAUER INDUCTION FORMULA 

for all x € R(G). Moreover we want aG to have a good functorial behaviour with respect to the 

structures carried by R(G) and R+(G). 

(1 .4) Remark. We may consider R+(G) as the Grothendieck group of the category of mono­

mial representations of G. Its objects are finite dimensional CG-modules V ( C G denotes the 

group ring) with a fixed decomposition V = V\ ©... © Vn into one-dimensional subspaces, called 

the lines of V, such that G permutes the lines. V is called simple, if its lines are permuted 

transitively by G. A morphism F : V = V\ © ... © Vn —• W = W\ © ... © Wm of two mono­

mial representations of G is a CG-linear map such that for each i G { 1 , . . . ,n} there is some 

j G { 1 , . . . , m } with -F(Vi) C W^. For monomial representations we may define in an obvious way 

direct sums, tensor products, duals, restriction maps along group homomorphisms and induction 

maps along subgroup relations. Every monomial representation of G is a unique direct sum of 

simple ones and the isomorphism classes of simple monomial representations are in a bijective 

correspondence to MG/G by the following construction: For simple V = V\ © ... © Vn define H 

to be the stabilizer of V\ and if G H to be the action of H on V\. The choice of another line 

Vi gives a conjugated pair g(H,<p). bG is induced from the forgetful functor which associates to 

every monomial representation of G the underlying CG-module. For more details of the above 

statements see [Bo] chap.I §1. 

The constructions described above provide R+(G) with the following structures: 

Multiplication. The tensor product on monomial representations is translated into a commu­

tative ring structure on R+(G) given by 

(1 .5 ) (hcp)g(kY)g = E 
aeH\G/K 

(hcp)g(kY)gvp 

The unity is ((7,1) . R+(G) contains the group ring ZG = ©v€£ Z((7,CP) as a subring. Note 

that the G-orbit of (G, tp) consist only of this single pair. So R+(G) is a ZG-algebra and bG is a 

ZG-algebra map. We have the ZG-module decomposition 

R+(G) = ZG 
(H,v>) £MG/G,H<G 

Z(H^) , 

with the corresponding projection map 

(1.6) RG/R+)—ZG(hcp)g(kY)g(h?CP°, 
iiH = G\ 

0, if H < G. 
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Also R{G) is a ZC?-algebra, since it contains ZG as a subring. This gives rise to the ZG-module 

decomposition 

R(G) = ZG 
XelTTG\G 

Zx 

where IrrG is the set of irreducible characters of G. We obtain the corresponding projection 

(1 .7 ) Pa : R(G) > ZG, ITTG3 Y *-> (hcp)g(kY)g 
0, otherwise. 

Note that irG is multiplicative, which is in general not true for pG. 

Restriction. The restriction of monomial representations of G along a group homomorphism 

/ : G' —> G gives rise to the ring homomorphism 

(1 .8 ) res+, :R+(G)^R+(G'): )^R+(G') E 
»€ / (G' ) \G /W 

(/-i(*ff), W ) ° -

The diagram 

(1 .9 ) 

R+(G) 
ba 

R(G) 

res+/ res/ 

)^R+) df R(G>) 

commutes, since the corresponding diagram on the level of the categories of (monomial) repre­

sentations commutes. For the same reason we have 

(1 .10 ) res+/// = res+/»res+/ 

for another group homomorphism / : G" —• G1. If / is given as the inclusion of a subgroup 

H < G, we write res+£ instead of res+/ and obtain from (1.8) 

( î . i i ) r e s ° : R+(G) R+(H), )^R+(G') E 
sGH\G/K 

xxx)^R+(G') 

If / :G—>G/N =:G is the canonical surjection for a normal subgroup N of G, we obtain 

( 1 . 1 2 ) res+,(ff/JV,Y>)° c 
)^R+(G') 

where N < H < G and <p € H vanishes on N. Thus res+/ maps the basis MQ/G injectively into 

the basis MG/G. We use the restriction maps to define the ring homomorphism 

(1 .13) Po : R+(G) 
H<G 

ZH)^R+(G')X R+(G'))^R+(G') 
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We define for (J?, </?), (if', ip') € M.G the natural number 

(1.14) {K,%L>) < %H,<fi) coefficient of the basis element (H,<p)H € R+(H) in {K,%L>) < %H,<fi) 

Moreover we define natural poset structures on MG and MG/G by 

(1.15) 
{K,%L>) < %H,<fi) Ä" < J? and ip = ifi\K 

(K,M <(H,vf {K,%l>) < %H,<fi) for some g 6 G 

Note that infima exist in Ma but in general not in Ma/G. With the notation (1.14) we have 

(1.16) 
7(H,y> ).(*',*') = #{stH\GIH'\{H,cp)< \H,cp')i 

=UeG/H'\(H,cp) <H',<p')}. 

In fact, the first equation is clear from (1.11) and the second equation follows from the fact, that 

if s satisfies '(#, <p) < \H',<p'), then HsH' = H*H's = 9H's = sH'. Prom (1.16) we deduce 

(1.17) 

HGG(»,„),(*',„') — 7\H,V), '(*',*>') for all 5,* G G, 

{K,%L>) < %H,<fi) {K,%L>) < %H,<fi) 

c) 7, G(H,V),(H,v») {K,%L>) < %H,<fi) 

d)lf(H',<p'UH',<?') divides7Sr.»).(jr'V)-

Here NG(H,tp) denotes the stabilizer of (H,(p) in G. Note that 7(H,V),(J^v')/7(H',*').(*'.*»') *S 

number of elements of MG in the G-orbit of (H', (p1) which are greater or equal to (H, (p). 

With the definition (1.14) we can express pG as follows: 

(1.18) {K,%L>) < %H,<fi) = ( 
cv 

7(H,V»),(»',V')</?)H<G • 

G acts on the ring \[H<G7tH by conjugation, and from (1.17) a) we see that the immage of 

pG is actually contained in the subring ( YlH<G ZH)° of G-invariant elements. Moreover pG is 

injective. In fact, let 

x = E 
('p'feMG/G 

{K,%L>) < %H,<fi) ekerpG 

and assume that H < G is a subgroup which is maximal with the property that a 
xc 

•a ± 0 for 

some <p G H. Then we have 

{K,%L>) < %H, xx 

<p£H 

bf 

H',<p')eMG/G 
7(H,vO.(tf'.v')a(H' ,<p')G '9 
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and by (1.17) b) and the maximality of H we obtain for the coefficient of <p in the last expression 

the number 7̂ fî )i(Hv) i=- 0. This contradicts the hypothesis x G kerpG. Since ( I W Z f f ) G 

has the same Z-rank as R+(G), we obtain 

(1.19) Proposition. pG is an injective ring homomorphism with unite cokernel. 

Besides the *y?H . {H, ,'s we will need a more general constant. For U < G, (H,<p) G MG and 

{K,%L>) < %H,<fi) we define the nonnegative integer 

(1.20) {K,%L>) < % 

{K,%L>) 
:= the coefficient of res+°(ff)Vp) {K,%L>) < %H,<fi) 

Dbserve from (1.11) that 

(1.21) 6 
£ (H9<p 

£ (H9<p 
= 0 for (K^f £ (H9<p) . 

