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On Lusztig’s parametrization of characters
of finite groups of Lie type

FrANGOIS DIGNE ET JEAN MICHEL

This paper has three parts. In the first part, we extend Lusztig’s
results of [11] about the parametrization of characters of finite reductive
groups with a connected center, including [11, theorem 4.23] about mul-
tiplicities of irreducible characters in the Deligne-Lusztig characters, to
the case of groups with non-connected center. We use mostly a method
sketched in chapter 14 of [11] in the case of a cyclic center, based on
Clifford theory and a result about the unicity of the parametrisation of
characters constructed in [11] which we prove in section 6 (part IT). This
construction has been carried out by Lusztig in [13] but we need more
information than he gets there, in order to get the results of section 5
and of part III.

In sections 1 and 2 we state the results we need from Clifford theory,
from [11] and about non-connected groups. We also need a result about
the commutation of Lusztig twisted induction with isogenies, whose
proof is given in section 9 (part III) using Shintani descent. We then
apply these results to the parametrization of characters in section 3,
where we need the results of part II. Finally section 4 and section 5
describe the multiplicities of irreducible characters in Deligne-Lusztig
characters using Lusztig “families”, presented here from a simplified
combinatorial viewpoint using the “Mellin transform”.

Part II describes under which conditions Lusztig’s parametrization
of irreducible characters in [11] is unique; section 6 deals with families
and Weyl groups, and section 7 gives the main theorem.

Part III studies Shintani descent in groups with non-connected cen-
ter. We want to show how Shintani descent relates to the parametriza-
tion introduced in part I. Section 8 recalls facts about Shintani de-
scent and “F’-twisted induction”. In section 9 we prove a result about
the commutation of F’-twisted induction with isogenies and deduce the
analogous result for Lusztig’s twisted induction. In section 10, we first
extend to F-class functions the parametrization of section 5 (when the
center is not connected we have to make assumptions that we cannot

S.M.F.
Astérisque 181-182 (1990) 113



F. DIGNE, J. MICHEL

yet prove in all cases). Finally, we give a formula for Shintani descent of
principal series characters using the Fourier transform on families (using
section 5 of part I). For this last result we have to quote heavily from
[7].

This paper * has been prompted by discussions with B. Srinivasan,
and Shoji’s papers [14] and [15] where he gets a complete description of
Shintani descent Sh gm ; r for m sufficiently divisible and for a group with
connected center (Shoji himself uses results of Asai [1] which deal with
the case m = 1); this paper also has been prompted by the absence of a
convenient written description dealing with groups with non-connected
center.

0. Background.

In this section we recall some results from Clifford theory and the
theory of F'-class functions.

We denote by Irr(G) the set of irreducible characters of the finite
group G (over an algebraically closed field of characteristic 0). We now
give a general proposition which states basic (well known) results from
Clifford theory. Most of these are easy consequences of Mackey formula
and Frobenius reciprocity (see also [8, 2.1]).

0.1 PROPOSITION (CLIFFORD THEORY). Let G be a normal subgroup
of a finite group G such that the quotient G/G is abelian; let Z be the
center of G. For p € Irr(G), we put A(p) = {¢ € Irr(G/GZ) | pR¢ = p}
(note that Z is in the kernel of any ¢ € Irr(G/G) such that p® ¢ = p).
If p € Irr(G) is a component of Res& p, we note G(p) for the inertia
group of u in G (it depends only on p (not on u)). Then we have:
(i) Ker(A(p)) € G(p). ]
(ii) There exists ji € Irr(Ker(A(p))), p € Irr(G(p)) and a positive inte-
ger e such that:

WAAD () =Y g aResk A () = g,
a€lrr(Ker(A(p))/G)

G(p) = G(p) 3 — el
Indiceriacoy P = €Py Resyer(a(on P = €l
Indg(p)(ﬁ) =P Resg(p)(/’) = Z “p

z€G/G(p)

* part of this work was done during the authors visit at Essen univer-
sity
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(iii) The quotient group G(p)/Ker(A(p)) has cardinality e? and we have

|A(p)| = (Res§(p), Res&(p) )
If G(p)/Ker(A(p)) is cyclic, then e = 1.

The following result, which is proved in [7, 6.1] givese = 1 in a
general setting for Weyl groups:

0.2 LEMMA. Assume that G is a Weyl group and G is the semi-direct
product of G by a group A of diagram automorphisms of G, then for
any character p € Irr(G) we havee = 1.

The proof of this lemma requires the following result (cf. [7, 6.2])
that we will need below in the proof of 5.5

0.3 LEMMA. Let G be a finite group of the form G1 X ... x G; and A
be a finite group of automorphisms of G acting by permutation of the
G;. Let p = p1 ® ... ® py be an irreducible character of G. Let A; be
the subgroup of Stab 4(u) normalizing G; (and so p;). If for each i, the
character p; has an extension to G; > A;, then u has an extension to
G > Stab4(p) (i.e., e =1 for the character u).

0.4 F-cLASS FUNCTIONS. If G is a finite group and if <F'> is a group
generated by an element F' and acting on G, we denote by C(G/F) the
space of complex valued F'-class functions on G, i.e. functions ¢ which
verify ¢(z.Fy) = p(yz) for any = and y in G (note that the group <F'>
can be infinite). We may identify C(G/F') with the space of restrictions
to the set G.F of class functions on the semi-direct product G ><1<F'>.
This space admits as a basis the set of restrictions to G.F of an ar-
bitrarily chosen extension to G >1<F'> of each F-invariant irreducible
character of G. If ¢; and ¢, are elements of C(G/F'), we put

(e1,02)ar =1GI™ Y pi1(@)pa().
z€G.F

We recall that if ¢ and ¢, are characters of G >1<F> whose restric-
tions to G are irreducible, then

0, if ResG>I<F> o, £ ResG>I<F>,

$Y1,¥2 )G.F = .
( ) {1, if 1 = o

(if 1 and @3 have equal restrictions to G, then they differ by multipli-
cation by a linear character of <F'>).
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If H is a subgroup of G stabilized by F, we denote by Res§ L
the restriction of F'-class functions, and we define induction of F-class
function by

Ind§5(f)(gF) = |H| ™ > F(C(gF))-

{v¥€G|"(¢gF)EH.F}

Induction and restriction are adjoint with respect to the above scalar
product.

1. Disconnected groups.

In this section we extend the definition of Deligne-Lusztig charac-
ters to non connected reductive groups. We begin with a proposition
which gives the relation between the Weyl group of a reductive group
and that of its connected component.

1.1 PROPOSITION. Let H be a reductive algebraic group, and let T be
a maximal torus of H; then we may find representatives of H/H® in
Ng(T). We set W = Ny(T)/T and W° = Nyo(T)/T. Let B be a
Borel subgroup containing T. We put A = {w € W | “®* = &+} where
® is the root system of H® and + denotes the order on ® corresponding
to B. Then we have

(i) W=W°>1Aand A~H/H"°.

(ii) If H is defined over IFy, with correspending Frobenius F', and F

stabilizes T and B above, then F' stabilizes W, W° and A.

In the following we consider a (not necessarily connected) reductive
algebraic group H defined over IFy, and denote by F' the corresponding
Frobenius endomorphism. We fix a pair T C B of an F-stable maximal
torus in H included in an F-stable Borel subgroup. Let H°* be a group
dual to H° containing a given torus T* dual to T. Finally we fix a
Frobenius endomorphism F* dual to F. We may identify W° with
Nyo-(T*)/T* by mapping w to the dual isogeny w*, but note that this
map is an anti-isomorphism. For any v € W° we choose a representative
0* € Npo+(T*) of v* and for any representative @ € Ng(T) of an
element a € A, we choose an isogeny (aF)* dual to aF. For w € W, if
w is in the coset W°a, we write (waF)* for (aF)*w*.
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1.2 DEFINITION. For s € T*, we put Wg(s) = {w € W | (@F)"s = s}.
(Note that Wg(s) depends only on F' (not on the choices of F* and of
(aF)*) since two isogenies dual to the same one differ by ad ¢ for some
teT™).

We will assume given an isomorphism T, ——(Q/Z), and an
embedding
(QR/Z)y — Q,”; these choices give for any w € W an identification
Irr(T*F) ~ (T*)(w5)",

We now generalize the definition of Deligne-Lusztig characters to
non connected groups. The idea is to consider together the various
rational forms of H that we get if we take as Frobenius endomorphisms
hF, with h € H. If h and h’ are in the same F-class of H, the groups
H"F and H"'F are isomorphic. As the set H!(F, H) of F-classes in H
is isomorphic to H1(F, A), we may choose a set of representatives in H
of H'(F,H) which are representatives of elements of A. Generalized
Deligne-Lusztig characters will be constructed for each of the groups
H%F with a such a representative.

Let U be the unipotent radical of B. For any w € W, let us write
wF = b~ lvaFb with a,b € A and v € W°, where a represents the
F-class of w as above. Let v € Ngo(T) be a representative of v; we
consider the variety Y; s = {z € H | 271%Fz € yU}. Then H%F acts
on Y, ; by left multiplication, and t € T*¥ acts by right multiplication
by . These two actions commute, so taking the alternating sum of I-
adic cohomology groups, we get a virtual representation of H¢F x T%F
and for each character § of T¥F we get a representation of H?F on
the part of the cohomology on which T%¥ acts by 8. If s € (T*)(wE)”
corresponds to 8, we will denote by R,Ig:ﬁ(s) the (generalized) Deligne-
Lusztig character that we have just defined. Note that we have defined
Deligne-Lusztig characters of the groups H*¥ when & runs over a chosen
set of representatives of H1(F, A). We have the following properties of
(generalized) Deligne-Lusztig characters:

1.3 PROPOSITION. )
(i) Let wF = b~lvaFb as above, then RT,,,F(s) Indg::r(adl') o
O
(ii) The union when a runs over representatives of H(F, A) of the
Deligne-Lusztig characters of H*¥' can be parametrized by pairs
(s,wF) with s € T* and w € Wg(s), taken modulo W-conjugation.
(iii) Distinct Deligne-Lusztig characters are pairwise orthogonal.
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Note that R,IE.I:,: tert (s) where b € A, becomes under conjugation
by b the character RE.7 (s') where s’ = ®s, so (i) is equivalent to its
particular case when b = 1 which is RTwF(s) = Indg:fp RHOF (s).
PROOF: As stated above, to prove (i) we may assume b =1, i.e., wF =
vaF with v € W°. Let Y, be the variety {y € H° | y‘l“Fy G ?U }.
We claim that the map (y, h) +— hy from the variety Y, x H%F to
Y;,s is an epimorphism whose fibers are the orbits of H°%F if the action
of hg € H°%F is given by (y,h) +— (hoy,hhy'). In fact, any element
in 9U can be written, by Lang’s theorem as y~1%Fy w1th y € H°, so
any z € Y, differs by an element of H%F from an element of Yy,.
The assertion about fibers is clear. On Y, X H%F | we have an action
of H*F x T*F given by Igy, +— (yt,hk). This action is compati-
ble with the action of H°". As the above epimorphism is compatible
with the actions of H*F x T“F we get an isomorphism of varieties
with H4F x T*F-actions (Y3, x H4F) / H°F3Y, ;. Using properties
of l-adic cohomology, we get an isomorphism of H%F x T*F-modules
H} (Yo,a) S H( Yya) &G, [HoaF) Q,[H%F], whence (i).

