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MORE ON ALPERIN'S CONJECTURE 

by G. R. ROBINSON AND R. STASZEWSKI 

INTRODUCTION: We assume that the reader is familiar with the results, 
notation, and methods of [5]. Results from that paper (and minor variants 
thereof) will sometimes be quoted without explicit reference. 

Our main aim in this paper is to try to understand the relevance of 
Clifford - theoretic techniques to Alperin's conjecture. Thus we are 
concerned with the effect of the presence of normal subgroups when trying 
to prove Alperin's conjecture. Once more, we try to maintain the dual 
viewpoint of applying our results to groups for which Alperin's conjecture 
is known to be valid, and trying to prove the conjecture in general (or to 
at least obtain some control of the structure of a minimal counterexample). 
Thus, for example, all the results of the first section are valid for 
p-solvable groups, since Alperin's conjecture is known to be valid for 
p-solvable groups (for the prime p), (see Okuyama [7]). 

The main result of the first section is that Alperin's conjecture is 
equivalent to an apparently stronger conjecture which seems more compatible 
with the presence of normal subgroups. 

In the second section, we prove that a minimal counterexample to 
Alperin's conjecture (for the prime p) has no normal subgroup of index p. 

In the third section, we propose an "equivariant" form of Alperin's 
conjecture, that is a form of Alperin's conjecture which predicts 
compatibility with the action of a group of automorphisms. As far as we 
can tell at present, this conjecture is genuinely stronger than Alperin's 
conjecture. 

In his Areata article [1], Alperin suggests that in trying to prove his 
conjecture, other, more general, conjectures might naturally arise and need 
to be proved along the way. We believe that the results and methods of 
this article are the beginnings of a fulfilment of that prediction. 

NOTATION: Throughout, p denotes a fixed prime, and k is the algebraic 
S.M.F. 
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closure of GF(p). When dealing with the complexes Pt J^T, t t\K of [5], 
it will sometimes be necessary to indicate the group from which the 
subgroups involved are taken, so we may speak of .P(G), etc. 

When Q is a p-subgroup of the finite group G, and B is a sum of blocks 
of kG, we let f^B^(NQ(Q)/Q) denote the number of (isomorphism types of) 
projective simple kN(;(Q)/^-modules in Brauer correspondents of B. 

SECTION ONE: THE CONJECTURE & NORMAL SUBGROUPS. 
Let G be a finite group for which every proper section of G satisfies 

Alperin's conjecture for the prime p (for every p-block). Let H(*G) be a 
normal subgroup of G, and let B be a block of kG which does not lie over 
blocks of defect O of kH, say B lies over the block b of kH. 

The following lemma is well-known: 
LEMMA 1.1: Let X be a finite group, B be a block of kX with defect group 
D. Let Q be a subgroup of D such that kNx(Q)/Q has a projective simple 
module, S say, which lies in a Brauer correspondent of B. Then there is a 
conjugate, Q,, of Q such that Q, c D and Cn(Q1) c Q, • 

PROOF: Let b be the block of kNx(Q) containing S. Then S lies over a 
projective simple kQCx(Q)/Q~mo<*ule, so D l*es over a block of defect Z(Q) of 
k CX(Q), say b*. Then (Q,b*) => (1,B). Let (D^b') be a maximal B-subpair 
with (Q,b*) <= (D1fb'). We claim that CD (Q) <=• Q. Otherwise, there is a 
B-subpair (QC (Q),b") with (Q,b*) c (QC (Q),b") c ( D ^ b ' ) , contrary to 
the fact that b* is a block of defect Z(Q) of CX(Q). Thus CD (Q) c Q, 
and the result follows as D, — D* for some x e X. 

COROLLARY 1.2: I 
<G>/G 

(-l)'Cl fi(Bc) -
CeP(H)/g 

(-l)'Cl C(BC). 

PROOF: Let D be a defect group for B. Then DnH + 1G, as B does not lie 
over blocks of defect 0 of kH. Thus Z(D) « H + 1G, as Dr>H <J D. 

Hence whenever Q is a p-subgroup of G with QnH — 1Q, we have 
F&B)(NG(Q)/Q) " 0 (for when Qi is a conjugate of Q with Q, £ D, we 
have Z(D) r» H c CD(Q,) , but Z(D) n H f Q.) . 

Now I 
Ce.V (G)/G 

(-I)ICI fi(Bc) 
Ceji (G)/G 

(-l)l^l fi(Bc), and 

similarly 
Ce P(H)/G 

(-I)ICI fi(Bc) 1 
C€jVi(H)/G 

(-I)ICI fi(Bc). By 

an argument similar to that of Proposition 3.3 of [5] we may pair off 
orbits of chains of j4 (G)\>f(H) whose first non-trivial term meets H 
non-trivially (that is to say given such a chain C - QQ < Q, < . . . < Q N with 
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Q, n H * 1G and Qn < H, form the chain C as follows: let Qj be the first 
term of C for which Qj < H. If Qi_, - Qi^H, delete Qi_, from C, whilst 
if Qi_., + Qi^H, insert Qir»H into C (between Qi_t and Qj) . Then we pair 
the orbit of C with that of C ) . 