Moreover for (K,\j>) G MVìU < G we have 

(1.22) 6 HT*)0 
v£ (H9<p x 

\V-Na(K,j>)\ 

\U\ 

In fact, 

6 
.(*v<)G 
£ (H9<p 

= #{s€U\G/K\(K1rf,)U c (UH 9K, V ) }-

And for s e G satisfying this condition, there is some u G U with (K,ip) = (U fi USK, uty), 

implying K = USK and tp — uty. This shows that us G NG(K,tp). Hence the double coset 

UsK = UusK = UusKus = Uus = Us is just a left coset. Conversely, every s G NG(K,tp) 

satisfies the above condition. 

Induction. For H < G we define 

(1.23 v£ (H9<p£ (H9<p Ä + ( G ) , £ (H9<p £ (H9<p 

Note that we have 6Gind+J = indjò,,. 

Duals. Taking duals of monomial representations yields the map 

(1.24) crG : R+(G) R+(G), £ (H9<p £ (H9<pv 

which commutes with restrictions to subgroups. Moreover bG commutes with the constructions 

of taking duals on R+(G) and R(G). 
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Adams operations. For k G Z we define the fc-th Adams operator to be the ring homomor-

phism 

(1.25) £ (H9<p£ (H9<p •R+(G), C f f ^ f £ (H9<pv 

Obviously Wk+ commutes with restrictions to subgroups. 

Bilinear form. We define a bilinear form l - - l o = [ - . - ] on R+(G) by 

(1.26) H E J B M E B B B M i cccH9<p£H9<pG 

If we arrange the basis MG/G of .R+(G) in a sequence such that £ (H9<p precedes (H'<p'f 

whenever (H,ip)G < (H1\<p')G\ then the quadratic matrix corresponding to this bilinear form is 

an upper triangular matrix 

(1.27) (G)=(7(K,„),(H',V>'))£ H9<p 
£ (H9<p£ (H9<p£ (H9<p 

with the non-zero entries (NG(H,ip) : H) in the diagonal. Thus T(G) is non-singular and the 

bilinear form [—, —] is non-degenerate in both arguments. 

(1.28) Proposition. 

a) LetU<G,xe R+(U) and y G R+(G), then we have 

(1.29) [ind^(x),y]G = [x,res+^(y)]u. 

b) Let X, y G R+(G) and let <p G G, then we have 

(1.30) [(<3,v?)G-x,(G,v?)G-y]G = [x,y]G. 

Proof, a) It is enough to prove the assertion for x = (K,ip)U and y = (H,ip)G. The left hand 

side of (1.29) equals the number #{s G H\G/H' \ (H,<p) < XH',ip')}, cf. (1.16). Using (1.11) 

and (1.16) the right hand side is given by 

x 

seu\G/H 
# { t £ U / U r \ ' H \ { K , Y ) ( K , Y ) <  Xun'H, V ) } = #{t€U/Un°H\(K,4>) £ (H9<pcv 

Now the decomposition UsH = U tsH completes the proof. 
teu/UnsH 

b) Assuming x,y G MG/G equation (1.30) becomes an easy consequence of (1.16). 
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2. T h e Brauer induction formula 

In section 1 we have seen that the family of maps 6G, indexed by all finite groups G, is a natural 

transformation between the ring valued functors R+ and R on the category of finite groups. We 

are interested not only in a section aG of bG for each finite group G separately but in a family of 

such sections with functorial properties. For a family of maps aG : R(G) —• R+(G) we consider 

the following two conditions: 

( * ) 

£ (H9<p cvv R+(G) 
resS res+S 

RiH) an £ (H9<p 

commutes for all 

subgroup relations H < G, 

( * * ) 

R(G) *G £ (H9<p 
PG c 

ZG 

commutes for all 

groups G. 

For the rest of this section we will be concerned with the proof of the following main theorem: 

(2.1) Theorem. There is one and only one family of maps aG : R(G) —• R+(G) satisfying 

the conditions (*) and (**). Using the notation 

M x ) = E 
(H,v>) eMG/G 

£ (H9<p£ (H9<p£ (H9<p x € R(G), 

this family has the following properties: 

a) Discriptions of aG: 

(i) The coefficients a (Hp)^o(x) are *ne unique solution of the linear equation system 

2.2 T(G)' £ (H9<p 
£ (H9<p c <PIX\H) £ (H9<p 

or equivalently of the following equations, indexed by (H,(p) £ M.G/G, 

(2.3) ( v , x l . ) = E 
(H,<pf <(H',<p') eMG/c 

7(H>V>),(H^')A/H; /)G(X)« 

(ii) aG is the unique map such that the following diagram commutes 

(2.4) 

R(G) 
[PHresH)H<G 

c R+(G] 
PC 

(rL,<Gz#)G 
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(iii) aG is the right adjoint map of bG with respect to [—, —] and (—,—). 

(iv) Let p>(H,V),(H',v') denote the Möbius function of the poset M.G, i.e. (cf. [R]) 

£ (H9<p£ (H9<p E 
t<0 

(-iy#{MG-chains (H,<p) = (JTo^o) < . . . <(Hi,cpi) = ( # ' , c p ' ) = } 

and let c(Hcp)g(h'cp)g be given by 

C(H,V)G,(H',V')A Y 
i>0 

(-iy#{i-chains in MG from (#,<£>) to the orbit (H',tp')G}, 

then we have for all y £ R(G) the explicit formulae 

a) £ (H9<pv h 
d 

£ (H9<pv E 
(H,<e) < ( H ' , ^ ) €Mo/G 

£ (H9<p£ (H9<p£ (H9<p 

( 2 . 5 ) 

6) aG(x) = 
1 

IGI E 
£ (H9<p£ (H9<p£ (H9<p 

H9<p£H9<p£££H9<pH9<pH9<p\b\ihm 

b) bGaG = icfÄ(G), i.e. for aii x € -R(Cx) we have 

( 2 . 6 ) X = E 
(H,<p)aeMG/G 

£ (H9<p£ (H9<p£ (H9<p 

c) aG is ZG-linear and for each (p EG we have aG(<p) = {G,<p)°. In particular, aG is trivial for 

abelian groups G. 

d) For each group homomorphism f : G' —• G, the following diagram is commutative 

(2 .7 ) 

QR(G) df QÄ+(G) 
resj res+J 

QR(Gr 
aG, 

1R+(G') 

e) aa commutes with taking duals, i.e. a0(x) = &a<ia(x) f°r nil X € R(G). 

f) For allk€Z and x e R(G) we have 

(2 .8 ) * * ( X ) = E 
(H,<pfeMG/G 

£ (H9<p£ (H9<p£ (H9<p 

and if (k\G\) = 1, then &k and Yk+ commute with aG. 

g) For H <G let trG : Gab —> Hab be the the transfer map. Then we have for all x 6 R(G) 

2.9) detx = 

(H,<p)G€MG/G 

(VotrS)<W,Cx). 

