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L2-C0H0M0L0GY AND INTERSECTION HOMOLOGY OF LOCALLY 
SYMMETRIC VARIETIES, III 

Steven Zucker* 

This article is the written account of, and elaboration on, the spontaneously 
organized lecture I gave on June 2, 1987 at Luminy. The title "The proofs of my 
conjecture" was designated for the talk, without contest, by Kashiwara. I must 
confess that, originally, I wanted to use this title for the present article, at­
tributing it to Kashiwara, of course. However, his brief letter of permission 
wondrously tactfully steered me away from doing so. 

The conjecture is the one that identifies the L2-cohomology of a locally sym­
metric variety with the intersection homology of its Baily-Borel Satake compacti-
fication. It came as an outgrowth of attempts to understand the relation between 
the L2 harmonic forms on these spaces — more generally, on arithmetic quotients 
of arbitrary symmetric spaces of non-compact type — and their ordinary cohomology 
(see [5],[43], and in particular their introductions). A fundamental, and modern, 
point of view that had been emerging is that the L2 analysis of the Laplacian on 
non-compact Riemannian manifolds is not so different from that on compact mani­
folds (aside from the possibility of continuous spectrum); what is missing in gen­
eral is the topological interpretation of the L2 harmonic forms (Hodge theorem). 
The conjecture for locally symmetric varieties, proved recently by two very dif­
ferent lines of reasoning in [28] and [36], provides such a topological interpre­
tation for these spaces. (Cases had been established, prior to 1987, in [7],[11], 
[43] and [47]. The results of [36] are announced in [35].) 

The structure of this article is quite simple. In §1, we establish the nota­
tion and basic notions, culminating with the statement of the conjecture and its 
significance. We continue in §2 to discuss the basic issues involved in proving 
the conjecture, following [47]. (See [16] for some additional ideas.) In §3 and 
§4 respectively, we sketch the proofs of Looijenga [28] and Saper-Stern [36]. The 
main methods of the Saper-Stern proof date from the 1960fs, but are manipulated 
in a very ingenious way. Looijengafs may be easier to grasp, yet is still quite 
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clever, but it depends on a large amount of very elaborate, recently-developed 
machinery. Finally, §5 deals with Borel's 1983 extension of the conjecture to 
arithmetic quotients of equal-rank symmetric spaces (which includes the Hermitian 
ones), and covers some ideas and results that look useful, but are not needed in 
[28] and [36]. 

The natural setting for the conjecture seems to be the equal-rank symmetric 
spaces. Certainly, the ingredients in the conjecture require only a Riemannian 
manifold possessing a topological compactification that is stratified by even-
dimensional strata. Thus, it had always been my goal to argue without mentioning 
the complex structure. The proofs of Looijenga and Saper-Stern both make use of 
the complex structure, the former in a more fundamental way than the latter. I 
continue to want and expect a unified proof of Borel's extended conjecture. 

§1. PRELIMINARIES 
(1.1) The setting of this article is the following: 

a) Let D = G/K be a symmetric space of non-compact type (here, G is 
a semi-simple Lie group, and K a maximal compact subgroup). Of course, there is 
a natural left action of G on D. 

b) Let r be an arithmetically defined subgroup of G, i.e., there 
exists a finite-dimensional faithful representation of G for which r is com­
mensurable with the subgroup of matrices with integer entries. (This likewise 
determines a unique algebraic group over Q, for which G is the real-analytic 
space associated to the group of real points.) 

c) r acts without fixed points on D (equivalently, r is torsion-
free); then X = T\D is a manifold. 

d) E is the local system on X associated to a finite dimensional 
representation E of G (a fortiori, of r TT^(X)). 

e) Assume (until stated otherwise) that D has a G-invariant complex 
structure (i.e., is Hermitian). This is the case precisely when the intersection 
of K with every non-compact irreducible factor of G has a one-, as opposed to 
zero-dimensional, center. One then refers to X as an arithmetic (or locally 
symmetric) variety. 

f) There is a compactification X* of X (the Baily-Borel Satake  
compactification) that is a normal projective variety, with X contained as a 
Zariski-open subset [3], cf. [38]. It is not hard to give a rough description of 
how one obtains X* from X: one puts in arithmetic varieties of lower dimen­
sion (and rank) at infinity. These are constructed from the so-called rational  
boundary components of D. They comprise the singular strata of X*, the number 
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of which is the Q-rank of G (an invariant of its rational structure). 

(1.2) For an example of the above, let G be (the standard form of) the 

symplectic group Sp(2r, R), the automorphisms of the standard non-degenerate 
2r 

skew-form on R . It is a group of Q-rank, and also absolute rank, r. Then: 

a) D can be realized as the Siegel upper half-space of genus r, con­

sisting of all r x r symmetric complex matrices with positive-definite imaginary 

part. Here G acts as fractional-linear transformations. (r = 1 gives the 

classical upper half-plane.) b,c) Take, for instance, the principal congruence subgroups 

r = ker (Sp(2r,2) Sp(2r,2/£2)}, 

with Ä > 3. Then X is the moduli space of r-dimensional abelian varieties with 

level I structure. 

f) X* is, as a topological space, the compactification constructed by 

Satake in [37], which was progressively proved to underlie a normal analytic space, 

then a projective algebraic variety [2] (see also [39]). To obtain X* from X, 

one adj oins arithmetic quotients of lower genus Siegel upper half—spaces. 

(1.3) We return to the general setting. To X, qua Riemannian manifold, is 

associated its intrinsic L -cohomology with coefficients in E, H 
2) 

(X,E) , whose 

definition we recall briefly. Pick a G-invariant Hermitian metric on D (Bergman 

metric). It induces a complete Kahler metric on X. Likewise, a so-called ad­

missible inner product (see [30:p.375]) on E determines a metrization of the 

local system E, i.e., a (non-flat, whenever E is non-trivial) Hermitian metric 

on the associated vector bundle. Given a form (J> on X with values in E, its 

length |$| defines a function on X, and thence its L2 square-norm: 

1.3.i; ¡•1 I2 w< I*< 2 dV . 
X 

The L2-cohomology is the cohomology of the L2 complex 
L(2) 

X,E) , defined as 

(1.3.2) {<J> : <J> and d<(> have finite L2 norm}. 

Whether one uses C°° or just measurable forms in (1.3.2) is immaterial [18: §8]; 

the latter choice, which we take, gives the domain of the weakly defined Hilbert 

space exterior derivative. 

(1.4) The association 
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(1.4.1) U open in X* L'2)(Un X,E) 

defines a presheaf on X*, whose associated sheaf is denoted £-(2)(X*,E). 

(1.4.2) PROPOSITION. For X* as in (1.1,f) 

i) £'(2)(X*,E) is a complex of fine sheaves, 

ii) L(2) :X,E) < r(x*, *, £'(2)(X*,E)) 
*, £'(2)(X*,E)) 

iii) H(2) (X,E) * H*(X*, £'(2)(X*,E)). 

(see [47: (2.3),(3.6)],[43: (4.4)], etc.) 

'1.5) On the other hand, the complex variety X* is naturally stratified, 
so one may speak of its (middle perversity) intersection (co)homology with co­
efficients in E, IH'(X*,E). The latter is the (hyper)cohomology of the complex 
of intersection chains, tPC'(X*,E), defined in 21: (2.1); Let it suffice for 
now to say that this complex is characterized up to quasi-isomorphism by certain 
axioms [21: (3.3),(4.1), or (6.1)], [9: V, §4] ; some discussion of this will 
appear in the next section. 

