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DEGENERATING VARIATIONS OF HODGE STRUCTURE 
Eduardo Cattani and Aroldo Kaplan 

This article is an expanded version of the authors' lectures given at the 
CIRM Conference in Luminy. As such, it is a survey of some techniques and results 
on degenerations of pure polarized Hodge structures and their consequences,notably 
the I2 realization of related Intersection Cohomology groups. It tries to com­
plement and update the existing expository literature ([6], [9], [15], [16], [18]) 
and to present the results in a manner suited to other applications. 

For a unipotent variation of (pure) polarized Hodge structures over the com­
plement of a normal-crossings divisor, Schmid's Nil potent Orbit Theorem asserts 
that, relative to the flat structure, the Hodge bundles have only logarithmic sin­
gularities along the divisor; in fact, they extend holomorphically as subbundles 
of the canonical extension. In terms of the latter, the "approximating nil potent 
orbit" is just the corresponding constant term, which by itself defines a varia­
tion of polarized Hodge structure. In turn, the Sl^-Orbit Theorems reduce the 
analysis of nilpotent orbits to the case of certain SL(2,R)n-equivariant ones. 
The notion of nilpotent orbit turns out to be equivalent to one of polarized 
mixed Hodge structure; SL^-orbits correspond then to those that split over R in 
a sense to be specified. 

These ideas, together with the asymptotic representations and the properties 
of the local monodromy implied by them, are discussed in sections 1 to 4. The 
1"Partially supported by NSF Grant DMS8501949 and DMS8801430. 
This paper was completed in part during the authors' stay at the Max Planck 
Institute in Bonn; they are grateful for its support. 
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E. CATT AM, A. KAPLAN 

remaining two sections contain applications to estimates for the Hodge metric and 
to some global questions, including a brief sketch of the proof of an isomorphism 
between the natural 1^ and the Intersection Cohomologies in this context. 

Some of this material was discussed at a seminar during the 1987-88 Special 
Year in Algebraic Geometry at the Max Planck Institute. We are grateful to the 
participants for their comments and in particular to H£l£ne Esnault for her care­
ful reading of a partial version of this paper. 

1. Pre!iminaries. 
Let X be a connected complex manifold. We view a real variation of Hodge  

structure (VHS) over X as given by the data (l/,V,l/R9F), where 1/ + X is a 
holomorphic vector bundle, V a flat connection on 1/, l/R a flat real form and 
F a finite decreasing filtration of 1/ by holomorphic subbundles - the Hodge 
filtration - satisfying 

M: VFP c nj 0 FP"1 (Griffiths' transversality 
II. I! 

ii) 1/ = Fp <9 Fk"p+1 (F = conjugate of F relative to l/R] 

for some integer k - the weight of the variation. As a C°°-bundle, 1/ may then 
be written as a direct sum 

1.2] 1/ = 0 l/p'q, 
p+q=k 

l/p'q = Fp n Fq ; 

the integers hp'q = dim l/p'q are the Hodge numbers. A polarization of the V* 
is a flat non-degenerate bilinear form S on 1/, defined over R, of parity 
(-l)k, whose associated flat Hermitian form Sh(-,«) = i""kS(-,~) satisfies 

(i) the decomposition (1.2) is Sh-orthogonal 
:i.3) 

[ii) (-l)pSh is positive-definite on i/p'k"p. 

Such a polarization determines then a positive-definite Hermitian metric on I/: 

(1.4] X = 2 (-!>Psh p k-p • 

the Hodge metric. 
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DEGENERATING VARIATIONS OF HODGE STRUCTURE 

Specialization to a fiber defines the notion of polarized Hodge structure on 
a C-vector space V. Fixing the latter together with the real structure VR, the 
polarizing form S, the weight and the Hodge numbers and allowing the Hodge fil­
tration F to vary, describes the corresponding classifying space D of polar-

v 
ized Hodge structures. Its Zariski closure D in the appropriate variety of 
flags consists of all filtrations F in V with dim Fp = l hr''<~r satisfying L I 

r>p 
(1.3.1 •] S(FP,Fk"p+1) - 0. 

The complex Lie group of all automorphisms of (V,S) acts transitively on 
v v 
D - therefore D is smooth - and the group of real points GR has D as an 
open dense orbit. Let ^ c ^ v ) denote the Lie algebra of Gj., y R that of 

v 
G^. The choice of a base point F e D defines a filtration in *J 

1.5) Fag= {T e<y| TFp c Fp+a} . 

If F e D, then (1.5) determines a Hodge structure of weight 0 on <g , with 

1.6) = {T e^| TVp'q c Vp+a'q*a}. 

The Lie algebra of the isotropy subgroup B c at F is F <y and F #/F 
is an Ad(B)-invariant subspace of ^/F^f . The corresponding G^-invariant sub-

v 
bundle of the holomorphic tangent bundle of D is the horizontal tangent bundle, 

v 
denoted ty l"h(D). A polarized VHS over a manifold X determines - via paral­
lel translation to a typical fiber - a holomorphic map f:X D/r where r is 
the monodromy group (Griffiths' period map). By definition, it has local liftings 
into D whose differentials take values on the horizontal tangent bundle. 

In the sequel we shall be interested in the asymptotic behavior of a polar­
ized VHS, relative to some smooth compactification X of the base where X-X 
is a normal-crossings hypersurface. Such X exists, for example, if X is 
quasi-projective. Locally at infinity we may then replace X by a product 
*n m 

A x A of punctured disks and disks. We let U denote the upper half plane, 
* ?TT1 7 

covering A via the map z + s = e , and let 
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(i.7: <0:Un x Am - D 
*n HI 

be a lifting of the corresponding period map A x A + D/r to the universal 
covering of A*n x Am (we shall also refer to <)> as the period map). If {e..} 
is the standard basis of C N . then 
(1.8) *(l + e.,w) = Yj*(z,w); (z,w) e Un x Am 

where {y..} c are the images under the monodromy representation of the stan­
dard generators of TTj(A*n) taken in a clockwise direction. In particular, the 
Yj's commute. We now assume 

(1.9) the y.'s are quasi-unipotent. 

(1.10) REMARKS, (i) The definition of a real, polarized VHS given above is 
due to Griffiths [15] and is abstracted from his fundamental result on the geomet­
ric situation: given an algebraic family of smooth projective varieties f:M •> X, 
the Hodge structures on the local system Y = R f*C determine a VHS of weight 
k whose restriction to the primitive cohomology is polarizable. In this case, 
the local system of Z-modules R f*Z determines an additional flat, integral 
structure. If the latter is incorporated in the definition of VHS, the condition 
(1.9) is automatically satisfied, as asserted by the Monodromy Theorem [23], [25], 
[28] 

(ii) It is clear that any holomorphic, horizontal map cf>:Un x Am + D satis­
fying (1-8) is a lifting of a period map of a VHS over A*n x Am, with monod­
romy generated by the y..'s. 