To prove (ii) and (m) we have to show that generalized Deligne-
Lusztig characters RT,,,F(s) and RH“, (s’) are equal if and only if
(wF,s) and (w'F, s’) are conjugate under the action of W and are or-
thogonal otherwise. By conjugation by b with b € W, we may assume
that the elements w and w’ are in the coset W°.a. By (i), and Mackey
formula, as distinct Deligne-Lusztig characters of H°4F are orthogonal,
we see that the scalar product (R.}I,I:i(s),Rgz,FP(s'))Hw is non zero

if and only if (Rg:,a:( ) R,li,lz,?i(s') oadz )gosr is non zero for some
HOG

representa.tive & € H%F of some z € AF. As RF .\,

Rg:j“_l (zs’z™1), the above condition is equivalent to the pairs

(s') oad z is equal

(wF,s) and (zw'Fz~!,zs'z~!) being W°-conjugate for some =z € AF,
which is equivalent to (wF,s) and (w'F,s’) being W-conjugate (note
that as wF and w’F are in the same coset W°.aF', they are W-conjugate
if and only if they are W° > A¥-conjugate). |

We then define (generalizing to non connected groups Lusztig’s
definition) series of characters in Irr(H%) by

EMHF s) = {x € Irr(H*F) | 3w € Wr(s), (x, REur(s))mer #£0}.
Note that in the above definition wF' has to be conjugate to an element
of WeaPF.
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2. Rational series.

From now on we will consider a connected reductive algebraic group
G and will keep the notations of the previous section with H = H®° = G
and H°* = G*.

Given z € G, we denote by A(z) the group Cg(z)/Ca(x)°. In the
sequel we fix an element s € T* such that Wg(s) is not empty, and
we write simply A for A(s). We will write W (s) for the Weyl group of
Cag-(s); we have W(s) = {w € W | ¥"s = s}, so WF(s) is a single coset
in W(s)\W. We will denote by W<°(s) the Weyl group of Cg-(s)°,
and ®, its root system. According to 1.1, (i), if we identify A with
{w € W(s) | *@+ = ®}}, then we have W(s) = W°(s) > A4; and if
we choose w; € Wr(s) such that (w1F)*$¥ = @+, then by 1.1, (ii) wy F
induces an automorphism of W(s) which stabilizes W°(s) and A.

As we want to use results from the theory of groups with a con-
nected center, we will embedd G in such a group: Let i : G — G be an
embedding defined over IF, of G in a group G such that the center Z
of G is connected, and G and G have the same derived group (we may
identify G with G xz Z, where Z is the center of G). We denote again
by F' the Frobenius endomorphlsm on G, so we have Foi =10 F.

We denote by T the maximal torus of G containing T (T is T Xz Z
in the above identification). Let G* be a group dual to G and T* C
G* be a torus dual to T. We fix ¢* : G* — G* dual to i. It is an
epimorphism mapping T* onto T* and Ker i* is a central torus of G*.
The embedding 7 gives a natural identification of W = Ng(T)/T with

Ng(T)/T.

2.1 DEFINITION.
(i) For a € A we denote by [[a,s]] € Keri* the commutator of any
two preimages in G* of a and s (it clearly does not depend on the
chosen preimages).

(ii) We denote by [[A, s]] the set {[[a,s]]|a € A}.
With these notations, a straightforward computation shows that:

2.2 PROPOSITION. [[A, s]] is a group and the map a — [[a, s]] is a group
isomorphism A — [[A, s]] which maps the action of wiF on A to the
action of F on [[A, s]] < Ker¢*.

We want to study how Lusztig series restrict from G¥ to G¥. First
we choose a suitable preimage of s.
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2.3 LEMMA. There exists a preimage § of s such that Wg(§) = W°(s)w;.

PRrROOF: It is a straightforward computation, using Lang’s theorem in
the connected group Keri*. |

In the sequel we fix § as in 2.3. It is well known that for any
t € T*, the restriction of i* : Cg.(t) — Cg-(¢*(¢))° is an isogeny of the
derived groups; so the Weyl group W (t) is identified to W° (i* (t)) Next
proposition relates series in Irr(GF) corresponding to various preimages
of s. Before stating this proposition we need the following definition:

2.4 DEFINITION. We will call Lang’s map in an algebraic group defined

over IF, with Frobenius endomorphism F, the map L : g — g~ 1Fg.

In this section, we will use only Lang’s map from Ker ¢* into itself,
and denote it again by £. Recall that, as Keri* is connected, Lang’s
map is onto.

2.5 PROPOSITION. _
(i) For any pair (t,w) with t € T* and w € Wg(t), we have

Res3r RS., (1) = RSur (i*(2)).

(ii) Let 5z be a preimage of s (where z € Keri*); then Wg(52) is
not empty if and only if z € L71([[A,s]]), and then Wg(5z) =
W°(s)aw1, where L(z) = [[a, s]].

(iii) Two series E(GF,5z) and £(GF,32") are equal if and only if z and
z' differ by an element of [[A, s]].

ProoOF: We will show in part III that (i) is actually true for any mor-
phism ¢ inducing an isogeny of derived groups and with connected kernel.
Statement (ii) results from a straightforward computation. Statement
(iii) just reflects the fact that W-action by conjugation on elements §z
is the same as [[A, s]]-action by translation. |

By (ii) and (iii) above we see that the series £(GF, 52) are paramet-

rized by
L7114, sD/[[A, s]1.

For any ¢t € T*, let £(GF,t) be the subset of Irr(GF) whose elements
occur in the restriction of some x € 5(GF t). By (i) above, £(GF,5z) is
a subset of £(GF, s) and the series £(GF, 52) are all the series £(GF, 1)
such that £(GF,t) intersects £(GF, s).

The following properties are well known.
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2.6 PROPOSITION.
(i) The characters of GF/GF correspond by duality to elements of
(Keri*)F.
(ii) The characters of GF/G¥ whose kernel contains ZF.GF corre-
spond by duality to elements of (Ker i*)¥ which are in the derived
group of G*.

Using the fact that, if 2 € Irr(G¥ /GF’) corresponds to z € (Keri*)¥,
then we have R'(i}‘:f‘ (32'2) = Rg:,, (32') ® 2 and proposition 0.1, we get:

2.7 PROPOSITION. _ _

(i) The action of ®2, for z € (Keri*)F, maps £(G¥, §2') to E(GF, 52'2).

(ii) Two sets E(GF,35z) and E(GF,35z2') are equal or disjoint, and are
equal if and only if z and 2’ differ by an element of (Keri*)¥'.

As a consequence of 2.5, (iii) and of 2.7, we see that the sets

E(GF, 52) are parametrized by the set L~1([[A4, s]])/[[4, s]].(Keri*)F ~

H(w, F, A). So, for arepresentative a € A of an element of H!(w; F, A),

we will denote by £(GF,s,a) the set £(GF,5z) when z is such that
L(z) = [[a, s]]. We will call such sets rational series. We have

E(GT)s) = ]_I E(GF,s,a)
a€HY(w; F,A)

(note that
E(GT,s,a) = {x € Irr(GT) | Fv € W°(s), (X, RSrvu,r(s) )ar # 0},
and that H'(wiF, A) also parametrizes the rational classes in G*¥

which are geometrically conjugate to s).

3. Parametrization.

Lusztig has shown that, if Z is connected, there is a bijection =, :
E(GF,s5) — E(Cg(s)(#1F)" 1) (where 1, is any representative of w;
in Ng+(T*)) such that (extending m; by linearity to the ZZ-span of
E(GF,s))

3.1 To(RGur(s)) = (~1) DRSS (1)

Tx(wF)*

for any w € Wg(s) (it is an immediate consequence of [11, 4.23] applied
once in the group G and once in the group Cg-(s)(#15)").
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We want to show that a similar result holds in general. In fact, as
we will show in part II, condition 3.1 above determines uniquely 7, for
classical groups (with connected centre), but there is some ambiguity
for other groups; the main result of part II will be to give additional
conditions which define uniquely 7, in all cases. In what follows, we will
assume that for the group G (cf. notations of section 2), the map =, is
defined as in part II. Using results from part II we prove the following:

3.2 THEOREM. Let b € A*1F; we denote by b € Irr(GF /GF) the char-
acter corresponding to [[b, s]] € (Keri*)F by 2.6. Then, if the repre-
sentative b* is chosen (6w, F)*-fixed, the action of ®b on E(GF,5z2)
corresponds by m, to that of ad b* on £(Cg. (5z)@%1F)" 1),

ProoF: By 7.1 (iii), if ¢ = [[b, s]], we have
m52¢(X ® b) = ma:(x) € E(Cg.(32)14™1 ", 1).

By 7.3, we have the equality ad(b*) O Mz,¢ = M5z, whence the result. W
We need the following assumption:

3.3 HYPOTHESIS. Restriction of representations from GF to G¥ are
multiplicity-free, as well as restrictions of unipotent representations from
Ca-(s)@"1F) to Cg- ()4 P for any a € A.

By 0.1, (iii), both parts of this hypothesis are true if G has no
components of type Da,, since both GF /GF and A¥*F identify to sub-
quotients of the fundamental group of G, which is then cyclic; Lusztig
has proved the first part for type Da, (cf. [13]). In the sequel we will
assume that 3.3 is true.

By theorem 3.2, we see that, for p € S(éF, §z),themapar disa
group isomorphism from A(p) (¢f. notations of 0.1) to Stab 4w, #(735.(p));
so, using 0.1 and assumptlon 3.3, we see that the number of irreducible
components of ReSGF(p) is | Stab gw, F(7352(p))|.

Since i* defines an isogeny of the derived groups of Cg.(5z) and
of Cg+(s)° and since unipotent characters factorize through isogenies,

we may consider 7;,(p) as an element of Irr(Cg-(s)°(®?")") (where

L(z) = [[a,s]]). By 0.1 and 3.3, the number of irreducible components
of Indcc'ggf,‘:::;). 752(p) is | Stab gu, 7 (75.(p))|. So we get:

3.4 PROPOSITION. The sets £(GF,s,a) and £(Cg-(s)(@¥1F)* 1) are in
bijection.
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We define 75 as being the collection over a € H!(w; F, A) of these
bijections. Note that the parametrization of individual components of
a restriction is not completely defined, but, once a component u of
Resgi p and a component 7 (u) of

CG‘ (3)(aw1 F)*
In dCG- (s)o(éw1 F)*

components of Resg:: p: first note that by 0.1 Ker A(p) = GF(p) un-
der assumption 3.3; so A(p)—= Irr(GF/GF(p)), and we get a canonical
isomorphism

m52(p) are chosen, we can define 7, uniquely for other

éF/éF(p):» Irr(Stab g, r (752(p)));

if we demand that the action of G¥/GF(p) on components of Res&r p
be mapped by 7w on that of tensorization by linear characters of the
group Stab 4w, r(75,(p)), we define canonically 7,. We now clearly have
the analogue of 3.1 for groups with a non connected center, that is, for
a € Aand ve W°(s),

. (5)(8%1 F)*
(3.5) 7s(RGor (5)) = (1)@ RGe () 007

4. Families.

From section 3 it follows that, in order to know the multiplicities of
the irreducible characters in the Deligne-Lusztig characters, it is enough
to solve the problem for unipotent characters. We will write R, r for
RS.-(1) to abbreviate the notations. Lusztig [11] has shown in the
connected-centre case how the multiplicities are given by a “Fourier
transform” over “families” in the Weyl group. He defines a partition
E(W) of Irr(W) in “families”, and to each F € Z(W) associates a finite
group I'r, the set M(I'r) = {(z,x) | z € I'r, x € Irr(Cr,(x))}/T + (the
action of I'r being by conjugation), and an embedding F — M(T'x).

