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The Automorphism Groups of Generalized Reed-Muller Codes 

Reinhard Knorr and Wolfgang Willems 

1. Introduction 

The generalized Reed-Muller Codes of length pm over the 

prime field Fp are the radical powers J(FpE)r 

(0 £ r £ m(p-l)) of the group algebra F^E of an elementary 

abelian p-group E of rank m . To be consistent with the 

notation in the literature we put 

GRM(r,m) - J(FpE)m(P"1)"r (0 £ r £ m(p-l)) . 

Then GRM(r,m) is the r-th order generalized Reed-Muller 

Code of length pm over Fp . 

In an earlier paper [4] we characterized such codes as those 

linear codes of length pm over Fp which contain the 

affine general linear group AGL(m,p) as a subgroup of their 

automorphism group. 

In the binary case the automorphism group of a generalized 

Reed-Muller Code - which is the original Reed-Muller Code [6] 

- has been known for a long time ([5], Chap. 13, §9). Here we 

prove 

S.M.F. 
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Theorem. For any prime p we have 

Aut(GRM(r,m)) -

The full monomial group if r = m(p-l) 

xc xcx S m 
P 

if r = 0, m(p-l)-1 

cv x AGL(m,p) otherwise. 

Although the result does not depend on whether the prime p 

is odd or even, the proofs are rather different in the two 

cases. The difference lies in the fact that only in the bi­

nary case a nice geometrical interpretation of the code is 

available ([5] Chap. 13, §4), from which the crucial point 

Aut(RM(r,m)) C Aut(RM(r+l,m)) (0 < r £ m-1) 

in the proof ([5], Chap. 13, §9) follows. This fails in odd 

characteristic. The proof we present here heavily depends on 

the classification of doubly transitive groups. 

2. Proof of the Theorem 

Let V be a vector space over the field F with basis 

(u1,...,un) and let C be a linear code in V . If 

g € Aut(C) then g defines a permutation ir = ir € S n such 

that 

u i ^ - fiuiTr (fi ^ F* i = 1,..., n) 

Thus there is a homomorphism 

a : Aut(C) Sn 

g 
"g 

and if P Aut(C) denotes the image of a we obtain an exact 

sequence 

(A) 1 -> D(Aut(C)) -* Aut(C) rr P Autre) -* 1 

where the kernel D(Aut(C)) of a consists of the diagonal 

automorphisms of Aut(C) . 

For the reader's convenience we restate the following well 

known result: 
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Lemma 1 [3]. If C is non-trivial (i.e. 0 < C ^ V) and if 

P Aut(C) acts doubly transitively on the coordinate po­
sitions then D(Aut(C)) - F**id. 

Proof. Let 0 * c = aiui+*•,+anun € C w*tn w(c) minimal 
where w denotes the weight functions on V and a^ € F . 
Obviously w(c) 2 2 as P Aut(C) acts transitively and C 
is nontrivial. Now suppose that d € D(Aut(C)) with 

(i = 1,iv,n) (i = 1,...,n) 

where f. c F and f^ * f. for a suitable irt . As the i n iQ 0 

action of P Aut(C) even is doubly transitive we may assume 
that a„ * 0 * a. . I t follows 

n x0 

C 3 f c - cd = n 
ill tfn - fi>aiui 

with (fn -fi )ai * 0 and w(^nc " c<*) < w(c) , a contra­

diction. 

As already mentioned, AGL(m,p) is contained in the auto­
morphism group of GRM(r,m) for each r . If we write 
AGL(m,p) = E x GL(m,p) then E acts by right multiplication 
and GL(m,p) by conjugation on F^E and therefore on all 

the radical powers J(FpE)r . This action is doubly transi­
tive on the coordinate positions. Then 

(B) DrGRMfr.m)) = F* P 
by Lemma 1, provided r < m(p-l) . 

Lemma 2. Aut(GRM(r,m)) = Fp x s m for r = 0 and 

m(p-l)-l . 

Proof. Obviously, S is contained in the automorphism 
P 

group of the socle of FpE and the radical J(FpE) . The 
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assertion follows now immediately from (A) and (B). 

Lemma 3. Aut (GRM(1,m) ) = Aut (GRM(m(p-l) -2 ,m) = Fp x AGL(m, p) 

for m(p-l)-2 2 0 . 

Proof. Since FpE is a uniserial FpAGL(m,p)-module (see 

[4]), GRM(l,m) is the orthogonal of GRM(m(p-l)-2,m) . 

