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ON THE LOCAL STRUCTURE OF TAME BLOCKS 

K. ERDMANN 
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with 1(B) = 2. 

1. Introduction 
Let G be a finite group, p a prime and B a p-block of G. We are interested  
in two different approaches to representation theory: functional and  
algebra theoretic. 

The first deals with matrix representations and functions on groups;  
it includes questions about k(B), the number of irreducible complex  
characters of B, and about 1(B), the number of irreducible Brauer  
characters of B.The second approach views the block B as a finite  
dimensional algebra. It is concerned with the module category of B  
including homological properties such as projective resolutions and the  
Auslander-Reiten quiver (see chapter 2). 

A number of years ago, Brauer and Olsson studied 2-blocks B whose  
defect groups are dihedral or semidihedral or (generalized) quaternion  
from the functional point of view. They were interested in determining  
k(B), 1(B) and to obtain information concerning the (generalized)  
decomposition numbers of B [4, 13] . 

These are also precisely the blocks which are of tame representation  
type [2]; and they have recently been studied from the algebra point of  
view. By using Auslander-Reiten theory it has been possible to classify  
these blocks, as algebras, by generators and relations, up to Morita  
equivalence (and some scalars in socle relations). In particular, this 
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K. ERDMANN 

gives the Cartan matrices for all these blocks, and it allows one to 
calculate the decomposition numbers, hence to extend the classical results 
[7 to 11] of the functional approach. 

The original arguments used some of the work by Brauer and Olsson 
from [4, 13]; however this is not necessary. The aim of this paper is to 
show how results on the algebras and a few general principles determine 
1(B), k(B) and the decomposition matrices. 

We will now introduce the algebras which were studied. Let K be an 
algebraically closed field and A a finite-dimensional K-algebra. 

(1.1) We say that A is of "dihedral" or "semidihedral" or "quaternion" 
type if it satisfies the following conditions: 

(a) A is tame, symmetric and indecomposable. 
(b) The Cartan matrix of A is non-singular. 
(c) The stable Auslander-Reiten quiver of A has the following 

components: 
dihedral type semidihedral type quaternion type 

tubes 1-tubes and 1-, 2- tubes and 1- , 2- tubes 
< two 3-tubes < one 3-tube 

others ZA00 
00 

ZA00 , ZD oo oo 
(or ZA12 or ZA5) 

The class of these algebras contains all dihedral, semidihedral and 
quaternion blocks [7, 11]. To prove this, one needs, apart from general 
principles, the algebra structure of some local blocks. 

A main step in the classification of these algebras consists in 
bounding the number of simple modules. We have 
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THEOREM Let A be an algebra of dihedral or semidihedral or quaternion 

type. Then A has at most three simple modules. 

COROLLARY [Brauer, Olsson] Suppose that B is a dihedral or semidihedral 

or quaternion block. Then 1(B) < 3. 

In chapter 2, we shall give a proof of the Theorem for the dihedral case. 
The quaternion case has been done in [9]; and the semidihedral case which 
is somewhat longer will appear in [11]. 

The work to determine the algebras is more general and is independent 
of groups. The results may be found in [7, 8, 10, 11]; see also [6]. 

In the third chapter, we will calculate Cartan matrices and 
decomposition matrices D for all tame blocks having two simple modules. 

The information we need to do this from the classification of algebras 
is summarized at the beginning. It is in fact convenient to study all tame 
blocks simultaneously, since the same Cartan matrices appear, and since 
the dimension of the centre of the algebra depends only on the Cartan 
matrix C. Given C and k(B), to calculate D one needs (almost) nothing. 

We remark that the results on the heights of characters by Brauer and 
Olsson follow easily from the decomposition numbers, using the general 
fact that any block must contain an ordinary and also a Brauer character 
of height zero. 

The dihedral case has not been published; the results for the other 
types are contained in [8, 10]. However, the proofs there use results by 
Olsson [13]. 