1 £i 
The transformations N. = log y.J, where £. = unipotency index of y., 

j x,j j j j 
lie in <^R, are nilpotent and mutually commute. To any nilpotent N e ̂ (V) one 
associates its weight filtration: it is the unique increasing filtration W = 
W(N) of V satisfying (i) NW£cW£_2 

0 u u 
ii) N':Gr£ -> Gr ^ is an isomorphism. 
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DEGENERATING VARIATIONS OF HODGE STRUCTURE 

One has the "Lefschetz decomposition" 

(1.11 GrJ= NJ(P£+2j(N)) 

in terms of the "primitive parts" P£(N) = Ker(N£+1:Gr^ Gr^.2^' The weight ti­
trations associated to various linear combinations of the N.'s play a crucial 

j 
role in the analysis to follow, as weight filtrations of the limiting mixed Hodge 
structures determined by a VHS. Recall that a (real) mixed Hodge structure (MHS) on (V,VR) is a pair (W,F) 
of filtrations of V such that the weight filtration W is increasing and de-

Id 
fined over R and the Hodge filtration F is decreasing and induces in Gr^ a 
Hodge structure of weight £. Given a MHS (W,F), the subspaces Ip,q = Ip'q(W,F) defined by 

[1.12) Ip'q = FP n Wn+n n (Fq n Wn+n + Z Fq"j n w ) p+q p+q p+q-j-i/ 

are a bigrading of (W,F), in the sense that 

[1.13; w<< 
cxxx< 

G Ia'b, 
a+b<£ 

Fp = 9 Ia'b , 
aj>p 

which is uniquely characterized by the property 

(1.14] jP.q = JQ.P [mod. ® ia>b; 
a<p 
b<q 

(cf. [13], [2], [4]). In terms of this bigrading, a MHS (W,F) splits over R 

if Ip'q(W,F) = Iq'p(W,F), in which case Ip,q(W,F) = Fp n Fq n Wp+q. The fol­
lowing result of Deligne [13], [4], associates to any MHS one that splits over 
R, in a natural manner. Define 

L"1'-1 (W,F) = {T e End(V) I T(Ip'q) c © {ia,b|a < p> b < q}} 

L"1''1(W,F) = L " 1 ' " 1 ^ ) n End(VR) . 

(1.15) THEOREM. Given a MHS (W,F) there exists a unique 6 e l^1*"1(W,F) such 
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that (W, exp(-i6) • F) is a MHS that splits over R. Moreover, 6 commutes  
with every morphism of (W,F) and L"1*"1(W,F) = L"1,"1(W, exp(-15) • F). 

The limiting MHS determined by a polarized VHS carry distinguished polari­
zations. Given V, VR, an integer k and a real non-degenerate bilinear form 
S of parity (-1) , we introduce: 

(1.16) DEFINITION. A MHS (W,F) on (V,VR) is said to be polarized by N e Ç R 
relative to the data above if 

(i) Nk+1 = 0 
(ii) W = W(N)[-k] 
(iii) S(Fp,Fk-P+1) = 0 
(iv) NFP C F13"1 
(v) The Hodge structure of weight k + I induced by F on P0(N), 

is polarized by the bilinear form S0(-,«) = S(-,N •)• 

Conditions (ii) and (iv) guarantee that N is a (-l,-l)-morphism of (W,F). By 
W 

strictness of such morphisms, the Hodge structure on Gr̂ +ĵ  does indeed restrict 
to a Hodge structure on P^(N), giving sense to (v). Together with (1.11), the 

W 
latter implies that the Hodge structure on Gr^ is also polarizable - in other 
words, (W,F) is a graded polarizable mixed Hodge structure. 
2. Approximation by Nilpotent Orbits. 

We keep the notation of §1 and consider a period mapping 4>:Un * AM •+ D, 
making two simplifying assumptions: m = 0 and the monodromy transformation are 
unipotent. The first entails no loss of generality - in fact, the statements will 
hold uniformly on compact subsets of Am - while the second amounts to replacing 
An by a finite branched cover. We shall return to these points whenever neces­
sary. The mapping 

<f>:Un + D 

is holomorphic, horizontal and satisfies <p{z + ê ) = (expNj)<j>(_z). Since 
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exp(Zz.N-) lies in (L*, the map \\)(z) = exp(-£z.N.) • <J>(z) is ft-valued, holo-
j j J J 

morphic and invariant under translation by the e^'s. Therefore \p{z) = ip(e27Tl—), 
*n v 

with A + D holomorphic. 

(2.1) NILPOTENT ORBIT THEOREM [28]. 

(i) the map \\> extends holomorphically to A ; 
n v 

(ii) the map 0:C + D given by 9(_z) = exp(lz.N.) • *(0) is horizontal 
J J 

and there exist a > 0 such that e(z) e D for Im z. > a, 1 < j <_ n; 
j 

(iii) for any G^-invariant distance d on D there exist positive  

constants ß, K such that, for Im z- > a, 
d(4>(z),6(z)) < K I (Im z.)ße 

j 

-2iïlm z. 

Moreover, the constants a, B, K depend only on the choice of d and  

the weight and Hodge numbers used to define D. 

The proof of the Nilpotent Orbit Theorem hinges upon the existence on D of 

G^-invariant Hermitian metrics whose holomorphic sectional curvatures along hori­

zontal directions are negative and bounded away from zero [17]. We refer the 

reader to [9] and [18] for expository accounts and to [29] for an enlightening 

proof in the case when D is Hermitian symmetric; the latter is also explicitly 

worked out in [16] for VHS of weight one. We should remark that the distance 

estimate in (2.1; iii) is stronger than that in Schmid's original version ([28], 

4.12) and is due to Deligne (cf. [4] for a proof). 

In terms of the canonical extension of the bundle 1/ to An, the theorem 

is viewed as follows. Recall [10] that this extension is determined by trivi-

*n 
alizing 1/ over A with frames of sections of the form 

(2.2) v(sj = exp 
l o g -

2ïïi 
w< • v(s) 

where v(sj denotes the flat multivalued section of 1/ determined by an element 

v e VR = (^)So • (The difference in sign with the usual definition is caused by 
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our convention (1.8)). If one represents the Hodge bundles Fp in terms of the 
v(s)'s, they can be viewed as a holomorphically varying filtration of V, deter-

*n 
mined up to monodromy. This is given by the period map A -> D/r, whose lifting 
is 4>. If, instead, one represents them in terms of the single-valued v(sj's, 

*N V v one obtains the mapping î :A •> D; the fact that ^ takes values in D, rather 
than D, reflects the fact that these sections are not real. The theorem then 
asserts that the Hodge bundles extend holomorphically as subbundles of the canoni­
cal extension ((i)) and that their constant part - always relative to the trivial-
zation (v,s) v(s) - also define a polarized VHS ((ii)); 6 is just the 
lifting of the associated period map and part (iii) estimates the proximity be­
tween the two Hodge structures. 

