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§0. Introduction

0.0 By the celebrated work of Beilinson-Bernstein of the vanishing
theorem on the D-modules over flag varieties ([BB]), we can study
representations of Lie group through the geometry of flag varieties.
In this lecture, we review this and add what happens when the

infinitesimal characters are not regular.

0.1 Let G be a reductive group and X its flag variety. Let g
be the Lie algebra of G, t the Cartan algebra and A the root
system. For )et*, let Xy be the corresponding character of the
center Z(g) of the universal enveloping algebra U(g). We
normalize this so that Xy = X for w in the Weyl group W.
For A€t*, set Uk(g) = U(g)/U(g)Ker Xy+
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M. KASHIWARA

Then we can construct a twisted ring of differential operators
EA on X such that F(X;Qk) = Ux(g). Beilinson-Bernstein's
achievements are summarized by the following three theorems (The last
one is an easy consequence of the first two)

Theorem A If A is regular and anti-dominant, any coherent Qx—module

is generated by global sections.

Theorem B If A is anti-dominant, then any coherent Qx-module
M satisfies Hn(x;g) =0 for n#0

Theorem 0 If ) is anti-dominant and regular, the category of

finitely generated Ux(g)-modules are equivalent to the category of
coherent D

-modules.

A

In [BK], Brylinski and Kashiwara proved these theorems in a
very special case (XA trivial, M 1is U-equivariant) in an ad-hoc
manner, in order to prove the Kazhdan-Lustzig conjecture.

0.2 Let GR be a real semisimple group, K a maximal compact

R
subgroup of GR and let G and K be their complexification.

Let g and k be their Lie algebras. Then by Harish-Chandra [H],
admissible representaion of Gr is described by (g,K)-modules, so

called Harish-Chandra module.

By Theorem 0, (g,K)-module with infinitesimal character Xy
is described by K-equivariant Qx—module.

The structure of irreducible K-equivariant D,-module M can

be described by using the geometry of K-orbits. %he crucial point
here is that X has only finite many K-orbits. First the support
of M 1is a closure of a K-orbit S. Assume, for the sake of
simplicity, Xy, is the trivial infinitesimal character. Then, M
determines a K-equivariant local system F on S, and M is
completely described by the pair (S,F). If X3 is not trivial, we
have to replace F with a twisted local system. When )\ is not
regular, we have to put some auxiliary condition on F(see §9).

0.3 Except the irregular case, the contents of this article are

more or less known. In the appendix of the paper by Hecht, Milicic,
Schmid and Wolf [HMSW], we can find also the review of the result
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REPRESENTATION THEORY AND D-MODULES ON FLAG VARIETIES

of Beilinson-Bernstein. Also see Ginsburg [G].

0.4 We did not include the following important topics concerning
D-modules on the flag variety.

(1) The derived category of Ql-modules are equivalent to that of
Qw)‘—modules for any weW and Xet*. This is obtained by
Beilinson-Bernstein ([BB]2).

(2) There is a one-to-one correspondence between K-orbits of X
and GR-orbits of X by Matsuki [M]. This gives the construction
of representations of GR corresponding to Harish-Chandra
modules by W. Schmid - J. Wolf. See [SW], I[K].

(3) Relations with representation of the Weyl group, the affine
Weyl group and their Hecke algebras, Hodge modules, invariant
eigendistributions on the group.
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§1 Vanishing theorem for cohomology groups of modules over gx-rings.

1.1 Let (X,gx) be a commutative ringed space over a commutative

ring k. A (k,gx)-ring is a sheaf of rings A with a ring homo-
morphism QX

in the center of A. We do not assume that the image of Ox

> A such that the image of k - QX + A is contained
+ A is
contained in the center of A.

If there is no afraid of confusion, we simply call gx—gigg for
a (k,gx)—ring. We shall study in this section the criterian for

the vanishing of cohomology groups of modules over gx—rings.