With the same techniques, one can deal with the case 1(B) = 3; this is 
not more difficult, though it takes longer due to the number of algebras. 
This will appear in [11]. Blocks with 1(B) = 1 create no problem. 
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We write £(B) for a defect group of the block B. If M is a module 
then soc M is the largest semisimple submodule of M , and top M denotes its 
largest semisimple factor module. Any other notation should be standard. 
Concerning basic facts on blocks, algebras and representations we refer to 
[1, 12]. 
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2. The number of simple modules for algebras 
of dihedral type 

Let K be an algebraically closed field of arbitrary characteristic and 
assume that A is a symmetric K-algebra. 
(2.1) The stable Auslander-Reiten quiver T (A) is the graph whose vertices 

s 
are the isomorphism classes of non-projective indecomposable A-modules and 
where the number of arrows from [M] to [N] is equal to the K-dimension of 
the space 2(M, N)/22(M, N). Here 2{ , ) = rad HomA( , ). There is a 
graph automorphism of T (A), the Auslander-Reiten translation, denoted by 
T . 

Concerning the graph structure of Tg(A) we refer to [1, 14]. Here we 
shall only need the following facts: 

o 

(a) For symmetric algebras, r is induced by ft , and ft gives rise to a 
graph automorphism of rg(A). In particular, the tubes correspond to the 
ft-periodic modules, and ft preserves the ends of tubes. 
(b) Let M = P/soc P for P indecomposable projective. Then the predecessors 
of [M] in rg(A) are precisely the indecomposable summands of rad P/soc P. 
(c) The only algebras in (1.1) where Tg(A) has multiple arrows are those 
which immediately lead to local algebras of length 4 and give rise only to 
Klein 4-group blocks with 1(b) = 1 [11]. Therefore we assume here that 
Tg(A) does not have multiple arrows. 
(d) If A is of dihedral type then the number of arrows ending at a fixed 
[M] is 1 or 2, and it is 1 if and only if [M] lies at the end of a tube. 

(2.2) Assume that A is an algebra of dihedral type, and that S is a simple 
A-module, with projective cover P. Then (rad P)/S has at most two 
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indecomposable summands, see (2.1)(b),(d). We fix a decomposition 
(rad P)/S = U © V, and we always take U / 0. 
Definition of tJ and V: 
The decomposition (rad P)/S = U © V induces an embedding of V into P/S. We 
put tJ := (P/S)/V and V := ftTJ. 
Similarly, define V = (P/S)/U and U = ftV. 

The following result is crucial: 
(2.3) PROPOSITION Suppose that A is a symmetric algebra and that P is an 

indecomposable projective k-module. 

(a) Let (rad P)/(soc P) = U © V, and let V and V be as in (2.2). Then [V] 

and [V] have a unique predecessor in Ts(h). 
2 

(b) Let X be a submodule of rad P with a simple top with X (f rad P. Then 
[X] has a unique predecessor in Vs(K). 

For part (a), see [7, (2.8)] and part (b) is a special case of a theorem 
in [5]. 

Now, if A is of dihedral type then the only vertices in T„(A) with a 
s 

unique predecessor are the ones at ends of tubes. 
We call a module M "exceptional" if it is non-projective and [M] lies 

at the end of a 3-tube. Let £ be the set of exceptional modules, thus 
\S\ - 6 or 3, and S is the union of ft-orbits , either two of length 3, or 
just one ft-orbit [see (2.1)(a)]. 

(2.4) LEMMA Suppose that top V f S or that soc U f S. Then V and V must 

be exceptional. 

o 
Proof: Suppose not. Then ft TJ £ TJ, and there is an exact sequence 
0 -> TJ ->Q-*P->TJ-*0 where Q is projective. By exactness and since the 
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Cartan matrix is non-singular, we have P = Q. Therefore soc U = soc Q = 
top Q = top V. 