;i.6) With evidence supplied by some simple examples [43: §6], we had made 
the following conjecture: 

(1.6.1) CONJECTURE (1980). Let_ X be an arithmetic variety, X* its Baily-Borel 
Satake compactification, and E a metrized local system on X as above. Then 
*, £'(2)(X*,E)) is quasi-isomorphic to JC-(X*,E), so 

H^2)(X,E) 2L IH'(X*,E). 

Early in 1987, two proofs of the conjecture, quite different from each 
other, were announced [28],[35] These will be outlined in §§3,4. Prior to that, 
cases of low Q-rank had been proved 7],[11],[43],[47 see also [16] ). 

(1.7) At this point, we give some indication of the significance of (1.6.1). 
According to [6], the L2-cohomology admits a description as relative Lie algebra 
cohomology : 

:i.7.r H'C2)(X,E) ̂ H'(g,K; L2(r\G)°°<g> E), 

where g is the Lie algebra of G, and the superscript °° indicates C°° vectors. 
This is given, as is often the case, by the L2 harmonic forms with values in E 
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[see [44: §2 - the kernel of the Laplacian operator - which is here a finite 
dimensional space :i2] In terms of the isomorphism (1.7.1), they are in turn 
given, by Kuga's formula, in terms of the eigenfunctions of the Casimir element 
for g (see [13: 11(2.5)] or [29: (6.8)]). These harmonic forms had been 
studied for a long time, first when X is compact (e.g., [29],[30],[32],[13] 
and later in the non-compact case as well e.g., [5],[10],[12]; ). From (1.6.1), 
we see that the L2 harmonic forms have a topological interpretation, at least on 
X*. (It is too much to expect such on X itself, though the statement of (1.6.1) 
implies an isomorphism range for the natural mapping 

(1.7.2] w< 
(2) (X,E) -> H^X.E) 

that one presumes is optimal. This was the immediate motivation behind [43].) 
Moreover, there is a parallel construction of intersection étale cohomology, 

so one could say now that L2-cohomology is part of a motive. As such, when one 
works in the adelic framework, in which X is a connected component of a Shimura 
variety over a number field, one is set up to define an intersection homology zeta 
function for X* à la Langlands (see [14], where the case of Hilbert modular 

2 
varieties has been worked out), to which the L -cohomology contributes. 

On the other hand, one can view (1.6.1) as providing a sort of de Rham theory 
for the intersection cohomoloev. Because X is metrically conrolete. and K[2)(X,E) is finite dimensional, the isomorphism imparts a Hodge structure to 
IH-(X*,E) (see [44: §2],[48: §1]). 1 One would want, and even expect, this to 
coincide with the Hodge structure arising from the general Hodge theory for per­
verse sheaves given in [33] and [34], which is compatible with geometric construc­
tions (see also [48]). 

§2. THE GENERAL STRATEGY 
The presentation here discusses the state of the problem prior to 1987, from 

the point of view of [47]. Though this reflects the biases of the author in his 
attempts at the conjecture, it does set up a common framework for the discussion 
of [28] and [36]. For another approach, the reader is referred to [16], which is 
also a reasonable survey. 

(2.1) As we have already indicated, to prove Conjecture (1.6.1), one must 

F̂rom this angle, the conjecture resembles the one in [19: §4], though the 
two are independent of each other. 
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verify that the conditions that characterize intersection cohomology are satisfied 
by Jt;2)(x*,B). The main ingredient in this characterization is that every point 
on the stratum of complex codimension j has a base of neighborhoods U with 

(2.I.1; IHX(U,E) = 0 for i > j; 

one eventually realizes that it is sufficient to establish this vanishing for 
local L2-cohomology on X*: 

(2.1.2 H(2) (U A X,E) = 0 for 1 - J ' 

(2.2) We must know, then, what U and UA X look like. Topologically, 
we have 

[2.2.1] U 2L V x Cone(L), 

where V is a contractible neighborhood within the stratum, and L is the link 
of that stratum. In terms of this, we give the precise version of (2 . 1 . 1 ) : 

(2.2.2) IHX(U,E) IH^ConeCD.E) ~ 
IH^L.E) if i < j, 

0 if i 1 j . 

Of course, 

U n x ^ l x (LflX), 

where I is the interval ( 0 , 1 ) , so for ordinary cohomology, we have 

(2.2.3] HX(U A X,E) * H^L A X,E) . 

(2.3) In the determination of H'(2)(U H X,E), one can be guided by: 

(2.3.1) Claim. For certain simple situations, H(2)(M,E) is the subset of 
H- (M,E) of classes with L2 representatives. 

(2.3.2) WARNING. It will turn out that the neighborhoods U are among the 
"certain simple situations" mentioned above. In general, however, the canonical 
mapping 

H* (M,E) + H#(M,E) 

can have a kernel. 

(2.4) We next describe L H X and U f\ X in detail. We tacitly assume 
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in what follows that r is sufficiently small. This is no loss of generality, 
for (1.7.1) is hereditary for quotients by finite groups. We also may assume that 
G is irreducible over Q. 

The boundary components correspond to the maximal rational parabolic sub­
groups P of G, with Langlands decomposition (over Q) 

[2.4.1) P = Mp - Ap - Np, 

in which Np is the unipotent radical, and Mp • Ap is a Levi subgroup. The 
split component Ap is one-dimensional, diffeomorphic to (0,») - a half-line in 
its Lie algebra - as P is, up to conjugacy, determined by the deletion of a 
single simple Q-root B. This, in turn, decomposes Mp into 

(2.4.2) "p 
w< 
w< 

<xv 
x<< 

for its Q-root system has two components, one of type A, and the other of type B 
(which includes the classification type BC, and its degenerate form C). Here 

4 is (essentially) the automorphism group of the boundary component, here de­
noted D . 

From this, we can see that L n X is the image of <w< x NP in X. It 
admits a fibration over <x< an arithmetic quotient of the symmetric space <wx< 

[usually not Hermitian) of <x< with fiber a compact nilmanifold associated to 
Np, To describe U n X in similar terms, one must be a little careful (see 
f47: (1.3)1). 

(2.4.3) LEMMA. There is a positive, real-valued function f on the symmetric 
space w< of 4- such that open sets of the form (2 .2 .1 ; have U n X given 
as the image of 

(x,y,s,n) e DA x XB x (0,«>) x N : y e V, s >• A + f(x)} 

for X » 0. The singular stratum lies at s = °°. 

(2.5) It is well-known that the Leray spectral sequence of (L n X) X A 

degenerates at E . This gives a canonical isomorphism 

[2.5.1) H*(UAX,E) ^H*((0,oo), C) <3C H-(XA,H*(n,E)), 

where n is the Lie algebra of Np, and H*(n,E) is the local system on w< 

associated to the representation of M* on the Lie algebra cohomology H*(n,E). 
2DA may have Euclidean factors. 
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We have written in the extraneous "H"((0,«),C) * C " for comparison with the 

following result (whose notation will soon get explained): 

(2.5.2) PROPOSITION. ["L2-•Kunneth theorem") [47: (3.19); 

H*(2)(UnX,E) a 9 [H#(2)((0,«,),C; w£) 0£ H*2) (x\lf(nfE) ; w^)]. 3 

In terms of the variables [x,y,s,n) of (2.4.3), t -he metric on U n X is, 

according to [5: (4.3)], 

2.5.3) 
,2 ,2 ,2 -2s , 2f . -4s , 2, . 
dx + dy + ds + e dn^x) + e dn2(x), 

where we have decomposed n into w< ® n 2 according to weights 3, 2$ with 

respect to 
V 

Then Ì2 is the center of n. ; When we change variables by 

s = r + f(x) 

to recover the product structure, we get, up to quasi-isometry: 

[2.5.4) 
j 2 - 2 - 2 -2r -2f(x), 2( . 
dx + dy + dr + e e dn^(x) -4r -4f(x), 2r . + e e ^dn2(x). 