3 9 
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h) For all x e R(G) with x( l ) = 0 we have 

(2io; X = E 
(H,vfeMG/G 

ajH^a(x)ind°(<p - 1„) . 

j) For all x € R(G) we havt 

( 2 . 1 1 ) 

a) E 
(H,¥>) €Mo/G 

£ (H9<p£ (H9<p£ (H9<p 

b) E 
££ (H9<p (H9<p 

£ (H9<p£ (H9<p£ (H9<p£ (H9<p 

c) E 
(H,lH)£Ma/G 

£ (H9<p£ (H9<p£ (H9<pvv 

<*) E 
(H,v>)°6A<a/G,¥>*=l 

£ (H9<p£ (H9<p£ (H9<p£ (H9<p 

k) Let x be 311 actual character of G and let (H,<p) 6«MG. Then ajjj~^G{x) = 0 112 each of 

the following cases: 

(i) (v ,xL) = o, 
(iij there is some ( # , £ ) > (H,<p) in MG with (<p,X\6) = (<É>,xL), 

(in) (H,(p) 2 ( Z ( x ) i V 0 > where Z(x) denotes the center of x, i-e-the biggest subgroup 

U < G such that X\u IS a multiple of an element of U, and where xlZ(X) = xW'Vs 
V> e z(x), 

(iv) H > Z(G), where Z(G) denotes the center of G. 

From f) and g) we have the following result: 

(2.12) C o r o l l a r y . Every x € R(G) can be written as 

X = E 
i 

Ziind^.tpi 

with Zi E Z , Hi < G and <pi 6 Hi such that 

£ (H9<p E-
i 

liind^.ip* and det(x) = 

i 

£ (H9<p£ (H 

(2.13) R e m a r k , a) Warning: In general the formula (2.8) is not the canonical one coming 

from a0(¥ *(*)) . 

4 0 
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b) In order to calculate aG(x) for some x £ IrrG we first determine those (H,(p) £ MG/G for 

which ajjf^jG(x) is trivial by k). Then we use equation (2.3) for the maximal remaining pairs 

(if, <p)°. This amounts simply to 

(2 .14 ) £ (H9<p£ (H9<p£ (H9<p£ (H9<p£ (H9<p£ (H9<p 

Next we try to determine the remaining coefficients by the equations (2.11) a)-d). If these 

equations are not sufficient to determine all the remaining coefficients we use (2.3) to get more 

equations. We go downwards in the poset M.G/G looking for maximal pairs (H,<p)G with un­

known coefficients and compute the 7^ v) (H, ^ ' s occuring in equation (2.3) as long as necessary. 

In this procedure the computation of the 7(tffV)>(ir'iV,')'s is the part which requires the most cal­

culations. So it should be avoided if possible. On the other hand there should be no difficulty 

for a computer to calculate the 7^ v) (H, ^ ' s and, since T(G) is an upper triangular matrix, to 

calculate the ajjf^j°(x)'s Dv the matrix equation (2.2). 

c) By a) (ii) and the multiplicativity of pG we see that aG is a ring homomorphism if, and only if, 

p^resj is multiplicative for all H. Thus aG is a ring homomorphism if, and only if, G is abelian. 

d) Combining the equations (2.11) a) and b) we obtain that all the coefficients ajjf^jG(x) 

are nonnegative if, and only if, x € ZG C R(G). In fact, if all the ajjf^jG(xYs are non~ 

negative then (2.11) a) and b) imply that ajjf^jG(x) — 0 f°r aU H < G. Thus aG(x) = 

oG( X ^ G G ol^g ^a(x)ip), and the injectivity of aG shows that x € ZG. 

Proof of the uniqueness statement: Let (aG)o be a family satisfying (*) and (**). Then 

diagram (2.4) commutes for all G: 

G (*) G (**) G 

7rHres+JïaG = TzHaHvesH = pHresH. 

However, aG is uniquely determined by (2.4), since pG is injective. D 

Proof of the existence statement: From the proof of the uniqueness we already know how to 

define aG, namely by the commutative diagram (2.4) using the injectivity of pG. It is obvious 

from (1.18) that the equations (2.2) or (2.3) and the commutativity of (2.4) are equivalent. But 

we have problems with the integrality of the solutions a ,G(X) °f (2-2), or in other words we 

don't know yet, whether the image of the diagonal map in (2.4) is contained in the image of pG. 

In order to avoid these troubles for the moment we tensor all the occuring free abelian groups 

and the maps with Q over Z. Then we obtain the diagram 

( 2 . 1 5 ) 

QR(G 
aG 

QR,(G) 

PHresG)H<G PG 

(UH<nQH)G 
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where pG is now a ring isomorphism, cf. (1.19). Thus we may define aG as the unique map 
QR(G)—>QR+(G) which makes the diagram (2.14) commutative. For this map aG we will 
first prove some of the properties listed in the theorem and then we will use these properties to 
show that aG(R(G)) C R+(G), i.e. a—-G(X) G Z. 

Proof of a) (i),(ii): The commutativity of the Q-tensored version of diagram (2.4) is true by 

the definition of aG. (1.18) shows that each of the equations (2.2) and (2.3) is equivalent to the 
commutativity of (2.4). 

Proof of a) (iii): For x = (H, v?) G MG/G and \ € Q12+(G) we have 

[*,«o(x)l = 
(H',<p'feMG/G 

(H',<p'feMG/G(H',<p'feMG/G 

e 
[H'<fi')G€MG/G 

(H',<p'feMG/G(H',<p'feMG/G 
(2.3). (cp,x),H . 

= (md%<p,x) = (bG{H^f,x) = (bG(x),x). 

Proof of (*) and (**): The commutativity of diagram (2.15) implies the commutativity of the 

tensored version of the diagram in (**) by looking at the G-component of ( YIH<G 
QH) . The 

commutativity of the tensored diagram of (*) is shown by the following equation, which holds 

for all x € QR(G) and for all x G QR+(H): [x,res*(aG(x))]„ df ,[ind+2(x),aG(x)]G 

a)gii) (6G(ind+2(x)),X)G 

= (inda

H(ba(x)),x)G = (H',<p'feMG/G = [x ,a H (xU) ] H . 

This implies res+

G

r(ac(x)) = atf(xltf)> 8 5 [~»~] 19 non-degenerate. 

Proof of c): As the adjoint map of bG also aG is additive. Using the QG-linearity of bG and the 

obvious formula (x , v) = (x<£, vy>) for x , v G Q-R(G), ip G G, we get for all (p G G, x G QR(G) 

and x G QR+(G): 

[x,(G,<p)aaa(x)] 
( 1 ^ 0 ) 

( [ (C?^-I )%,A G (x ) ] cxv (H',<p'feMG/G(eMG/G 

=(cp-1)bG(x),x) = (bG(x),<px) (H',<p' x,aa(<px)] 

This proves the ZG-linearity of aG. 
In order to prove the remaining statement in c) we observe for all (K, xj)) G M.G: 

[(K^f\aa(<p)]a 
(H',<p'fe [bG(K,*p) ,<p)G = (md$il>,<p)G (H',<p'feMG/G 

(H',<p'feMG/G(H',<p'feMG/G,<p'feMG/G #{seK\G/G\(K,xb)< \G,v)} 

r 1, ifxl> = ip\K\ 
0, otherwise. 
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Proof of b): By c) we have already proved b) for abelian groups G. Since x £ QR(G) is 

uniquely determined by its restrictions to cyclic subgroups (x is a function on G), the proof of 

b) is completed by 

res%bGaG(x) = bHaHves%x = res£x 

which holds for all cyclic subgroups H. 