We consider now arbitrary nilpotent orbits, i.e. maps z - exp(Ez.N.) • F, 
where N-,,...,N are commuting nilpotent elements of VR, F e D, Nj « F'1^ 

and exp(SziNi) • F e D for Im zi » 0. 
J J J 

(2.3) THEOREM, _If {N1,...,Nn;F} determine a nilpotent orbit, then 
k+1 (i) N. = 0, where k is the weight of the structures in D. J 

(ii) Given I c{l,...,n}, every element in the cone 

CT = {• I X.N. | X. e R, X. > 0} 
defines the same weight filtration W1. 

(iii) (W^[-k],F) is a mixed Hodge structure, polarized by every  
N e Cjnj (we write (r) for {l,...,r}). 

-1 v 
Conversely, if commuting nilpotent elements N̂ . e (F £f)fi#R, F e D, satisfy 
(i)> (ii) for I = (n) and (iii) for some N e C(n)> tnen tney determine a nil-
potent orbit with the filtration F. 

Parts (i) and (iii) are due to Schmid [28] and follow from the Sl_2-orbit 
theorem, to be discussed in the next section. In the geometric case, (i) is part 
of the monodromy theorem (cf. Landman [25] and Katz [23])vwhile (iii) was also 
obtained by Steenbrink [30] and Clemens [8] (cf. also Chapter VII of [16]). The 
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statement (ii) was proved by the authors in [1]. The converse statement is a con­
sequence of the several-variables SL^-orbit theorem [4]. 

A period mapping <j>:Un -> D can now be written as 

4>(z) = exp(Ez.N.) .<p(s), 

with ij>:A •> D holomorphic. The limiting mixed Hodge structure (Wv '[-k],F) 
given by (2.3; iii) can be used to define a distinguished lifting of i|; to G^. 

Let I*5*^ denote the bigrading (1.12) of the MHS (W^n^,F^) induced in q . 

Then the graded subalgebra 

(2.4 p = 
a<-l 

x< »a b 
<xxcc 

is a linear complement of F^y = isotropy subalgebra at F. Thus, for £ in a 
possibly smaller polydisk around 0_, we can write uniquely 

(2.5) tyis) - expr(s0 •F 

with s_T{s) e p holomorphic and r(0) = 0. 

(2.6) PROPOSITION. Let D. = {s_ e An| s . = 0} and r, = r L . Then 
J J J I*̂  A 

[N3'rj] = 0-

Proof: Since N. e I~1,_^c Pi» we can write exp(Ez .N.)expr(sJ = expX(z_) 
with X(zJ e p, so that ${z) = expX(z_) • F. The logarithmic derivatives of 
expX(z_) lie in p and, due to the horizontality of <(>, in F-1<y as well. Hence 
e-X(z) 3 eX(z) e In terms Qf r> this becomes 

3Zj -1 
(2.7) e-adr(s_) + 27ris 

J J 
, -r ( i ) 3 

9sj 
er(s) e p_-j 

and, setting ŝ. = 0, one concludes: 
-adr 

e w < 
< 
nb e p__1 . 

Given that N. e p , and r e p , this is possible only if [r.,N.] = 0. J — j j 

(2.8) THEOREM. Let {N-,.. ,Nn;F} define a nilpotent orbit and let f:An •» p 
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be holomorphic and satisfy (2.7), so that the mapping 

${z) = exp(Ezj.Nj.) «expr(sj «F 

is horizontal. Then <$>(z) is a period mapping, i .e. <j>(zj e D, for Im z.. » 0. 

The proof of (2.8) uses the several-variables SI_2-orbit theorem and will be 

postponed until §4. We note the following implication: given a period mapping 

<$>(z) = exp(ZZjNj)y(l) • F, y = expr, and a subset I c {l,...,n}, set Dj = 

n ^ 
n D. and yT(sJ = y o (projection of s to DT). The map <|>T:U -* D , 

jel 1 1 

•j(z) = exp(EzjNj) .Yj(s) -F 

is clearly horizontal and therefore, by (2.8), defines a period map for Im(z..) 

sufficiently large. Moreover, since Yj(s) commutes with N.. for i e I, it 

preserves the filtration W*, as does, of course, exp(Ez.N-). Recall now the 

following result from [1]. 

(2.9) THEOREM. Let I c {l,...,n}, J = {l,...,n} - I and let flj, j e J, 

W1 , 
(resp. F) denote the endomorphisms induced by the N̂ .'s on_ Gr^ (resp. the 
filtration induced by F). Then 

(i) {N.,j e J;F} determine a nilpotent orbit on Gr^ . 

(ii) The weight filtration of N.. is the projection to Gr^ of 

wIu{ j }M. 

Combining (2.8) and (2.9) we obtain 

(2.10) PROPOSITION. For Im z, , j e J, sufficiently large, 

WT[-k], e x p ( ^ z jNj ) ï i ( l ) -F) is a mixed Hodge structure, polarized by all 

N e Cj. 

In terms of the original VHS, this shows that the filtration Fj defined 

on the canonical extension over Dj by lim exp 
Im ẑ ->oo 

exp(^ zjNj 

(^ <<<Nj)ïi( 
»(z) together 
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with the filtration cx<< determined by W*, define a graded polarizable variation 
of MHS over Dj. According to (2.9; ii), this variation is admissible in the 
sense of Kashiwara [20] and Elzein [14]. 

3. SU-0rbits in One Variable. 

Schmid's SL^-Orbit Theorem associates to each nilpotent orbit expzN -F a 
nearby one, expzN -FQ, which is equivariant under natural actions of SL(2,R). 
For these SU-orbits it is fairly easy to show that N, FQ, determine a polar­
ized MHS, as well as exact statements on its asymptotic behavior. The correspon­
ding properties for the original orbit then follow from the specific proximity be­
tween the two. Now, the MHS defined by the SL2~orbit splits over R - indeed, 
SL^-orbits and polarized MHS that split over R are equivalent notions. There­
fore, the theorem can be interpreted a posteriori as assigning to any polarized 
MHS (W,F,N) another one (W,FQ,N) that splits over R. Understanding the map 
(N,F) + FQ and its relation with that given by (1.15) leads to a generalization 01 

those results to the several-variables case, to be discussed in §4. 
Let (W,FQ) be a MHS on V, split over R and polarized by 1оду(г)))(уЛ) 

1оду(г)))(уЛ) 
Since W = W(N)[-k], the subspaces 

V = ® 
p+q=k+£ 

IP'q(W,F0), -k < I < k 

constitute a grading of W(N) defined over R. Let Y = Y(W,FQ) denote the real 

semisimple endomorphism of V which acts on as multiplication by the integer 

£. Since NV^ exp(^ 
zjNj)ïi(l) 

(3.1) [Y,N] = -2N. 