These data are functorial, i.e.,

4.1 PROPOSITION. Given an isomorphism W ——W’ of Weyl groups
(i.e., an isomorphism of groups coming from an isomorphism of root
systems), we have 7(2(W)) = W’) and for any F € _.(W), there is a
well-defined isomorphism 7 x : l" F——rx) (and m — 7 is functorial);
furthermore, if we again denote by wx the induced isomorphism from
M(Tr) to M(T'r(5)), the following diagram commutes:

M(r) = M(Trr)

F N 7(F)
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Note that in the case of classical groups we get mx using the facts
that the groups I' r are commutative and that the image of F in M(T'r)
contains the elements of the form (z,Id).

Proposition 4.1 implies that, given F € =F, a well-defined automor-
phism of I'r is associated to F'; we will again denote it by F. Lusztig
shows that £(GF,1) is in bijection with the union over F € ZF of the
sets

M xr CTr><<F>) =
{(zF,x) |z € TFr, x € Irr(Cr,(zF))}/TF ><X<F>

We will denote by p(.r,y) the irreducible unipotent character paramet-
rized by (zF,x). To describe the multiplicities ( p(zF,x), RwF)gr we
first define another basis of the space spanned by the {R,r}. For any
F-class function f on W, we define Ry = 3w f(w)Ryr. We can
take as a basis of the space of F'-class functions on W those obtained by
choosing one extension to W >I<F> of each element of Irr(W)¥ (the
corresponding Ry are called the “almost-characters”).

4.2 NOTATIONS.
(i) For F € E, we will denote by £(GF,1,F) the set of unipotent
characters parametrized by M(L'y C Tz ><1<F>).
(ii) For F € =F we will denote by F the subspace of F-class functions
spanned by extensions of elements of FF.

With this notation, Lusztig defines an embedding of F in the vector
space
M(F}' C F}' ><<F>) = @yGF;‘Vy,

where V,, is the set of functions on Cr,.r(y) (the set of elements in
I's.F which centralize y) invariant under conjugation by Cr,(y) (note
that only elements y such that Cr, r(y) is not empty are relevant).

4.3 Then, Lusztig shows that there is a pairing between M and Q,M
given by
{(,7), (aF, 0} = |Cr-(¥)| 7 Crx (zF)| 7' Ae Fyy)
Y. X (=F)),

{g€l =|[9y,z F]=1}

(where A(;F,y) is a sign which is constant over each family except for so-
called exceptional families ¢.e., families containing a character such that
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the corresponding representation of the Hecke algebra is not defined over
Q[g, ¢~'], which occurs only in types E7, Eg) such that, if we consider all
the above class functions as taking their values in Q;, the scalar product
(p(zFx)> Bf)ar is given by {(y, ), (zF, x)} where f € F corresponds
to (y,7).

Let us remark that the pairing formula depends only on the action
of F on I'r (not on the order of F'). We also remark that this formula
depends only on the restriction of 7 to the centralizer of y in the coset
T'x.F. We now introduce new bases in order to get simpler formulas for
the pairing.

4.4 For z,y € I'y such that [zF,y] = 1 we define “Mellin transforms”

@Fy)= Y,  x®Aerx(@F Xx) € M(Tr C Tz >I<F>)
X€Irr(Cr (= F))
and
(y,aF) =Y _7(zF)(y,7) € M(TF C T >I<F>),

r

where the sum runs over a basis of the Cr . (y)-class functions on Cr,.r(y)
which consists of the restrictions to the coset Cr,. r(y) of one extension
to Cr, >q<F>(y) of each zF-invariant irreducible character of Cr,(y).
The pairs (zF, y) and (y, zF) are taken up to I' r-conjugacy. The follow-
ing proposition gives a formula for the pairing using Mellin transforms.

4.5 PROPOSITION. The pairing between Q,M and M is given by
{(zF,y), (¥',2'F)} = (zFy) (' F) [Cr = (2F, ).
PRroOOF: By definition, we have
{(zF,y), (', 2'F)} = Y x(¥)A@rx T (@F){(zF, x), (¥, )}

XsT
If we replace {(zF, x),(y’,7)} by its value given above, and if we use
the fact that A? o ) =1, we get
Z IC[*}.(y,)I_]'ICF}.(:L‘F)l_l

{9€T |9y’ ,x F]=1}

D> x()x(w) Y T@F)r( (aF)).

By orthogonality formulas for characters and for the chosen basis of
Cr,(y)-class functions on Cr, p(y), we get the result. |
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5. Fourier coefficients.

In this section we show that the results stated in the preceding
section hold in the non-connected centre case. For this we have to give
the appropriate definition for families of a group of the form W >« A4,
and to generalize Lusztig’s parametrization of unipotent characters and
of almost characters to non connected groups (the non connected groups
we have to consider are the centralizers of semi-simple elements in G*,
so we must keep in mind that the results of this section are to be applied
when H, A, and F stand respectively for Cg-(s), A(s), and (wy F)*).
First we give the appropriate definition of families (¢f. also [12]).

5.1 DEFINITION. In the situation of 1.1, we define Z(W) to be the set of
A-orbits in E(W?®), and, for F € E(W), we put I'r = ' 5, > Stab 4(Fo),
where Fy is in the A-orbit F. If F is F-stable, we define the action of F’
on I'x to be that induced by aF on I'x, > Stab 4(Fo) where a is such
that *FFy = F.

Note that the action of F' is defined only up to an inner automor-
phism, but that this does not matter since all the constructions we made
are invariant by I' z-conjugacy.

We can then consider objects such as M, M, etc... for non con-
nected groups. We extend the definition of A (¢f. 4.3) to our situation:
given (zF, x) € M(Tr C T'x >I<F>) we define AzF,5) = A(zaF,p) for

any a such that *FF;, = F; and any component 7 of Resg:’ (::;)F) X-
Fo

This makes sense since A is invariant by any automorphism of W°. Next
proposition will show that, with these definitions, [], €H(F,A) E(HAF 1)

is again parametrized by [[rezw, M x C Txr><F>).

5.2 PROPOSITION. Let H be a non connected group such that A =
H/H?" is abelian. We keep the notation of 1.1 and of 1.3. We assume
that restrictions of irreducible representations from H®F to H°%F are
multiplicity free for any a € A. Then there is an isomorphism

P Qe 1S P QMTr CTr><F>)

a€H1(F,A) FEE(W)F
such that for any family Fo € Z(W?°), the map
IndHo - : E(H4F 1, Fy) — E(HAF, 1, F)
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(with the notations of definition 5.1) corresponds to the linear map
QM5 CTx ><aF>) = QM r CTr>I<F>)

defined on the basis of Mellin transforms by ((zaF,y) modI'z,) +—
((zF,y) mod T'x).

PROOF: Irreducible characters in the left hand side are by deﬁpition
extensions to H%¥ of the sums of AF-orbits of characters in £(H°4F 1).
By part II (¢f. 6.4) we have a well defined bijection

EHMF, 1S [] METrcTr><i<aF>).
fGE(Wo)GF

We denote by Fy,...,F, the A-orbit of Fo € E(W?®); by defini-
tion it is the element F of Z(W). It is clear from proposition 4.1 that
there is a bijection from the set of A¥-orbits in [ (ileFFi=F: } M(x, C

L'z, ><1<aF>) onto {(ya'F,¢) |y € 'x,, o'F v aF, ¥ FFy = Fo, €
Irr(Cr, (ya’'F)) } /T 7, given by

(zaF, x) mod Tz, — ("za;a¥a; F Tix) mod I'r,

where I'r is identified to I'r, > Stab 4(Fo), where a; is an element of
A such that %F; = Fo, and where 7; : I'5; S5, is the isomorphism
associated to a; as in 4.1.

We now claim that the number of extensions to H%F of the sum
of an AF-orbit in £(H®4¥, 1) corresponding via the parametrization of
proposition II, 6.4 and the above bijection to the class of (ya’F, ) mod-
ulo Iz, > Stab 4(Fp) is equal to the number of irreducible components
of the induced representation of ¥ to Cr,  >qstabc( Fo)(ya'F). By as-

sumption, restrictions of irreducible characters from H%' F to H°%'F are
multiplicity free. We need the same property for restrictions of irre-
ducible characters from Cr . >q stab4( Fo)(ya'F) to Cr,(ya'F). This
can be proved in the following way: by 0.3 we can reduce ourselves
to the case where W* is irreducible; then both a’F and Stab 4(F)
act trivially on T'z; s0 Cr, >qstaba(5)(ya'F) is the direct product
of Cr,, (ya'F) = Cr,, (y) by the abelian group Stab 4(Fp, F') and the
result is clear.

Now, proving our claim is equivalent to show that the stabilizer
in H4F /H°4F of the character p of H°F parametrized by (zaF,x) €
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M(Tx, C Tx, >1<aF>) (a preimage of (ya'F, ) by the above bijec-
tion) has the same cardinality as

Stabr . (ya'F,¥)/Cr,, (ya’'F). But this quotient group is isomorphic to
the stabilizer in Stab4(Fo) of ((ya’F,) mod I'x,)), the isomorphism
being induced by the projection of I'x onto Staba(Fo). On the other
hand, the stabilizer of p in AF is equal by II, 6.5 and II, 6.6 to the
stabilizer of (zaF, x) in Stab,r(F;). As this latter group is isomorphic
to Stab gr (Fo, (ya’'F, 1)) = Stab4(Fo, (ya’'F,v)), we get our claim. So
we have a bijection

EMH, 1, 7)5
{wa'F,x) | y €T5,,a'F ~aF, “FFy = Fo, x € ix(Cr,(va'F))}/TF

such that if p € £(H®4F,1) corresponds to (zaF,¢) € M(Txr C

'y, >1<aF>), the irreducible components of IndE:: F p correspond to
the elements (zaF, x) in the right hand side set, where x runs over the

irreducible components of Indg;::?:f}) 1. If we take the union over
H1(F, A), we then get
[[ @ ,1,75
a€H1(F,A)
{(ya,F, X) I Yy € P.'Fo’a, € A7 a,F]'-O = }.0, X € Iﬂ'(CI‘r(yalF))}/F}'-

The set in the above right hand side is isomorphic to

{(zF,x) |z €T, x € Irr(Cr,(zF)) }

by definition of I'x. So, taking the union over all F-invariant families
F, we get the isomorphism of the proposition.

We now show the statement on Mellin transforms. It will be an im-
mediate consequence of what we have shown above and of the following
lemma.