Thus, by duality, it is sufficient to prove the second equa­

lity. Let J2 = J(FpE)2 = GRM(m(p-l)-2,m) and let 

g € Aut (J2) . If x = e|E aee € FpE then xg - 2 aeg(e) (eTrg) 

where g(e) € F* and irg is a permutation of E . Via a 

transformation with a suitable element of F* x AGL(m,p) we 

may assume that lg = 1 . Now let 

x = (e-l)(e»-l) = ee'-e-e'+l € J2 with e,e» € E . Thus 

xg - g(ee') (ee')Tr - g(e) (eir ) - g (e") (e 'ir ) +1 € J 2 . As 

2 
xg € J , we have 

g(ee') - g(e) - g(e») + 1 = 0 . 

In particular, for e* = e1 , this yields 

g(ei+1) = g(e) + gCe1) - 1 . 

Inductively, we obtain 

gCe1) = 1 + i(g(e) -1) . 

If g(e) * 1 then there exists an i € IN with 1 £ i £ p-l 

such that i(g(e) -1) = -1 , hence g(ex) = 0 , a contra­

diction. Thus g(e) = 1 for all e € E . It follows 

(ee» )?r - eir - e»ir + 1 € J 2 
g g g 

and obviously also 

(eir ) ( e ' i r ) - eir - e ' i r + 1 € J . 
g g g g 

Thus 

[eirg) ( e ' i r g ) - ( e e ' ) i r g € J 2 . 

With a:= ( e e ' J i r and b = (eir ) ( e ' i r ) we obtain 

a~1(b-a) = a-1b-l € J2 . 
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Suppose ex = a b * 1 . Then choose e2,...,effl such that 

E = <e......e > . Now consider the two-dimensional F E-mo-

1 m p 
dule M = F mn © F with the action 

p i p 2 

m. e_ = m« +m«. « i„6. = m— 
1 1 l 2 2 1 2 

miei = mi (i- 1'2 ; 3 - 2,...,m) 

It follows M(ex-1) * 0 but MJ - 0 since dim M = 2 . 

Therefore a""^ = 1 , i.e. 

( e e » ) * g - ( e i rg ) ( e » i r g ) 

and irg € GL(m,p) . 

This shows Aut(GRM(m(p-l)-2,m)) £ F* x AGL(m,p) and equa­

lity holds by a previous remark. 

Lemma 4. Aut(GRM(r,l)) = F x AGL(l,p) for 1 £ r £ p-3 . 

Proof. Put E - <e> , aij - (*) € Fp and /3 „ - (-l)1*3^ 

for i,j = 0,l,...,p-l . Let g € Aut(Jk) with Jk « J(FpE)k 

and 2 £ k £ p-2 . Then 

ê -g = fieir (0 £ i £ p-1) 

where f^ € F* and ir is a permutation of {0,...,p-l} . 

Again, as F* x AGL(l,p) is contained in the automorphism 

group of GRM(r,l) , we may assume that 

lg = 1 (i.e. f 0 = 1 and Oir = 0) 

and eg = f1e (i.e. lir = 1) . 

Now we have to show that g = 1 or equivalently by (B) 
s k ir = id . Note that { (e-1) | s £ k) is a basis for J and 

(e-l)sg = 2 ßsiexg - 2 ß ^ f ^ 

g = 2 ßsiexg - 2 ß^f^g = 2 

Thus 

(1) 2 ßs^fiaiv j• = 0 for a11 s ^ k > j . 

For an arbitrary t and j < k we obtain 
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ftatr,j = 2 6tifi aiw>j = a2± atsPsifi«iir,j 

17s tsMsi 1 lf,j 
s<k 

= 2 
i 

< I ° W s i > f i a i i r , j • 
s<k 

We put 

U ) »tis = 1 
s<k 

"ts^si 

Obviously 

7ti = 0 for i 2 k , 

since then P . = 0 for all s < k . 

Therefore 

( 3 ) 2 
i 

i<k 

7tifiaiir,j " ftatTr,j 

for all t and all j < k • 

If t < k then 7 . ^ = ati and (3.) says really nothing. Thus 

only the following equations are relevant. 

(4) 2 
•J 

i<k 

<';1Tti*i)-i,,j = a*-- * for J < k and t £ k . 

For t fixed, (4.) is a system of k equations 

(j = 0,...,k-l) in the k variables ^ t ^ t l ^ i ^ 

(i = 0,...,k-l) with coefficient matrix 

g = 2 ßsiexg - 2 ß^f^ 

Oir 
0 

lir 
0 

: 
(k-l)ir 

0 

Oir 
1 

lir 
1 

: 
k-l)ir 

l 

- 2 ß^f^ 

g = 2 ß 

;;;; 

Oir 
k - l j 

lir" 
k-1 

(k-l)TT 
k-1 

fow det A can be transformed - delete denominators and add 

columns to later columns - to the Vandermonde determinant 
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det 

1 
1 
: 
: 
1 

Oir 
lir 
: 
: (k-l)ir 

(Oir)2 
(lir)2 

: 
((k-l)ir) 

.. 