Because N polarizes the MHS (W,FQ) one also obtains (cf. [4], 2.7): 

3.2) 
Y E ? R • 

3.3) There exist N+ 
6 # R 

such that [Y,N+] = 2N+, [N+,N~] = Y 

Therefore, there is a Lie algebra homomorphism p^:s^(C) -»-^ defined over 
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R such that, for the standard generators 

(3.4) y = -1 0Ì 
0 1 w< M = 

fo 11 
0 0 w< 

<cxlmù '0 0̂  
1 o 9 

one has 

(3.5) P*M = Y,<<^mùùùùùù p*(N) = N,:;,^^^^ p*(W+) = N+. 

The upper-half plane U can be regarded as the classifying space for polar­

ized Hodge structures of weight 1 and h^'° = h0'^ = 1 on C2, for which = 

SL(2,R). According to (1.6), the choice of the base point A e U determines a 

Hodge structure of weight 0 on s&2(C), given in this case by 

(3.6 (s£2 :c; ri.i. (s£2(C)) i,-i = C ( / = T V + hi + W+) 

(SÄ2(C) 
)0,0 = c(w+ - w). 

A homomorphism p*:s£(C) •> ̂  is said to be Hodge at F e D, if it is mor-

phism of Hodge structures: that given by (3.6) on s&2(C) and the one determined 

by F̂ £ in The lifting p:SL(2,C) + of such a morphism induces a hori­

zontal, equivariant embedding 

(3.7) 
1 v 

p: IP1 + D 

by p(g • i^T) = p(g) »F, g e SL(2,C). Moreover, 

[3.8 

(i) p(SL(2,R)) c and therefore p(U) c D. 

(ii) p(z) = (expzp*(N))(exp(-ip*(W))) -F. 

iii) p(z) = (expxp*(M))(exp(- ̂ logyp*(y))) -F 

for z = x + iy e U. 

3,9) PROPOSITION. Let (W,Fn) be a MHS split over R and polarized by 

N e F^<g Then 

(i) The filtration F ^ := exp/^TN • FQ lies in D. 

(ii) The homomorphism p*:s£2(C) •+ defined by (3.5) is Hodge at Fy^y. 
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Conversely, if a homomorphismw<<<p^:si^(C)<< is Hodge at w<F e D,w<<then 

(3-10 (W(p*(W))[-k], exp(-ip*(W)) -F) is a MHS, split over R and 

polarized by p*(N). 

The proof of (3.9) and (3.10) is implicit in ([4], 3.12): one reduces the problem 

to the case of the three elementary R-split, polarized MHS: 

(3.11 

(a) V = C = I1'1; N = 0. 

(b) V = C2 = Ik'° S Ik'°; N = 0 

(c) V = C2 = I0'0 e I1'1; NI1-1 - I0-0 

with the obvious polarizing forms, where it becomes straightforward. Note that 
1 v 

(3.8; ii) describes the horizontal embedding p:P + D as a nilpotent orbit, while 

(iii) gives a real analytic lifting of p|y:U D to G^. 

We may now state the SL^-orbit theorem - the following is a simpler version, 

suitable for many applications. As an illustration, we show how it yields the 
equivalence between nilpotent orbits and polarized MHS. 

(3.12) THEOREM. Let z -* expzN • F be a nilpotent orbit. There exist 

(a) a filtration F ^ e D; 

(b) a homomorphism p*:s&2(C) W<$*^^,; Hodge at F/rp 

(c) a real analytic, G^-valued function g(y), defined for y » 0, 

such that 

(i) N = p*(W); 

(ii) for y » 0, exp(iyN) -F = g(y)exp(iyN) * FQ, where FQ = 

exp(-iN) • Fy-y; 

(iii both g(y) and g(y) -1 have convergent power series expansions at 

y = °°, of the form 1 + 
00 

n=l 
!:m^ùbv 
l;,c<<<< 

with 

Ap e W i(N)fln ker(adN)n+1 . 

We refer to Schmid's original paper [28], as well as to [2], [4], for details. 
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(3.13) THEOREM. z+expzN-F is a nilpotent orbit if and only if (W(N)[-k],F) 

is a MHS, polarized by N. 

We review the proof of (3.13). Given the nilpotent orbit, let Fn, g(y), be as in 

(3.12). Then F = exp(-iyN)g(y)exp(iyN) • FQ. Writing g(y) = 1 + 
oo 

n=l 
g y"n 
ynJ 

for 

y » 0, one finds exp(-iyN)g(y)exp(iyN) = 1 + oo 

n=l m=0 

< 
cm((adN! m 

mg ym-n 1, where 

the c 's are suitable complex constants. Letting y + °° one obtains 

F = (1 + 
OO 

n=l cn< 
;adN ng 

^n •Fo-

Since adN)ngn e W '-n-l :N)^C W_2(N ) g r , the two filtrations F and Fn define 

the same filtrations on GrWI n . But the data N, FQ, comes from a Hodge repre­

sentation, hence by (3.11) (W(N)[-k],Fn) - and therefore W(n)[-k],F) - are MHS, 

polarized by N. 

Conversely, suppose (W,F) is a MHS polarized by N and let (W,FQ) be 

the MHS split over R associated to (W,F) by (1.15). Thus (W,Fn) is still 

polarized by N and 

FQ = exp(-iô) • F with xw<<ù 
x<x<w 

-1 .-1 (W,F). 

Let p* be the Hodge representation determined by N, FQ and let Y = p*(y). 

Using (3.8) and the fact that N, as a (-1,-1)-morphism of (W,F), commutes with 

6, we can write 

expzN • F = expzN exp i<5 • FQ 

= expxN exp 
v -

1 
2 
log yY) exp(i Ad (exp 1 

2 
log yY)6) - F ^ . 

Since 6 e W_2(NW, lim Ad (exp 
y->oo 

1 
< logyY)<5 = 0, which implies that for y » 0, 

exp(i Ad (exp 1 
2 
logyY)ô) - F 

w< 
wx<<< 
lmù^^ 

lies in a relatively compact subset of D. 

Since both expxN and exp(- 1 
2 
log yY lie in GL, it follows that expzN • F e D 

for Im z » 0, so that the latter is indeed a nilpotent orbit. 

The objects FQ, p^, g(y), are not uniquely determined by the properties 
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(i)-(iii) but there is a distinguished choice, as in [28], whose properties are 

useful for extending the theorem to several variables. We emphasize that the cor­

responding filtration FQ will not in general agree with that of the R-split 

MHS associated to (W(N)[-k],F) by (1.15), which we denote now by FQ: 

FQ = exp(-iô) - F, Ô E L R 
•1,-1 W.F) . 