(2.5) Proof of the Theorem for the dihedral case 
Suppose there is an algebra A of dihedral type having at least four simple 
modules. Denote the simple A-modules by SQ, S p S 2 , S^, and the 
corresponding projectives by PQ, P^, ... , and let (rad Pi)/SI = UI © VI 
be as in (2.2 ) . Since A is indecomposable we have that Ext*(S^, Sj) / 0 
for some j + i, and then Sj occurs in top(U^ © V^). We may therefore 
assume that top Vi ¥ Si [in addition to the convention in (2 . 2 ) ] . 

Then the modules T^, V^ are exceptional, by (2 . 4 ) ; in particular, for 
each i there is a module in 8 whose top is isomorphic to S^ ( and hence A 
has at most 6 simple modules.) Put top 8 - [top M]JJ f ̂ , with 
repetitions, similarly define soc 8. Since \8\ = 6 , not all S^ can occur 
twice in top 8. 
(1) Suppose SQ occurs only once in top £. Then top VQ and soc UQ are  
simple: We have soc 8 = top 8, consequently VQ is the unique module in 8 
whose socle is = SQ. Since top VQ f SQ, there is a submodule X of VQ such 
that X I rad PQ, and where top X is simple but f SQ. Then X is 
exceptional, by ( 2 . 3 ) , with socle = SQ, and it follows that X = 
VQ. Dually, soc TJQ is simple. 
(2) 8 must be a union of two ft-orbits: Suppose not. Then the minimal 
projective resolution of the modules in 8 is of the form 

(*) 0 - \ - "5 - I4 - h - «2 1i - «0 - uo - °-

Since top 8 = [top Q^], we have that at least four of the Qi are 
indecomposable. By exactness and since the Cartan matrix is non-singular, 
we obtain 
(**) Q0 © Q2 © Q4 = Q1 © Q3 © Q5. 
If more than four were indecomposable then they all would be, and only 
three isomorphism types of indecomposable projectives would occur in (**). 
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It follows that Si occurs once in top E, for 0 < i < 3, and the remaining 
two modules in top E are not simple. Thus, in (*), there is some j such 
that Qj = P i but Q j + 1 is decomposable. Now, top Q j + 1 = top ftTJ^ = top V i ? 

so top Vi is not simple. This is a contradiction to (1). 
Suppose S Q occurs only once in top E. By (1) and (2), TJQ has a 

projective resolution of the form 
(*) 0 -> TJQ ^ Pj P 1 -> P Q TJQ 0 where Sj = soc U Q and 

Sj = top VQ. 

(3) rad P Q/rad P Q = S^ © S Q: The module VQ is not exceptional, for 
otherwise we would have TJQ = VQ and there would be two distinct quotients 
of P Q of length 2 which are isomorphic. This is not possible. Then (3) 
follows from (2.4) and (*). 
(4) Ve may assume that UQ = Vj and VQ = TJ^: and then V^ == TJ j: 
By (*)> Sj occurs in S O C 2 P Q / S Q , consequently SQ occurs in rad Pj/rad Pj 
(see for example [7, (2.2)]. We may assume SQ C top Vj*, then there is a 

2 
submodule X of Vj which is not contained in rad Pj, whose top is 
isomorphic to SQ. We deduce that X is exceptional and hence isomorphic to 
TJQ. By (*) we know that soc ft" *TJQ is simple, so that Pj/X has a simple 
socle. On the other hand, X c Vj, therefore rad (Pj/X) = Vj/X © Uj, and 
it follows that Vj/X = 0. The second part is dual, and the last statement 
follows since TJ. = ft" X T J N = ftVn = V.. Since we assumed that top V^ f S^ we have Sj f S p say j = 2. 