Similarly, an element e e E on which Ap acts by 

mines a (multi-valued) section of E with 

Is 
e 

(write e e E, deter-

;2.5.5) I 
2 
^ e 

-2£r 
w< 
-2££(x 

In view of (2.5.3) or (2.5.4), the factor V of U f\ X (recall (2.2.1 

can be omitted, as a quasi-isometrically trivial factor, in the discussion of 

calculating L2-cohomology. With this understanding, the volume density becomes 

;2.5.6; dV * (e-2jrdr) • e-2jf< 
x 
dV(x))dV(n), 

as 

[2.5.7] 2j = dim n̂  + 2 dim n2. 

Then, for i = i Li + h 
correspondingly decomposed, an i-form on N with bide-

gree <w w< 
xc< 

and values in x< has an action of Ap by 

[2.5.8) a(s) = e 
(il-i1-2i2)s 

and the integral defining its L2 square-norm on U H X is weighted by 

3 
This formula reauires an additional hypothesis, which is satisfied via the 

last assertion in (2.6). See [47: (3.19(8))]. 
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(2.5.9) a 
wi w< = e 

(2i1+4i2-2*-2j)r 

and by a 
W2 

a 
= Wl o f. Moreover, the decomposition of 

A* n* ® E 

into weight spaces is compatible with passage to cohomology. The precise weights 
that occur non-trivially in H*(n,E) are determined by a theorem of Kostant 
[27: (5.14)] (see [47: (3.4)]); the weight spaces are indicated by the subscript 
a. 

(2.6) We recall the (elementary) computation of the L2-cohomology of a half-
line with exponential weights: 

(2.6.i: < 
2] CO,»),C; e' 

<w < 

C if k > 0, 

0 if k <_ 0; 

(2.6.2] < 
2) :o,°o , C; e - k r ) -

0 if k ̂  0, 

infinite dimensional if k = 0. 

(Lest there be any confusion, the imposition of the weight w in (1.3.1) would 
change the square-norm to 

(2.6.3) |d)|2 w dVx.) 

The infinite dimensionality in 2.6.2: results from the fact that dL 0 2) 0,co), C) 
is a proper dense subspace of L1 2) (0,~), C] , and is the range of an operator. 
This does not contribute in (2.5.2), for one ultimately sees that the right-hand 
factor vanishes if <x(s) = e < D 

(2.7) At this point, we can see that the proof of Conjecture (1.6.1) comes 
down to a comparison of truncations. Intersection cohomology effects a truncation 
by degree (recall (2.2.2)), whereas L2-cohomology does so by weight (compare 
,2.5.1) and (2.5.2)). One must show that the two coincide. 

The problem can be expressed in explicit "combinatorial" terms. Suppose that 
the <x 

w< 
weight a occurs in < [n,E) Show that either 
i) the coefficient of r in 2.5.9) H^2)(X,E) 2L IH' 

ii) H? 2) (XA,H^(n,E); = 0 for p ̂_ j - q. 
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(Here, we are assuming that we know that (2.6.2) does not contribute in (2.5.2).; 

§3. LOOIJENGA'S PROOF 

(3.1) The first feature of the proof in [28] is that it proceeds by induc­

tion on j, the codimension of the stratum, or equivalently, the Q-rank of 

Thus, given j, we may assume that 
*(2) 

(X*,E) and (X*,E) are quasi-iso-

morphic outside the closure of the codimension j stratum. It follows (cf. (2.5.2)) 

that in fact 

(3.1.1] e [H°((0,co), C)0 H*2)(XA,H^(n,E); w£)] ̂  IH'(L,E). 

(3.2) The next step is the elimination of explicit mention of L2-cohomology 

from the statement of what must be proved. This is achieved by converting the 

weights a into the eigenvalues of geometrically defined endomorphisms, as 

follows: 

(3.2.1) PROPOSITION, i) There exists a e Ap for which the conjugation of P 

by a induces a proper, finite-to-one, endomorphism of the stratified space U. 

Call it 
a 

ii) a 
respects the nilmanifold fibration of U f\ X (implicit in 

(2.4), [47: (3.21)]). 

iii) The induced actions of â (together with the action of a on E) 

on 

IH"(U,E) and IH*(L,E) %H* (LH X,E) 

are compatible and semi-simple. On the right-hand group, it is induced by the 

action by <x(log a) on H*(n,E). 
a — — u 

From this, it follows that the summands of (3.1.1) are detectable by the 
action of 

a 
on IH (L,E). 

(3.2.2) Remark. It is observed in [28: (3.7)] that the simple left-translation 

< by a also induces an endomorphism of U, with the same action on the co­

homology groups in (3.2.1, iii). 

(3.3) Thus, (2.1¿2) — and indeed the sharper 
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(3.3.1) H* :2) 
[U,E) ± 

IH1 [L,E) if i < j 

0 if i > j 

— is verified if one shows: 

(3.3.2) Claim. For i > j, the eigenvalues of *a on IH 
i 
(L,E) are of the form 

k 
a 

with k > j. (We will reword this from now on as: the weights of 
a 

are 

w<vvb 

(See also (2.6)). By duality,- E is isomorphic to its conjugate contragredient; 

see ([10: (1.6)]) - this is equivalent to 

(3.3.3) Claim. For i < j, the weights of 
a 

on IH1(L,E) are j. 

Given the truncation property (2.2.2) of intersection cohomology, (3.3.3) is 

established immediately by the following "purity theorem" (akin to [17: (1.13)], 

[25: (4.0.1)]): 

:3.3.4) PROPOSITION. The weights of 
*a 

on IH^l^E) are w<<x 

[3.4) It is time to bring in the complex structure. The Hermitian symmetric 

spaces are, in a sense, characterized by the relation 

[3.4.1 dim X + dim Ap = dim n^. 

Moreover, dim n̂  is even. The complex structure of U can be seen in terms of 

(3.4.2) V x n i x (n2 g> R C) 

(not complex-analytically a product), and is described as a Siegel domain in terms 

of an open convex cone C in (see [28: §2] and also our (4.15)). 

The introduction of C also permits the construction of a resolution of 

singularities 

[3.4.3) ir : Û U 

by the method of toroidal embeddings [1], in which the singular locus of U is 
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replaced in U by a divisor with normal crossings. It can be arranged that the 

morphism TT is projective. When we forget the contractible V again, the con­

struction gives 

(3.4.4) PROPOSITION i) 
w< 

is covered by open sets w<< that are w< -bundles 

over nilmanifolds, such that 0(a) H X is the corresponding <xx< •bundle. 