1.2 Let us recall Serre's result on ample invertible sheaves.
Let k be a commutative field and let (X,gx) be a projective

variety over k.

Definition-Theorem 1.2.1 Let L be an invertible Oy-module. Then

the following conditions are equivalent.

(1) There exists an integer r > 0 and a closed embedding

j:x & PV such that 1%= j*o (1).

(2) For any pair of distinct closed points x,y of X, there exists
r >0 and s GF(X;Lar) such that s(x)=0 and s(y)#0.

(3) For any coherent sheaf F, FGL®r is generated by global

sections for r > 0 (i.e. IYX;FGLGr) ® QX > F@L&r is surjective),

(4) For any coherent gx-module F, HJ(X;F@LQr) = 0 for Jj#0
and r >» 0,

If these equivalent conditions are satisfied, we say that L
is ample.

Here, for s €T(X;L) and x€X, s(x) is the image of s 1in

(gx’x/gx) ® L, with the maximal ideal m  of 9X,x'
=X,X

1.3 Let (X,Qx) be a projective scheme over k and L an ample
invertible Qx-module. Let A be an Qx-ring. Throughout this
section, we assume
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REPRESENTATION THEORY AND D-MODULES ON FLAG VARIETIES

(1.3.1) A 1is quasi-coherent as a left Qx—module.

Theorem 1.3.1 Under the condition (1.3.1), the following conditions

are equivalent.

(1) For any left A-module M, quasi-coherent over QX’ M is

generated by global sections (i.e. A ® r(X;M) M is surjective).

(2) For n>»0, A ® L@(—n)

%%

is generated by global sections.

Proof. (1) = (2) trivial.

(2) = (1) M is a union of coherent sub—gx-modules F. For such an

F, there exists a surjective morphism QXN > F ® L®n for ns 0.
Hence (A ® 18N +A ® F is surjective. Since A ® &0 s
Qx 9X N Qx
generated by global section, there exists A" -—> A ® F. Hence the
(0]

=X
image of A ® T(X;M) ~» M contains F. This shows (2) = (1).

1.4 Let (X,Qx), L and A be as in the preceding sections.

Theorem 1.4.1 Under the condition (1.3.1), the following conditions
are equivalent.

(1) For any left A-module M, gquasi-coherent over O

Oy HY(X;M) = 0
for n#0.

(2) For r >0,

r(x;a ® .2°F) o r(x;L8
9%
is surjective.

) > T(X;A)

(3) For r » 0,

a (1% e rx;1%)%) o a
k o, ~

has a cosection (i.e. a left inverse) as right A-modules.

(4) For r »0,
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A8 (La-r
(o)

® r(x;1%%)) > a

Remark For r 2 O, Ox ® P(X;Ler) > L@r gives 0X > Lgr@F(X;LQr)*
[emarx X . 54

o QXGF(X;Ler)*. The morphisms in (3) and (4) come from

and 12
them.

Proof (3) & (4) follows by the operation of the functor HomA(*,é).
(2) & (4) obvious. -
(1) = (2) follows from the exact sequence

0+>M~>ae (LT%erx;1%%)) »a >0 ana mL(X;M) =0

(3) = (1).
We have
(1.4.1) B (X;M) = lig H" (X;F)

where F ranges over coherent sub-gx—modules of M. For such an F,
we shall show that Hn(X;F) > Hn(x;g) is the zero map for n#0.

or

We have H"(X;FOL®Y) = 0 for n#0, r > 0.

Set V = F(X;Lgr). By letting @A M operate on A » (L@r&v*) ® A,
a k [0)
=X
M > (1.8%ev*) © M has a cosection by (3).
k Qx

Now, letting H™ (X; %) operate on a commutative diagram

> L ® V* @ F

we obtain a commutative diagram
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REPRESENTATION THEORY AND D-MODULES ON FLAG VARIETIES

1 (x;F) — B2 (X;18F @ v* @ F)

RO

B (x;M) —— (12T 0 v+ o M).

r

Since Hn(X;L ® V¥  F) = 0 for n#0, boa = 0. Since b has a

cosection a = 0. By (l.4.1), we have Hn(X;g) = 0. Q.E.D.