Proofof d): Since R and R+ are functors and / : G1 —• G can be written as the composition 

G' f / ( G ' ) < G and since diagram (2.7) commutes for subgroup inclusions, we may assume 

that / is surjective. In this case we prove the commutativity of the above diagram by induction 

on |G'|. 

For |G'| = 1 this is trivial. So let |G'| > 1 and x € Irr(G). If x is linear then c) and (1.8) imply 

the commutativity. So assume that x € Irr(G) is not linear. By the injectivity of /9G, it is enough 

to show for each H' < G' that 

TT^ r e s ^ ^ a o / r e s / x ) - res+/aG(x)) = 0. 

For H' = G' we get ^ ^ ( r e s , * ) = J ^ - a ^ — ( r e s f X ) < p ' = 0 since by (**) we have 

OL G/(res/x) = (res/x, <p')G' — 0 (note that res/x is non-linear irreducible as x is). On the 

other hand we have a^Q ^G(x) = 0 for all <p £ G and we know by (1.8) that res+J(H,<p) = 

(/-1(iJ),<¿>o/)G . So if H < G, then f~l(H) < G' and res+/aG(x) has vanishing coefficients at 

{G',ip')G' for all tp' e G7, i.e. 7rG/res+/aG(x) = 0. 

Now let H' < G'. Then we have: 

res+£¡ aGi (resy x) == O-H* res£'res G,1G(X)=**>™HII/(H,"*/%')(x) 

~ RES+(H'¿,(H'))RES+^'>AG(X) = res+S'res+/aG(x), 

where we again used the functoriality of R and R+ and the induction hypothesis for the map 

/ : 2 T — > / ( 2 T ) . £ ( H 9 < p 

( 2 . 1 6 ) C o r o l l a r y . Let N < G, G = G/N and let x € QR(G) come by inflation along G —> G 

from some \ € QR(G). Then we have 

M x ) = E 
£ (H9<p£ (H9<p 

£H9<p«^.G{x){H,cp)G. 

This means a(Hcp)x<?(x) = 0 unless N < H < G and <p\N = 1^, and in this case we have 

£ (H9<p£ (H9<p£ (H9<pvvv 
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Proof. Clear with (1.12) and its subsequent remark concerning the injectivity of res+(G_—} on 

the basis M.G/G. 

Proof. of k) (i): We argue by descending induction on \H\ using the equation (2.3) 

(vsxL) = E 
£ (H9<p£ (H9<p£ (H9<p 

£ (H9<p£ (H9<p£ (H9<p£ (H9<p 

For H = G equation (2.3) becomes (<£,xl») = aJo~^G(x) which implies our statement in this 

case. Let H < G, then (y>,xL) = 0 implies {<p',x\H,) = 0 for all ( # ' , < / ) G MG with (Hyy>) < 

(H',ip'). By the induction hypothesis we know that ajjp~^TjG(x) = 0 f°r all (H',(p') G MG/G 

with (H,(p) < {H',(p') . So equation (2.3) becomes £ (H9<p£ (H9<p£ (H9<p£ (H9<p£ (H9<p 

The proof of the remaining parts of k) requires further terminology. We fix a finite dimensional 

CG-module V with character x- m this fixed situation we establish something like a Galois 

correspondence between certain subspaces of V and certain pairs in MG. 

( 2 . 1 7 ) D e f i n i t i o n , a) With V and x as above we define for each (H,<p) G M.G the subspace 

F(H,<p) of V by 

F(H,<p) = {v G V I hv = <p{h)v for all h G 

i.e. F(H,<p) is the ^-homogeneous component of the CH-module V and therefore we have 

dimcF(H,<p) = (<p,x\H)-

Conversely, we define for each C-linear subspace W ^ 0 of V the pair P(W) G M G by 

P(W) = 8wpUH,u>) €MG\hw = v(h)w for all h E H, w£W\ 

We show that P(W) is well-defined. First of all the trivial pair (22,1) satisfies the condition in 

the definition. Secondly, if two pairs (H,<p) and (K,\j)) satisfy the condition, then also does the 

pair consisting of the subgroup U generated by H and K and the extension fi of <p and if?. Such 

an extension exists, since U acts on W by scalar multiplication as H and K do. 

b) We call a pair {H,<p) G MG admissible for V, or for x> if F(H,(p) ^ 0, i.e. ( V ? , X I H ) 0-

We denote by A(V) or A(x) the set of admissible pairs for V and by S(V) the set of non-zero 

C-linear subspaces of V. Then the maps 

F : A(V) —• S(V) and P : S(V) —• A(V) 

are well-defined. 
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( 2 . 1 8 ) R e m a r k . There is an obvious poset structure and an obvious G-action on A(V) and 

on S(V). For W, W G S(V), (K,i/>),(H,<p) G A(V) and 5 G G we have the following immediate 

consequences of the preceding definitions: 

a) A(V) is closed under taking subpairs and conjugated pairs. 

b) F( \H, cp)) = sF(H, tp) and P{sW) = 'P(W). 

c) (K,il>) < (H,<p) =>> F(K,xl>)OF(H,<p) and W Ç W P(W) > P(W). 

d) (if, v?) < PF{H, (p) and W Ç FP( W ) . 

e) F(H, y>) = FPF(H, v?) and P ( W ) = P F P ( W ) . 

( 2 . 1 9 ) De f in i t i on . For (#,<£>) G A(V) and W G S(V) we define the closures cl(#,y>) and 

cl(W) of ( £ 7 » and W by 

cl(H,<p) = PF(Hiip) and cl(I^) = FP(W). 

We call (H.<p) G ^(V^), resp. W G STV), closed, if it coincides with its closure. 

( 2 . 2 0 ) L e m m a . 

a) For all {H, <p), (H', v?') G A(V) and W, W G S(V) we have 

(i) cl(H,(f) and cl(W) are closed. 

(ii) F{cl{H,ip)) = F(H,(p) and P(cl(W)) = P{W). 

(iii) (H,<p) < (H',<p') cl(H,<p) < cl(H',<p') and W C W cl(W) C cl(W). 

b) For {H,<p) G A(V), W G S(V) and s G G the following statements are equivalent: 

(i) (H, ip) (resp. W) is closed, 

(ii) \H,<p) (resp. sW) is closed, 

(iii) (H,<p) (resp. W) is contained in the image of P (resp. F). 

c) F and P are inverse bejections if restricted to the closed pairs in A(V) and the closed 

subspaces in S(V). 

d) For W, W G S(V) we have 

inf {P(W), P(W')} = P(W + W), 

in particular the in£mum of closed pairs is again closed. 