We thus obtain: 

C « X ( G ) / 
(-I)ICI C(BC) 

Ce K(H)/G 
(-I)ICI fi(BC) + 

J 2C-1> ,C| <2(BC) 
(Q)(chains C whose first non-trivial term is Q ) / ^ ^QV 

where (Q) runs over a set of representatives for the conjugacy classes of 
p-subgroups Q, of G with QnH — 1Q * Q. 

Since Alperin's conjecture holds within proper sections of G, we 
obtain 

Ce J?(G) /g 
(-l)ICI C(BC) 

Ce £*(H)/G 
(-I)ICI fi(Bc) 

(Q) as above 
f, (B (NG(Q)/Q). 

Since foB^(NG(QVo^ ™ 0 whenever Qr»H - 1G, the result follows. 

COROLLARY 1.3: We have 
У 

Ce .P(H)/G 
(-I)ICI C(BC) fi(B) -

(Q) <Ь') 
fi(b') 

where Q runs over p-subgroups of H (up to G-conjugacy) and b' runs 
over blocks of NG(Q) / , with b'G - B, lying over blocks of defect 0 of 
kNH(Q)/Q -

PROOF: Let Q be a non-trivial p-subgroup of H. Then Alperin's conjecture 
holds for blocks of kNG(Q)/Q. Let X - NG( Q ) / q , Y - NH(Q)/Q . 

Let b' be a block of kX with b'G - B. Suppose that b' does not lie 
over blocks of defect 0 of kY. Then, as in Corollary 1.2, we obtain 

Ce N (X)/x 
(-I)ICI fi(b'c) 

Ce N(Y)/x 
(-l)'CI fi(b'c) 

On the other hand, b' is of Lefschetz type, since b' has positive 
defect and Alperin's conjecture holds for all blocks of all proper 
sections of G. Thus 

Ce *N(Y)/ 
(-1)'CI fi(b') - 0. 

If b' does lie over blocks of defect 0 of kY, then it is clear that 

Ce*X(Y)/x 
(-I)ICI fi(b'c) fi(b'), since b'c — 0 unless C is the chain {lyl-
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It follows, then, that the contribution to £ (-1)'C| C(BC) 
Ce<tf (H)/G 

from chains whose first non-trivial term is (G-conjugate to) Q is 
- £ G (*>'), where b' runs over blocks of kNG(Q)/q with b'G - B, lying 
over blocks of defect 0 of WH^OJ/Q- The result now follows. 

COROLLARY 1.4 : B is of Lefschetz type If and only if 
£(B) - J J fi(b'), where Q runs over p-subgroups of H (up to 

(Q) (b') 
G-conjugacy), and b' runs over blocks of kNQ(Q)/^ with b'G — B lying 
over blocks of defect 0 of kN||(Q)y . 

We can now state: 

PROPOSITION 1.5 (ANOTHER FORMULATION OF ALPERIN'S CONJECTURE): The following 
are equivalent: 
i) Whenever X is a finite group, and B is a block of kX, B is of 
Alperin type. 
ii) Whenever X is a finite group, Y < X and B is a block of kX we have 
C(B) - J £ fi(b'), where Q runs over p-subgroups of Y up to 

(Q) (b') 
X-conjugacy, and b' runs over blocks of kNx(Q)/q» with b'x - B, lying 
over blocks of defect 0 of kNy(Q)/Q. 

PROOF : It is clear that ii) implies i) (taking Y - X ) . The results of 
this section show that i) implies ii) (upon noting that ii) holds 
vacuously if B lies over blocks of defect 0 of kY). 

Now suppose that b has defect group P. Then there is a unique block, 
B*, of kNG(P) with B*G - B and B* lies over b* (the Brauer correspondent of 
b in kNH(P)) (Harris-Knbrr [4]). 

COROLLARY 1.6 : Suppose that one of the following occurs: 
i) b is nilpotent 
ii) P is Abelian. 
iii) PnPh - 1H for all h e H\NH(P). 

Then B is of Lefschetz type if and only if C(B) - G(B*). 

PROOF : By assumption, Alperin's conjecture holds within H. 
Thus f0b)(NH(P)/p) - C(b) and f0b)(NH(Q)/Q) - 0 whenever Q is a 
p-subgroup of H not H-conjugate to P in any of the cases listed (see [1]). 
The same applies to any G-conjugate of b (using the appropriate G-conjugate 
of P ) . It readily follows that the formula appearing in the statement 
of Corollary 1.4 reduces to : C(B) - Q(B*) in the cases listed. 
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REMARKS : In fact, by a theorem of Kti Is hammer and Puig, [6], it is the 
case that £(B) - £(B*) if b is nilpotent. It also follows from their 
result and the results of this section and [5] that the formula of 
Proposition 1.5 part ii) holds when B lies over nilpotent blocks of kY. 

We also consider that Corollary 1.4 can be considered a reduction 
towards a proof of Alperin's conjecture. If we were considering G as 
a minimal counterexample to Alperin's conjecture, then to prove that B 
was of Lefschetz type it would be sufficient to verify the formula of 
Corollary 1.4 for some H < G such that B did not lie over blocks of defect 
zero of kH. (In fact if B lies over blocks of defect 0 of kH for some H <! ( 
then conventional Clifford theoretic reductions may be applied (unless 
H is a central p'-subgroup)). 