(Here, v = dim n^, 

ii) A non-empty intersection of k distinct Û(a)'s is a <x< '-bundle 

over a nilmanifold for some I >_ k-1, and its intersection with X is the corre­

sponding (A* <x -bundle. 

iii. a 
lifts to a (stratified) endomorphism of a. 

3̂.5) It was observed in [42: §4] that the coefficient system E on w 

underlies a polarized variation of complex Hodge structure. Then E © E under­

lies a real variation, placing us in the realm of the decomposition theorem of 

[34], which is the complex analytic analogue of the one in [4: (5.4.6)], that it­

self could be applied only when E is known to be of geometric origin. As a 

result, we have the existence of embeddings 

(3.5.1] IH*(U,E) ̂  IH*(U,E), 

so it is sufficient for (3.3.4) to prove 

(3.5.2) PROPOSITION. The weights of a on IH^U.E) are £ i. 

(3.6) From here, the discussion involves a fairly crude estimation of 

weights to reduce to the "purity" theorem for variations of Hodge structure on 

products of punctured discs, as follows. 

We first retreat a step, and explain the notation in (3.4.4). The parameter 

a is an equivalence class of top-dimensional simplicial cones in C that 

occurs in the construction of Î). Given k = p + 1 sets U(a.) (i = 0,...,p), 

one has that 

3.6.i; 
P 

i=0 

'Vi 
U(a.) 

= U(T), 

the part of U associated to T = 
P 

i=0 
a 
l' 

the number I occurring in (3.4.4,ii) 

is precisely the dimension of T. From the spectral sequence of a covering 

(see (3.8.3)), we see that (3.5.2) would follow from 
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[3.6.2) Claim. With notation as above, the weights of 
a 

on 
H^2)(X,E) 2L IH' 

are 

< i - p. 

(3.7) Very roughly, the fibration described in (3.4.4,ii), arises with the 

punctured discs produced from a subspace of n0, which is duly divided out of n 

to yield the base, here denoted B(T). Consider, then, the Leray spectral sequence 

(please pardon the abuse of notation): 

:3.7.1) E2'S = Hr(B(x) IHS(AV"£,E)) > IHr+S(Ö(T),E). 

By [17: (1.13)] or [25: (4.0.1); , the weights of a on ihs w< <c are 

_< s. Those on forms on B(x) are of the form h + 2i2 cf.(2.5.8) , with 

w< + *2 = r and 

0 _< î  <_ min{r, codim(x)}, 

so are at most r + codim(x) From (3.7.1), one sees 

(3.7.2) PROPOSITION. The weights of 
a on IHi(Ö(x),E) are < i + codim(x). 

(3.8) Unfortunately, (3.7.2) is strong enough for our purposes ((3.6.2)) 

only when codim(x) <_ p, i.e. (for non-degenerate intersections) when the inter­

section of the simplicial cones is of maximal dimension. However, these are the 

only ones that matter, as is seen by the following argument. 

Let E denote the set of cones. For any contravariant functor 

(3.8.i; F : I {Cochain complexes}, 

one defines the associated alternating Cech double complex, determined by 

;3.8.2) £ = <x< 
m< 

F(x) (x = 
P 

i=0 
a.). 

The spectral sequence for the cohomology of the associated single complex, C*(F), 

and its filtration by simplicial degree, begins: 

(3.8.3) EP,q, ;c ' ( f <x< 
V 1 

Hq(F(T)). 

From this, one sees: 

(3.8.4) Ep>q (c*(f; = HP(C*[Hq(F)]). 
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Let wx<< denote the subcomplex of C* consisting of those elements that 
are trivial on all simplices of codimension < k; equivalently, 

where 

CkCF) = C"(V' 

H^2)(X,E) 2L IH' F(T) if (codim T) > k, 

0 if (codim T) < k. 

(3.8.5) PROPOSITION. For any functor (compare (3.8.1) 

L : E ->{Abelian groups}, 

HP(C^(L)) = 0 whenever k < p. 

(3.8.6) COROLLARY. The mapping (compatible with V 

E^q(C*(F)) -* HP(c'[Hq(F)]/Cp[Hq(F)]) 

is injective. 

[3.8.7) COROLLARY. The weights of EP'q(c"(F) are among those of the summands 
of Ep,q with codim T = p. 

Of course, the above is applied in the case where F is given by 

F(T) = IC*(ft(T),E), 

so the spectral sequence (3.8.3) abuts to IH'(U,E). 

(3.9) It remains to prove (3.8.5). The main point is that the simplicial 
complex of cones is topologically a manifold. 

Consider w<< as a (decreasing) filtration of C (L). There is a 
spectral sequence 

[3.9.1 wx< :c*(io) <x<< 
V i (iO/c ( D ) HP+(1(C*(L)) 

(restrict to p > k, and the abutment becomes the cohomology of wx<< 

(3.9.2) LEMMA. V i (L)/C'(L) << codim u=p (K"(u) <8> z L(u)), 

with 
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H-(K*(o)) * H#(Star(u), Star(u) - u) . 

Proof. Because 
codim (T n a) < codim T 

unless T c a, the direct sum decomposition follows at once (recall (3.8.2)). To 
understand K (u), one observes that it is the integral Cech complex for the set 
of simplicesxcvn,,< containing u, i.e., for Star(u), modulo the terms associated 
to those £ whose intersection T strictly contains u. By retracting such £ 
away from u, one identifies the latter with the Cech complex for Star(u) — o. 

Because our simplicial complex is a manifold, there is a homotopy equivalence 

(3.9.3; (Star Cu), Star(u) - v>) w< 
H^2)(X,E) 2L IH' 

whenever codim u = p. Thus, 

[3.9.4] H1! cl i C D / c ^ l ) ; p-i p = 0 for i ̂  p. 

It follows that in (3.9.1), 

(3.9.5) HP+(1(C*(L))HP+ 
(1(CW<<<<<X*(L)) unless p > k and q = 0, 

which implies (3.8.5). 

§4. THE PROOF OF SAPER AND STERN 

(4.1) In contrast with Looijengafs proof, the first feature of the Saper-
Stern argument is that it goes directly, not inductively, towards the required 
vanishing of local L2-cohomology that is described in (2.7). 

(4.2) The main principle of the proof goes back to [24] and [26], which 
(in retrospect) reduces the vanishing of L2-cohomology to an a priori estimate. 
As in (1.3), let d denote the weakly defined exterior derivative (a densely-
defined unbounded operator on the Hilbert space of L2 forms), and d* its Hilbert 
space adjoint. The following is well-known (see [24: §1],[26: (8.10)]): 

(4.2.1) PROPOSITION. Let U be a Riemannian manifold, E a metrized local 
system on U. The following are equivalent: 

i) H*2)(U,E) = 0, and dLj2)(U,E) is closed in the L2(i+1) -forms. 
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ii) There is a constant k > 0 such that 

|d*ll2 i k I U I I 2 

whenever 4> e L^2)(U,E) is orthogonal to dLj ' JoJ .E). and whenever I <J> e L*~*(U,E) 
is orthogonal to ker d. 

iii) There is a constant k > 0 such that 

||d*||2 + lid**!!2 > K||*||2 

whenever <}> e Lç2)(U,E) r>i (Dom d*). 

iv) There is a constant k > 0 such that 

l l A t M > k\\*\ 

whenever w is an i-form in the domain of A (A = dd* + d*d, interpreted under 
the conventions of functional analysis; see [20: §2]). 