P r o o f , a) and b) are trivial consequences of remark (2.18) above. 

c) Images under F and P are always closed by b), and FP and PF are the identity maps on 

closed objects by (2.18) e). 
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d) For (H, v?) G A(V) we have 

(H,tp) < P(W) and ( A » < P(W') 

H acts on W and W by <z> 

H acts on W + W by v?. 

inf{P(W), P(W')} is the greatest pair (H,<p) having the first property and P(W + W) is the 

greatest one having the last property. D 

(2.21) Proposition. If(U,rl>) < (H,<p) G A(V) and if(H,<p) is closed, then 

7(ÎR,v.),(H,v»)7a(i/,*,).(».v>)* 

Proof. Define (U',i/>') = c\(U,ip), then (U1 ,xl>') < (Hy<p), since {H,<p) is closed. From (1.11) 

and (1.14) we see that 

£ (H9<p£ (H9<p£ (H9<p£ (H9<p£ (H9<pvv + E 
S 

(U' n 'H, v)"', 

where s runs through those double cosets in U \G/H with 
£ (H9<p£ (H9<p£ (H9<p£ (H9<p Therefore 

we get 
res+£(#,<£>) = res., U' 

-u 
res+ 

G 
U' £ (H9<p 

£ (H9<p£ (H9<p ) res u'c £ (H9<pv 

£ (H9<p 

+ E 
8 

res+ 7 
J 
\U'n 8H, y>)u, 

s as above. Since 7(̂ /(V,)i(HiV,) is the coefficient of res+£(ff,y>) at (U,ip) , it is enough to show 

that in the last sum, running over s, no element (U,ip)U occurs. Furthermore looking at (1.20) 
Iji u> 

it is enough to show that for all these 5 in the last sum we have (U,tl>) £ (U' C\ H, y>) . So 

we complete the proof by showing 
£ (H9<p £ (H9<p£ (H9<pvv £ (H9<p£ (H9<p£ (H9<p£ (H9<p 

(U,tp)U' < (U' D 9H, y>f implies that there is some u G U' such that {U,Y<u(U' fl 3H, scp) = 

(U1 D USH, "V). And this implies (17',xj>') = cl(U^) < cl(U' fl USH, «V). Defining (H\<p') = 

c\(U' H USH, -V) we get V ' U " * = V>'U«-„usH = uscp which imPlies (U>+) > (U'U usH uscp) < 

(U'^') = cl(*7,V). So we get c\(U' D U9Hy «V) = (UW). However, (V fl USH, »V) = 

inf{(*7', </>'), (usH, usV)} and both (tf',^') and ( U3Hy «V) = " t ^ vO are closed- So bY (2-20) d)> 
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(U' n uaff, «V) is closed as well, i.e. (U' fl usH,uscp) = (U'Y') which implies (U1 D s#, V) v' = 
£ (H9<p£ (H9<p 

Proof of k) (ii): Assume that a.„ . G ( X ) i=- 0. Then we know from proposition k) (i) that 

(H,<p) is admissible for \ - We show that (H,<p) is closed for x by descending induction on |JET|. 

\i H — G then (G,(p) is closed for x since it is maximal in A(V). Now let H < G and assume 

that (if, <p) is not closed for x- Define (U, ip) = c\(H, <p) and consider equation (2.3) for (if, <p) 

and (U,il>): 

(v.xL) = 7(H>v),(H,V)«77r^GW + ffd 
£ (H9<p£ (H9<p£ (H9<p£ (H9 

£ (H9<p£ (H9<p£ (H9<p£ (H9<p 

£ (H9<p E 
(u,xj>)G<(U'tii,')GeMG/G 

liu.w.iu',*') aW17)G Wi­

lli both equations we merely have to sum up over admissible and closed pairs (H',</?') and 

(U', tp1) by our induction hypothesis. Since (U, tp) = cl(iT, <p) and (H, <p) is not closed, the closed 

pairs which are greater than (H,<p) are exactly the closed pairs which are greater or equal to 

(U,xp). This means that the sums on the right side of the two equations have the same value, 

since by proposition (2.21) the corresponding 7-factors coincide. On the other side we have 

(VsxD = dimcF(U,tp) = dimcF(c\(H1(p)) = dimcF(H,(p) = (</?,xD- So subtraction of the 

two equations yields ajjf^G(x) = 0 which contradicts our assumption. Thus (H,<p) is closed. 

{<f>,x\H) = {<P'>X\H) implies d\mcF(H,<p) = dimcir(#, ¥?)• Hence we have F{H,(p) = F(H,<p) 

and c\(H,(p) =cl(H,(p) > (H, (p) > (H,<p). This is a contradiction, since (H,(p) is closed. D 

Proof of k) (iii): Let V be a CG-module affording the character x- If a~(jf^jG(x) = 0 then 

(H, (p) is admissible (by k) (i)) and closed for x (by k) (ii)), and we have F(Z (x) , VO = V 2 

F(H, <p) implying (JET. <p) = PF(H, 9) > PF(Z(X), V>) > (Z(X), 4>). • 

Proof of k) (iv): It is enough to show the assertion for x € Irr(G). In this case we have 

Z(G) < Z(x) and the proof is completed by k) (iii). D 

Proof of f): Let k be arbitrary. We have to show that bG^f\aG{x) and \£*(x) coincide after 

being restricted to all cyclic subgroups of G. However, this is evident, since Y+k and ^ * commute 

with restrictions to subgroups and since (2.8) holds obviously for all cyclic groups, cf. c). Now 

let (k,\G\) = l. We have to show that 

7r„res+2(^aG(x) - aG*k(X)) = 0£ (H9<p 
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for each H < G. Since Yk+ #k and aG commute with restrictions, it is enough to show that 

^H^Xa-iiix) ~ AH^k(x)) = 0 f°r X € IrrfT. However, this is trivial if x is linear, and if \ ls 

nonlinear, then the above equation follows from the fact that Yk(X) is again irreducible and 

has the same dimension as x- In fact, ^ * preserves dimensions by its definition and using this 

together with (Y*(x),Y^*(x)) = (x, x) the irreducibility of tf*(x) follows. • 

Proof of e): This is a consequence of part f), since x = ^ 1(x) for all x € R(G) and since 

va(H,cp)g=Y-1+?(H,cp)gfor all (H,<p)€Mg Ma-

For k = 0 we obtain from (2.8): 

(2 .22) C o r o l l a r y . For all \ G R(G) we have 

(2.23) £ (H9<p£ (H9< E 
(H,<p)GeMG/G 

aTJnrAx)^dGH\H. 

Proof of h): This follows immediately from corollary (2.22). D 

Proof of j): (2.11) b) follows from counting dimensions on both sides of (2.6). d) follows from 

taking scalar product with lG on both sides of (2.8), and applying Frobenius reciprocity, a) and 

c) are special cases of d), namely for k = 0 and k = 1. D 

Next we will prove the integrality of the coefficients. This proof is due to G.-M. Cram: 

(2 .24) Proposition. For aiJ x € R(G) and for all (H,(p) G MG we have a(h,cp)g j«(x) G Z . 

Proof Assume that G is a group with minimal order such that there is some x G R(G) with 

a«(x) i ^ + ( £ ) - We may assume that \ G Irr<2. Let furthermore (#,y?) € MG be maximal 

with a ( H ^ ) G W ^ Z 
First we show that under the above assumptions we have NG(H,<p) = G: We define U = 

NG(H,ip) and consider the coefficient of av(x\v) ~ Tes+uaG(x) at (H,(f)U which gives the equa­

tion (cf. (1.20W1.22)) 

£ (H9<p£ (H9<p 
\U'U 

\V\ 
- < W ) G ( X ) +£ (H9<p c 

(H^f<(H' ,<p'f'eMG jg 

8 
£ (H9<p 
(H,V>) 

£ (H9<p£ (H9<p 

From the maximality of {H,ip) it follows that the sum on the right side is an integer, i.e. 

a(H <p)v(x\u) ~ a(tf (f)GM 6 Z* ^ut since a(Hlp)G(^ ^ ^ ' we deduce ^rom tne minimality of 

|G| that U = G. 