5.3 LEMMA. The map

Indz; : QM(T5, CTx ><I<aF>) = QM(Lr C Ty >I<F>)
defined by (zaF,v) — (zF, Indgz(:z‘?m ¥) maps ((zaF,y) mod I'z,)
on ((zF,y) mod I'r). ’
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PROOF: By definition we have

(maF, y) = Z ¢(y)A(zaF,¢)(xaF7 ¢)

1/;611'1'(01--;o (zaF))
So its image is

Z Y(Y)A(zaF,p)(raF,Indy) =

P €Irr( Cr’"o (zaF))
> Y(Y)AaF,y) > (Ind ¥, X ) cr . (2 F) (TF, X).
'¢:€Irr(Cp}.0 (zaF)) X€Irr(Cr , (2 F))

By definition we have AzaF,y) = A(zF,x) for any x appearing in Ind ¢.
So we can exchange the summations to get

Z A(:acF,)()("‘:-F» X) Z (Ind ¢9X>Crr(:cF)¢'(y)-

X€Irr(Cr . (z F)) YEIrr(Cr . (zaF))

As the second sum is equal to x(y), we get

Z A(:z:F,x)("I"F‘v X)X(y)7
xGIrr(CrJ,(:cF))

which is by definition the element (zF,y) of QM(T's C T >I<F>),
whence the lemma, and the proposition. ]
We will now prove an analogous statement for F-class functions on
W and spaces M. For this we generalize to W Lusztig’s embedding of
F-class functions on W*° mapping Fo into M(I'x, C T'x, ><I<aF>.

5.4 PROPOSITION. Let F € Z(W)F be the orbit {Fy,...,F,}. There
is an embedding ~
FCM(Tr CTr><1<F>)

such that the map Indjyd,  : Fo — F is the restriction of the linear
map M(Tx, C g, ><1<aF>) —- M(Tx C Ty >1<F>) defined on the
basis of Mellin transforms by ((y, raF) mod ') — ((y,zF) mod I'x).

PROOF: The elements of F are the components of Ind},, ¢ for ¢ € Fo.
Let Ay = Stabs(I'x,) so that I'y = 'y, > Ay; if ¢ corresponds to
(z,0) € M(T'x,), by 4.1 we have Stabs(p) = Staby,(z,0), so the
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components of Ind}}y.(¢) are in bijection with those of Ind; r” (2) o,

whence an embedding ¥ C M(T'x). Let us prove that the a,ctlon of
F on F corresponds via this embedding to the action of F' on M(T'r):

since components of IndWo ¢ (resp. components of Indcll:" (=) a) differ

from each other by characters of A, if we prove that there exnsts an
F-stable component in each of these sets, then the action of F' on these
components will be in either case given by that of F' on Irr(A). The
following lemma proves that there exists an F-stable component in each
of these sets.

5.5 LEMMA.
(i) Let ¢ € Irr(W®) have an F-invariant A-orbit. Then Ind}y. ¢ has
an F-invariant irreducible component.
(ii) Leta € AF andlet F € Z(W)¥ be the F-stable A-orbit {Fy, ..., Fr}
in Z(W°)°. For any (za,x) € M(Tx, C T'x, >1<a>), there exists
a component X of
In dcr’(()) X, such that (z,X) is an F-stable element of M(T'r).

PROOF: We first prove (i). By 0.2 ¢ extends to some x € Irr(I) where
I = Stabw sq<r> . Let I = _Stabw (¢); by hypothesis there exists

a € A such that aF € I, so Rest 1 X is an (irreducible) aF-stable charac-

ter, and so Ind}’ Res} x is F-stable and is an irreducible component of
Ind}y. ¢, whence the result.

The proof of (ii) is similar: the preceding argument shows that it
suffices to show that x extends to Stabr_, >q<r>(za, x). By using 0.3
we can reduce ourselves to the case where W is irreducible, and then
the result is trivial since in this case Stab 4 (Fo) acts triviallyon I'x,. B

We now define the embedding of the proposition in the following
way: for each F-invariant component 7 of Indwo ¢ mapped onto (z, x)

(where x is a component of Indcr’ (3) 1) we choose a mapping 7

(z,X) compatible with tensonzatlon by characters of A. We then get

Cr‘,.- >~<F>(z) 7 .
TrpaW >a S e 7 = (z,Ind a<ars (@) ). The statement about Mellin

transforms is then an 1mmediate consequence of the following lemma:

5.6 LEMMA. The map Indap : M(T's, C I'ry ><<aF>) = M(T'r C
L5 >I<F>) defined by (z,1) — (z, Indcr" >;<:'>F(:()z) ) maps the ele-

ment (y,zaF) mod I'r, on (y,zF) mod 1"_7.-.
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PrROOF: By definition we have (y,zaF) = 35 Y(xaF)(y, ), where ¥
runs over a set consisting of one extension of each zaF-invariant irre-
ducible character of Cr, (y). So its image is

> (zaF)(y,Indy) = Y _P(zaF) Y _ (Ind 4, % )(z, %),
i 3 x

where ¥ runs over a set consisting of one extension of each zF-invariant
irreducible character of Cr,(y). If we exchange the summations, we get

> ®% Y (Indg, x)d(zaF).
x P

As the second sum is equal to x(zF'), we get

Zj(y, XX(zF),

which is by definition the element (zF,y) of M(T'rs C I'r ><I<F>),
whence the lemma, and the proposition. |

We will denote by f +— z; the embedding defined by the previous
proposition.

We want now to show that the scalar products (p(;r,), Ry )ur
(where Ry will be defined in an analogous way to the connected case,
using generalized Deligne-Lusztig characters) are still given by 4.5. We
first generalize the notation Ry for non connected groups.

5.7 DEFINITION. For any F'-class function f on W, we define

Rp=|W|™ 3 f(w)RE.E(1)

weW

(an element of the direct sum of the spaces of class functions on H*F
when a runs over representatives of H(F, A)).

Note that the linear span considered above has a natural scalar
product, which is the orthogonal sum of the scalar products of class
functions on each group H4%¥, and that similarly we can extend the
pairing 4.3 to a pairing between @;eg(w)pﬁ,m(l"}- C I'r>x1<F>)
and @regw)rM(LCr C T'x >AI<F>). With these notations, we can
now state:
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5.8 THEOREM. Let p € £(H%F,1) be parametrized by

z,€ ] METrcTr><F>)
FeE(W)F

and let f be an F-class function on W; then the scalar product { p, Ry )
is given by {z,,zs}.

PROOF: It is sufficient to prove the result for a basis of the space of F-
class functions on W. We get such a basis, if we consider the functions
YwF, Where, for w € W, we denote by ~,,r the function whose value is
the cardinality of the centralizer Cw (wF') on the class of wF under W
and zero outside. We have R, . = R.PI.I:,’;(I), if w is of the form vbF,
with b in the chosen set of representatives of H!(F, A) and v € W°.
If b # a, both the scalar product that we want to compute and the
pairing {z,,z,,.} are zero, so we may assume b = a. By 1.3, (i),
we have R, ., = Indg:: r(Rys ), where 75 is the function defined
similarly to 7, for the class of wF under the group W°. We have
clearly vy r = Ind}yo (72, 5).-

We want to compute {p, R, . ). By Frobenius reciprocity and the
preceding remarks, this is equal to (Resg::p P, Rys YHoar. By 4.3,
this scalar product is equal t0 {TResp;Z~2 .}, if TResp € QM5 C
I'r, >1<aF>) parametrizes Resg:: r p. So we are reduced to proving
{ZRes p) T2 . } = {Zp, Tind 13 . }-

With the notations of 5.3 and 5.6, we will show that in general
{Resgzm,m} = {m,Indpym} for any m € QM(Tx C Tr>I<F>)
and any m € M(T'x C I'r >1<F>), where Resz; is the adjoint of
Indz; for the scalar product (, ) on QM(T'x C I'r >I<F>) deduced
from the scalar product on class functions via the isomorphism of 5.2
(i.e., Resx, = TRes p). For this scalar product the elements (zF, x) form
an orthonormal basis, so Mellin transforms are pairwise orthogonal and
we have ((zF,y),(zF,y)) = |Cr-((zF,y))|. So ((zF,y),(z'F,y")) =
{(zF,y),(y’',2'F)}. Whence

{Res(xF, y)’ (wOF’ yO)} = (Res(a:F, y)’ (xOF, yo)) =
((zF,y),Ind(zo F,yo)) = {(zF,y), Ind(zo F, yo) };

whence the result. [ |
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II

6. Unicity of the parametrization.

The goal of this part is to give conditions which unambiguously
determine the map w5 in the case of a group G connected and with a
connected center. Our strategy is as follows:

We first determine (cf. 6.3) under which conditions 4.3 determines
the map

pe&(GF,1) - (aF,x) € || M(TrCcTr><F>)
FEEF

We need to add two conditions to define completely the map (cf. 6.4).

We then consider the general situation of £(GF, s), and we have to
deal with all the cases where 4.3 is not sufficient and 6.4 does not apply.

6.1 Since the families we consider depend on F', we will consider
couples (W, F') where W is a Coxeter group and F' a diagram automor-
phism of W. We say that (W, F) is irreducible if W is a product of
irreducible Coxeter groups, permuted transitively by F.

With the above definition we have (W, F) = [],(W;, F;) where the
(Wi, F;) are irreducible; each 7 € Z(W)¥ identifies to a product []; F; €
[T, E(W:)¥, and we have I'r =[], T'x,,

M(Tr CTr>1<F>) = [[ M(T# C Tx >1<F;>),

M(Cr CTF><1<F>) = Q) M(T'F C Tz, >I<F;>)

and F = X F;, and the pairing between the spaces
QM CTr>1<F>) and M(T'x C Tx >1<F>)
is the product of the pairings between

QM(Tx, CTx >1<F;>) and M(T'x, C Tz, ><I<F;>).
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When (W, F) is irreducible where W = []i_, W; with W; irre-
ducible, then (cf. [11, 4.20]) Z(W)F identifies to =Z(W;)¥", I'r iden-
tifies to a product 'y, X ... X I'x, permuted transitively by F and
M(Tx C Ty >1<F>) identifies to M(T'x, C Tz, >XI<F">): any T €
M(Tx C Ty >1<F>) has arepresentative of the form ((a, 1,...,1)F, x)
where x is a character of Cr.((a,1,...,1)F) =~ Cr,_(a). Similarly there
exists isomorphisms M(T'x, C I'x, X<IKF">) * M(Tx C Tx ><I<F>)
and F ~ F; (relative to F"), and the pairing is compatible with these
isomorphisms.

Finally, when W is irreducible, for any automorphism F' of W, any
F with more than one element is in =F and is fixed pointwise by F
(¢f. [11, 4.19] for A,,, E¢ and D4 (this last case with an automorphism
of order 3), and for D,, the only characters not fixed by the diagram
automorphism are those corresponding to symbols with identical parts,
which are in a one-element family). So for any element F € =¥, we have
MTr CTr><I<F>) ~ QM(Tr CTF><1<F>) ~ QM(TF) and
the pairing between M(I'x C I'x >I<F>) and QM(Tx C Tr ><I<F>)
has the same value as that between M(I'x) and itself, and F ~ Q,F.

6.2 So, in general, for any F € E(W)F there is a set {F; €
Z(W;)F}; where W; is irreducible, such that Q;M(I'x C T'x >A<F>)
and M(T'r C Tx >1<F>) both identify to a product @; M(I'#,;), com-
patibly with the pairing, and F identifies to ®i@,}}. This will allow
us to reduce the problem to the case of an irreducible W.