To illustrate how this type of reduction may be applied, we outline an 
alternative proof of Alperin's conjecture for p-solvable groups. Let G be 
a p-solvable group such that Alperin's conjecture is valid for every 
p-block of every proper section of G. Let B be a block of positive defect 
of kG. We wish to prove that B is of Lefschetz type. 
i) We may suppose that Op(G) — 1G. 
ii) We may suppose that B lies over a G-stable block of Op/(G). 

iii) We choose H <3 G such that H/Q (G)*S e^ementary Abelian, p||H|. 

We let PeSylp(H). Then G - 0p»(G) NG(P). 
iv) We may suppose that H * G (otherwise B is nilpotent, and hence of 
Lefschetz type). 
v) By Corollary 1.6, it suffices to prove that 6(B) - G(B*) where B* 
is the unique block of kNG(P) with B*G - B. 
vi) By a theorem of Dade ([3]), we do have C(B) - G(B*) (or we could 
again apply the theorem of Kulshammer-Puig mentioned above). 

Once more, we point out that the formulae appearing in Proposition 1.5 
parts i) and ii) are now proven to be valid for all p-solvable groups. 

SECTION TWO : THE CASE G * OP(G). 
Let G, H, B, b be as before, except that we now allow the possibility 

that b (but not B) has defect 0. We assume in addition that [G : H] - p. 
We will prove that B is of Lefschetz type. If Op(G) + 1 this is clearly 
true, so we assume that Op(G) - 1G. Also, if b does have defect O, then 
B has defect 1 and B is of Alperin type (so also of Lefschetz type), so 
we assume from now on that b has positive defect. 

NOTATION : When C = Q0 < Qt < Qn is a chain in P(G), we let 
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BC(H) — Br (lg) kHc (which we view as a Gc-module via conjugation), 
"n 

The next result follows easily via minor variants of the arguments 
of section 4 of [5]. 

LEMMA 2.1 : y 
Ce WG)/c 

(-l)'c« Ind G d (BC(H)) is a virtual projective module 

in the Green ring of kG. 

REMARKS: An argument like that used in the proof of Corollary 1.2 can 
be used to show that df 

CevN(G)/G 
(-l)'cl Ind G fd CB^(H)) -

fd 
CevK(H)/G 

(-l)'cl Ind f 
f 

(BC(H)) 4- I 
(Cevh(C) 

(Cevh(C) 
LRTH -

Ind s 
1C> /G 

(BC(H)) 

Furthermore, if Q is a p-subgroup of G with Qr»H - 1G, then iQl - p and 
NG(Q) - Q X CH(Q). 

LEMMA 2.2 : y 
{Ce J4(G) : 

(_1)|C| 
:Q,nH - (Cevh(C) 

Ind 
Jc 

(BC(H)) involves no Scott Module. 

PROOF : Let Q be a non-trivial p-subgroup of G with QoH - 1G. Let 
N - NG(Q), B' - BrQ(lB)kN. 

It suffices to prove that no Scott module occurs in 

d 
C6X(C„(Q))/CH(Q) 

(_l)lCl+l Ind 1 :B'(CH(Q))). This last module may be 

viewed as a virtual projective kN^Q-module, or as a virtual Q-projective 
N-module (such that Q acts trivially on all modules involved). Thus the 
only Scott modules it can involve are Scott modules with vertex Q. 

Since Alperin's conjecture holds for all blocks of kCjj(Q) (and its 
sections) there are no CH(Q)-fixed points on J (-1),CI Inct! (B*(CH(Q))) 

C^(CH(Q))/CH(Q)^ 
(for as B does not have defect group Q, B'(Cjj(Q)) is a sum of blocks of 
positive defect of kCjj(Q) , each of which is of Lefschetz type). Hence 
the Scott module with vertex Q is not involved in 
£ (-l)'cl IndJJ (B'(CH(Q))) (for all modules under consideration 
C^(CH(Q))/CH(Q) C 
are trivial source modules, so the total number of fixed-points on the 
above virtual module is the number of Scott modules involved). The 
proof of Lemma 2.2 is complete. 

REMARK : We note that we may also conclude from the proof of Lemma 2.2 
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that J (-1)'^' Ind_ (BC(H)) only involves modules whose vertices 
{Cejr(G):Q,nH - 1G}/G Gc 

intersect H trivially. Hence it follows that 

Res£( I (-1)'C| Ind£ (BC(H))) and ResJ^Y (-1),C| Ind£ (BC(H))) 
H Ce^(H)/c Uc "{CevtfW.Q^H - 1 G } / ^ 

are both virtual projective modules in the Green ring for kH. 
Also we remark that as J (-1),C| Ind£ (BC(H)) is a virtually 

Ce JvI(G) IQX ^ 

projective kG-module, and as J (-1),C| IndJJ (BC(H)) involves no 
{CcsKCOrQ^H - 1G)/C C 

Scott module, the projective cover of the trivial module is the only Scott 
module which can be involved in J (-l)'Cl Ind̂  (BC(H)). 

C6X(H)/G 
LEMMA 2.3 : Let X be a finite group, Y < X, and M be an indecomposable 
trivial source kX-module with vertex Q. 

If the projective cover of the trivial module occurs as a summand 
v 

of Resy(M), then QnY - lx. Furthermore, if we also have X - YQ, then 
M is the Scott module with vertex Q. 