2 
We deduce from (4) that rad P^/rad P^ = S 2 © top U1 and 
rad P 2/rad 2P 2 = S Q © top U 2-(5) One of V.p V 2 must be exceptional: Otherwise, we would have by (2.4) 
that rad P^rad P 1 ^ S 1 © S 2 and rad P 2/rad P 2 ^ S Q © S 2, and then using 
also (3), Ext 1(S i, S 3) = 0 for 0 < i < 2, and A would be decomposable. 
Say V^ is exceptional, and let its projective resolution be 
(**) 0 - Y1 -» Q 2 -» Q 2 - ? 1 -» Vj -» 0. 
(6) One of O p Q 2 is isomorphic to P^: We know that V^ lies in E but not 
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in the il- orbit of U p Therefore top S is given by the tops of the 
projectives in (*) and (**). 
Taking now the direct sum of (*) and (**) gives an exact sequence 
0 -» Vt © Vj -> P 0 © Q2 P 2 © Q1 P1 © P1 TJX © V2 0. By 
exactness and since the Cartan matrix is non-singular, we deduce PQ © Q2 = 
?2 © Qj. This is the direct sum of two indécomposables, by (6), and then 
there should be three isomorphism types occuring, a contradiction to the 
Krull-Schmidt Theorem. This completes the proof. 
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3. Cartan matrices and decomposition numbers for 
tame blocks B with 1(B) = 2 

From now we assume that char K = 2. 
There are seven families of basic algebras A of dihedral, semidihedral, 
quaternion type with two simple modules, up to scalars in the relations. 
The scalars do not affect the Cartan matrix and the dimension of the 
centre Z(A) of the algebra. There are four different Cartan matrices. 
Moreover, the dimension of Z(A) depends only on the Cartan matrix. So we 
should study the following cases: 

Type Cartan matrix dim Z(A) Reference 

(>0, (4) 4k 
2k 

2k 
k+1 (k > 1) 

k + 3 (A) in [11] 
III in [8] 

(•V 4k 
2k 

2k 
k+2 (k > 2) 

k + 4 II in [8] 
I in [10] 

(B) 
(k > 1, 

J 4k 
2k 

2k 
k+s 

(k > 1, 
s > 2) 

k+s+2 (B) in [11] 
I and IV in [8] 
II in [10] 

(*3> s+2 
s 

s 
s+2 (s > 1). 

V in [8] 

We remark that the notation for the types indicates the ordinary quiver of 
the algebra. Type (A) has three arrows, including one loop; and type (B) 
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has another loop which gives rise to the parameter s in the Cartan matrix. 
In some cases, we will use the following facts from the 

classification of the algebras: 

[**] Let PQ be the first indecomposable projective. Then 
(1) PQ does not have a submodule whose composition factors are TSQ with 
r > 3. Therefore the decomposition matrix does not have rows whose sum is 
[r 0]. 
(2) PQ does not have a submodule whose composition factors are 5SQ + S^. 
Hence the decomposition matrix does not have two rows [1 0] and a row 
[3 1]. 

Let B be a tame block. One can now determine k(B), similarly as in [4, 
131, with the help of Brauer's general formula 

k(B) = 2 1(b) 
where the sum is taken over the conjugacy classes of subsections (see [3, 
11]). Representatives for the subsections can be determined by standard 
methods. Now, for the non-cyclic blocks b occuring, 1(b) is known, from 
our work on algebras. [There are details available relating 1(b) to the 
structure of appropriate dihedral blocks.] Using this it is 
straightforward to calculate k(B); and we will therefore not give details 
here. 

We remind of the results for blocks B with 1(B) = 2; here 2n is the order 
of a defect group: 
Defect group k W 

dihedral 
semidihedral 
quaternion 

2n'2+ 3 
2n"2+ 3 or 2n"2+ 4 
2n-2+ 4 

(n > 3) 
(n > 4) 
(n > 4). 
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For calculating the decomposition numbers we will use the following 
general facts: Let C be a Cartan matrix of an arbitrary p-block and D the 
corresponding decomposition matrix. 
(F.l) The determinant of C is a power of p. The highest elementay divisor 
of C is the order of the defect group, it occurs with multiplicity 1. 
(F.2) The entries of D are non-negative integers; also, D does not have a 
row consisting of zeros only. 
(F.3) The matrix D has 1(B) columns and k(B) rows, and ifid = C. 
(F.4) k(B) = dim Z(B) 

(3.1) LEMMA Assume that B is a block whose Cartan matrix is of the form 

4k 

2k 

2k 

k+r (k > 1, r> 1), 

and assume that dim Z(B) = k+r+2 is either odd or = 0 (mod 4)- Then one of 

the following holds: 

(i) r = 2n~2 and k = 1 

(ii) r = ST ' and k = 2 

(Hi) r = 1 and k = 2n * 

(iv) r = 2 and k = 2n 2. 