Next we show that H = Z{G): Since H<G, x\H 1S the sum of (2-conjugates of some ifr G IrrH and 
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since a(^~)G(x) 0, we see from k) (i) that <p is one of these conjugates. But tp is G-invariant 

and hence we have x|H = x(l)# ¥>• X and V? inflations of x G R(G/ker(p) and Tp G H/kercp and 

corollary (2.16) implies a(#~)G(x) = a(///kerv? y)G/kcrv> ^ow tne minimality °f 1̂1 implies 

kery? = 1, and the existence of a faithful and G-invariant linear character of H implies H < Z(G). 

k) (iv) shows that H = Z(G). 

By the maximality of ( # , y>), by k) (i) together with \\H = x(l) * V and by k) (iv) we see that 

(H,(p)G G Ma/G is the only element of Ma/G whose corresponding coefficient in aG(x) is not 

integral. This is a contradiction to j) a). D 

Proposition (2.24) completes the proof of the existence statement of theorem (2.1). D 

Proof of g): In general we have for all (H,<p) G MG the equation 

det(indjv?) = eG,„'{(potv%) 

where eG/H G G is the sign character of the permutation action of G on G/H and trG : 
£ (H9<p£ (H9<p 

is the transfer map, cf. [M] prop. 3.2. We have to show that for all x £ R(G) 

we have 
(H,<pfeMG/G 

£ (H9<p£ (H9<p£ (H9<p for each y G R(G). This follows from (2.23): 

£ (H9<pla = (detl*)*1' = detfvd) - 10) = det E 
(H,<p)G€MG/G 

a717^G(x)ind2l„) 

= 
(H,v)GeMG/G 

£ (H9<p(eGIHÌlH°trGH))aT^{x) = 

(H,<fi)aeMa/G 

£ (H9<p£ (H9<pv 

Proof of a) (iv): In order to get the explicit formula (2.5) a) for ajjf^jG(x) we will invert the 

matrix T(G) explicitly. From (1.17) d) we obtain the decomposition 

T(G) = A ( G ) - J D ( G ) 

where A ( G ) is the resulting matrix when we divide the columns of T ( G ) by its own diag­

onal entries (iVG(if, (p) : H) and where D(G) is the diagonal matrix with these entries in 

the diagonal. We have to concentrate on A ( G ) only. By the combinatorial interpretation of 

7(tf>V),(H^') /7(Vv>') . (H'.*') (cf- the note Preceding (1.18)) we have for the entries d _ G ^ - ^ G 

of A ( G ) the equation 

d G —:——G = £ (H9<p£ (H9<p£ (H9<p£ (H9<p£ (H9<p£ (H9<p 
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We may decompose the unipotent matrix A(G) = 1 + iV where N is an upper triangular nilpotent 

matrix with entries 

£ (H9<p£ (H9<p £ (H9<p£ (H9<p£ (H9<p£ (H9<p£ (H9<p£ (H9<p 

Since N is nilpotent we have 

A(G) -1 = l - JV + JV2- + -- .±JVr 

for sufficiently large r. Let nt(Hcp)G(hcp)g G denote the entries of TV*, then it is easy to show by 

induction on i the equation 

£ (H9<p£ (H9<p£ (H9<p {MG — chains (H,v) = (Hq.&o) < ... < £ (H9<p£ (H9<p£ (H9<p£ (H9<p£ (H9<p 

This shows equation (2.5) a). As a consequence we obtain equation (2.5) b): 

M x ) = E £ (H9<p£ (H9<p 

c 
£ (H9<pcv E 

(Ht<p) <{H'^'feMG/G 

£ (H9<p£ (H9<p£ (H9<p £ (H9<p 

= E 
£ (H9<p 

1*1 
\G\ E 

£ (H9<p£ (H9<p£ (H9<p 

£ (H9<p£ (H9<p£ (H9<p £ (H9<p 

= E 
£ (H9<p 

x 
c E 

(,<p)<(H',*')ZMG 

£ (H9<p£ (H9<p£ (H9<p£ (p £ (H9<p 

Let A*/*,//' be the Möbius function of the poset SG of subgroups of C?, then for all (H,<p) < 

(H',<p') G A4G we have ij>(H,V),{H',*') — V-H,H' by counting chains. Note that Möbius functions 

can be expressed as alternating sum of numbers of connecting chains of fixed length, cf. [R]. 

This yields another formula for aG(x) in terms of hh,H'- For x € R(G) and K < H < G we 

consider pH(x\H)\K € ZAT as an element in R+(K) by the decomposition given in the paragraph 

preceding (1.6). 

(2 .25) C o r o l l a r y . For all x € R(G) we have 

FLO(x) = 
1 

L<?| 

f 
K<H 

\K\fiKtHind+%(pH(x\a)\K) E Ä f ( G ) 

and 

X = 

1 

\G\ 
f 

K<H 

\K\nKiHindG(pH(x\H)\K) e R(G). 
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Proof. From (2.5) b) we obtain 

M x ) = 
1 

\G\ 
r 

£ (H9<p£ (H9<pvvc 

£ (H9<p£ (H9<p£ (H9<p£ (H9<p 

x 
1 

c E H<H'£SG 
\H\fMHfH> ind+2( f 

£ (H9<p 
(?',xl.>l.) 

c 
1 

ICI E 
HKH'eSa 

\H\iiHu, ind,2(pH,(xL/)D-

Since 6Gind+2 = ind^&ff, and since &w|zd is the identity, the second equation follows. 

3. Canonical induction formulae inducing from subgroups of special 
types and the Artin exponent 

Throughout this section let T be a class of finite groups which is closed under taking isomorphic 

groups and subgroups and which contains all the cyclic groups. Let SG be the poset of all 

subgroups of G of type T , and let MG be the poset of all pairs ( # , y?) G AiG with H G SG. 

G acts by conjugation from the left on A4G and SG. MG/G and SG/G are again posets in the 

obvious way. We define i?+(G), resp. QT(G), to be the free abelian group with basis MrGjG, 

resp. SG/G. If T is the class of all finite groups, then fir(G) = Q(G) is the Burnside ring of G, 

i.e. £2(G) is the free abelian group over the G-conjugacy classes H° = H of subgroups H of G. 

12(G) can also be defined as the Grothendieck ring of the category of finite G-sets, cf. [Dr]. Note 

that by the identification H° »-* (ff, 1H)°, ftr(G) becomes a subring of R+(G). The inclusion 

Q(G) C R+(G) comes from the functor which assigns to each finite G-set S the monomial 

representation of G whose lines are identified with the G-set 5 , such that G acts on the set of 

lines as on 5 and the stabilizer of every line acts trivially on it. Looking at the multiplication 

formula (1.5) we see that R\(G) (resp. ftr(G)) is an ideal in R+(G) (resp. 0 (G)) . Hence R\{G) 

is again a ZG-module. As in section 2 we indicate by a preceding Q that we have tensored an 

abelian group with Q over Z. Since T is closed under taking subgroups, the restriction map 

res+2 maps elements of K+(G) to elements of R+(H) and the map 

pi = WXW(7T*ores+2 )H€5r : RT(G) ( 
Hesz 

ZHf 

is injective as well as its Q-tensored version, since it is the restriction of the injective map pG, cf. 