PROOF : We know that Res*(M) Res*(Ind*(k)), and that 

Res*(Ind*(k)) at 
certain x 

IndQ^nY(k)-

Now for x e X, the Scott module with vertex (̂ nY is the unique Scott 
Y 

module occurring as a summand of Ind^ Y(k). Hence if the projective 
vc f X 

of the trivial module occurs as a summand of Resv(M), then there must be 
some x e X with Q ^ Y — lx, so Q«Y — 1)( as Y <l X. If, in addition, we also 

X X 
have X - YQ, then Res (Ind (k)) * kY, so the projective cover of the 

X X 
trivial module occurs just once as a summand of ResY(Ind-(k)). However, 

X 
let V be the Scott module with vertex Q. Then Res (V) is projective, 

X 
and Y certainly has a fixed-point on Res (V), so the projective cover 

X 
of the trivial module does occur as a summand of ResY(V). The result 

f o11ows. 

The next result is well-known, and is an easy consequence of Green's 
indecomposabi1ity theorem. 

LEMMA 2.4 : Let X be a finite group, Y <3 < X with [X:Y] a power of p. 
Let P, (X) denote the projective cover of the trivial kX module (similarly 
for Y ) . Then: 

11 I n c & P , (Y)) « Pt(X). 

1i Res 
X 
Y' :P,(X)) s [X:Y] 

P,00. 
copies 
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PROPOSITION 2.5 : There are no G-fixed-points on £ (-1),C| Ind?, (BC(H)). 
Ce^T(G)/G Uc 

PROOF : We know that 
l (-i)|Ci indj: (BC(H>) - i (-i),ci indj: (BC(H)> 

Ce xK(G)/G Uc Ce jf(H)/g GC 

+ I <-l)|C| IndG (BC(H)) . 
{ C e j v T C O i Q^H - 1G)/GC 

Furthermore, we know that the second sum on the right hand side involves 
no Scott module, and that the only Scott module which can be involved in 
the first sum on the right hand side is the projective cover of the 
trivial module. 

Since ResG( J (-1),C| IndG (BC(H)) is virtually projective, 
H Ce X(G)/G GC 

we may count the number of H-fixed points by counting the multiplicity 
of the projective cover of the trivial kH-module. Since [G:H] - p, 
it follows from Lemmas 2.2 and 2.3 that there are no H-fixed points on 

ResS t 1 (-1),C| Ind£ (BC(H))](recalling that this last virtual module is 
H {Ce JvT(G):Q1oH - 1G>/GC 

virtually projective in the Green ring for kH). 
Also, from Lemmas 2.2, 2.3 and 2.4, it follows that the number of 

H-fixed points on ResG( £ (-1)|C| IndG (BC(H))) is p times the 
Ce Jsf(H)/G GC 

number of G-fixed points on Y (-1),C| IndG (BC(H)). 
Ce .X(H)/G Gc 

However, there are no H-fixed points on 
ResG( I (-1)|C| IndG (BC(H)), since 

H C e K ( H ) / G Gc 

Resu< I . (-D,C| IndG (BC(H))) - I (-1),C| Ind" (BC(H)) 
H C e K ( H ) / G Gc CeJ^(H)/H Hc 

(and since B(H) is a sum of blocks of positive defect of kH, each of 
which is of Lefschetz type as Alperin's conjecture is valid for every 
p-block of every section of H ) . 

PROPOSITION 2.6 : B is of Lefschetz type. 

PROOF : We need to prove that there are no G-fixed points on 
J (-l)'Cl IndG (BC). Since this last virtual module is virtually 

Ce K(G)/G GC 
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projective, the number of fixed-points we are interested in is 
2 (-1),C| dimk(Tr^(Bc)). 

Ce JV(G)/G 

For any CeXCG), Tr^c(Bc) - Tr^c(Bc(H)) (for GC\HC consists of 
p-singular elements), so the number we wish to calculate is 

2 (-1)|C| dimk(Tr^c(Bc(H))) which is the number of G-fixed points 
Ce Jvf(G)/g 

on I (-1)«C' Ind£ (BC(H)) 
C6jNf(G)/c Gc 

(as this last virtual module is also virtually projective), and we know 
that this number is 0 by Proposition 2.5. The proof is complete. 

We may summarize the results of this section by : 

COROLLARY 2.7 : Let X be a minimal counterexample to Alperin's conjecture 
for the prime p. Then X - OP(X). 

SECTION THREE : AN EQUIVARIANT FORMULATION 
We know that Alperin's conjecture (for the prime p) holds for all 

finite groups if and only if whenever X is a finite group and B is a 
block of positive defect of kX, there are no X-fixed-points on 
2 (-D'Ci ind* (BC). 

Ce P (X)/x Xc 
Now suppose that there is Y < X, and that B is a minimal X-invariant 

sum of blocks of kY. When C - QQ < Q, ... <Qn is a chain inp(X), we 
let Bc - Br^ (1B) kYc, which is an Xc-stable sum of blocks of kYc, so 
can be viewed as an Xc-module under conjugation. We note that there are 

X 
no primitive idempotents in Tr,(B) unless B is a sum of blocks of defect 0 
of kY, each of inertial index prime to p, in which case there is just one 
such idempotent. 