1.5 Let (X;QX), L and A be as in §l.3. Set R = T'(X;A).

Let Modqc(é) be the category of left A-modules quasi-coherent over
QX and Mod(R) the category of left R-modules. We define the
functors

T: Modqc(é)-+ Mod (R)
and

®: Mod(R) ~ Modqc(é)
by
F': M » F(X;l\_d), ®: N » é@RN.

Then ® and T are adjoint functors; i.e.
Hom(N, I'(M)) = Hom(®(N),6M).

Proposition 1.5.1 (a) If the equivalent conditions of Theorem 1.4.1
are satisfied, then T is an exact functor and T °® = id.

(b) If the equivalent conditions of Theorem 1.3.1 and those of
Theorem 1.4.1 are satisfied, then To® = id, ®ol = id.

Proof (a) The first assertion is obvious. Let 0 « M <« R(I) « R(J)
be a free resolution. Then we have 0 « AGM « é(I) « é(J).

Since TI(X;*) is an exact functor, the rows of the following diagram

0 « rx;aem) « rx;aM) < rox;al9))

f 1 1

0 M A A

are exact. Hence M 3 I'(X;AgM).
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(b) The proof is similar as that of (a). For M € Ob Modqc(é),
there exist an exact sequence

(1) (J)

0« M+« A +« A .

This gives the exact sequence

0« r(x;M « T < RO,
Operating ©, we have
0 « aer(x;m « a'D «al),

Hence A ® I'(X;M) > M is an isomorphism.

Proposition 1.5.2 Assume the equivalent conditions of Theorem 1.4.1

Let E be the full subcategory of Modqc(é) consisting of M such

that M is generated by global sections and M has no non-zero
subobject N such that T (X;N) = 0. Then TI: E > Mod(R) is an

equivalence of categories.

Proof We shall show first T is fully faithful. For two objects
gl and EZ of E, ®: Hom(ﬂl,gz)-+Hom(F(§1),F(§2)) is injective
because &1 is generated by global sections. Let f£: r(gl) > T(MZ)

be a homomorphism. Since the kernel N of é@RF(gl) - M satisfies

r(N) = 0, the composition of N -» é@RF(gl) > é@RF(gz) > g; is zero,
and hence, this gives a homomorphism g: Ml > M,. It is evident
that ¥(g) = f.

Let us show T: E -» Modqc(R) is essentially surjective. For
an R-module N, Let I be the set of subobjects M of AQRN such
that T (X;M) = 0. Then I is inductively ordered and the sum of
any two subobjects in I belongs again to I. Hence I has the

largest element M Then M = (éQRN)/ﬂo is an object of E and

2o
satisfies T (M) = N.

Corollary 1.5.3 Assume the equivalent conditions of Theorem 1.4.1.

The set of isomorphic classes of the simple R-modules is isomorphic

to the set of the isomorphic classes of the simple objects M in

Modqc(é) satisfying T (X;M) # 0.
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§2 Twisted ring of differential operators

2.0 Let X be a complex manifold. Let Dy be the ring of differ-
ential operators on X. We shall call twisted ring of differential
operators an Qx—ring locally isomorphic to QX' If L is an
invertible gx-module, L@QXQ_XQQXL9 1 gives such an example.

In this section, we shall study the properties of such QX-

rings.

2.1 Let (X,Qx) be either a smooth algebraic variety over a field
k of characteristic 0 or a complex manifold. The following
discussions are almost same in the both cases. We shall recall
the properties of the sheaf QX of differential operators. Let OX
be the sheaf of tangent vector fields. Let Fk(gx) be the sheaf of
differential operators of order at most k. Then this gives an

increasing filtration called the order filtration of EX that satisfy

the following properties.