If, moreover, U is the interior of U, a complete manifold with boundary 
(corners allowed), it is enough to verify the estimate of (ii), (iii) or (iv) 
for forms <J) that are smooth in U, and have compact support therein. 

(4.3) According to [47: (3.6)-(3.7)], the open set U from §2 admits so-
called distinguished coverings, whose members are indexed by conjugacy classes 
of parabolic subgroups Q of <x (recall (2.4)). We write 

(4.3.1] U A X = U U(Q). 
Q 

For a suitably chosen such covering, it suffices to verify any of the estimates 
of (4.2.1) for smooth forms of compact support on each U(Q) — here U(Q) is 
considered to have as boundary au O U(Q); so is in particular incomplete when­
ever the Q-rank of ls positive; the estimate for U(Q) then has no 
L2-cohomological significance. This is by no means a tautology, but rather it 
depends on the ability to find partitions of unity subordinate to (4.3.1) with 
certain properties [35: Prop. 2]; it is stronger than a Mayer-Vietoris argument. 

The breaking up of U into these pieces allows one to avoid explicit dis-
2 A cussion of the weighting of L -cohomology on X (2.5.2), at the expense of 

having to consider all parabolic subgroups of m\ (Similar issues occur in 
[43: §4],[47: (3.9), (3.23)].) 

'4.4) Fix a rational parabolic subgroup Q of / with rational Langlands 
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decomposition 

(4.4.1) Q = LQ ' AQ * V 

Then 

(4.4.2) Q' = LQ(AQ - Ap)(NQ - Np) =: LAN 

is parabolic in the centralizer of the boundary component associated to P, and 

Qf • M is among the rational parabolic subgroups of P. Here, 

[4.4.3] A ^ (0,°o)V, 

where v is the parabolic Q-rank of Q. The set U(Q) can be taken to be the 

full nilmanifold fibration (with fiber a compact quotient of N[ over HP+(1(C*( 

where XQ is a relatively compact deformation retract of an arithmetic quotient 

XQ associated to L, and A c A is 

[4.4.4) {(a,s) e (ii,oo)v x (x,-) }, 

though the product decomposition in (4.4.4) does not come from the one in (4.4.2), 

but rather from simple roots (see [47: (1.3)]); this discrepancy is also the 

source of the w2 in [2.5.2). The boundary of U(Q), for the purposes de­

scribed in (4.3), is given by ì s = X. 

4.5) It is necessary now to get more technical 

Let 

(4.5.1) KQ = K O Q = KA L. 

Because U(Q) is a principal 
V 

-bundle over XQ x R x N, the L2 IE-valued 

forms on U(Q) admit a description as the 
V 
-invariant elements of 

(4.5.2) L2 ( rQ\ (£ x ï x N)) 0 Äp^® ( A U ^ O E), 

where Î; is the full inverse image of w< 
x< 

in < rQ • rnQ, ^ is the orthog­

onal complement (with respect to the Killing form of <x of the Lie algebra 

of K0 in that of LA, and (sorry] <x< is the Lie algebra of N. (The analogous 

assertion for G and X underlies (1.7.1).) The exterior derivative d 
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decomposes as 

(4.5.3) d = D + d , P 
2 where D is given by differentiating the L functions in (4.5.2), and d is 

P 
a 0-th order operator, determined by the natural representations of Q on its 
Lie algebra and on E. 

According to [27: (5.7)], there is a splitting 

(4.5.4; Au^® E 2f H*(u^E) @ R\ 

equivariant with respect to the action of LA, with R d^-acyclic. By an 
averaging argument [36: §8], it suffices to get the estimate(s) of (4.2.1) on the 
N-invariant forms, i.e. for 

(4.5.5) • £ L(2)(^QX H*(HQ>E ) Q, 

on which the derivatives and Laplacians become the natural ones on HP+(1( C*(L)) 
;cf. [22: (2.6),(2.7)]). This brings us close to the analogue of (2.5.2) for the 
pieces of U C\ X. 

(4.6) At this point, we depart a little from what appears in [36] by empha­
sizing the estimate for the Laplacian (4.2.1, iv), rather than (iii), and we re­
arrange the arguments. 

Let 6 denote the formal adjoint of d, and also its weakly defined exten­
sion to a closed operator on L2 differential forms. By [24: (1.2)], d and 6 
are the closures of their restriction to C°° forms smooth to the full boundary of 
U(Q). Write dg and 6̂  for the closures on forms of compact support (in the 
interior). One has Hilbert space adjoint relations 

(4.6.1 i) d* = 60 (Neumann boundary conditions), 

ii) (d0)* = 6 'Dirichlet boundary conditions). 

Let <w 
vb 

denote the closure of d on smooth forms of compact support in the 
sense of (4.3). The estimates sought in (4.3) imply that the kernel of 
(d 6 1 0 0 0 6oV is trivial, and its range is closed. As was remarked previously, 
this has, by itself, no cohomological interpretation. Of course, these estimates 
would be a consequence of the same for any extension to a larger domain; e.g. we 
can take A = d60 • «0d, or mix in Dirichlet boundary conditions on any of the 
first v factors of X (see (4.4.4)) and on x<wbnnn Indicate the boundary 
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conditions chosen by a left-subscript b; these may be chosen independently on 
the different summands: 

(4.6.2) PROPOSITION. (Modulo an abuse of notation on the left-hand side) 

bH(2) (U(Q),E) 3 bH(2; 
(o,«o <x HP+(1(C*(L))HP+(1(<<C*(L))<<X<<X 

HP+(1(C*(L))HP+(1(C*W<<(L))<<<X<< 

In the above, the notation is parallel to that in (2.5.2): for instance, $ is a 
weight of A, and w a multivariate exponential of the form 

(4.6.3) 3 
w = exp( 

v 

k=0 
wxxw< 
^$w<<< 

2 
From the direct calculation of the weighted L -cohomology of half-lines and 

their products (cf. [43: (4.51)]), one gets 
[4.6.4; LEMMA. i) H(2)((0,~), C; e nr) = 0 if n < 0. 

• —TIT 
ii) 0H(2)((0,~), C; e nr) = 0 if n > 0. 

Using the Kunneth formula (essentially [43: (2.36)]), we get 

(4.6.5) PROPOSITION. If in (4.6.3; w< * 0 for some k < v. or if <x 0, 
then there is a choice of boundary conditions for which bH(2) Co,- <x< C; wB; = 0. 

We see now that to verify the conditions given in (2.7), it suffices to show 
the following for each parabolic subgroup Q of m\ Suppose that the weight 3 
occurs in < <x< 

x<< 
Then one of the following holds: 

[4.6.6; i) n 
V 

0, 
ii) nk * 0 for some k < v, 

iii) n 
V 

0, and HP( HP+(1(C*(L)) HP+(1(C*(L)) = 0 for p >_ j - q - v. 

(4.6.7) Remark. Although the L2-cohomology in (4.6.5) is infinite dimensional 
when n 

v 
> 0 and w< = 0 for k < v, it could enter only in low degrees, hence 

not at all (see [9: V, (4.3)]). 

;4.7) Recall the formula d = D + d 
P 

f4.5.3l which we now consider on the 
space V Since d 

P 
is the extension of scalars of the differential in the 

finite dimensional complex 
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(4.7.1) Ap̂ <8> H'(u,E), 

it is a bounded operator of order zero. Likewise are its adjoint, 

Laplacian 

w< 1* and 

[4.7.2) A 
P 
= d (d 

P P 
)* + [dp *d . 