Our main result of this section is: 
PROPOSITION 3.1 (EQUIVARIANT FORMS OF ALPERIN'S CONJECTURE) : 
The following three statements are equivalent 
i) Whenever X,Y,B are as above, the number of X-fixed points on 

c X X 2 (-1),C| Ind (Bc) is the number of primitive idempotents in Tr., (B) . 
CeJ>(X)/x Xc 
ii) Whenever X,Y,B are as above, the number of X-fixed points on 
J (-1)|C| IncL, (Bc) is the number of primitive idempotents in Tr^(B)X 

Ce S> (Y)/x *c 
(ie is 1 if B is a sum of blocks of defect 0 of kY, 0 otherwise). 
iii) Whenever X,Y,B are as above, 
# (X-orbits of (isomorphism types of) simple B-modules) — 
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2 # [Nx(Q)/Q-°rbits of projective simple NyCQJ/Q-modules in Brauer 

correspondents of B], where Q runs over p-subgroups of Y, (up to 
X-conjugacy). 

REMARKS : We note that the truth of any of the statements 
i), ii), or iii) above implies Alperin's original conjecture (upon 
taking Y - X ) . 

To prove Proposition 3.1, we consider a finite group G such that 
whenever X is a proper sectiion of G, Y < X, and B is a minimal X-stable 
sum of blocks of kY, the formulae of i), ii), and iii) above are all 
valid for the triple (X,Y,B). We choose a normal subgroup H O G , and 
we further assume (as we may) that whenever L < G with |L| < I Hi, and 
B' is a minimal G-stable sum of blocks of kL, then the formulae appearing 
in i), ii) and iii) above are all valid for the triple (G,L,B'). Then 
to prove Proposition 3.1, it suffices to prove that if B is a minimal 
G-stable sum of blocks of kH, and the triple (G,H,B) satisfies the 
formula in one of parts i), ii) or iii) above, then it satisfies the 
other two formulae. 

NOTATION : From now on, the triple (G,H,B) is fixed. We let 
B* — lg kHp» (where kHpf denotes the k-span of the p-regular elements of 
H ) . Thus B* is a G-module via conjugation action. We let £*(B) denote 
dimjc(B*G) . Then minor variants of arguments of Brauer show that C*(B) 
is the number of G-orbits of (isomorphism types of) simple B-modules. 
We let k*(B) denote dimk(BG). 

When Q is a p-subgroup of G, we let m ^ ^ (Q) denote 

dimk(TrG(B*Q) / J Trp(B*p)). We note that minor variants of arguments 
P<Q F (1) 

from the theory of lower defect groups show that G*(B) - J mrt* (Q) » 
(Q) 

where Q runs over p-subgroups of G (up to conjugacy)> 
(e.g. Olsson [8], or Broue [2]). 
REMARKS : Once more, J (-1),C| IndG (Bc) is virtually projective 

CeP(G)/G 
in the Green ring for kG. Hence the number of G-fixed points on this 
virtual module is 

I (-D'C' dimk(TrGC(Bc)) [ - I (-D'C| ^ d c ) ] 
Cep(C)/G Cef(C)/c 

LEMMA 3.2 : J (-l)iC| G*(BC) - £ (-1),C| k*(Bc). 
Ce P(G)/G Ce £(C)/G 
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PROOF : We need to prove that 
5! 

Ce J-(G)/ 
(-I)ICI G*(BC) d 7 

Cer(G)/G 
(-l)iCl m sd 

(i) (Cevh(C) 

It suffices to prove that whenever Si is a conjugacy class of non-trivial 
p-subgroups of G, then 

2 (-l)'Cl 2 m ^ C Q ) - 0. 
C € P ( G ) / G (Qe$: Q < G C } / £ 

Equivalently, we need to prove that 
5L ( - i ) | C l «6.V«» - o fc- Q « A . 

ce>(G)Q/NG(p) 

We prove that £ (-1)|C| ml*5(Q) - 0 
C«J>(C)Q/HC(Q) 

whenever Q is a non-trivial p-subgroup of G. Let Q be such a p-subgroup. 
We note that (as is well-known),m(1)*Bc(Q) - dimk(TrQG(Q)(BrQ(B*Q))) 

We may pair off NG(Q)-orbits of chains i n P ( G ) Q as follows: 
let C - Q0 < Q1 ...< Qn be such a chain. Suppose that Q < Qj, but 
that Q < Qi+1 (in case i * n ) . If QQj - Qj+1, delete Qj+1 from C, 
whilst if QQj < Qj+1, insert QQj into C between Qj and Qi+, . Let 
C be the chain so obtained. Then ( C ) ' - C, and Nc - Nc» (where N 
denotes NG(Q)). Furthermore, from the remark above, we see that 

m ^ C Q ) " m ^ i ^ Q ) , and it follows that 2 (-1),C| m£*^ (Q) - 0, 
° C' ctP(G)Q/N 

as required to complete the proof. G^*<' 

LEMMA 3.3 : J (-l)'c' k*(Bc) - 2 (-1) iCl fi*(Bc) . 
Ce VP(H)/G CeJ>(H)/G 

PROOF : We know that 
2 (-l)'c' k*(Bc) is the number of G-fixed points on 

CeP(G)/G 

2 (-1)«CI Ind^ (Bc) 
CeP(G)/G Gc 

[ - 2 (-D,C| MDG (BC) + 2 (-D101 I n d G ( B c ) l . 
Ce^(H)/G °c {CeJvf(G):Q1oH - 1G>/G 