(1.19). Since R1(G) and ( 
c£ (H9<p 

ZH)G have the same Z-rank, pG has finite cokernel and induces 
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an isomorphism, again denoted by pTG, between the corresponding Q-algebras. 

Note that R+ is in general not a functor. For example let / : G' —• G be a surjective group 
G G1 

homomorphism with G of type T and G' not of type T , then res+/(6?, 1G) = (6?',1G>) g 

Rl(G'). 

Again we may define duals, induction, Adams operations and bilinear forms as in the first section. 

The bilinear form is again non-degenerate, since with respect to the basis M.G/G it is represented 

by the matrix 

Tr(G) = 7 ( H , V ) , ( H ' , ^ ) 

£ (H9<p£ (H9<p£ (H9<p 

which is a submatrix of T(G) and again an upper triangular matrix with the old diagonal entries 

(Na(H,<p) : H), (H,ip)G £ Ml/G. Proposition (1.28) holds also for elements of JEjl(Cr), since 

RUG) is contained in R+(G). 

Since T contains all the cyclic groups, the map bG : QR+(G) —• QR(G) restricted to QRUG) 

remains a surjective (cf. [Se], 9.2), QÔ-linear and multiplicative map 

£ ( H 9 < p b l : Q R l ( G ) ^ Q R ( G ) . 

Immitating the definition of aG we define the map 

al : QR(G) £ (H9<p£ (H9<p c 
£ (H9<p£ (H9<p 

£ (H9<p£ (H9<p£ (H9<p 

where the aZ_—-G(x) £ Q are the unique solution of the linear equation system 

(3 .1 ) ( * > , x L ) 
£ (H9<p£ (H9<p 

= r (G) • £ (H9<p£ (H9<p 

(H,<p)G ÇM^/G 

Obviously aG = aG for all G of type T, and using exactly the same proofs we gave for aG in the 

second section, we obtain the following results for «5= 

(3 .2) Theorem. There is one and only one family of maps aG : QR(G) —• QR+(G) satisfying 

the two conditions 

(*T) xtg commutes with restrictions to subgroups and 

i**T) for all G, the following diagram is commutative 
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QR(G) 
df £ ( H 9 < p Q i K ( < ? ) ç Q Ä + ( G ) 

PG 
cx 

Q G 

This family has the following further properties: 

a) Descriptions of aG : 

(i) The coefficients OLL-—G(x) Qxe ^ne unique solution of of the following equations indexed 

by(H,<p) e Ml: 

£ (H9<p E 
£ (H9<p£ (H9<p£ (H9<p 

£ (H9<p£ (H9<p£ (H9<p 

fii) a* is the unique map such that the diagram 

QR(G) 

£ (H9<p£ (H9<p 

cc QR1(G) 

PZ 

x 
Hesi 

QH)G 

commutes. 

(iii) a J is the adjoint map of 6 J. 

(iv) Let /!*µT(H,cp)(h'cp) and c g - ^ _ _ « , be defined for {H,9),(H\^) e Ml as in (2.1) a) 

(iv), then we have for all \ G R(G): 

a) W W d 
ff 

£ (H9<pv 
£ (H9<p 

E 
£ (H9<p£ (H9<p£ 

£ (H9<p£ (H9<p£ (H9<pvcv 

6) «S(x) = 
l 

ICI 
c 

£ (H9<p£ (H9<p£ (H9<p 
\H\ fJ'iH.rUH'.r') 

£ (H9<p£ (H9<p£ (H9<p 

b) bTGoal = idQÄ(G). 

c) a J is QG-linear and aG((p) = (G, <p) for all G of type T and <p £ G. 

d) aG commutes with taking duals. 

e) For all k € Z we have bl^\aTG = Yk and if (fc, |<2|) = 1, then we have 
£ (H9<p£ (H9<p 

f) For each x GR(G) with x( l ) = 0 we have 

E 
(H&feMZ/G 

£ (H9<pS-x°(x)în^Ç(V> - I H ) = X -

g) The equations corresponding to (2.11) hold. 
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h) For all characters xof G and all (H, ^ ) € AfJ we have 

(v,xl«) = o £ (H9<p£ (H9<p 

With the same arguments as in corollary (2.25) we obtain 

(3.3) C o r o l l a r y . For all Y € R(G) we have 

a) «S(x) = \k\ f 
£ (H9<p 

\K\VK,H ind+%(pH(x\H)\K), 

£ (H9<p£ (H9<p E 
K<Hes% 

\K\/iKtaindK{pH(x\B)\K)9 

where pK H is the Möbius function of the poset SG or, which is the same, of the poset si-

For the class C of all cyclic groups (3.3) b) is Brauer's explicit form (cf. [Br2] and [L], theorem 

4.1) of Artin's induction theorem: 

X = 
1 

\G\ 
c 

K<H€S$ 

£ (H9<p£ (H9<p£ (H9<p 

It is clear by the reciprocal of Brauer's theorem proved by J. Green (cf. [Se] 11.3) that aG(R(G)) 

can't be contained in R+(G) for all G if T doesn't contain all elementary groups. So the questions 

which arise are: Which are the types T such that aG is integral; and if aG is not integral, what 

can be said about the denominators? For a group G and x € R(G) we define the natural numbers 

(3.4; 
AT{X) = min{d e N I *„S(x) 6 R\{G)} and 

AT{G) = min{d G N | d-aTG{R{G)) C RT+(G)}. 

AT(G) is an invariant of G with respect to T which measures how far aG is from being integral, 

or more unprecisely, how far G is from being of type T. For example AT(G) = 1 is equivalent 

to the integrality of aG and for each G of type T we have AT(G) = 1. From the explicit formula 

for aG in (3.2) a) (iv) we obtain 

(3.5) AT(G) \G\. 

(3.6) L e m m a , 

a) For all x G QR+(G) we have x-aG(lG) = x, i.e. QR+(G) is again a ring with unity aG(lG). 

b) If the class T is contained in the class U, then we have for all x £ QR(G) 

£ (H9<p£ (H9<p£ (H9<p e QRl(G). 
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Proof. For all H G SZ we have 

TTHTes*aL (1G) = nHat(lH) = PH(1H) = I K A N D 

7rHres+£aS(x) = 7 T H C £ ( X L ) £ (H9<p= P H ( X I H ) = * - * < ( X L ) = 7THres+Sao(x). 

Now the equalities in a) and b) are shown by applying the injective map pG to both sides. 

;3 .7 ) C o r o l l a r y . 

a; al(x) = *G(x)aG(lG) for all x € QR(G). 

b) AT(G) = Ar(lG). 

c) AT(H) I AT(G) for all H <G. 