(3.14) THEOREM. The filtration FQ and the function g(y) in (3.12) can be 

chosen so that 

(i) FQ - exp£ »FQ, where Ç is a universal non-commutative polynomial 

in the components 6a'b, a < -1, b < -1, of 6 relative to the 

bigrading I 9 !W.FOÎ). In particular, 

5 e L" -1.-1 -exp(^ 
j)ïi(l) -F) 

exp(^ 
zjNj)ïi(l) 

( W ^ F Q ^ ) 
exp(^ 
Nj)ïi(l) -F) 

exp(^ z 

(ii: The coefficients Ap in the series expansions of g(y) and g(y)"^ 

in powers of y"^, are universal non-commutative polynomials in the  

ôa'k's and the transformation adN+, where N+ is associated to 

N, FQ, as in (3.3). 

(3.15) COROLLARY. The filtration FQ depends only on the MHS (W(N)[-k],F) 

and not on the particular N or polarizing form S. 

4. SLp-Orbits and the Asymptotics of Period Maps in Several Variables. 

We now consider an arbitrary nilpotent orbit (z^,.#.,zn) exp(EZjN^) -F 

and recall the notation and statements of Theorem (2.3). The MHS (W^[-k],F) 

is polarized by every N e C ^ and, according to (3.15), the R-split MHS 

associated to it by the SL^-orbit theorem is independent of N. We make a slight 

notational change and denote the Hodge filtration of the latter by F ^ (rather 

than FQ). 

The R-split MHS (W^[-k],F^^) is again polarized by every N e C ^ ; 

in particular, expiC/^ • F,* c D and therefore 
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exp 
n-l 

j=l 
w<x • (expiNn • F^) e D for Imz.. > 0 . 

In other words, (N-j,... ,Nfi_1; expiNn #F^j) determine a nilpotent orbit of n-l 

variables and we may repeat the procedure to obtain an R-split MHS 

(Ŵ 11*1 ̂ [-k],Fjn-1j) polarized by every N e c(n.-])- Continuing in this way, one 

obtains filtrations ^(i)»•»F(n) " depending on the given ordering of the vari­

ables - with the following properties: 

(1) (W< < 
-«.F(r; is a MHS split over R and polarized by every 

N e C(p). 
(4.1) 

I " ) (W(r)[-k].F(r)) is associated to the MHS 

(W(r)[-k], expiNr+1 -F(r+1)) by (3.12). 

Let now Y(r) e rtR denote the semi simple element defined by the R-grading of 

(W(r)[-k],F(r)) as in §3. 

(4.2) THEOREM. The elements Ym,00.,Y, x commuteo Thus, there is a multi-

grading V = 8 n h defined over R, such that 

wx< 
:mù 

= e v , 
lr<s i 

V ) ^w< 
ù**v 

= V | v ' 

The proof of (4.2) is given in [4] and depends on the properties of the 

function g(y) of the one-variable SI_2-orbit theorem. A different proof of 

the existence of common R-gradings of the filtrations W ^ ̂ ,... ,x<< was given 

by Kashiwara [19]; this suffices, for example, to obtain the norm-estimates (5.1), 

but the fact that the specific gradings in (4.2) satisfy (4.1; ii) seems to be 

needed for some of the other applications, in particular (5.2) and (5.3). We 

should also note that (4.2) does not hold if one replaces the R-splittings 

Y(l)" ** ,Y(n-l)' ky those given by the simpler construction (1.15); on the other 

hand, an explicit formula for them in terms of the bigradings I^iC* is given in [6]. 
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Define N^,...,Nn in<<<<!! by:1оду(г)))(уЛ) = a n d w < < = component of Nr in 
r-1 

x< 
ker adY^jj, relative to the decomposition of<<<<<cc! in common eigenspaces of 

adYjij,...,adY^r-1j. Set 

N(r) = N1+w<<+Nr, Ñ(r) = N1+...+Ñr, V ï ( r ) . y ( M ) 1 

and let Vr9 N^9 x<<<denote the standard generators (3.4) of the r-th factor of 

s*2(C)N. 

(4.3) THEOREM. 

(1) W(N(r)) = W(N(r)) (= W(r)). 

(ii) The filtration F = expiN/\ • F,% is independent of r and 

lies in D. 

(iii) There is a homomorphism p^:s£2(C)N -> ff^, Hodge at F ^ , such 

that p*(Vr) = Yr and p*(Nr) = Nf. 

We refer to [4] for a proof. There, we also give an expression for the 

original nilpotent orbit exp(Ez.N.) -F as the translate of the SL«-orbit 
j j £ 

exp(Zzj.Nj.) • FR by g(y)-like functions, as in (3.12). Here, we will use (4.3) 

directly to describe the asymptotic behavior of a period map, in a way that seems 

better suited for applications (cf. [6]). 
Given a period map c|>:Un •> D we write it as in (2.5) 

4>(z) = expÍEZjlijMs) - F, 

2ttíz. 
where s. = e J and y(sj = expr(sj, T:A + p holomorphic and T(0) = 0. 

J 

Let Y(jj» N(j)' etc* be tne SL2"^ata associated to tne nilpotent orbit 

z_ + exp(EZjNj) -F and the given ordering of the variables and define, for y.. > 0, 

xw ^^ 
w 

mù for 1 < j < n - 1, t = y , 

(4.4) e(t) = 
^x< 

<bv< 
expi 

1 
k2 , o g V ü ) : 

< 
< 

j = l 
exp( 

1 
s2 

logy.Y.). 
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Then e(t) e and it acts on sq 
w< 

as multiplication by <x 
V 2 

•V s
12 

(4.5) LEMMA. 

(i) Ad(e(t))(EyjNj) is a polynomial in t ^ 2 , . . . , t ~ ^ 2 whose term of 

degree zero is N, x = EN.. 

(ii) As t j «>, 1 < j < n, eftJYtsjeft)"1 1; in fact, 
1 ~ C t n 

||e(t)Y(£)e(t)" - l||~e for a suitable constant c> 0. 

Proof: For r > j , Nj is a (-1 ,-1) morphism of ( W ^ r ^ [ - k ] ) , so that 

[ Y ( r ),N j] = - 2 N r Therefore Ad( T T . exp(llogt rY ( f )))(y.K.) = t j \ . . t ^ N j - N j . 

(r) 

On the other hand, for r < j, N.. e 'y and so it lies in the sum of eigen-

spaces of ad Y ^ x with eigenvalues <_ 0. Since, by definition, N. is the com­

ponent of N. in f\ ker(adY, J , (i) follows. 

r<j * ' 
To prove (ii), write r(sj = E r 0(s) according to the common eigenspaces 

£eZ n -
V ^ . For a given wwwx^ùùù if > 0, then ^ j o ^ = 0 ( c f« (2-6)) a n d therefore 

£•/2 j " C y 
||Ad(exp J - l o g t j Y ^ . j J r ^ l l i t d

j Z e r r ; 

-c ry 

since y r = t t...t n, this norm goes to 0 with order at least e . For 

£. £ 0 this estimate holds for trivial reasons. 