Similarly, 2 C*(BC) is the number of G-fixed points on 
Ce P ( G ) / G 
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I 
Ce^C(H)/ 

(_1)|C| Ind G Gc B*) + 1 
{Ce vN(G) : 

(-l)lCi 
Q.nH -

Ind 1 (Cevh(C) xcc 

By Lemma 3.2, it suffices to prove that whenever Q is a non-trivial 
p-subgroup of G with Qr»H - 1G, the numbers of NG(Q)-fixed points on 

Y (-1)|C| Ind£ (BCQj*) and on I (-1),C' ln<& (B(Ojc) 
CeJ\f(X)/- Xc CeJvf(X)/^ Xc 
are equal (where X — NQ(Q) , B(Q) - BrqClg) .kN|j(Q) , and ~~ denotes images 
under the natural algebra epimorphism from kX onto kX/g). It is 
necessary to observe here that QnNjj(Q) - 1, and that [Q,Nj|(Q)] < Hr»Q - 1H, 
so that Q centralizes NJJ(Q) . 

That these two numbers are equal follows from Lemma 3.2 (applied 
with X in place of G, NH(Q) in place of H, and B(Q) in place of B ) . The 
proof of Lemma 3.3 is complete. 

REMARK : So far, we have not used any of the properties of G assumed 
at the beginning of the section, so that Lemmas 3.2 and 3.3 are valid 
for arbitrary finite groups. However, the next result (which completes 
the proof of Proposition 3.1) certainly requires the properties attributed 
to G. 

PROPOSITION 3.4 : 
(i) I 

(Cevh(C) 
(-I)ICI k*(Bc) - E 

Ze P(H)/G 
(-I)ICI k*(Bc)-

2 # (primitive idempotents in TrG(BQ)/J Trp(Bp)), where Q runs over 
(Q) Q P<Q 
non-trivial p-subgroups of G with Qr»H - 1Q (up to conjugacy) . 

ii: e 
Ce J> (H)/g 

(-I)ICI k*(Bc) ze fi*(B) - e 
(Q) 

* [Nc(Q)/p-orbits on projective 

simple kNjj(Q)/^-modules in Brauer correspondents of B] where Q runs over 
non-trivial p-subgroups of H, up to G-conjugacy. 
iii) If the triple (G,H,B) satisfies any one of the formulae appearing 
in Proposition 3.1, then it satisfies the other two. 

PROOF: 
i) > Ce^(G)/G 

(-l)'cl k*(Bc) is the number of G-fixed points on 

I 
Ce J>(G)/C 

:-i)lCl Ind ) 
) 

(B„) 
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D J. 
C€J*(H)/G 

(-1),C| Ind G 
G 

:BC) + Z 
{Ce JNT(G) 

( - l ) l C l 
:Q^H = 

Ind GG 
c 

G>/( 
Bc) ] 

Choose a p-subgroup, Q of G with QnH - 1G(*Q)• Then (with notation 
as in Lemma 3.3), the contribution to £ (-l)'c« k*(Bc) from 

CeP(G)/G 
chains starting with (conjugates of) Q is J _ (-1)lc'+1 k*(B(Q)c). 

Ce X(X) 

By the choice of G, we know that J (-1),C| k*(B(Q)c) is the 
Ce (X) 
X 

number of primitive idempotents in Tr, (B(Q)), ie the number of primitive 
idempotents of T r J f G ^ (B(Q)) . By a Theorem of Puig [9], this last number 

G G 
is the number of primitive idempotents of Tr (BQ) / J Tr (Bp) (ie. the 

Q P<Q 
number of primitive idempotents of BG with defect group Q, viewing B as 
a G-algebra). 

Since Q was arbitrary (subject to QnH - 1G + Q ) , part i) follows. 
ii) We have J (-l)'c« k*(Bc) - J (-l)'c' fi*(Bc). 

CeJ?(H)/G Ce^(H)/G 

Let Q be a non-trivial p-subgroup of H, and consider the contribution 
to J (-1)|C| C*(BC) from chains starting with conjugates of Q. 

CeP(H)/G 
By minor variants of familiar arguments this is -J (-1),C| C*(B(Q)C) 

C e J ^ ( Y ) / ^ 
f - - 2 (-1),C| k*(B(QTc) 1 (where X - NG(Q), Y - NH(Q), - denotes 

Ce ̂ ( Y ) 
images under the natural epimorphism from kX to kX/q, and where B(Q) 
denotes BrQ(lB).kY). 

The choice of G tells us that this contribution is - # (NG(Q)/Q-orbits 
on projective simple B(Q)-modules) so part ii) follows. 
iii) We may rewrite the equation of part i) above as: 

J (-1)|C| k*(Bc) - J (-1)|C| k*(Bc) + 2#(primitive idempotents of 
CesK(H)/G CeX(G)/G (Q) BG with defect group Q) 

where Q runs over non-trivial p-subgroups of G with QnH - 1G(UP TO 

G-conjugacy). 

From general considerations on G-algebras, we also have : #[primitive 
H r-

idempotents of Tr,(B)u] 
= 2 ^[primitive idempotents of BG with defect group Q] 

Q 
where Q runs over p-subgroups of G with QnH = 1G (up to G-conjugacy, 
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and including the trivial subgroup). 