2. # # 

(Oir) k-1 

(lir) k-1 

((k-l)ir) k-1 

* 0 . 

Therefore, we can solve (4.) by Cramers's rule, i.e. 

(5) g = 2 ßsiexg = 
det A± 
det A 

where the matrix A. is obtained from A if the i-th row is 

replaced by (atir,0' * " ' ,atir,k-l) * 
Clearly 
k-1 
k-1 M !Idet A = II 

r<s<k 
(sir -nr) 

k k r<s<k 
r,s,<i 

(sir -nr) IT r*i (iir - nr) 77 r>i 
(nr -iir) 

and 
k-1 
17 

sd 
(j!)det A± = TT 

r<S<K 
r,s*i 

( sir -nr ) r 5 i ( t i r - n r ) r 5 i (nr -tir) . 

Thus 

(6) rSk tifi = rSk ( n r - t T ) 
( n r - ir) . 

Since a s 
i c i 

t-i" 
rSk for t 2 s 2 i we obtain 

rSk c sik atspsi = sik 'Jl 
r ^ 
S 
i : 

(-iis+i 

= t 
i sik 

t-i 
3-1 (-D3-1 

d 
t 
i ulk-i-1 

"t-i" 
u c - l ) u 

d t 
i 

rSkrSkrSk t-i-1 
(k-i-ij 

(The last equality follows by a trivial induction.) 
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Insert the value for Tt^ in (£) yields 

(2) 
rSkrSkrSkv = t-i-l"| 

k-i-1 
k-i-1v r5k 

k-i-1 

rrr - ta­
rir — lir 

for ail t £ k and all i < k . 

In particular for i = 0 (note k £ 2) and t £ k 

k-i-1k-i-1 t-ii 
k-l 

r-1 
y 

= o5r<k 
n r - t ir 

n r 
(note OIT = 0) . 

Insert 
k-i-1 

in (7) vields 

k-i-1k-i-1 t 
.i 

ft-i-1 
k-i-1 

k-i-1k-i-1 t-1 
k-1. 

-1 

o5r<k 
n r - t ir ' 

n r fi 

= r5k 
r*i 

n r - t ir 

n r - n r : 

By easy calculations it follows for i ? 0 

k-i-1 t 
t = I 

k-1 
i fi = rîk 

r*i 

n r - t ir 
n r - i i r o5r<k 

n r 
n r - t ir 

x rSk 
.r*0,i 

n r - tw 
n r - i i r 

- t i r 

wx r5k 
lr*0,i 

n r 
n r - t ir 

i i r 
iw - t ir 9 

and therefore 

(&> (-D1 
k-1 
i 

-1 
k-i-1 

r5k 
r*0,i 

n r 
n r - iw" c d 

t^T 
j y - t ir 

"tir 

for all 0 < i < k and all t I k . 

Since the left hand side of (8) does not depend on t we 

obtain 

(9) 
i i r - t ir 
k-i-1 

t 
t ir v 

i i r - kir 
T = k 

k 
kir 

for all i < k and all t 2 k . 
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Hence 

tTr[i(ÌTr)k - i(kTr)k - t(iir)k + ti(kir)] = (iir) t (i-k) kir * 0 

for 0 < i < k and t £ k . 

For i = 1 (note k 2 2) we get 

(10) tir = t( 1-k) tar 
k(l-kir) - t(k-kir) 

for all t £ k (observe lir = 1) . Insert in (9) and divide 

by t(kir) * 0 yields 

(11) (t-k) ÌTr[k(l-kir) - i(k-kir)] - (t-k)i(kTT) (1-k) . 

Since k < p-1 choose t > k and divide (ii) by t-k . Ob­

serve that the right hand side of (JLL) is different from 0 

for i * 0 . Thus 

C1Z) iir = 
i( 1-k) kir 

lc(l-kir) - i(k-kir) 
for 1 < i < k 

This equation also holds for i = 0 as Oir = 0 . Together 

with (10) it follows 

(13) iir = 
i( 1-k) kir 

k(l-kir) - i(k-kir) 
for i = 0,1,...,p-l . 

The denominator of ( H ) is different from zero for 

0 £ i £ p-1 . Now if k * kir 

i = 

then 
k(l-kir) 
k-kir 

annihilâtes this denominator, a contradiction. Thus kir = k 

and then, by (2JL) , i = iir for all i as asserted. 