(4.6) REMARK. In proving (4.5; ii) we have used only that the function 

r(s) = log y(s_) satisfies (2.6). The proof also shows that e(t^)y(s)e(t_)"1 + 1 
y i 

as y, -> °°,...,y -> °°, provided that the ratios t. = J remain bounded away 

from zero. 

According to (3.14; i) and (1.15) we may write F = exp n # F ( n ) > where 

n e L" 1 5 - 1 (W^[-k] 8F) and commutes with every morphism of (W^[-k],F). In 

particular, e(t^)expne(t)"1 -> 1 as t^ -•«»,...,t -> °°. Because of (4.3), e(t) 

leaves invariant the filtration F( n)« We can then write 
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<)>(z) = exp(Zz.N-h(s) - F 
= exp^XjNjMt)" (e(t)exp(i'ZyjNj)Y(l)expne >(t: ,-1 •F(n) w< 

But 

e( t )exp(Eyj Nj)y(s)expne( t ! i-1 - expiN(n) . 

e(t)exp(EXjNj)e(t] -1 •> 1 for IXj I bounded 

as t-j .. ,tn °°, and expiN < • F/ ^ 
(n) 

= F <xx . Hence we obtain, 

(4.7) THEOREM. For any positive E, 

{e(t)4>(z)| tj > e} and {e(t)exp(-Zx.N..)<|>(z) | t. > E, |x-.| < 1} 

are relatively compact subsets of D. 

In fact, the following more precise description of cj> can be obtained by unravel­
ing (4.6) and arguing as in the proof of (4.5) (cf. [6]). 

(4.8) THEOREM. The period mapping can be written as 

4>(z) = exptZXjNjMt -1 p(t)q(x,y) • F^-y , 

where p{t) is a G^-valued polynomial in < •1/2 x< -1/2 with constant term 
one and q(x.,̂ ) is a (^-valued analytic function satisfying the following esti­ 
mate: for any E > 0 there are positive constants c, K such that 

-cy 
||q(x.,/) - 1 || < e for t. > E, 1 < j < n - 1; t > K. The same estimate 
holds if one replaces q(x.5jz) - 1 by the derivatives ~fT < 3 

w< w< TTtyj 8 
<x< 
xv<< 

q. 

The objects F(r)» Y(r)9 ^(r)s for r < n and tne function e(l)> depend 
on an ordering of the variables, as does the region of validity of (4.7) and (4.8). 
Also, the construction leading to (4.1) can be carried out for any chain of in­
dex sets IQ C I.J c... cl = (n), to obtain common splittings of the weight 

filtrations W ,...,W . One obtains corresponding versions of (4.3)-(4.8), 
either by letting the role of 1оду(г)))(уЛ) be played by fixed elements T e C, , 

r r 
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or by letting Tr be an arbitrary element in Cj , * V = *r ~ *r-l' an(* viewin9 
the resulting data as depending on parameters. 

We conclude this section with the proof of Theorem (2.8). The equation (2.7) 
is equivalent to the horizontality of 4>, so that one only needs to show 

4.9 <J>(z) e D for ImZj >> 0 . 

For a given ordering of the variables let e(t) be the corresponding function and 
write 

e(t)exp(-EXjNj)(|)(z) = 

= eUiexpiUyjNjhd) • F 

= (Ad(e(t))expi(ZyjNj)T(s))(e(t)expi(i:yjNj) • F). 

By assumption, {N-j.. ,N ;F} determine a nilpotent orbit, therefore 
expi(Zy.N-) • F e D for Imz. » 0. Also, according to (4.7), the filtrations J J j 
e(t)expi(Zy.N,) • F lie in a compact subset of D for t. _> e > 0. On such a 

j J j 
region, the element Ad(e(t_))(Zy^Nj) remains bounded (cf. (4.5; i)) and, accor­
ding to (4.6), e(t)Y(s_)e(t_)~"' + 1 as y^ -* °°. Consequently, the filtration 
e(t)exp(-ZXjNj) • 4>U), and therefore <$>{z) itself, lie in D for Im ẑ  » 0 
as long as the t^s remain bounded away from zero. Permuting the variables 
yields (4.9). 

5. Some Appiications. 

The analysis of period mappings given in the previous section yields good des­
criptions of the degeneration of the Hodge metric relative to the flat structure 

*n 
near a normal-crossings divisor. For example, let 1/ A be the vector bundle 
underlying a VHS with unipotent monodromy and let ^ = W(N-| ),..., -
u/(Nj+ ... +Nn) be the sequence of flat monodromy weight filtrations associated, 
as in (2.3), to the ordering (s-|,...,s ) of the coordinates in A n. 

(5.1) THEOREM. For some flat, t/m-compatible Hermitian metric Q on (/, 
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defined up to monodromy, the corresponding Q-orthogonal gradings of the filtra-

tions W ^ , . . . , W ^ are mutually compatible. Moreover, over any region of the 

form 

{s e A*n 111 < a < 1; 
log|s.| 

iog|sj+1| 
x< 1 < j < n - 1} 

the Hodge metric is quasi-isometric to 

8> 
£eZr 

'log|s, T 

og|s2| 

< 
x< 

H o g | s n | ) 
< 

<<x 

when 0 9 ^ corresponds to the multigrading V = 
leZn 

Gt 
w(n¡ 

*n 
Gr 
"1 

J»(1,„ 

These estimates were obtained by Schmid [28] in the one-variable case and by 

Schmid and the authors [4] and by Kashiwara [19] in the general case. We repeat 

the argument here to illustrate the use of Theorem (4.7). Let V x Un -> Un de­

note the pull back of !/•>• A*n to the universal cover and 4>:Un ̂  D the corres­

ponding period mapping. Each F e D determines a Hodge metric Hp on V as 

in (1.4) and, if g e G^, then H^p = g • Hp. In these terms, the pullback of 

the Hodge metric to V x Un is represented by the family of metrics H ^ j , 

z e U , on V. According to (4.7), for z 1 
2TTÌ 

log ŝ  in a region of the form 

<c< 

<c<< 
< e, yn > e Ixjl <1. the filtration e(t_)4>(_z) remains in a compact sub­

set of D and therefore the metrics He(t)<D(z) are uniformly quasi-isometric to 

any given metric, say 
HF 

x< 
Consequently, the metrics H^zj e(t) -1. 1e(tH(z) 

are uniformly quasi-isometric to e(t) 
<x 

<c 
'/=1 

The multigrading v = e v A of 

^ K . . . , ^ is <x 
w< 

_-orthogonal (as can be seen by decomposing the Hodge 

representation into irreducibles) and e(t) acts with eigenvalue 

<< 

y2. 