P 
It follows that d and D, and likewise d* and D*, have the same domain. 

Moreover, the identity 

(4.7.3) A = AD 
+ V 

first in the formal sense (see [32: p. 244]), and then in the sense of operators, 

decomposes the Laplacian A into two (semi)positive operators. It follows now 

by an argument of Bochner type, that 

(4.7.4) PROPOSITION (cf. [32: §1, Prop. 2]) For any A-invariant summand of 

L(2) ,Hq(i^,E)), 

a sufficient condition for the vanishing of its contribution to 

H W H q ( v E ) ) 

is that the eigenvalues of A 
P 

thereon are strictly positive. 

That this will be strong enough to establish (4.6.6) may come as a big sur­

prise. In other words, the more precise vanishing theorems for (£,K)-cohomology 

(see [40]), which in effect take into account An as well as a , on the whole 
A p 

space X , are not needed here. 

(4.8) The A-invariant subspaces in (4.7.4) are given by the K̂ -invariant 

subspaces of (4.7.1), as one can see from Kuga's formula (compare [45]). Using 

the compatible normalizations of Casimir elements w< 
w< 

and < 
> 

for the reductive 

algebras w< 
^ù 

and 
V 

coming from the Killing form of g (see [31: p. 109]), 

one gets 

(4.8.1) PROPOSITION ([32: p. 246],[35: Lemma 5] If a is an irreducible 

V 
constituent of a' * 

AEq> 
and p is an irreducible ^-constituent of 

Hq(Uq,E) then on a ® p, A 
P 

is the semi-simple operator 
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PCO,) • 
2 

P w + 
1 
2 

a << 
^ù 

w 
1 
2 V 

a<2> p) < 
v w 

The above expression admits a nice description in terms of highest weights. 

One makes use of a fundamental Cartan subalgebra < 
w 

Of < i.e., one starts 

with a Cartan subalgebra < 
b 

of << and enlarges it to one for 
-Q' 

One also 

uses compatible systems of positive roots; what is meant by this will be ex­

plained in (4.10). Let 6 f and 6 denote the respective half-sums of the 

positive roots. Finally, let x be an irreducible constituent of P < 
b 

, and 

Ç Of CT« T. In what follows, we always adopt the convention of identifying 

representations with their highest weights. Then, as 

(4.8.2) P ( C 4 ) = |P + «I I
2 

- I « | 2 

(see [31: §2, Lemma 4]), etc., one obtains 

;4.8.3) PROPOSITION. On HP+(1 
(C*(S 

is the scalar operator 

iP • «i 2 - i«i 2 - a 
x< 

T + 5' I 2 - |c + 6'|2 * LE + s-L 2 
HP+(1(C*(L)) 

(4.8.4) COROLLARY 1. For fixed a and T , with £ as variable, the eigen­

value is minimized (strictly) by £ = a + x. 

(Proof: Write Ç = a + T - e, where e is a non-negative linear combination of 

simple roots, etc.) 

A little manipulation gives: 

(4.8.5) COROLLARY 2. For £ = a + T , the eigenvalue of 
P 

on w< is 

p| 2 - | T | 2 + 2(p-T,<5) + ( T , 2<5-26'-a). 

For the purposes described in (4.7.4), we need to be able to decide whether 

the above expression is zero. This can happen only when p and T are equal, 

i.e., p vanishes on 

[4.8.6; 
^0 =xxw<<^ùm EQ • 

the orthogonal complement of < 
vw 

in w 
c< 

in which case one must also have 

[4.8.7; [x,y) = 0 [y = 2<5-.2<5,-a]. 
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In other words, T must be orthogonal to the restrictions of certain positive 
roots. In summary: 

(4.8.8) PROPOSITION. The A 
P 

eigenvalue on £ is zero if and only if 

T = p, and ( ^ = 0 

for any y e w< whose projection onto h -k is y. 

(4.9) If X denotes the highest weight of E as a representation of G, the 
highest weights P occurring in ifl <x< , as a representation of <x 

x< 
e <x 

lhg 
are 

given by 

(4.9.1) P = w(X+6G) - 6 , 

where SG is the half-sum ... for g, and w is an element of length q in the 
Weyl group for G, with the property that whenever 3 is a positive root with 
-1 
w 

3; negative, then 8 occurs in x<< \27: (5.14) In the preceding, we have 
extended < < < to a Cartan subalgebra of x< by adding on a subalgebra of k, 
which is possible since <x is equal-rank (see (5.1), and recall (2.4)). 4 

In [35], the authors argue instead with the highest weight vectors in 
H^u^E), though this has been reformulated in [36] in terms of the weights them-
selves. 

(4.10) We recall now the structure of root systems with respect to a funda­
mental Cartan subalgebra, such as our V Suppose that 

;4.10.1] HP+(1(C*(L)) 

is fundamental for g D k, and h and x< are given compatible systems of 
positive roots. Then the positive roots of <x< fall into three classes (see 
31: p. 123]): 

a) Roots of <x whose root spaces lie in kj,, hence restrict to 
(positive) roots of <x These are fixed by the Cartan involution 9 of g with 
respect to k. 

b) Pairs of positive roots, interchanged by 6, with common (positive) 
restriction to <x The sum of the two root spaces, being e-invariant, has a 
one-dimensional intersection with each of <x and 2C' both of which are 

4 

266 

Thus, each Q determines its own Cartan subalgebra of ĝ . 
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invariant under w< 

c) Roots of Sc whose root spaces lie in Ec- These are also invariant 
under 6 
Thus, we can say that the roots of class (c) and half of those of class (b) are 
associated to p_. 

For (4.8.8), we choose 

:4.10.2) y = < + < 

where + is the sum of the positive roots associated to w< whose restrictions 
do not occur in o 9 and is the sum of those positive roots whose negatives 
occur. 

(4.11) Recall that the goal is to verify that at least one of the assertions 
in (4.6.6) holds. So, suppose that in (4.6.3) <x = 0 for all k < v and 
n 
v 

o,5 and moreover that an eigenvalue of A 
P 

in 

aP * e Hq : V E ) 

is zero. It must be shown that P + q < j - v, i.e. 

(4.11.1 p + q _< j - dim a. 

Let s denote the number of summands in j " (from (4.10.2)). Then (4.11.1; 
is attained by verifying the inequalities 

[4.11.2] i) P < 1 T dim XQ + dim h^) + s, 

ii) q < 1 T [dim UQ - dim (hg © a) - s; 

since dim x A x N) is the real codimension of the boundary component in 
question (compare (2.4.3)), adding the two inequalities in (4.11.2) produces 
[4.11.1). 

4.12) In order to verify (4.11.2), one is forced to get one*s hands dirty 
in the root structure. 

The central quantity in the weight considerations is 

(4.12.1) M = p + 6Q = w(x+6G) - 6, < 

5The case where n = 0 
v 

will be ruled out later, in (4.16). 
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where 6Q is the half-sum for 
y 

and Ô is the sum of 6 and the half-sum 

for the group w< (associated to the boundary component), together with its re­

striction to <x 
vw< 

(4 .12 .2 ; <x< = w(X+6G)| <x - 6. 