PROPOSITION 6.3. Suppose that no component F; of F is exceptional
(cf. 4.4), and that T € M(T'x C 'y >1<F>) has no component z; of
the following types (using Lusztig’s [11, chap. 4] notations):

xj = (g4,1) or (gs,—1) (U'x; isomorphic to Sy).

z; = (gs,0) or (gs,0%) (U'x; isomorphic to Sz or S,).

Then the set of coefficients {Z,z 3}, when E runs over F, determine
the element T € M(I'y C T'x ><I<F>).

PROOF: In the identification of 6.2, we have E = (F,... , E,) where
E, e F;,,T = (1‘1, ce ,:L',.) with z; € M(F]:'.) and {:L'E-,T} = Hi{wa .’L‘,‘}.
Let V(z;) be the vector {2 E;, z;} E,eF,; to show the proposition we have
to prove that the vectors V(Z) = V(z1) ® ... ® V(z,) are all distinct
when T runs over M(I's C I's >1<F>) (unless an z; is one of the
exceptions of the proposition). If this were not true, then there would
exist z; # z; and A € C* such that V(z;) = AV (z}).

We can do a case-by-case check that this is impossible for an irre-
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ducible W: when I'r =~ S3, S4 or S5 it is an easy check on the table
of coefficients. In the case where 'y =~ (Z/2Z)% we first note that
{zE,z} are equal for all x when E is the special character in the family.
So any ) as above has to be 1, and it is enough to check that the vector
{zEg,z}Eer determines x.

The types of W to consider are B,,, D, and 2D,.

e Case B,. With Lusztig’s [11] notations, = is parametrized by a
subset X of even cardinality of a set Z; with 2d + 1 elements in
which a fixed subset My of cardinal d has been distinguished. The
elements r g correspond to subsets Y C Z; such that |YAM,| =d,
and with these parametrizations, we have {z,zg} = (—1)IX"Y 1,
Given a € Z; we can find two subsets S; and S5 of cardinal d such
that S; US> = Z; — {a}. If we put Y; = S;AM, (for i = 1,2), then
Y: corresponds to some z g; and:

(—1) XAV XY 2 1 ey g ¢ X

so X is clearly determined by the {z,zE,}.

e Case D, or 2D,. This time x corresponds to a subset X of odd
cardinality of a set Z; with 2d elements, taken modulo the equiva-
lence relation X ~ Z; — X, and elements z g correspond to subsets
Y of even cardinality of Z; taken modulo the same equivalence re-
lation and such that |YAMy| = d where My is a fixed subset of
cardinality d; and we have:

{z,zg} = (-1))XYL.
Given two elements a,b € Z; there exists two subsets S; and S
of cardinal d such that S;AS2 = {a, b}; if we set Y; = S;AM, (for
i =1,2) then:
(_l)anyll(_l)anYzl — (_l)an{a,b}l

Modulo the equivalence X ~ Z; — X we may assume that a ¢ X,

and then the above equality clearly determines X.

This concludes the proof of proposition 6.3. |

We now give sufficient conditions for Lusztig’s parametrization p —
(xzF, x) to be uniquely determined in the case of unipotent characters.

Forz € M(T'x C I'x >1<F>), we define a root of unity A\(Z) as fol-
lows: if Z identifies to (z1,...,z,) (¢f. 6.2) then A\(Z) = A(z1)... A (z,);
and if z; = (a,x) where a € I'x, and x is a character of Cr,, (a),
we put A(x1) = x(a)/x(1) unless F; is exceptional and (z,X) is not
in the image of F; by the embedding F; — M(I'x), when we put
A(z1) = ix(a)/x(1).
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REMARK. In the next proposition we do not know a reference for the
proof of (ii) when (W, F) is of type 2D, though we believe it is true.
The same restriction will consequently apply in (ii) of theorem 7.1 about
the unicity of Lusztig’s parametrization, but we will not use that part
of the hypotheses in the proof of the unicity.

PROPOSITION 6.4. Suppose (W, F) irreducible. Then, for F € E(W)F,
there is a unique bijection

p—T,: E(GF,1,F) = M(Txr C Tx>I<F>)

such that:
(i) For any E € F and p € £(GF,1,F) we have

{(p,Rg) = A@){Zp, 75}

(ii) If F® is the smallest split power of F then the eigenvalues of F'¢
associated to p € £(G¥,1,F) are equal, up to a power of ¢®/2 to
A(Z,).

(iii) The character p of the principal series associated (via Lusztig’s
explicit isomorphism of W with the Hecke H(G,B)) to the special
character of F is such that 7, = (F,1d) € M(Tx C Tz >1<F>).

ProOF: Lusztig has shown the existence of a bijection compatible with
(i)—(iii): indeed (i) is [11, 4.23]; to check that we may have a bijection
satisfying (ii), if W = []_, W; where the W; are irreducible and cycli-
cally permuted by F', the elements w = (w1, 1,..,1) span the F-classes
of W and we have an isomorphism of the Deligne-Lusztig varieties:
Xuw,G,F =~ Xu,,G,,Fr; moreover, if F is split the eigenvalues of F% on
H}(Xy,G,r) are equal to the eigenvalues of F™® on H}(Xy,,G,,Fr). So
we may assume that W is irreducible. For irreducible groups, (ii) for
untwisted groups is [11, 11.2], and for groups of type 2E¢ and 3D, can
be deduced from [9, 7.3] (we can restrict ourselves to the case where
p is cuspidal, and in these cases all cuspidal unipotent representations
occur in H*(X,,, ®;) where w is the Coxeter element of W).

We note that at this stage we have already resolved all ambiguities
left by proposition 6.3 (whence the unicity in the proposition) except
for exceptional families, since the A(z;) differ in the listed cases.

Checking compatibility with (iii) can also be reduced to the case W
irreducible, where it is a property of the embedding 7 C M(T"#) which
can be easily checked case by case, except that in the case of exceptional
families there is some ambiguity on the embedding that (iii) is precisely
designed to resolve. [ ]
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PROPOSITION 6.5. Assume that (W, F) is irreducible and that we are
given an automorphism ¢ of W >1<F> which stabilizes W, fixes F and
induces a diagram automorphism of W. Then for any F € =F we have
either |F| =1 or ¢ fixes F pointwise.

PROOF: Assume first that W is irreducible. If F has more than one
element, then it is pointwise fixed by F' and ¢ and the condition @(F) =
F ensures that an extension in F of an element of F will be p-invariant.

Suppose now that W = W; x ... x W,. permuted cyclically by F.
Since ¢ and F commute, there exists i such that ¢ F'~! stabilizes W; for
any j. Recall that we have an isomorphism: (Fy, Wy, F") ~ (F,W, F).
Write ¢ = @F ¢ Fi; poF~% stabilizes all W; and is clearly compatible
with the above isomorphism, and from the first part it fixes pointwise
F, and so its image. We conclude by observing that F* acts trivially
on elements of F since they are class functions on W ><1<F>. |

PROPOSITION 6.6. Assume that (W, F) is irreducible and let ¢ be
an isogeny of G commuting with F. Then for any F € =F the set
E(GT 1, F) is pointwise fixed by ¢ if it has more than one element.

PROOF: Let p € £(GF,1,F). For any E € F we have:

(p,Rg)=(pop,Rzop)={(pop,Rg,,)

(the last equality by corollary 9.2). This means that:
{Zp 25}t = {Tpow""'i:o‘p} = {ZTpop, T}

(the last equality since E = E o ¢ by proposition 6.5). By proposi-
tion 6.3 this gives p = p o ¢ unless F is one of the exceptions of the
proposition. To deal with the remaining cases, note that ¢ induces an
isomorphism: H}(Xy, Q;)—— H}(X p(w), Q;) which commutes with F,
so the eigenvalues of F' associated to p are equal to those associated to
p o ; this gives the result by proposition 6.4 (ii) except if F is excep-
tional. In this last case we use the fact that a diagram isomorphism is
compatible with Lusztig’s isomorphism.from W to H(G, B). -

7. Unicity of Lusztig’s parametrization.

We now study Lusztig’s parametrization of non-unipotent char-
acters. If we fix s € T* such that Zp(s) is non empty, Lusztig’s
parametrization of characters in £(GF,s) may be precised as follows.
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THEOREM 7.1. Given s, there exists a unique bijection:

ms : E(GF, 5)—"E(Caq- ()17 1)

satisfying the following conditions:
(i) For any x € £(GF,s) and any w € Zp(s) we have:

(i)

(iif)

(iv)

v)

Fo. ws «(s)(#1F)*
(6 RFur (3)) = (ms(x), (-D) DRI (1)),

If s =1 then:

(a) The eigenvalues of F® associated to x are equal, up to a power
of g%/2 to the eigenvalues of F*® associated to m1(x).

(b) If x is in the principal series then m(x) and x correspond to
the same character of the Hecke algebra.

If ¢ € G*F" is central and x € £(GF,s) then ms¢(x ® ¢) = m.(x),

where ( is the character of GF corresponding to ( (see for instance

[6, 6.7 and 6.8]).

IfL is a standard Levi subgroup of G such that L* contains Cg-(s)

and such that L is wF'-stable (where W is a representative of the

element w reduced with respect to Wy, in the class of w, ); then the

following diagram is commutative:

E(GF,5) T £(Ca-(s)™F7,1)

E(LPF,s) T £(CpLe(s)™1%P)* 1)

(where v, is defined by 0w = ).

Assume that (W, F) is irreducible, that (G, F) is of type Eg and
that

(Cag+(s), (w1 F)*) isof type E; x Ay (resp. Egx Az, resp. 2E¢x2A3)
then we have the following commutative diagram:

C(GF,s) T, C(Cg- (s)(u'u F)* ,1)

GF Cge(a)(W1F)*
RL'sz L*(tg F)*

g(LﬁmF, s)' Ts S(L*(wbgF)‘ , 1)0
with L a Levi subgroup of G of type E; (resp. Eg, resp. FEg)

containing the corresponding component of Cg-(s), where the su-
perscript e means the cuspidal part of the series, and where wy = 1
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(resp. 1, resp. the Wy-reduced element of Zp(s) which is in a
parabolic subgroup of type E; of W).
(vi) Given an epimorphism with kernel a central torus:

(G, F)—=(Gy1, Fy)

and elements s; € G} and s = ¢*(s1) € G*, then the following
diagram is commutative:

S(GF,s) M., g(CG‘(s)(‘P("bl)F)"l)

-

t‘P ‘<P
E(GTs1)) 2 £(Cgs(s1)@F)7)1)

(vii) If G is a direct product [] G;, then s = I 7.

PrROOF: We have to show that conditions (i)—(vi) completely specify the
map 7s, and that they are compatible with each other. Our strategy
will be to consider each condition in turn, and each time to show that
(together with the previous conditions) it specifies 7, for a larger set of
situations, and the previous conditions hold for the new situations (as
well as the new condition for the previous situations).

We first suppose that (W, F) is irreducible and that s = 1, and
remark that by applying 6.4 in G and G*, we obtain that (i) and (ii)
completely specify 7, in this case (and are compatible).

If now s is central, (iii) clearly specifies 7, from its value when
s = 1. (ii) is not relevant unless s = 1, and (i) holds, since R.(I.;:F(§®f) =
RSL.(5) ®C (cf. [3, 1.67)).