(2.1.1) F.(Dg) =0 for m<O

(2.1.2)  F(Dy) = O,.

(2.1.3)  F_ (D) = {PEDy; [P,040€F (D)} for m20.
(2.1.4) Dy =UF_ (Dy)

(2.1.5) le(gx)-sz(gx)c:le+m2(9X)

(2.1.6) [le(gx), sz(Qx)]CIle+m2_l(QX)

F _ N
(2.1.7) gry (Dy) = F)(Dy) /Fy(Dy) = Oy

2.1. = Ty =
(2.1.8) s(0 ®gr Dy = OF_ (Dy)/F _, (Dy)

where S(@X) is the symmetric algebra of @x over OX’ and the
arrow in (2.1.8) is given via (2.1.7).
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2.2 Let O Fk(Dx) > Sk(ex) be the homomorphism given by S(OX)E
—F - .

gr Dy. Then for a¢€ Sp(ex) and b€ sq(ex) taking Per(gx) and
Qqu(Qx), we define

{a,b} = (fe,Q1).

Ip+q-1

This does not depend on the choice of P,Q. We extend this by the

linearity:
{1} S(GX)QS(GX) > S(@x)-

This is called Poisson bracket. This satisfies the following

well-known properties:

(2.2.1) {a,b} = -{b,a}

(2.2.2) {ab,c} = b{a,cl}+aib,c}

(2.2.3) {{a,b},c}+{{b,c},a}+{{c,a},b} = 0.

(2.2.4) If VEBy and aegx, then {v,al}=v(a).

The following properties are easily checked.

Lemma 2.2.1 (2.2.1), (2.2.2) and (2.2.4) characterises { , }.

Lemma 2.2.2 Let xiegx (i=1,+++,n=dim X) be sections such that

dx; are linearly independent. Then for m2l, and aiesm_l(ex)

with {ai,xj} = {aj,xi}, there exists unique uESm(Ox) such that

{a,xi}=ai.

Proof Let {v;} be the dual base of {dxi}. Then S(6y)=

_ of . . . .
gx[vl,-o ’Vn] and {f,xj} = o This shows immediately this lemma.

2.3 We shall study Qx—rings with the similar properties as EX' Let
A be an Qx-ring with increasing filtration F(A) satisfying

(2.3.1) A =UF_ (a)

64



REPRESENTATION THEORY AND D-MODULES ON FLAG VARIETIES

(2.3.2) Oy 3F ()

(2.3.3) Fm(§)=0 for m<0

(2.3.4) le(é)-sz(g\_)Clemz(é)

(2.3.5) [F

(a), F_ (A)1CF (A,
ml —= m, "= 1

m, +m,
Then ng(é)=$(Fm(§)/Fm_1(é)) has the structure of commutative

ring. Moreover [*,*]:Fm (é)@sz(é) > F

m1+m2_1(é) gives the
bracket { , } on qu(é).
Associating to PeFl(é), the derivation
9_X3a > [Pra]EFO(é) g Qx:
. F
we obtain grl(é) > Og-
Assume further

(2.3.6) gri(é) > 0y 1is an isomorphism.

This gives a ring homomorphism S(@x) > ng(é). This preserves the
bracket { , }.

Lemma 2.3.1 Under the conditions (2.3.1)-(2.3.6), S(8,) » gr' (a)

is injective.

Proof We shall prove that, for m22 the injectivity of ¢h_1:
Sm_l(ex) > grm_l(é) implies the injectivity of ¢m: Sm(ex) > grﬁ(é).
Assume uESm(OX) satisfies %h(u)=0. Then for any aegx,

?ﬁ_l({u,a}) = {#,(w,a}l = 0, and hence {u,a}=0. Then Lemma 2.2.2

implies u=0.

Proposition 2.3.2 Under the conditions (2.3.1)-(2.3.6), the follow-

ing conditions are equivalent

(2.3.7) S(ex) > ng(A) is an isomorphism.