From the above Lemma we know that aG(lG) is an idempotent in QR+(G) and theorem (3.2) h) 

implies that aG(lG) even lies in Qfi(Cr). First of all we want to obtain a criterion for Ar(G) = 1 

which is equivalent to aG(lG) G £l(G). So we use the examinations of idempotents of £l(G) and 

QQ(G) by Dress and Yoshida (cf. [Dr], [Y]). Dress defines the injective ring homomorphism 

Po£H9<p : ( 
HESa 

£ 9 < p z ) , s H9<p(\SH\)Hesa 

where 5 is a finite G-set and SH denotes the set of .^-invariant elements of S. G acts on the 

product of copies of Z by permutation along the conjugation action of G on SG. pG becomes 

an isomorphism if tensored with Q and it is just the restriction of the old map pG of the first 

section, i.e. we have the commutative diagram 

(3 .8 ) 

Q i i G 
*IG 

QÄ+(G) 
PG PG 

( 
HESG 

z) c VG 
( 
£ (H9<p 

xQH)G 

where the lower map tjg embeds componentwise z *-* z-lH and the upper map r)G maps H to 

(if, 1H) . In fact, (3.8) is commutative, since for a transitive G-set S = G/U the result of rjGpG 

in the ff-component equals \SH\ • l j* and the result of pGr\G in this component is given by 

njfTes^U.U) =7Tff ( 
sEH\G/U 

£ (H9<p£ (H9<pv 

s€H\G/U,H<V 

1H and 

{s G H\G/U \H<V} = {s£ (H9<pe G / U \H < V } = ( G / U ) H . 

Let e G Qft(G) be the idempotent which is mapped to aG(lG) under pG. Then we have 

(3 .9 ) £ (H9<p£ (H9<p£ (H9<p 
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This follows from theorem (3.2) a) (ii), which implies pG(aG(lG)) = ( ^ H 6 T ) H < G > and from the 

commutativity of diagram (3.8). 

For H° G SG/G let ejf G Qft(G) be the preimage by pG of the primitive idempotent in и H<G Q)G 

being 1 in the components indexed by conjugates of H and 0 in the others. Since pG is a ring 

isomorphism the idempotents of Q12(G) are exactly the sums 

(3 .10 ) 

нает 
d 

where T is an arbitrary subset of SG/G. (3.9) shows that aG(lG) equals the sum in (3.10) for 

T = SG /G. In the proof of theorem 3.1 in [Y], Yoshida characterized those subsets T which lead 

to idempotents in Q(G). Using Dress' studies in [Dr] on the prime spectrum of Q(G) Yoshida 

observed that the primitive idempotents in ft(G) are exactly those sums (3.10) where T is an 

equivalence class of the perfect equivalence relation on SG/G: 

(3-11) H 9 < p к ° ~ н в Kp and Hp are conjugate in G 

where Hp denotes the smallest perfect normal subgroup of H, i.e. the smallest N <H such that 

H/N is solvable. So we have 

(3 .12) Proposition. AT(G) = 1 if, and only if, the set of conjugacy classes of subgroups of 

G of type T is a union of perfect equivalence classes. 

( 3 . 1 3 ) C o r o l l a r y . 

a) aTG is integral for all G if and only if T is closed under taking extensions by cyclic groups of 

prime order, i.e. if for each exact sequence 

(3.14) 1 —y H —>G—> Z/pZ —> 1 

we have H G T G G T . 

b) IfT is the class of solvable groups then aG is integral for all G. On the other hand, if aG is 

integral for all G, then T contains the class of solvable groups. 

P r o o f , a) is an immediate consequence of the facts that for each exact sequence (3.14) we have 

H ~ G and that G can be built up by such exact sequences from Gp. 

b) follows from part a). D 

Unfortunately we don't get a canonical and explicit version of Brauer's theorem for the class 

T of elementary groups. To obtain an integral canonical formula we have to admit at least all 

solvable subgroups. 
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For the remaining part of this section we specialize T to be the class C of all cyclic groups and 

we study AC(G). We recall the definition, cf. [L] or [CR] (76.1), of the Artin exponent A(G) of 

a group G: 

£ (H9<pA(G) = min{d G N I d-RQ(G) ç 

HesG 
indGRQ(H)} 

where RQ(G) is the character ring of the rational representations of G. For x £ RQ(G) we define 

A(x) = min{</ G N I d-x € 
HesG 

Z'mdGRQ(H)}. 

Since for a cyclic group H we have RQ(H) = 
K<H 

Z-ind^l*, cf. prop.(76.6) in [CR], we obtain 

(3.15) 

£ (H9<pA(G) = min{d G N | d-RQ(G) Ç 

H£SG 

Z i n d S l « } , 

A(x) = min{d G N I d-x Ç 
HesG 

Zind^ln} , 

A(G) is well-defined, since each x € -^q(^) can be expressed as a Q-linear combination of 

indjl , , , H cyclic, cf. theorem 30 in [Sei. This means that the map 

(3.16^ bcG : QÜC(G) QRQ(G) 

which is the restriction of bG : QR+(G)—• QR(G) is surjective. But since QC(G) and RQ(G) 

have the same Z-rank, cf. cor. 1 of theorem 29 in [Se], the map (3.16) is an isomorphism. 

Since acG{\G) G Qftc(<2), cf. (3.2) h), we know that aG(lG) is the preimage of 1G under this 

isomorphism. 

(3 .17) Theorem. 

a) A(G) = A(1G) = AC(1G) = AC(G). 

b) Let e = 
HesG/G 

e-jj G ft (G), then e = acG(lG) and we have 

H 9 < p £ ( H 9 < p A { G ) = m i n { d G N I d E Q ( G ) } 

Proof, a) A(G) = A(1G), since we have by (3.15) an expression 

(3.18) A(10)-1G = 
HesG 

£ (H9<pc 
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and multiplication of (3.18) with an arbitrary \ € RQ(G) yields 

A(lG)-x = 
Hes% 

zHmàZx\H 

with x i* € RQ(H). 

AC(1G) = AC(G) by (3.7) b). 

Obviously A(lG) < AC(1G), since aa(lG) provides an expression (3.18) where A(1G) is replaced 

by Ac(le). 

So it is enough to show AC(1G) < A(lG). We consider an expression (3.18) for A(lG). This 

yields an element x 6 fic(G) with bG(x) = A(1G)-1G. Since the map in (3.16) is an isomorphism, 

we obtain x = A(lG)-a£,(lG), hence AC(1G) < A(1G). 

b) e = aG(lG) follows from the subsequent consideration of (3.10). The equation for A(G) follows 

now from A(G) = Ac(lG). 

(3 .19) R e m a r k . The equation for A(G) in (3.17) b) shows that the Artin exponent is just a 

matter of calculations in îî(Cr), namely to find the unity e = znH of QÇlc(G) and to 
H£S%/G 

determine the least common multiple of the denominators of the coefficients z-g. 

Theorem (3.17) enables us to apply all the results about the Artin exponent to AC(G). In 

particular, for odd primes p, the p-part of AC(G) can be calculated explicitly by the theorems 

7.4 and 7.12 in [L]. Lam also determined the Artin exponent for 2-groups (theorem 6.3 in [L]). 

Conversely we can determine the Artin exponent of G by computing a%(lG). Since A(G) = 1 if, 

and only if, G is cyclic ([L], theorem (2.9)), we obtain 

(3 .20) C o r o l l a r y . Let C be the class of all cyclic groups then acG is integral if, and only if, G 

is cyclic. 
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