Suppose now that Cg«(s) is contained in a proper Levi subgroup
L* of G*; then (iv) specifies 7, completely in G if 7, is uniquely defined
in L, which we may assume by induction on the rank of G (we assume
that the whole of 4.1 holds for groups of smaller rank); indeed in this
case by [11, 6.21], Rf,fF is an isometry between £(L*F, s) and £(GF, s)
which is such that (i) is compatible with (iv); (ii) is not relevant here,
and (ii) holds since Rf:p(x ®() = RE’:F()() ®¢ (¢f. par exemple [6,
3.8]).

When (W, F) is irreducible, it only remains the case when s is
exceptional (i.e., , Cg«(s) is not included in any proper Levi subgroup,
but s is not central). Suppose first that W has no family which contains
one of the exceptions of proposition 6.3; then (i) completely specifies
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ms; (ii) and (iv) are not relevant here, and (iii) holds again because of
R, (@) =RS.r(3) ®(.

From the explicit knowledge of root subsystems of maximal rank in
root systems (which parameterize centralizers of semi-simple elements in
G*), we see that W (s) has a family which contains one of the exceptions
in proposition 6.3 only if G is of type Eg and (Cg-~(s), (w1 F)*) is of type
E7; x Ay, Eg x A or 2Eg x 24, (we assume that W is irreducible; it is
easy to extend the arguments below to the case (W, F') irreducible by
“descent of scalars”). Furthermore, in the above cases, the exceptions to
proposition 6.3 are each time two characters occuring in a family where
'y ~ 83 and coincide with the list of cuspidal unipotent characters
of L¥2F (excepted that in the case 2Eg the character parametrized by
(1,1) € M(Ss) is also cuspidal). We will show that in this case, (v) can
be assumed to hold, is compatible with (i)-(iv), and together with them
completely specifies 7.

We first prove:

LEMMA 7.2. Suppose that s is central in L*, a Levi subgroup of G*,
and that W(s) has a w; F-stable direct product decomposition W (s) =
WLxW'. Let wy € Wg(s), let p € E(L¥2F,1), and let E be a waF-class
function on W; write E = Ey, ® E’ where Ey, is a waF'-class function
on Wi, and E' a wyF-class function on W’. Then:

(Ri(s), REi,r(p® 8))ar = E'(wsF)(Rp,, p)pasr

PRrROOF: We first compute the scalar product (RT,,,,,,2 r(8), Rsz r(P®83))
for weW (s). By Mackey’s formula [6, 2.1(b)] it is equal to:

g F .
Z (RY(puwwsry("8), p® 8)punr =
L%2F\{v€GF |vTCL}/Tww2 F

|WLl ! Z (R'II‘H:Z:MQF")"‘]( s)’p®s)L'b2F

veEWg
vw"’sz_IEWL

Since p® § € £(L¥2F s), the only non-zero summands are those where
Ys and s are conjugate in L*, i.e. equal since s is central in LL*, and the
above sum reduces to:

—_ o F
'WLI ! Z (R’I]?‘v?uwzf‘v—l (1)’ p)L“"ZF‘
veEW(s)
vw”2pv—1€WL
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. -1 .
Write w = w’wy, where w’ € W’ and wr, € Wg. Then vw?2Fy™ 7 s

we F-conjugate to wy, in Wi, so R-Iftiig poo1(1) = RE2, - (1) and the

condition under the sum is that w’ is wy F-conjugate to 1 in W’. So we
get for the sum:

wq F
|W,w2F|< R}[“WZLWZF(]')7 p)L""ZF'
From that we get:

(Ry(s), REu,r(p® 3) )ar
= W)™ Y. E(wwaF){R§uw,r(3), REu,r(p®3))ar -
weW(s)
= [W(s)|~ W] > B(wiwaF)
{wGW(S),wLGWLIww'?"FwLGWL}
(W F[( Rey e (1), p)paar
= [WL| T E'(woF) Y Er(wpwaF){RYu o, r (1), p)piar
wL EWL
= E"(wzF)(REL,p)Lw,F

By the general structure theorem for reductive groups, in the cases
we consider we may write a (w1 F')*-stable decomposition of Cg«(s) as
L* xo H where H is a reductive group of type A, with Weyl group
W' and T is a maximal torus of H central in L*. Let p be a unipotent
representation of L*(¥2F)”  Since p is trivial on the center of L*, it
factors through a representation of the form p’®1Id of L:E;i” " % Tﬁ’g’ e
and we have:

CG‘(S)("HF) H("'zF)‘
Ry canr qpanr P @A = @ R ¢ e 1=
ad

Z E' (w2 F)p' ® per
E'€lrx(W')w2F

where pg/ is the irreducible unipotent character of H parameterized by

E' (when H is split we take E'(w;F) = 1 and when H is a unitary
group the extension £’ is determined by the above formula).
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Since H is of type A,, the families of W’ are reduced to single
characters, and the families in Z(W (s))*1¥ are of the form F ® E’ with
F € E(WL)¥1F and E’ € Irr(W’)¥1F | and there is a bijection that we
will denote z — 2 @ E' : M(Tx C Tr><<w1 F>) - M(Trge C
I'rer >A<wi F>). If we denote by p/, the unipotent character in the
set S(L:&w’F)., 1, F) corresponding to £ € M(I'x C I'x >1<w, F>) we
get:

Ca=(s) ik / Y ’
RL‘(wzFi"de(wzF)' Pz ®@Id = E : E'(w2F)peg i
ad ad E'€lrr(W')ws F

And using (vi) of the theorem (which holds in Cg+(s) by induction)
we get the analogous result in Cg-(s)®*)":

Ce s (8)(#1F)* ~
RL?(""(z D (pe) = Z E'(w2F)pzoE
E!'€Irr(W!)wa F

To prove (v) we will show that when p, is cuspidal, Rf,f; r(pz®38)is
of the form 3~ g cper(wryws F E’(wzF)p;®E, where pigp € E(GF,5, F®
E’) and

(RE(S)a pi@E’ )GF = (_l)l(wl)(RE" PzQE' )CG-(s)(""x F)*

for any E € (F @ E') (then if we define 7, by ms(pigr) = peor (i)
and (v) are satisfied; (iii) is clearly satisfied also and (ii) and (iv) do not
apply here, so we will have finished with the case (W, F') irreducible).
In the cases where (Cg«(8), (w1 F)*) is of type Fg X Az or E7 X A;,
we have w; = 1 and L is a Levi subgroup of a rational parabolic sub-
group of G so, by Howlett-Lehrer’s theory, we know that the decompo-
sition of Rf: (p®8) for a cuspidal p € E(L*F", 1) (which corresponds to
a cuspidal p ® § € £(L¥, s)) is of the form 3, c1.rw(,y) X(1)px- When
Cg+(s) is of type FEg x Az, W(p) is equal to W’ since Nw (W) =
W(s) >d<w> where w is an element of order 2 acting on L by the non-
trivial diagram automorphism of Eg and w cannot fix p since it maps
s to s~1. Similarly W(p) is W’ if Cg=«(s) is of type E7 X A; since in
that case Nw (W) = W(s). So we know that Rf: (p® 8) has a decom-
position of the form Y- g errwry B'(1)pigpr; it Temains to show that

(Rp(s): Pzor Yar = (R Pz@B ) ogu ()™ (= (Riys Pz )Lere)-
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Consider the projection pZ of Rf:(l)z ® §) on Q,E(GF,s5,F ®
E’); by lemma 7.2, we have (pF',Rp(s))gr = E'(1){ ps, Rg, JrLF so
pE' is not 0; furthermore, since Rg: (pz ® ) has |Irr(W’)| isotypic
components, pE' must be one of them. Looking at the table of Fourier
coefficients for M(S3) which gives us (pz, Rz )Lr we see that |oE'| >
3/4FE'(1) which implies |pE'| > E’(1) since both are integers and E'(1) <
2; but 3 [P |2 = |RGr (pe ®3)12 = 3 g E'(1)? so pP’ must be of the
form E'(1)pie B with p3 o irreducible.

Similarly, in the case where (Cg«(s), (w1 F)*) is of type 2Eg x 2A,,
it is enough to show that

~ F ~
(RS, r(pz ® 8), REuyr(pe ® 3) )ar =2

(then for each of the two elements E’ € Irr(W’)*2F we can similarly de-
duce by using 7.2 and the table of fourier coeffcients for M(S3) that the
projection pE of Rf,‘,zp(pz ®3) on Q,E(GF,s, FQ E’) is an irreducible
character with sign E'(wsF)).

We have we = wiwd where wl is the longest element of Wiy,
and wd! is the longest element of the standard Levi subgroup M of G
of type FE7 which contains L. We will consider RL,,,zp(P:c ® §), which
is an irreducible representation since Cm«(s) = CpL-(s) (in that case
er\ﬁ,,zp is an isometry, cf. [10, proof of 7.9]) and we will conclude by
proving that for a.ny x € E(MF|s), we have (RMFx, RM‘;‘X>GF = 2.
Indeed, (RMFx, MFX Yar = (X, *RGF Mpx)Mp and by Mackey’s
formula (which we may apply since M is 1ncluded in a rational parabolic
subgroup):

_ F
MeRMrx = D Riiliyaye 0adw™t o "RE X
wEWM\W/Wm

Here is a list of reduced representatives w € Wy \W /Wy, and, below
each, the value of M N *M:

— M, G G, M, M, L G, M
w= 1 wwsy ss wgw)sswylwy wSwMsgwMwd
MNn*M= M M L L D
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where sg is the generating reflection in W —Wp and where D is the stan-
dard Levi subgroup of G of type Dg. Since w)w§ acts like the identity

on M, the first two values of w give a contribution of 2y to *Rﬁi RSIF,‘.- X-
We have to prove that the other terms are 0; for *an'vM) rX to be
non-zero, s must have a W-conjugate s’ € (MN*M) such that Zg(s")
meets Wy N YWpnm. There is no conjugate of s in D, so *er;": x = 0.
Now, Zp(s)NWnm = WrLwdM; when MN*M = L we must find v € Wi
such that Wi, N *(WrwM) # 0 < WroWy = WroWLwdM but it
can be checked that there is no element of Wi \Wm/Wry, invariant by
multiplication by w.

‘We now consider the general case of G connected reductive with
connected center and use (vi) and (vii).

First we check that (vi) and (vii) hold in the previous situations:
(vii) is irrelevant in the case (W, F) irreducible; (vi) holds when (i)
specifies w5 by 6.3; (vi) holds when (ii) specifies 7, since ¢ induces an
isomorphism of the Deligne-Lusztig varietes X,, for G et Gi, and of
the Hecke algebras; when (iii) specifies m,, (vi) clearly holds since (
factors through Gi; and when (iv) or (v) specify 7, (vi) holds since ¢
commutes with a Lusztig functor RE (cf. 9.2).

Now, in general, we can find an epimorphism with kernel a central
torus [[ G; — G, where each G; is a connected reductive algebraic
group with a connected center, with a Weyl group W; such that (W;, F")
is irreducible; so applying (vi) and (vii) ws is completely determined
from its value in the case (W;, F) irreducible. We next show that the 7,
thus constructed does not depend on the particular choice of [ G; — G.
If we have another such morphism [[H; — G, then H; and G; have
the same derived group and we can embed both in some K; with still
the same derived group such that the maps [[G; —» G and [[H; —» G
factor through J]K;. It is enough to show that the parametrization
given through [] G; factors through ] K;, and that comes from the
unicity in the case (W, F') irreducible and the fact that (vi) holds in
that case so the embedding G; — K; is compatible with 7.