Proposition. Let G be a permutation group of degree pm 

where p is an odd prime and m £ 2 . Suppose p * 3 if 

m = 2 . If AGL(m,p) £ G then G is isomorphic to one of 

the following groups: 

AGL(m,p) , A 
pm 

or S 
pm 

Proof. First note that G is doubly transitive since the 

only faithful permutation representation of AGL(m,p) of de­

gree £ pm is the natural one on the vector space V(m,p) 
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(see for instance 1.1 of [4]). Let N be a minimal normal 
subgroup of G . Then by Burnside ([2], Chap. XI, 7.12), N 
is regular or simple, primitive with CG(N) - 1 • 

First, suppose that N is regular, hence an elementary abe-
lian p-group of rank m . Furthermore, G = N * Ga where Ga 

denotes the stabilizer of a point. Gff £ GL(m,p) and 
AGL(m,p) £ G imply G = AGL(m,p) . 

Thus we may assume that N is simple, primitive and 
CG(N) = 1 . Write AGL(m,p) = E * GL(m,p) and note that 
G £ Aut(N) . A s m 2 2 and p £ 5 in case m = 2 , the 
affine special linear group ASL(m,p) is perfect. 

Thus ASL(m,p) C N , since Aut(N)/N is solvable by 
Schreier's conjecture. 

In particular, N is doubly transitive. Now we can use the 
list in [1] of simple doubly transitive permutation groups. 

As m £ 2 , only the following possibilities may occur: 

N degree 

An 
PSL(d,q) 

PSU(3,q2) 

2B2(q) 

2G2(q) 

PSp(2d,2) 
PSp(2d,2) 

(n 1 5) 
(d I 2) 

(q - 3U) 

(d > 2) 
(d > 2) 

n 

(qd-D/(q-D 
q3+i 

q2+X 

q3-l 

22d-l + 2d-l 

22d-X _ 2d-l 
2 
G2(q) and PSp(2d,2) do not appear as their degrees are 

even. 
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For the Suzuki groups we have | B2 (q) | = (q +l)q (q-1) and 
pm — q2+l • Since p * 2 , p does not divide (q-1) . Com-

2 
paring the p-parts of | B2(q)| and |ASL(m,p)| , a contra-

2 
diction follows. Suppose N = PSU(3,q ) • Then 

|N| = (qJ+l)qJ(q-2-l)/(3,q+l) and q +1 = p 

Since |ASL(m,p)| = P 
m+ m 2 , this implies 

p 
m 
2. Q2-l 

(3, q+1) 
3 - m _ < q + 1 - p , so m = 2 . 

Moreover, p | q -1 and p | q +1 , hence 
3 2 2 . p I (q +1) + (q -1) - q (q+1) , so p | q+1 , in particular 

p-1 £ q . Hence (p-1)3 £ q3 = p2-l = (p+1)(p-1) , so 

p2-2p+l = (p-1)2 £ P+1 and p(p-3) £ 0 , i.e. p £ 3 , a 
contradiction again. 

Finally, we have to deal with N = PSL(d,q) for d 2 2 and 
pm= qd-1 

q-1 

If q - 2 and d = 6 then 2_Zi = 63 = 3*21 * pm . If 
d = 2 then |PSL(2,q) | = ^j^lq-l^^ and *+1 = P™ • As 
p * 2 , p does not divide q-1 . Then 
pm = |PSL(2,q)|p < |ASL(m,p)|p yields a contradiction. 

Now by a result of Zigmundy ([2], Chap. IX, 8.3) 

p J qd-l , but p \ q1-! for 0 < i < d . 
In particular 

|PSL(d,q)|p = q 
'd 
2 ^ 1 

q-1 
fo^"1-!) (a-l) 

(d, q-1) P 

qd-1 
q-1 = pm < |ASL(m,p)Ip 
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and the proof is complete. 

The case r = (m-1) is trivial. 

Proof of the Theorem. Lemma 2 states the assertion for r — 0 

and r = m(p-l)-1 . Lemma 4 deals with the case m = 1 . By 

([5], Chap. 13, §9), the Theorem holds if p is even. For 

m = 2 and p = 3 the result is contained in Lemma 3. 

Thus we may assume that 0 < r < m(p-l)-l , that m 2 2 and 

that p is odd (and p * 3 if m = 2) . Since 

AGL(m,p) £ G = P Aut(GRM(r,m)) , 

the proposition implies that G = AGL(m,p) or A < G • In 
P 

the second case it follows from ([3], Theorem 4.4) that 

GRM(r,m) is isomorphic to the repetition code, its dual or 

the whole space (as pm £ 7), i.e. r = 0 , m(p-l)-l or 

m(p-l) , a contradiction. Therefore, G = AGL(m,p) ; by (A) 

and (B) then 

Aut(GRM(r,m)) = F* x AGL(m,p) 

as claimed. 
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