/1/2 

<x S/2 on 
V 

Hence, letting Q denote the multivalued flat form 

induced by HF << 
on V, the theorem follows. 
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With the more detailed information of (4.8) one can obtain corresponding es­
timates for the curvature of the Hodge metrics on the various Hodge bundles [4]. 
Although these metrics are not "good" in the sense of Mumford, one still obtains: 

(5.2) THEOREM. Let M be the complement of a normal-crossings hypersurface in  
a compact Kahler manifold M, (y,l/R,F,S) a PVHS over M with unipotent mono­
dromy. Then the Chern forms for the Hodge metric on any of the bundles Fq M 
define currents on M, which represent the corresponding Chern classes of the  
canonical extension F^ •> M. 

We refer to [32], [26], for the case dim M = 1 and to [4], [24], for the case 
dim M > 1 and its applications. 

The following result concerning the locii of Hodge cycles in a family, 
answers a question of Deligne, who also gave a proof (unpublished) in the case of 
one parameter. We will give a general argument, based on the results of §4, in a 
forthcoming paper. 

(5.3) THEOREM. Let (l/,l/z>F,S) be an integral PVHS of weight 2p over a  
smooth algebraic variety M and let K e Z. Then the projection onto M of the  
set {v e Fp l/z| S(v,v) = K}, is algebraic. 

6. l9 and Intersection Cohomology. Purity. 

Let X be a compact Kahler manifold, -* X X a local system of Z-modules 
on the complement of some normal-crossings divisor of X underlying a polarized 
VHS. There are natural L2 cohomology groups H^2)(X,V) in this setting, de­
fined as follows. We endow X with a Kahler metric g which is asymptotic -
locally along X - X - to the curvature form of that divisor (such metrics exists 
[10], [31] and are necessarily complete). On Y, we consider the Hodge metric 

(1.4) associated to the polarized VHS. Define a complex of sheaves on X, 
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(V),d), by letting, for any open li c X 

A"(2)(Y)(U) = Y-valued forms go on U n X with coefficients that are 
locally l_2 and have locally l_2 derivatives and such 
that, for any compact K <= a, 

KnX 
||a) 1? dV9 ! 00 

KnX 
law i,2 dV9 CO} 

By definition, "(2)' (x,v) = h ( m ; '(2: m 9 the hypercohomology of A^2j(Y). We 
shall sketch a proof of the following 

(6.1) THEOREM. The complex A ^ O O satisfies the axioms of the (middle) Inter­
section cohomology sheaf with values in V. Thus, H^jCX.Y) = IH*(X,Y). 

(6.2) COROLLARY. A polarizable VHS of weight k on Y2 determines a canoni­
cal polarizable Hodge structure of pure weight k + p _in IHP(X,Y). 

These statements were conjectured by Deligne. He gave a proof of (6.2) for 
the case X = X (cf. [31])- where (6.1) is classical - which can be adapted to 
the general setting once (6.1) is known to hold. For a curve X, in which case 
IH'(X.Y) = H*(X,i*(V)), the proof is due to Zucker [31]. In [3], we considered 
the case of surfaces X with Y^ underlying a VHS of weight one. The general 
proof is due to Schmid and us [5] and to Kashiwara and Kawai [22]. Kashiwara-Kawai 
also obtained an algebraic description of the resulting Hodge filtration in 
IHP(X,Y). We should mention that for geometric VHS over a quasi-projective 
base, Saito proved (6.2) by formal reduction to the one-dimensional case, where 
Zucker"s result applies. We refer to the articles of Kashiwara and Saito in this 
same volume for the details on these two points. 

We make some preliminary observations about the L2 cohomology, concerning 
in particular the implication (6.1) = > (6.2). Although defined in terms of 
specific metrics, the sheaves AJ^jfY) are actually attached to the data X, V. 

Indeed, the square-integrabi1ity conditions depend only on the local quasi-
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isometry class of the metrics chosen; in the case of g, that is determined by 

the specified asymptotic behavior along X - X, while that of the Hodge metric is 

independent of the particular polarized VHS supported by Y, as implied by the 

norm estimates (5.1). The sheaves A ^ j ( V ) are fine, due to the local product 

structure of the metric g: 

(6.3 There is a basis for X consisting of polycylindrical open sets 

r*Hn *r m U « A , w i t h ( j n X ^ A * A and such that, for any compact 

K c (J, g is quasi-isometric on K n X to the product of the 

Poincaré metric i ds A ds in the A* factors ancj tne 

|s|2(log|s|2)2 

Euclidean metric ids^ds in the A factors 

Thus, H^2)(X>V) can be computed from the complex r*(AJ2j(Y)) of global sec­

tions. Because X is compact, this can be identified with the complex of global 

Y-valued forms w on X, with coefficients that are locally I_2 and have local 

l_2 derivatives, such that oo and doo are globally L2. Once we know its co-

homology to be finite dimensional, we can replace the regularity condition on the 

coefficients by "C00", up to quasi-isomorphism; moreover, since the metric g 

is complete, this cohomology will be representable by harmonic forms. Thus 

(6.4] H¡2)(X.¥) = H ' (r-(AJ2)(Y))) = *\ 

where = space of square-integrable Y-valued harmonic p-forms. Now, a VHS 

in Y together with the bigrading of the C-valued forms determines a natural 

Hodge bigrading of the Y-valued forms, of weight k + p in degree p. This in­

duces a Hodge filtration in the l_2 complex, as can be deduced from the results 

of Sections 4-5. As mentioned before, Deligne's proof of the Kahler identities 

extend from the case X = \ to our setting, because X is compact Kahler. The 

classical argument then puts - via (6.4) - pure Hodge structures of weight k + p 

in H^2^(X,Y), which are polarized by the natural form incorporating the metrics 

on the base and the polarization; the Hodge filtration per se is independent of 

these. In particular, (6.1) does imply (6.2) in our setting. 
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The Z-structure in V insures that the local monodromy along X - X is 

quasi-unipotent, but it can be otherwise replaced throughout by an R-structure. 

Moreover, for Theorem (6.1) to hold, the requirement that X be compact Kah­

ler is unnecessary, as long as X carries a metric with suitable behavior along 

X - X. Specifically, one proves 

(6.5) THEOREM. Let X be a complex manifold, X c X the complement of a nor­ 

mal-crossings divisor carrying a metric g satisfying (6.3) and let Y be a  

local system of C-vector spaces on X underlying a real, polarized VHS. As­ 

sume that the local monodromy of Y along X - X is quasi-unipotent. Then, the  

complex A^2)(V) satisfies the axioms of the (middle) Intersection cohomology of 

X with coefficients in Y . 