The last thing we have to check is that the parametrization m,
defined above satisfies (i) to (v). It is clear for the parametrization in
[1 Gi, and the remarks above proving the compatibility of (vi) with (i)-
(v) in the case (W, F) ireducible can be applied here too to prove that
(i)-(v) are preserved via [[ G; — G. |

COROLLARY 7.3. Let w € W be an element such that Y&} C &*t.
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Then the following diagram is commutative:

E(GF,s) —T=  £(Cgq-(s)™7 1)
| -
g(GF, wg) T, 8(CG‘("’S)(“"”1F"’ ) ,1)

ProOF: Note first that this corollary is a special case of 7.1(vi) when
w € WF (taking then ¢ = adw*; the proof will be similar to that of
7.1(vi). We have to check that ad w o 7, satisfies (i)—(vii) of 7.1 applied
replacing s by “s.

(i) results from 9.2 applied in G* with ¢ = ad w* which gives

(ws)(ww, Fuw—1)*

Ca»(s)(#1 )" 1) — pCa+
RT(vwl F)* ° a'dw(l) - 'RT(wvw] Fw—1)* (1)

for any v € W(s) and from Rg:vwﬁw_l (¥s) = R,(;f,i,,l,,(§).
(ii) and (iii) are trivial here (if s is central then w = 1).
To prove that (iv) holds we have to prove that the following diagram

is commutative:

E(GT,ws) LT £(Cq(Ms)BnFETH 1)

GcF

wpwvFw—1

LT wg) DM g(Cupe(ws) @@ FETD" 1)
where L is a standard, vF-stable Levi subgroup of G such that L* D
Cg+(s) and where v is the Wp,-reduced element in Wrw;. But since
Rf; ocadw™! = Rf:m ro—1 the diagram above is the composed of the
diagram given by 7.1(iv) (with v for w) and of the following diagram
given by 7.1(vi) with ¢ = ad w:

E(LYF,s) L E(CLs«(s)(w1F) 1)

ad w?! ad ™!

E(WLYIFET wg)  Tte, g(Clup.(ws)@inFeT)” )

The proof for (v) is entirely similar; and (vi) and (vii) are quite
obvious. |
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III

The aim of this part is to give a general conjecture about the action
of Shintani descent on the parametrizations of parts I and II and to
prove some results in the direction of that conjecture. We begin by
recalling some facts about Shintani descent and the definition of “F-
twisted induction” (cf. [4], [5] and [7]).

8. Shintani descent, F'-twisted induction. Let G be a connected
reductive algebraic group defined over an algebraically closed field TF,.
We consider two rational structures on G defined over some finite sub-
fields of IF, and given by two Frobenius endomorphisms F and F’ which
commute. In this background, we recall the definition of Shintani de-
scent.

8.1 DEFINITION.
(i) We denote by Npi/r the map from F-classes on GF " to F'-classes
on GF which maps the F-class of g € GF' to the F'-class in GF
of h~1F'h € GF where h € G is such that h~'Fh = g.
(ii) We call Shintani descent the map Shp,p from F-class functions on

GT' to F'-class functions on GF defined by Shp:/p = Np -

It is easy to show that Shintani descent is an isometry for the usual
scalar products on C(G¥ /F') and C(GF' /F).

Let us now assume that we are given a pair T C B of a maximal
torus and a Borel subgroup both F' and F’-stable. Let L be a standard
Levi subgroup stable under F’ and let w be an element of W' such
that L is stabilized by wF where w is a fixed representative of w in
the normalizer Ng(T)¥' (note that &F and F’ commute). With this
background we want to define the F’-twisted induction which will be
denoted by Rf:,!ﬁ., from the space C(L¥¥ /F’) to the space C(GF /F").
We first define it for the elements of a basis of C(L*F /F’): let = be an
F’-invariant irreducible character of L¥F and % be an extension of m
to the semi-direct product L¥¥ >q<F’>; let [#] be a complex vector
space affording a representation of L¥F with character 7; let S be the
algebraic variety

S={zeG |z .Fz e Uw.FU}
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(the endomorphism F’ acts naturally on S). We define the F’-twisted
induction of # (actually of the restriction of # to LYF.F’; we shall
not mention the restriction when the context is unambiguous) as be-
ing the restriction to GT.F’ of the character of the representation of
GF >q<F'> on the space (H}(S) ® [#])L°", where F’ acts naturally
on H*(S) and acts as defined on [#]. We immediately get:

8.2 PROPOSITION. With the preceding notations we have:

F ' o
Trace(gF" | Rpod /o (%)) = [L®F|7 Y~ #(IF") Trace((g, 1)F" | H:(S))-
levaF

This allows us to extend the definition to the whole space of F’-class
functions:

8.3 DEFINITION. We call F'-twisted induction the map

REIE, . C(L¥F/F') — C(GF /F)

LIi)F/FI

which extends by linearity the formula of proposition 8.2.

9. Isogenies.

In this section we show that induction and F’-twisted induction
from a Levi subroup behave well with respect to isogenies. We will
consider a morphism ¢ : G — Gj of connected reductive algebraic
groups such that ¢ induces an isogeny from the derived group of G
to that of G;. In this situation, if T is a given maximal torus of G,
there is a unique maximal torus T; of G; such that ¢(T) C T;. In
fact, we have T; = ¢(T).ZG; since G; = ¢(G).ZG;; we have also
T1 Ne(G) = ¢(T). In addition, we have: Ker ¢ C ZG and Ng, (T1) =
¢(Ng(T)).ZG; so ¢ defines an isomorphism of Weyl groups: W — Wj.

Let F' and F’ (resp. F; and Fj) be two commuting Frobenius
endomorphisms on G (resp. on G;) with F’ (resp. FY) split such that:

poF' =Flopand poF = Fjop.
Let B be a Borel subgroup of G such that the pair T C B is F and

F'-stable; then it is clear that the pair Ty C B is also F’ and Fj-stable,
where B; = ¢(B).ZG;.

147



F. DIGNE, J. MICHEL

9.1 THEOREM. In the above situation, assume in addition that Ker ¢ is
connected. Let w € Nc;(T)F', let Wy, = p(w), and let Ly be a standard
Levi subgroup of G, which is w1 Fy and F}-stable. Then for any F{-class
function #, on L¥*F' we have:

G, /F]
L
where L = ¢~ 1(L,;).
PROOF: In view of 8.2 and the Lefschetz formula we have to show the
equality of:

|L¥F |-t Z #){z € G|z~ .Fz € UwFU and gFz =2l}| (1)
leL%F

F ’ -
R (71) 09 = R{u/ [ (F1 0 9)

(where # = %1 0¢, g € GF and U is the unipotent radical of a parabolic
subgroup containing L) with the analogous expression for Gi:

L B=t > ()
lleL;blFl
|{£L‘ € G, | .’L‘_]'.F’J,' (S Ul’u.llFlUl and (p(g)Fl’:B = xll}| (2)

The equalities G; = L1¢(G) (since ZG; C Ly) and L; Np(G) = ¢(L)
show that G1/¢(G) ~ L; /(L1Np(G)) ~ L; /(L) and this isomorphism
is compatible with w,F; since ¢(L) is w; F}-stable (because L is wF-
stable).

So we get (G1/p(G))¥1F1 ~ (L;/p(L))¥* 1 and the first group is
also isomorphic to (G1/¢(G))** because G; is central modulo ¢(G).
As ¢(L) is connected we have: (L; /@(L))*1F1 ~ L¥1F1 /p(L)¥1F1, Now
U; = ¢(U) so that U F1U; C ¢(G); so any z; € G; such that
1.1—1_1"‘11.1 € U,w;1U; is Fj-stable modulo ¢(G) and since we have
(G1/p(G))Fr = L¥F1 /(L)1 we can find an element A € L¥*F
such that y; = x1) is in ¢(G). Then y;'.F1y, € U;w; F1U; and
there are |p(L)¥1F1| elements y; corresponding to |L¥'f1| elements
z1. Moreover z; satisfies :cl_lcp(g)Fllxl =1 € L’f"F‘ if and only if
y1 satisfies yl_lc,o(g)f"l'g,/1 = A1 P € Lf”F‘ and, by assumption,
71(1) = #1 (A", Fi)). So expression (2) is equal to:

lp(Ly# 5=t 3" &y (h)

l]GL;bIFI
{1 € ©(G) | y7*.Fry, € Uy Uy and ¢(9) Pryy = yali}. (3)
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We show now that the map (z,1) — (¢(x), ¢(1)):
{(z,1) € G x L*F | 271z ¢ UwFU and gF'z = zl} —

{(w1, 1) € p(G) x L P |yt Fry, € Uy U, and () By, = 1ili}
is surjective. If (y1,01) is in the right-hand side set then y; = ¢(y)
with y~1.Fy € UwF Uz for some z € Kerp. As Ker ¢ is connected (so
that Lang’s theorem holds in Ker ¢) we can modify y to get another
element such that ¢(y) = y; and y~1.Fy € UwfU. Then we have
o(y~1gF'y) = I, € p(L)¥1F1 which implies y~1g¥'y € L*F Ker ¢ since
e(L)* F1 ~ (L/Ker o)¥F ~ L*F /(Ker ¢)*F as Ker ¢ is connected. Let
us write y~1gF y = Iz with | € L*F and z € Ker ¢; then:

-1 -1 4 -1 -1 - 4 ',
Fo= T Py g Py = FIT Py Ty 9T ) F (v~ Fy)
-1,p -1 '
=P (Fy " )iz (v~ Fy).
Setting a = y~1 'y € UwFU we get

— -1 _ 4 — -1 4
271y = FI7 a7 Fg = p~1wF |7 1 Fg

with b € UwFU. But *FI = 1, so 21 Fzb = Fa € UwFU, which
implies 27 1¥z = 1 (using the Bruhat decomposition), so the element
(y,12) is a preimage of (y1,l1). The fibers of the above map are clearly
all of cardinality |(Ker ¢)F|. So expression (3) becomes:

(L) 7 |7H| (Ker )|~

Y #(){y € G|y™'.Fy € UwFU and g"'y = yi}
[eLu’:F
which is the desired result since |[L¥F| = |(Ker ) F||p(L)%1 1. m

9.2 COROLLARY. Under the assumptions of theorem 9.1 (except the
existence of F' and F}), for any m; € Irr(L¥*¥*) we have:

F:
1

RS’

Wy Fy
L,

(1) 0 9 = REur(m1 0 ).

PROOF: Let d be such that Fi¢ and F¢ are split and such that L; and
are fixed by F. Then, for any m € IN, we can apply the theorem with
F’ = F4™ and F] = Ff™. Applying the standard process of “taking the
limit for m = 0” (¢f. [3, 3.3 and 4.1.2] and [5, 3.2]) gives the result. =

If G* (resp. G?}) is a group dual to G (resp. G1), a morphism ¢ as
above induces a morphism ¢* : G} — G* with a central kernel, which
also induces an isogeny for the derived groups, and an isomorphism of
the Weyl groups.
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9.3 COROLLARY. Under the above hypotheses, assume in addition that
ZG and ZG, are connected. Then for any s; € T} such that Wg, (s1)
is non empty we have:
(i) Let s = p*(s1); then ¢* induces a morphism Cas(s1) — Cag-(s)
which is an isogeny on the derived groups.
We denote F +— ¢*(F) the induced bijection from Z(W(s1)) to
ZE(W(s)). Then
(ii) x — xo defines a bijection: x € £(GT*, 51, F) = E(GF, s, o*(F)).