Let <<< , V(P), ¥(Q), VCQ/P) denote the sets of positive roots in x<<x 

associated to 
EQ. 

occurring in n = u , 
HP 

occurring in 
y 

and occurring in 

<t¨£^^ resp. Note that T(Q) contains 

(4.12.3) 
w = {positive root a : (u + 6, a) < 0} 

= {a > 0 : w_1(a) < 0> . 

Break up each of the sets w< into three pieces, according to the sign of 

[4.12.4) 
= w(X+6G)| 
= w(X+6G)| 

and label the pieces ¥1 
J + > 

w 
1 _ t and '0 

correspondingly. 

;4.13) We next recall an elementary fact about root systems: 

(4.13.1) PROPOSITION. Let a and $ be non-proportional roots in a root 

system. Then: 

i) if < > 0, a-ß is a root 

ii) if (a,3) < 0, a+3 is a root, 

iii) if (a,3) = 0, then either both a±3 are roots, or neither is a 

root. 

(4.13.2) Definition: One says that a and 3 are strongly orthogonal if the 

latter alternative in (4.13.1, iii) holds. 

The following assertion turns out to be crucial: 

(4.13.3) PROPOSITION. 
5o 3 ® - has a basis S consisting of strongly orthogonal 

roots in np) ; in fact, these occur in n^. 

The reason for this will be given in (4.15). On the other hand: 

4.13.4) PROPOSITION [36: 11.6]. No root of wx< is strongly orthogonal to 

every element of S. 
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This allows the construction of an embedding 

[4.13.5) T : ¥(J2Q) U VCQ/P) Y(P), 

defined by putting 

[4.13.6) T(a) = Y(cO - a, 

for a certain Y(oi) e S that is strongly orthogonal to a . It is clear from the 

definition that T(a) gives the opposite sign in (4.12.4) from that for a. 

(4.14) We can now proceed to verify (4.11.1). It is trivial that S C y(P)0. 

The following is not difficult to check: 

(4.14.1) PROPOSITION. Assume that: 

a) P w< 
,nn< 

= 0, 

b) (Pla,a) 1 0 if a e V(P), 

c) (p,a) =0 if a e y(p^) occurs in £ . 

Then, 

i) * H V(P) C y(P) , w 

ii) T(* A Y(Q/P)J H (* O V(P)) = <J>, w + w 

iii) If a occurs in j", then T(a) e v(P) - (* N * ( P ) ) . 

(4.14.2) COROLLARY. |$w A ï(Q/P)+| + s < |y(P) | - |* nï(P)|; that is 

I* A V(P) 1 w < 
1 
2' np) 

1 
2 
np)0| - s-I* 

1 w 
N nQ/P) x< 

The second estimate needed is even cruder. Certainly, 

(4.14.3) | * W N * ( Q / P ) | < |V(Q/P)J + |V(Q/P)0| + |*w flHQ/P)+| 

w< 
1 
2 

HfCQ/P) + 
1 
2' HQ/P)0I + l*WOY(Q/P)+|. 

Adding this to (4.14.2), we obtain 
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[4.14.4) w< 
^x< < 

1 
2 

Y(P) < 
1 
2' |YCP)0I - s + 

1 
2' 

<c<< + 
1_ 
21 *(Q/P)0I 

< 
i 
2 1 dim UQ + 

1 
2' Y(Q/P)0I < 

i 
2' •|*(P) '0' 

- s. 

In addition, T(S U V(Q/P] o- C V(P)0, so 4.14.4) t becomes 

4.14.5] <x< < 
1 
2 dim u-. < 

1 
2" 
S - s, 

which is precisely (4.11.2, ii). 

Inequality (4.11.2, i) is actually very easy: 

P ± WCEQ) I + s + dim YIq 

< 
1 
2 
(2^ (^ )1 + dim hß' + 

1 
2 
dim h^ + s 

< 
1 
2 dim X + 

1 
2 
dim h^ + s. 

As (4.14.1, b) is a consequence of the assumptions on the n^'s, we now have 

(4.11.1). 

[4.15) So, how does one produce sufficiently many strongly orthogonal 

roots? 

Consider first the case where 0f = P, i.e., where Q = the improper 

parabolic subgroup). From the Hermitian structure of D and 
x< 

the symmetric 

space of <x <x< is realized as an open cone C in n_2 (the same cone that 

appears in (3.4)). On the infinitesimal level, this comes about via the adjoint 

action 

(4.15.1) ad 
A 

: E 0 n 2 (* N*(P 

where <x denotes p N mA @ a In view of (3.4.1), it is not so surprising 

that for generic Y en2, the mapping 

(4.15.2) x< A 
: £ n2 

By(Z) = ad (Z® Y) = [Z,Y] 

is an isomorphism. Indeed, one has a Kp-invariant element Y e C with this 

property. This identifies A and 
±2 as Kp-modules. (See [1: III, (4.2)].) 
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Put 

(4.15.3) C = (By -1 A 
• H2 * E • 

The bilinear pairing on n^ 

(4.15.4) wi • W2 = K(w1),w2] 

imparts to n2 the structure of a Jordan algebra (see [1: II]). 

Via C , one can match features of *2 with those of A Corresponding to 
a set <w e 

I 
of orthogonal idempotents in n , such that 

(4.15.5) 
<<wbn 

e. J = 1 

[in the sense of the Jordan algebra), is a set of generators for an abelian sub-
space b of w< and all such subspaces arise in this manner. If 

(4.15.6] 2e. J : 1 < j < £} 

is the basis dual to (C(e ) of b then for i <_ j, the weight space of 
c«1 + e. 3 

A 
in n2 is mapped to the p_ -component of the L V weight space 

A " in m . The process of grouping the idempotents into sub-sums in (4.15.5) 
determines a subspace of b, to which the corresponding subsets of the <x 

xc< 
1 s re­

strict to a common value.) For i = i, the weight space of 2e. 
3 

in *2 produces 
elements in A that commute with b. 

If b is now the non-compact part (* N*(P)). of h 
-Q 

it commutes, of course, 
with <c Since < is V a fortiori V equivariant w< also commutes with 
-1 [b). It follows that e. e n2 is a root vector with respect to h^, with 2e. 

(extended by zero to ^$m as the root. Since 2e. ± 2e. is never a weight, 
1 J 

it follows that (4.15.6) gives the desired set S in (4.13.3). 

[4.16) Finally, we must rule out the possibility that w< = 0 for all k 
(equivalently, "la = 0) when a zero eigenvalue for A 

P 
occurs. But then 

(* N* 
W<<(P)). 

= o < = 0 as well, so y + 6 would vanish on p^m © a, a fortiori on the 

roots of S. This contradicts the regularity of w(X + 6G). 

§5. THE EXTENDED CONJECTURE OF BOREL; ADDITIONAL IDEAS AND RESULTS 
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5.1) We now drop (1.1, e): we no longer assume that the symmetric space 
D = G/K is Hermitian. 

(5.1.1) Definition: D (or G) is said to be equal-rank if G admits a compact 
Cartan subgroup, i.e., if 

rkc K = rkc G. 

(5.1.2) Remarks: i) If D is Hermitian, then D is equal-rank (see 
[23: p. 383]). 

ii) If D is equal-rank, then its dimension is even, 2m, for 
the non-compact root spaces of g come in ± pairs, and give g/k. Thus, one 
may speak of m as the "complex dimension" of D. 