The hypotheses are preserved upon restriction to open subsets of X. On X, 

A J 2 ) ( V ) is quasi-isomorphic to Y - Y regarded as a complex concentrated in de­

gree zero - because the Poincaré lemma applies in the setting of L 2 forms. Ele­

mentary properties of Intersection and L 2 cohomologies together with Poincaré 

duality, reduce then the problem to showing: for any small neighborhood a of a 

point in a stratum E of X - X, U of the form (6.3), H^ 2 j(U,Y) = H ^ U - I,Y) 

for p < j codim E and is zero otherwise. We may inductively assume this to be 

the case for codim E < n = dim X, so that it will suffice to prove 

(6.6) H? wx [a",») • 

cw< (A n - (0),Y) if p < n 

0 otherwise 

Furthermore, we may assume A n

 n X = A
 n (i.e. r = n in (6.3)) and that the 

*n 

monodromy of Y on A is unipotent. Let Np...,N be the monodromy loga­

rithms acting on a typical fibre V, W = W(Np...,N ) the associated weight 

filtration of V and Y e End(V) a particular real splitting of W compatible 

with the Nj's - for example, the Y ^ constructed in §4. In particular, 
G r £ = V £ :^ ^-eigenspace of Y. We define an action of Y on the Y-valued 
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arg s. 

forms: if v e V, then v = exp(£ 27Ti Nj) * v can be viewed as a single-

valued section of C°° 8 Vj^; we then let Y act on a form 

A 
iel 

wx< 

<< 
A AH 
IJeJ 

arg s 

2*m 
8 v with v e V£, as multiplication by 2|J| + JL 

When the action is restricted to the rotation-invariant forms, it commutes with 

the differential and is compatible with the conditions. The latter forms 

still calculate the same cohomology, so that one obtains actions of Y on the 

l_2-cohomologies of An and An - (0), and corresponding gradings 

H(2)(An'V) = i H(2)(An'¥)*' HJ2)(An-(0),¥)= ^H*(2)(An- (0),»)^ . 

(6.7) LEMMA. 

H"(2)(An,V)r= 

h ' ^ - C o K y ^ 

HfgjU"- (0),Y)n 8 M 

0 

if £ < n, 

if I = n, 

if I < n, 

for certain vector space M. 

Although the proof of (6.7) is technically involved, the idea is simple. The 

norm estimates are given in a useful form on partial regions around 0. A typi­

cal such region is the projection onto A*n of the set P c Un (= product of 
2TT i 7 * 

upper-half planes) defined as follows. For s = e e A we write z = x+iy, 

t = y-|, u..= yi/y1 for 2 < i < p + 1, Vj = y ../y-, for p + 1 < j < n and de­

fine, for any r > 1, 

n 1 1 
P = {z e (J I 0< t < » , r" < ui < r, r" < v. < oo , < rmin{uk,v.}}. 

In terms of these coordinates, the Hodge and Poincaré metrics satisfy: 

m x,t,u,v) 
w<< 

|V|l(x»l,u,v) for v e , 

g ~ t~2(dt2 + dx2) + Z (du2 + t~2dx2) + T, v:2(dv2 + t"2dx^) 
1 -j 1 1 j J J J 
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This and Hardy's inequality is all one needs to calculate the l_2 cohomology 
over P. The contribution to cohomology from the t-directions is controlled by 
the weights of Y while that from the complementary u,v-directions can be inter­
preted as coming from the cohomology of An - (0). This "explains" the isomor­
phisms in (6.7), which come about by incorporating the calculation on the regions 
P into a Mayer-Vietoris spectral sequence adapted to them. M is an infinite-
dimensional space of functions related to the failure of Hardy's inequality in a 
critical weight; it already appears in Zucker's calculation for n = 1. We refer 
to [5] for details. 

It is easy to see that (6.6) follows from (6.7), together with 

H(2)^n" (°),V^ = 0 for p < n - 1 or 1 - n - p' 

By our inductive hypothesis, this statement can be replaced by the analogous one 
for Intersection cohomology, once a compatible notion of weight is defined there. 
Because of the isomorphisms 

IHp(An- (0),Y) = 
IHp(AN,Y) 

IH2n-P-V,¥)* 

if p < n 

otherwise, 

the required statement follows from 

(6.8) IHP(AN,V)£ = 0 for I > p. 

This "semipurity" statement - for the corresponding notion of weight - had 
been conjectured by Deligne in an unpublished letter, based on an analogous re­
sult of Gabber for the £-adic situation. As he observed, it amounts to the fol­
lowing property of the monodromy: For J = ( j ^ . . ,j ), 1 _< j1 < ... < Jr < n, 
write N. = N. ... N. and let (B*,6) be the simple complex associated to the 
multiple complex with 

Bj = NjV and sg(J,J)Mj: Bj + BJu{j} , j * J, 

as components and differentials, respectively. Then (B*,6) computes IH (An,V). 
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W = W(N-|.... ,Nn) determines a filtration WB of B , with W^Bj = Njŵ ,+1 j | » 

relative to which 6 is a (-2)-morphism. The statement (6.8) amounts to: 

:e.9) THEOREM. G r f ^ ) =0 for £>0. 

In [5], we proved the following somewhat stronger version. Write N = 

N-j + ... + Nn and let (NB)- denote the analogous complex defined on NV. Then, 

the map induced by N: 

(6.10) N:H*(B#) -> H'((NB)#) is the zero map. 

This, in turn, was deduced from the existence of a MHS on (B*,d). Specifically, 

let F be a filtration on B° = V and S a bilinear form such that (W,F) is a 

MHS split over R and polarized by S and every element in the cone C spanned 

by N-|,...,Nn; for example, that defined in §3, with F = F b y the given 

variation. Again, F and S determine corresponding objects on each Bp, by 

FrBj = NjFr+lJ|, SjfNjUj^v) = S(u,NjV), 

and one has (cf. (3.5) in [5]) 

(6.11) THEOREM. (WBP,FBP) is a MHS on Bp, polarized by S and every 

T e C, and d is a (-1,-1) morphism. 

The statement (6.8) shows the strong restriction that a polarizable VHS im­

poses on the monodromy of the underlying local system. It also has the following 

implication, of rather different character ([4], (1.17)). Let X be a compact 

Kahler manifold, c-j and c^ be cohomology classes of X such that A1C.J+A2C2 

is a Kahler class for all A-| ,A2 > 0 anc* let L-j»L2> be the corresponding Kahler 

operators. Then, 

(6.12) THEOREM. H 
/̂""̂/T ~ 5b f\ 

u 1 ¿1 
£ £ 

XSC) n ker(L11L22 
£, £2 

c kerL-j + ker L2 for £<dimX 

£-j ,£2 > 0. 
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