Proof: The Cartan matrix C has determinant 4kr. For a block, we deduce 
that kr is a power of 2. Suppose first that dim Z(B) is odd, then one of 
k, r is odd and hence = 1. It follows that the first elementary divisor of 
C is 1, and then 4kr = |6(B)| = 2n, and one of (i) or (iii) holds. 

Now assume that dim Z(B) is even. Then, by the hypothesis, k + r = 
2u for u odd. So the first elementary divisor of C is 2, and then 4kr = 
2|6(B)|, and we get that one of (ii) or (iv) holds. 

(3.2) PROPOSITION Let B be any block with Cartan matrix C where either 

(i) 
C = 

4 

9. 

2 

2n'Kl and k(B) = 2n 2+3, or 
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(H) 
G = 

8 

4 

4 

2n 2+2 and k(B) = 2n~2+4, and 

[**](!) holds. 

Then the decomposition matrix of B is given by 

(i) 1 

1 

1 

1 

0 

0 

0 

1 

1 

lt <2n 2-1)-times 

or (ii) 'l 
1 

1 

1 

2 

0 

0 

0 

1 

1 

1 

1 (2n 2-l)-times 

respectively. 

Proof: Let [a^]^ and [b^] be the first and second column of D, and denote 
by c-• the Cartan numbers. At least two of the b- must be 0 since C-M = J ij I 11 
k(B) - 2 (see (F.3)). We may assume that b^ = b2 = 0, and then a^ and a2 

o 
are ^ 0, by (F.2). Moreover we know from (F.3) that 2 (a^-b^) 
c00 " 2c01 + cll = ̂ (8) " 2. Hence a^ = b^ for at least two values of i, 
say for i = 3 and 4; then bg and b^ are ± 0. 

o 

Assume first that (i) holds, then 2 a^ = 4 . We have just agreed 
that a^ # 0 for i < 4. So we deduce that a^ = 1 for i < 4 and a^ = 0 
otherwise. It follows that b^ / 0 for i > 5, and in particular there are 
c ^ values of i for which b^ ̂  0. We deduce that b^ = 1 for these i, and 
we are done. 

Now suppose that (ii) holds. Then it follows from [**](1) that 
a^ = a2 = 1 and b^ ̂  0 for i > 3. Hence there are c ^ values of i for 
which b^ is non-zero, and we deduce b^ = 1 for these i. Now we have 8 = 

2 cnn = 4 + 2 a. and 4 = cni = 2 + 2 a - = 2 , and the rest is clear, uu ^ 5 I ui i>5 1 
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(3.3) PROPOSITION Let B be a block with Cartan matrix C such that either 

(i i i) 
C = 

4 

2n-l 

ç>n-l 

ên~2+1 and k(B) = 2n~J + 3, or 

(iv) 
C = 

4 

2n-l 

2n-l 

2n 2+2 and k(B) = 2n 2+4, and [**] holds. 

Then the decomposition matrix of B is given by 

( i i i) 'l 

1 

1 

1 

2 

0 

0 

1 

1 

1 (2n '-1)-times 

or (iv) 1 

1 

1 

1 

2 

0 

0 

1 

1 

1 

1 (2n 2-1)-times. 

respectively. 