(5.2) On the basis of the results in f101 . Borel extended (1.6.1) to: 

(5.2.1) CONJECTURE (1983). Let X be an arithmetic quotient of an equal-rank 
symmetric space, X* a Satake compactification of X such that every rational 
boundary component is also equal-rank, and E a metrized local system as in 
(1.1, d), Then *̂ (2) ̂ *»^ is quasi-isomorphic to (* N*(P)).W<<< 

[5.2.2) Remark: Under the hypothesis of (5.2.1), one knows at least that 
H'(2)(X,E) is finite-dimensional [10]; d has closed range. 

We should say a little here about Satake compactifications, though we refer 
the reader to [47: (1.6), (A.2)] and [46]. A symmetric space D of rank r 
[i.e., r = rkßG) admits 2r-l Satake compactifications, one for each non-empty 
subset 0 of a set of simple roots. The corresponding boundary components are 
described in terms of certain parabolic subgroups of G, depending on o (see 
[46: (2.10)]). Under two reasonable assumptions, one can define from this a com­
pactif ication of arithmetic quotients of D, using only the rational boundary 
components ([46: §3]). 

Consider the case where the Q-rank of G equals the R-rank r. To eliminate 
a few anomalous cases, assume that r > 2. The type-B real root system occurring 
in the Hermitian case (compare (2.4.2)) has one simple root $ at one end of the 
Dynkin diagram, that is distinguished by its length. The Baily-Borel Satake com­
pactif ication is the one determined by 0 = { 0} (see [46: (3.11)]). Under the 
assumptions of this paragraph, Conjecture (5.2.1) adds to (1.6.1) only the analo­
gous compactifications for G = S0(p,q) with p + q odd, and for G = Sp(p,q), 
groups whose real root systems are also of type B. As far as I know, the 
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coniecture has not been verified for these, even when r = 3. 

(5.3) Before continuing, we observe that most o± the considerations ot 
(2.4)-(2.5) are quite general, and can be done for arbitrary semi-simple G; for 
SO(p,q) or Sp(p,q), it goes through verbatim. 

In [15: (2.6)], Casselman showed, in effect, that the determination of the 
sign in the weight w^ (recall (2.7,i), (2.5.9)), which seems to depend on more 
delicate information than just the degree q (of Hq(n,E)), actually follows a very 
simpler rule in cases of interest: 

(5.3.1) PROPOSITION. Let G be a semi-simple algebraic group over R, P a_ 
maximal R-parabolic subgroup, E a finite-dimensional representation of G that 
is isomorphic to its complex conjugate contragredient. Write P = M'A'N in a  
real Langlands decomposition, and use this to replace (2.4.1). Suppose that p 
is an irreducible constituent of Hq(n,E) as a representation of M1 that is also 
isomorphic to its conjugate contragredient. Then the coefficient in (2.5.9) is 
zero exactly when q = 1 2 dim n, and is positive exactly when q 1 

2 dim n. 

The bearing of (5.3.1) on (5.2.1) comes via the following sequence of remarks. 
The condition that G be equal-rank is equivalent to the assertion that every 
representation E is isomorphic to its conjugate contragredient [10: §1]. On the 
other hand, M' is generally not equal-rank, so if p is generic, it would fail 
to satisfy this condition. 

When G is defined over Q, it need not have the property that every maximal 
O-parabolic subgroup remains maximal over R. (In general, one would have the 
rational and real Langlands decompositions of P related by Mp r> M1, Ap CA1. 
However, if, for instance, G is Hermitian, and its Lie algebra is simple over (R, 
then it does have that property [3: (2.10)]; the non-simple case can be reduced 
to the preceding by the use of restriction of scalars functors [3: §3]. 

From [10: (2.2), (5.6)], the L2-cohomology with coefficients associated to a 
representation that is not isomorphic to its conjugate contragredient vanishes 
completely. Thus, the condition on p in (5.3.1) is necessary for taking its 
contribution to 

[5.3.2) Ĥ 2)(XA, H'(n,E)) 

seriously. Recall, however, that we have imposed the weights a 
W2 in (2.7, ii). 

(5.4) For simplicity, assume that we are in the generalized Baily-Borel 
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setting in what follows. If one could ignore the weights a then (5.3.1) would 
reduce (2.7) to 

(5.4.1) PROPOSITION [8: (2.3)] If q 2 dim n, then 

HP2)(XA,Hq(n,E)) =0 for p > j - q. 

Of course, we cannot just forget about wa The function f in (2.4.3] 
blows up at the boundary of DA see [47: (3.17)]). In view of the direct re­
lation between wa 

w2 
and wa Wl [2.5.9), one has an inclusion 

(5.4.2) L(2)(XA,H^(n,E)) • L*2)(XA,H^(n,E); w2) 

whenever a 
wi is a negative exponential, and the reverse (dual) inclusion when 

a 
wi is positive exponential. By comparing the cohomology of the corresponding 

2 A unweighted and weighted L sheaves on a suitable compactification of X , it may 
be possible to convert (5.4.1) into a proof of the conjecture (cf. [47: (3.30)]). 

(5.5) What is different about the non-Hermitian case (aside from the absence 
of the complex structure)? The considerations of (4.15) are no longer available 
to give the key Prop. (4.13.3). Perhaps the latter, or some close variant of it, 
remains valid. 

A nice little formula, which was not explicitly needed in either §3 or §4, 
is that for Hermitian G, the coefficient of a simple root in the restriction of 
6̂  to a maximal Q-split torus gives the complex codimension of the corresponding 
singular stratum [47: p. 394, (A.l)]. This is proved recursively. The formula 
fails to hold already for S0(p,q) and Sp(p,q), for the induction breaks down, 
though only at the first step. Likewise, the equality (3.4.1) is false for these 
groups, with the left-hand side greater in the former case, smaller in the latter. 

Furthermore, it seems that the structure of the restriction from the real to 
the rational root system (compare [3: (2.9), (3.2)]) needs to be understood before 
(5.2.1) can be proved in full generality. 

(5.6) We close with a remark that might be applicable to simplify the Saper-
Stern argument. Can one verify a single a priori estimate on X that proves the 
vanishing of the weighted L2-cohomology in (2.7.2, ii)? (The answer "no" seems 
quite possible, by the way.) 

To this end, we work out the general formula comparing a weighted Laplacian 
to the unweighted one, i.e., for a conformal change of metrization. Let V be 
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a metrized local system on the orientable Riemannian m-manifold M. The star-
operators 

(5.6.1) i) * : L*(M,V) - Lm_1(M,V")), 
ii) *g : Lj(M,V;g) - L^CM.V^g"1) 

compare by 

(5.6.2) g = g* • 

Of course, d is intrinsic, but the adjoint depends on the metrization through 
(5.6.2), and 

(5.6.3) (d*)g cj, = d*(j> - *" -1 dX a * <{>) ), 

where X = log g. From here, one gets 

(5.6.4) y = A(J) - d* -1 (dX a *<j>) - * 
-1 (dX a *d(j>) . 

A little manipulation shows that the conditions of (4.2.1) hold for the weighted 
L2 complex, i.e., there is a constant k > 0 with 

(5.6.5] wx<w 21 K w< 

if one has 

(5.6.6) |AcJ>| 1 C < 

for some C > 2 sup 
M 

dX| 2 In our case, g = wa and the lower bound for C can 

be computed from the formula for f in (2.4.3); cf. [47: (3.17(2)), (3.18(1))]. 
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