PROOF: Since ZG; (resp. ZG) is connected, the group W (s;) (resp.
W (s)) is generated by reflections corresponding to the roots in ®,, (resp.
®,), so to prove (i) we have to prove that oy € ®,, (i.e. a1(s1) =1) is
equivalent to a(s) = 1 where o corresponds to a; by ¢*. This is true
since (by definition of isogenies) o o p* = g(a)a; for some power g(o)
of the characteristic.

We now identify W (s) to W(s1) by ¢*. To prove (ii), since by 9.2

F"
we have R,cr;;’,,;l (1) op = R,‘I}.:F(§) for any w € Zp(s), it is enough to

prove that x o ¢ is irreducible for any x € £(G{?, s;).

If x and 1 are characters in Irr(Gf' 1), by Clifford theory x o ¢ and
1 o are either disjoint or equal, and the latter occurs only if they differ
by a (linear) character of G{*/p(G)F1, and (xop,x0p)agr = |{6 €
Irr(G1 /p(G)F1) | 6 ® x = x}|. Such a 6 corresponds to an element
z in Kerp*. If z # 1, the elements zs; and s; cannot be conjugate
under G3F: they would then be conjugate by some w € W, but we would

have ¥s = s so w € W(s) = W(s1) so ¥s; = si1, a contradiction.
So if x € £(Gf1,5;) then 6 ® x € £(G{*, s,2) which is disjoint from
S(Gf‘ ,51), so we cannot have 6 o x = X, so x o ¢ is irreducible. |

10. Shintani descent.

In this section, we want to express the action of Shintani descent in
a connected reductive algebraic group G in terms of the parametrization
of section 5. As in section 8, we assume that G has two rationnal
structures given by Frobenius endomorphisms F' and F’, both stabilizing
a pair T C B. Furthermore, we assume that F’ is a split Frobenius
endomorphism. We fix a semi-simple element s € T* assumed to be
F'-fixed, and such that Wg(s) is not empty and we choose w; € Wg(s)
as in section 2. We keep all notations of part I. With these notations,
we will give some evidence for the existence and commutativity of the
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following diagram (which properties we conjecture to hold in general):
10.1 ®oShpr,p
R —

C(GF'/F,s) C(GF/F',s)
a b
II c(Cax()EFD™ j(w1 F)*,1) I C(Cg=(s)E¥1 " J(F')* 1)
acaw1F a€H1(w; F,A)
IS [
FT —_——
I M(TxCTx >A<wy F>) —— 11 Q,M(LxCTx >I<w; F>)
Fes(w(s)1F Fes(W(s))W1F

where map a (resp. b) is a bijection generalizing to F-class functions
(resp F’'-class function) the map .7, of section 3, and maps ¢ and d
are generalizations of the parametrization of section 5. We have de-
noted by F'T the Fourier transform associated to the pairing between
spaces Q;M and M and by @ the endomorphism of C(G¥/F’,s) de-
fined on the basis of extensions of F’-invariant irreducible characters
by multiplication by the associated eigenvalue of F’. We will construct
vertical maps under suitable assumptions: we keep the assumption 3.3
that restrictions of irreducible characters are multiplicity free and we
will assume some degree of compatibility of m; with the action of the
Frobenius endomorphisms (¢f. 10.3, 10.4 below). Then we will show
that Shintani descent maps the subspace of C(G¥" /F, s) corresponding
to principal series characters of Cg~ (s)(éF’). into C(GF /F', s) and that
when F’' = Fj*, where Fy a split Frobenius and m sufficiently divisi-
ble, the restriction of the above diagram to the corresponding subspaces
is commutative. We do not know in general if Shintani descent maps
C(GF'/F,s) on C(GF /F’,s). Shoji and Asai ([14], [15] and [2]) proved
this result for groups with connected center and for the special linear
group. The proof of the commutativity of the restricted diagram relies
heavily on the results of [7]. The idea is to show that the “limit for
m=0" of this diagram ([7] shows the existence of the limit of Shintani
descent) is known to be commutative by theorem 5.8, and to apply re-
sults of [7] which relate the value of Shintani descent to the value of its
limit.

We need also the following result of [7] which is an easy generaliza-
tion of [11, 2.20]:

10.2 PROPOSITION. Let F’ be a split Frobenius endomorphism over the
field IF,,, such that ¥'s = s; then
(i) Any p € £(GF,s) is fixed by F'.
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(ii) For any extension j of p to GF >1<F'>, such that <F'> acts on
p via a finite quotient, there exists an algebraic number \; € Q; all
of which complex conjugates have absolute value 1 such that if p is
a component of H*(Yy;,,Q,) (where Yy, denotes a Deligne-Lusztig
variety) then the isotypic component of type p in this module has
a (GF, F')-stable filtration whose quotients are isomorphic to p, if
we multiply the action of F' in each quotient by )\glq;,' for some
integer i.

So the right hand side of diagram 10.1 is given by 3.4 and 5.2 pro-
vided that F’ acts trivially on C(Cg-(s)(¢?1F)" 1). By 10.2 above, it
acts trivially on C(C&. (s)*¥1F" 1). We assume that it acts again triv-
ially on unipotent characters of the full centralizer (it may be possible
to check case by case that this assumption holds):

10.3 AssuMPTION. The action of F' on £(Cg-(s)(¥1F)* 1) is trivial.

We now look at the left part of diagram 10.1. Here the Frobenius
endomorphism is F’. It is assumed to fix s, so Wg(s) = W(s), i.e,
the corresponding element w; is equal to 1. As F” is split, it acts triv-
ially on the Weyl group and we have H'(F’, A) = A. We will assume
that all representatives of elements of W we consider are chosen in G¥".
To construct map a we have to show that the map 7, : £(GF',s) —
H.ca £(Ca-(5)4FI7 1) restricts to a bijection from the set of F-fixed
characters in the left hand side onto the set of (w,F')*-fixed characters
in the right hand side. Recall that 7, was constructed using the embed-
ding G «— G, and that it maps the elements of the GF'/ Stabgr (p)-
orbit of p € £(GF',s) onto the elements 7,(p) ® ( where ¢ runs over
Irr(Cg- (s)“F’ (ms(p))/C&- (s)aF’). Moreover, as stated after 3.4, there
is a canonical isomorphism

GT' / Stabg e (p) Irr(Cae (5)*F (m4(0)) /C&- (5)*F)

induced by the map a — a of 3.2. So if both p is F-fixed and 75(p) is
w, F-fixed, the map 7, is compatible with the actions of F' and w; F.
To ensure this compatibility in the sequel, we will make the following
assumption:

10.4 ASSUMPTION.
(i) If the A-orbit of p € E(G¥',s) is F-fixed, then it contains an F-
fixed character.
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(ii) For any a € A and each (w,F)*-fixed A-orbit in £(Cg. (s)&F’, 1),
there exists a (1w, F)*-fixed extension to Cg«(s)°F of the sum of
the characters in that orbit.

This assumption gives us the desired existence of bijection a be-
cause a character p can be F-fixed only if its orbit is F-fixed, and a
character in £(Cg-(s)" ’, 1) can be w; F-fixed only if its restriction to
(05 (s)aF' is w, F-fixed.

Let us remark that in the case where a = 1, and p is in the principal
series of Cg-~ (s)FI , property 10.4, (ii) holds by the lemma 5.5, (i) applied
to W (s) with the automorphism w; F'.

10.5 We now construct map c¢. We simplify the notations by writing H
for Cg+(s). Note that for any family F of W(s), as F” acts trivially on

I'r, we have _
METx CTr><<F>) = M(T'F),

so the parametrization of 5.2 in this case is a bijection

PacE", )5 P QMETH).

a€A FEE(W)

We now show that this parametrization maps w; F-invariant irreducible
characters on w; F-invariant elements in the right hand side, so we can
restrict ourselves to wj; F-invariant families. Let F be such a family. It
is defined as the A-orbit of a family Fo € E(W°(s))® with a € A1 F,
The action of w; F on the orbit of €(H°“F’, 1, Fp) corresponds to the
action of w1 F on the A-orbit of M(T'x, C T'x, >I<a>), which induces
the action of w1 F on M(I'x). The parametrization maps the exten-
sions to H*F' of the sum of the A-orbit of iy € 8(H°"Fl,s,.7-'0) onto
elements (z,x) € M(T'x) where x runs over irreducible components

C T - .
of IndC;:O((a)g)(Xo) where (z, x0) € M(I's, C I'r, ><I<a>) parametrizes

1o. Extensions of the sum of the orbit of 1y differ by tensorization by lin-

ear characters of Stab 4(v). Irreducible components of Indgi’r (8)( Xo)
Fo

differ by tensorization by linear characters of Stab4(Fo, (z, x0)) which
is equal to Stab4(vo). By assumption 10.4, (ii), the sum of any w; F-
invariant orbit in £(H°*F", 1) has a ), F-invariant irreducible extension
to H%¥". So showing that 1, F-invariant characters in E(HF' |1, F) cor-
responds to wq F-invariant elements of M(I'x) is equivalent to showing
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that for any (z, xo) € M(I's, C 'z, >d<a>) there exists an irreducible

component x of Indgi” ((za):)(Xo) such that (z, x) is invariant as an ele-
Fo

ment of M(I'r). But this is exactly the statement of 5.5, (ii) applied
for the automorphism w; F'. So under assumptions 3.3 and 10.4 we have
constructed map c.

Note that assumptions 10.3 and 10.4 are clearly true if the center
of G is connected. So in this case, maps a, b, ¢ and d are proved to
exist.

Before giving the announced result about Shintani descent, we re-
call some of the main results of [7] (cf. [7] 4.2, 7.4, 8 and 9.7). We keep
the same notations.

10.6 THEOREM. We assume that F' = F2™ where Fy is a split Frobe-
nius endomorphism on G and m is such that o' s = s. We denote by
Ya,pr the linear operator from C(GF¥ /F',s) to C(GF,s) which maps
any p on )\;1 p, where \; is the eigenvalue of F' associated to the ex-
tension p of p € E(GF,s) (¢f. 10.2). Then, for any extension E to
W(s)><i<w1F> of E € (Irr(W(s)))“*F, there exists an extension pj,
of the character pg (inverse image by 7,-1 of the principal series char-
acter corresponding to E) such that

VG, oShpp pg = -1 (Rg)

(and so is independent of m).
We can now state:

10.7 PROPOSITION. As above, we assume that F' = F{" where Fy is a
split Frobenius endomorphism on G and m is such that Fs's = s; then
for any p € E(GF,s71), any extension p of p to GF >1<F'> (where
the action of F' is of finite order) and any E € (Irr(W (s)))“1 F, if \; is
the eigenvalue of F' associated to p, we have

(8,Shryrpg)ar.p = A (-1)" e, ()25}

ProoF: It is an immediate consequence of 10.6, of 3.5 and of 5.8. =
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