Proof: Let [a^] and [b^ be the first and second column of D, and denote 

by Cjj the Cartan numbers. At least two of the b^ must be 0 since c ^ = 

k(B) - 2. We may assume that b^ = b2 = 0, and then a^ and a2 are + 0, see 

(F.2). Moreover 2 (a^-b^) = CQQ - 2cQ1 + c ^ = k(B) - 2. Hence for 

at least two values of i, we have a^ = b^. Without loss of generality 

a^ = b^ for i = 3 and 4, and then b^ + 0 for these i. Now observe that 

(*) 2 ( a ^ ) 2 = cQ0 - 4c01 + 4 c n . 

Assume first that (iii) holds; then the number in (*) is 4. We have 

just agreed that a^-2b^ ^ 0 for i < 4, therefore we must have that a^ = 

2b^ for i > 5. Consequently B1 = 0 for i > 5 and then there are c ^ values 

of i for which b- i 0. We deduce that b. = 1 for these i, and the rest is 

clear. 

Now suppose that (iv) holds. Then it follows from [**](1) that a^ = 

a2 = 1 and b^ # 0 for i > 3. Hence there are c ^ values of i for which b^ 

# 0, and we deduce bi = 1 for these i. Then by [**](2) we have that a^ f 
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3. The number in (*) is 8 here, hence 8 = 4 + 2 (a^-2) . Suppose 
i>5 

a^-2 = ±1 four times for 5 < i. Then since ai = 3 we have a^ = 1 eight  

times, and a^ = 2 otherwise. But then 2 &i2 # 2n, a contradiction to 

(F.3). Hence we must have that a^ = 0 once for some i > 5 and = 2 

otherwise, and we are done. 

(3.4) REMARK The question arises which decomposition matrices can occur in 

(3.2)(ii) and (3.3)(iv) but without assuming [**]. An elementary 

calculation shows that there are one or two more solutions for D. In each 

case one finds that kQ(B) = 8. To exclude these for tame blocks, one could 

alternatively proceed by showing that kg(B) = 4. 

(3.5) LEMMA Let B be a block of type (BJ. Then s = 2n 2 - 1. 

Proof: The Cartan matrix of an algebra belonging to family (B^) has 

determinant 4(s+l). Hence for a block we deduce that s+1 is a 2-power. 

Then s is odd, and the lowest elementary divisor of C is 1. Consequently 

s = 2n"2- 1. 

(3.6) PR O P O S I T I O N let B be any block whose Cartan matrix is of the form 

'ên-S+ 1 

ê»-ê- 1 

2n-2_ t 

S*'2* 1 

n-2 
with k(B) > 2 + 3. Then the decomposition matrix of B is given by 

1 

1 

1 

1 

0 

0 

1 

1 

1 (2n 2-1)-times. 

In particular, k(B) = 2n 2+ 3. 
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Proof: Let [ a ^ and [b^]* be the columns of D. We have 
(*) 2 (a. - b ^ 2 = c0Q - 2cQ1 + cn = 4. 
Suppose that k(B) > 2 + 4 , then k(B) - c — > 3, and at least three a^ 
and three b^ are = 0. Then by (F.2), â - b^ ^ 0 for at least six values of 
i. This is not possible, by (*). 

Now, k(B) - c ^ = 2, and we see that at least two of the b^ and two 
of the a^ are 0. We may assume that b^ = b2 = 0, then a^ and a2 are # 0. 
Then without loss of generality, a^ = a^ = 0, and then bg and b^ are / 0. 
We deduce from (*) that a^ = b^ for i > 5, and then a^ / 0 for these 
values of i, and the statement is now evident. 

We remark that (3.2), (3.3) and (3.6) are more general and do not depend 
on the defect groups. 

It is clear that the decomposition numbers give directly the 
relations satisfied by the characters on elements of odd order, as 
obtained in [4, 13]. Moreover, the general fact that at least one ordinary 
character and also at least one Brauer character in the block is of height 
zero, implies also the results in [4, 13] on the heights of the 
characters. The answer is that in each of (3.2), (3.3) and (3.6) the first 
four characters are of height zero, and the last row corresponds to the 
character of height 1. 
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