(2.3.8) F (A) = F;(A)F _, (&) for mzl.
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(2.3.9) F_(B)={PEA; [P,aleF _,(A) for any a€0y} for mx0.

(2.3.10) The condition (2.3.9) holds for any m2l.

Proof
(2.3.7) & (2.3.8) clear by the preceding lemma.

(2.3.7) = (2.3.9) It is enough to show
= . (o) 20.
F (A)=(PeF ., (A); [P,aleF _,(A) for any a€Oy} for m
This follows from
{ues ., (04) {u,041=0}=0 for m20.

(2.3.10) => (2.3.7) Assuming that S,(0y) » grg?(@x) is an
isomorphism for j<m, we shall show the surjectivity of Sm(ex) >
grﬁ(é). Fgr j<m, let 0y Fj(é) > Sj(ex) be the composition
Fj(é) > grj(é) 2 Sj(ex). Let xl,...,xnegx be such that dxl,---,
dxn forms a base of QX' For PEFm(é), set ui=cm_1([P,xi]).
Since [[P,xi],xj]=[[ij],xi], {ui,xj}={uj,xi}. Hence there exists
uESm(ox) such that {u,xi}=ui. Let QEFm(é) be an element that
gives the image of u by Sm(ex) > grﬂ(é). Replacing P with P-Q,
we may assume that [P,xi]GFm_z(é) for any i. Since y: a » [P,al
is a derivation from 0, to grﬂ_l(é) and y(x;)=0, we have y=0.
Hence, we have [P,Oyl€F _,(A). This shows PEF _,(3a).

Q.E.D.

Definition 2.3.3 An gx—ring A is called twisted ring of differ-

ential operators if it admits a filtration F(A) satisfying (2.3.1)-
(2.3.6) and the equivalent conditions (2.3.7)-(2.3.9).

Remark that if A 1is a twisted ring of differential operators,
then the filtration F(A) is uniquely determined by (2.3.3) and
(2.3.9). We call F(A) the order filtration of A.

2.4 Let A be a twisted ring of differential operators. Let Fl(é)*
be HomOX(Fl(é),gx) with the left gx-module structure of Fl(é).
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Then, similarly to the de Rham complex, we can define a complex:

d a ? a2
Ox > Fy(A)* — AF, (R)* — AF (A)* — .
P p+l

Here Ad: /\Fl(é)*—)/\ Fl(li)* is defined by

(df)(POA-o-APp)=z(-1)iol(pi)(f(pOA---Api_lApi+lA---App))

i+3 .
+ 1 (L TTIE(IR;  PYIARGA s AR A
i<j

RIS SR SRS P

Pit1
. 1
The exact sequence 0 > Oy - Fl(é) + 6y >0 gives 0~ Qx > Fl(é)* e

QX > 0 and we obtain a short exact sequence of complexes.

0 0 0
| } }
d 1 d R 2 R 93 teee
0 —> QX > QX > ?X ) f —
(2.4.1) ¥ 4 ¥ 2 3
0 — QX _— Fl(é)* —_ AFl(é)* —————9AFl(é)* — e
¥ + +1 +2
d > > >e 00
0 > % > S = ’
v + +
0 0 0

Assume that there exists iEFl(é)* that is mapped to 1 by2 Fl(é)*
QX (such an 1 exists locally). Then n=di belongs to Qx and
satisfies dn=0. Remark that n corresponds to curvature form.
Take another section i' of Fl(é)* satisfying the same
property as i and set np'=di'. Then ¢&=i'-i 1is a l-form and

n'=n+dg.

2.5 Conversely let n be a closed 2-form. Let us define an gx-ring

én the gx-algebra generated by Oy with the fundamental relation

(2.5.1) Je ox = én is left gx-linear,
(2.5.2) [3(vy),3(vy)I1=3 ([vy,vy])=<n,v AV, > for VyrV,€0;.
(2.5.3) [§(v),al=v(a) for veox, aegx.
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Then we can check easily that én is a twisted ring of differential
operators.