It follows, then, that 

E 
Cer(H)/c 

(-1)|C| k*(Bc) - #[primitive idempotents in Tr,(B)G] 

if and only if 2 
c«r<c>/c 

(_1)|C| k*(Bc) -

Q 
#[primitive idempotents in Tr,(B)]. 

It remains to prove that 
e 
Ce y(H)/_ 

(-I)ICI k*(Bc) - #[primitive idempotents in Tr^B)0] 

if and only if 
#(G-orbits on simple B-modules)(-fi*(B)) 
— J #(Nc(Q)/Q-orbits on projective simple kNj|(Q)/Q-modules in Brauer 

correspondents of B) . 

If B is a sum of blocks of defect 0 of kH, then we have 

I (-1),C| k*(Bc) - k*(B) - 1 - #[primitive idempotents of TrH(B)G] . 
Ce Jf(H)/g 
Also #(G-orbits of simple B-modules) (-1) 

— J #[NG(Q) / -orbits on projective simple kNH(Q) • -modules in Brauer 
(Q) Q Q 

correspondents of B] where Q runs over p-subgroups of H (up to G-conjugacy) 

Thus we may suppose that B is a sum of blocks of positive defect of kH. 
In that case, there are no primitive idempotents in T r ^ B ) ^ , and our 
problem reduces to showing that J (-1)|C| k*(Bc) - 0 if and only if 

Ce J & H ) / 
fi*(B) - J #[NG(Q)/o"orbits °n ProJective simple kNH(Q)/ -modules in 

Brauer correspondents of B ] . 
where Q runs over p-subgroups of H (up to G-conjugacy). This follows 
from part ii) above, since the subgroup 1 Q makes no contribution to the 
right hand side of the second equation in this case. 

The proof of Proposition 3.4 is complete. 

We now consider some circumstances under which the formulae of 
Proposition 3.1 can be shown to hold: 

PROPOSITION 3.5 : Let X be a finite group, Y <J X, B be a minimal X-stable 
sum of blocks of defect 0 of kY. Then the triple (X,Y,B) satisfies all 
the formulae appearing in Proposition 3 . 1 . 
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PROOF: Only the formula of part 1) presents any difficulty. We know that 
1 C-l) ,C| k*(Bc) - J (-I)ICI dimk(TrXc(Bc)) + I (-l)'Cl dimk(Tr^(Bc)) . 

CeJ>(X)/x Ce^(Y)/x {C€p(X):Q ,n1r - lx}/x 
Let C be a chain whose first non-trivial term, Q say, interesects Y 
trivially. Then Q < Xc, and [YCjQ] < QoY, so that Tr*c(Bc) - 0. 

Since Bc - 0 whenever C is a non-trivial chain inP(Y), we need to 
X X 

prove that #(primitive idempotents in Tr^B)) - dimk(Tr,(B)). This is 
X 

true, since Tr,(B) is a subalgebra of the semi-simple commutative algebra Z(B). 

PROPOSITION 3.6 : Suppose that Op(G)+lG. Then (G,H,B) satisfies the 
formulae of Proposition 3.1. 

PROOF : It suffices to prove that (G,H,B) satisfies the formula of 
part i) of Proposition 3.1. 

Q 

However, since Op(G)+lG, there are no idempotents in T r ^ k G ) , 
so certainly no primitive idempotents in Tr^(B). Also, 

2 (-l)lc' Ind£ (Bc) - 0 so that the formula of part i) is satisfied. 
c« P(C)/C 
REMARK : In fact, we do not need any of our assumptions on G to prove 
that (G,H,B) satisfies the formulae of parts i) and iii) of Proposition 3.1, 
but these assumptions are necessary to prove that (G,H,B) satisfies the 
formula of part ii) in the case Op(G)«H - 1Q. 

The proof of the following result is straightforward, so we omit it: 

LEMMA 3.7 : Let X be a finite group, M,N be normal subgroups of X with 
M < N and N/M a p-group. Then there is a one-to-one correspondence 
between X-orbits of projective simple kM-modules of inertial index 
prime to p and X-orbits of projective simple kN-modules of inertial 
index prime to p. 

PROPOSITION 3.8 : Suppose that H + OP(H). Then the triple (G,H,B) 
satisfies all the formulae of Proposition 3.1. 

PROOF : By Proposition 3.4, it suffices to prove that (G,H,B) satisfies 
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the formula of part i) of Proposition 3.1. Let L - OP(H)(so L < H ) , and 
let B' — lgkL, (a minimal G-invariant sum of blocks of kL). By hypothesis, 
we know that the number of G-fixed points on £ (-l)'Cl IndG (B'c) 

ce S (x)/x Gc 
is the number of primitive idempotents in TrG(B')» which is the number 
of G-orbits of projective simple B'-modules of inertial index prime to p. 
By Lemma 3.7, this is also the number of G-orbits of projective simple 
B-modules of inertial index prime to p, (which is the number of primitive 

Q 
idempotents of Tr,(B)). 

Now У 
Ce У(X)/x 

(_l)lCl G :bc) and У 
Ce F(X)/x 

(-I)ICI [nd G (B'c) 

are both virtual projectives. Hence the number of G-fixed points on 

I 
Ce У (X)/x 

;_1)|C| [nd :bc) is 1 
Ce Г(Х)/х 

(-l)ICI dimk(TrGc(Bc)) 

Ce У (X)/ 
(-1)'Cl dim^ (TrGC(B'c)) (as HC\LC consists of p-singular 

elements), and this last number is also the number of G-fixed points 
or 

Ce Г(Х)/х 
(-I)ICI Ind 1 :b'c>. The result follows. 