If A, i and p are as in §2.4, then A=Ap.

If , is a closed 2-form and ¢ is a l-form then we have a

canonical isomorphism A = by 1_\n E) G)X 3V —> v—<f ,v>€A

n - én+dg mdg”

Proposition 2.5.1 If X is a complex manifold, then a sheaf of

twisted differential operators is locally isomorphic to Dy

In fact any closed 2-form is locally the exterior derivative of
a l1-form.

2.6 Let Qi be the de Rham complex Qg > Qi > Qi >ees and let

ozl(Qk) be its subcomplex 0 - Qi - Qx >eee

Theorem 2.6.1 The set of isomorphic classes of twisted rings of

differential operators is isomorphic to H2(X70>1(Qi)).

Proof We can calculate Hz(x; °>1(9§)) by the Cech cohomology.
Let Y = {Ui} be an open covering. Then Hzﬂc; 0,1(Qg)) is given
by -

2 1
n; €N(U;;503), £54€T (Uint; 2)

such that
(2.6.1) dni=0, ni-nj=d€ij on Uint
(2.6.2) Eij+€jk+€ki=0 on UiﬂUjﬂUk.

Then we can patch twisted rings of differential operators An on

1

Ui by

A | =A | A |
-—n, 'U.NU. —n.+dEg. . .NU, - N . .
n; 'U;NU nytdg; 5 05N0y ny 'U;NU;

and obtain a globally defined twisted ring of differential operators.
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Conversly if A 1is a twisted ring of differential operator, then
there exist an open covering ¥ = {Uj} of X and a section ij:
OXIU] > Fy (é)|UJ of 01|U]. As in §2.4 i defines a closed 2-form
Ny and 13_lk gives a l-form ¢ Sk’ so that (2. 1 1) and (2.6.2)
are satisfied. Hence they give an element of 2 Ql,c>l(QX))

It is easy to see that they do not depend on the choices
introduced there and these two correspondences are inverse to each

other.

Corollary 2.6.2 If X is a complex manifold, the set of the

isomorphic classes of twisted rings of differential operators is

isomorphic to Hl(X;d Oy) -
In fact, 0>1(Q§) is gquasi-isomorphic to dgx[—ll.

Remark 2.6.3 In an algebraic case, a twisted ring of differential
operator is not locally isomorphic to EX even in the etale

topology. In fact, for a closed 2-form n, An 1is isomorphic to EX

if and only if n is a coboundary.

Remark 2.6.4 Let A be a twisted ring of differential operators.
Then

Aut () =End ()=H' (X; 0, 05) =Ker (d: T(X;2%) » I(X;02)).

>1 X
Here Aut and End signify the sheaf of automorphisms and endo-
morphisms as O,-rings. For a closed l-form w, the associated

X
automorphism of A is Fl(é)a P +— P+<01(P),w> € Fl(é).

Remark 2.6.5 Let A be a twisted ring of differential operators

and L an invertible O,-module. Then L&, A® L® 1 is also a
X 9%~ O

twisted ring of differential operators. Then the cohomology class

c(L@é@Le-l)€ 2 (x; 0, ') corresponds to [Ll+c(d). Here [L] is

the image of the class of L in Hl(X;QX*) by the homomorphism
Hl(X:Qx*) - HZ(X; 0,1%") given by QX* _dlog Ker(dl Qi > Qy )»

ogln'[ll. More generally, for any A€k (k is the base field when
X 1is algebraic and k=C when X is a complex manifold), we can
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define 1°%aer® % such that c(1®%eaer®})=c(a)+r[L]. 1In fact take

an open covering {U.} of X and s;er(u;,L) such that L=Ogs,.
Then we can patch A|U and élu. by (AIU.)IU.HU. 3P —

(s /S )P (s, /s )~A G(QIU_)IU_GU_. Remark that for any

ae g;, Pr»—aAPa A is a well-defined automorphism of A (See Remark
2.6.4). Hence if s 1is an invertible section of L and P is

=X 2N -2

a section of A, SAQPQS gives a section of L "®ASL

Remark 2.6.5 The map from the set of the isomorphic classes of

twisted rings of differential operators to Hz(x7°21(9§)) is also
given as follows.