The methods and results of this section can be readily adapted to 
yield: 

PROPOSITION 3.9: Let X be a finite group, Y be a p-nilpotent normal 
subgroup of X, В be a minimal X-invariant sum of blocks of kY. Then 
the triple (X,Y,B) satisfies all the formulae of Proposition 3.1. 

LEMMA 3.10: Let X be a finite group, Y < X, L be a (not necessarily 
normal) subgroup of X, M be a right kL-module. Then dimjc(TrL^Y(M)L) 
- dimk(TrY(Ind£(M))x) . 

PROOF : We know that Ind^(M) has an L-summand, say M', isomorphic 
X 

to M, and that Tr induces a vector space isomorphism between M'L and X X Ind^(M)*. We claim that Tr1 induces an isomorphism between 

Tr^rtL(M')L and Tr^(Ind^(M))x. 

X 
Let fi be an L-projection from Ind (M) onto M'. Then given 

X X v e Ind£(M)x, v0 is the unique element of M'^ such that v — Tr^(v^). 

Suppose then that v - Tr^(w) . Then we have v0 — Tr^^ivt' 
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where w' f Fg 
(Cevh(C) 

wx. This proves that Tr?(IndX(M))* c TrX(Tr*ftL(M')L). 

On the other hand, choose m' e Tr?ftL(M')L, say m' — TrfnL(w) for 

some w e M' . Then we have Tr£(m') d I 
xeL\X/Y 

Tr^XnY(mk) -

d 
xeL\X/Y 
f o11ows. 

Tr*(wx). Thus Trf(Tr?nL(M') L) c TrJ(Ind^(M))X, so the result 

COROLLARY 3.11: Let X be a finite group, Y <J X, B be a minimal 

X-invariant sum of blocks of kY. Then the number of X-fixed points 

on I (-1)|C« Inc£ (Bc) is J (-1),C| dimk(Tryc(BC)XC) 
CéJ>(Y)/x Ac C e P(Y)/x 

PROOF : We have seen that £ (-1)1°! Inc£ (Bc) is an alternating 

C e P(Y)/x Xc 

sum of modules whose vertices intersect Y trivially. It follows that 

the number of X-fixed points on the above virtual module is 

I (-1)|C« dimk(Try (Ind£ (BC))X) - I (-1),C| dimk(Tryc(Bc)Xc) 

Ce fW/x Ac Ce >P(Y)/x 

(using Lemma 3.10). 

We can now strengthen Proposition 3.9, 

PROPOSITION 3.12: Let X be a finite group, Y < X, B be a minimal 

X-invariant sum of blocks of kY. Suppose that B is a sum of nilpotent 

blocks of kY. Then the triple (X,Y,B) satisfies all the formulae 

appearing in Proposition 3.1. 

PROOF : We may, and do, assume that B is a sum of blocks of positive 

defect. 

i) We know that the number of X-fixed points on 

5: 
Ce f(X)/x 

(_1)ICI Ind 
5 . 

:BC) -

7. 
C e f ( Y ) / x 

(-I)ICI dimk(TrXC(Bc)) + s 
{Ce P(X) 

(-I)ICI dimk(Tr^(Bc» 

(Cevh(C)(Cevh(C) 

Let C be a chain in^P(X) whose first non-trivial term is Q 

with QnY - lx. Then [YC,Q] < QnY - lx, so that TrXc(Bc) = 0 , as Q < Xc. 

On the other hand, as in Proposition 5.2 of [5], whenever C is a 
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chain i n P ( Y ) , we already have lr^c{Bc)) - 0, so we see that # (X-fixed 

points on J (-1)'C| Ind^ (Bc)) - 0, which is the number of 
C«J>(X)/X 

primitive idempotents in Tr,(B). 

ii) The number of X-fixed points on J (-1),C| Ind£ (Bc) is 

Ce 9 (Y)/x Xc 

J (-l)lcl dimk(Trfc(Bc)Xc), which is 0 by the remarks above. 

c, Pco/x 

Also, #(primitive idempotents in Trt(B)x) - 0. 

iii) Let b be a block of kY which occurs as a summand of B, and let P be 

a defect group for b. Then as Alperin's conjecture holds for b we see 

that f£b* (NY(Q)/Q) - 0 unless Q is Y-conjugate to P, whilst 

fo*^ (Ny(P)/p) — 1. Since similar statements hold for X-conjugates of b, 

the formula of part iii) of Proposition 3.1 reduces to 

#(X-orbits of simple B-modules) - #(NX(P) / -orbits of projective simple 
kNY(P)/p t-modules in Brauer correspondents 

of B) . 

The left hand number is 1, as b has a unique simple module. 

Also, the number of projective simple kNY(P)/p-modules in Brauer 

correspondents of B is the number of X-conjugates of b which have defect 

group P. A Frattini-type argument shows that N^(P) transitively permutes 

such conjugates of b, and hence also permutes their Brauer correspondents 

transitively. Thus the right hand number is also 1, and the proof of 

Proposition 3.12 is complete. 
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