Let us consider the diagram (2.4.1). Since the columns are
exact, it defines a morphism in the derived category [O Ql > eee]
— 0>1(Qx)[2] Hence we obtain H' (X;9g) ~» H? (X,o>1(g )) The image

of 1€H (X; QX)C:F(X 0. ) gives the corresponding class c(A)€
H (X; o>l(QX)).

2.7 If A 1is a twisted ring of differential operators, then its
opposite ring é?p is also a twisted ring of differential operators.
If c(é)EHz(x;o>l(Qi)) denotes the corresponding cohomology class,

then c(a%®) = [0§"™-c(a). Here [oI™

given in Remark 2.6.4. We omit its proof We just remark that it

le 2 (Xj05,9%) 1is the one

follows from the following fact:

LO (V) (T])
(2.7.1)  1f . . 8-1 e-1, %1
.7. we define @: v »-q ven + n @————a———— ® n, then
@ defines a left Qx—linear isomorphism Fl(é?p) > Fl(wg_leégmx)
where wX=Q§lrnX and newy. The diagram
op 1
O — F, ™) ~ %
-1
®-1
Oy — Fy(uy "®ABwy) ————— Oy
o
1
o
commutes. Moreover, P([vy,v,1)=[P(v,),P(v,)] for v,,v,€F,(A P).
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This shows c(é?p) = -c(mg—l

Remark 2.6.5.

eépwx) by the construction given by

2.8 Let f: X > Y be a morphism of smooth algebraic varieties or
complex manifolds. Let éY be a twisted ring of differential
operators on Y. Let f*(A,) be 0,8 _; f-léY. Then f£*(a,) is a
£f 70
=Y
right f-lé -module. Let End, (f*A,) be the ring of right f_léY-

Y
linear endomorphisms of f*éy.— Let us define subsheaves Fm of

EndAY(f*éy) inductively by

(2.8.1) F 0 for m< 0

m

(2.8.2) Fm

{PeEndéy(f*éy); [p,001€F 1} for m2 0

Set f#éy =UF,.

Proposition 2.8.1 f#éY is a twisted ring of differential operators

with Fm(f#éy)=Fm, and we have a Cartesian diagram

(2.8.3) Fl(f#éy) s f*Fl(éY)

.

*
Ox — £ OY .

Proof It is enough to check F0=9X and (2.8.3) by Proposition

(2.3.2). The other properties are easily derived by the definition
of F_.
m
Lemma 2.8.2 {Pef*(éy); [P,a]ef*Fm_l(éY) for any ang} =f*Fm(§Y)
for mz20.

Proof Take yl,...,yne-gY such that dyl,..-,dyn forms a base,
and Virees V€ Oy be its dual base. Then P +—r [P,yi] gives a
homomorphism from f*sm(eY) > f*sm_l(eY). If we identify f*S(OY) =
9X®k[vl,---,vn], then P — [P,yi] is given by a/avi. Hence for
m21, {PEf*Sm(OY); [P,yi]=0 for any 1i}=0. This shows

{Pef*Fm(éy); [P'yi]Ef*Fm-z(éy)}czf*Fm-l(éY)‘ The lemma follows
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immediately from this.

Proof of Proposition 2.8.1 (continued) If ¢€F0, then for aE€ Q.Y'
[#(181) ,a]=0. Hence (0(101)69_X by the preceding lemma. Hence
®(a®P)=ap(181)P= P(1@1)a@P for a€O, and PEA,. Thus QE€O,.
Assume §9€F1. Then for a€O0, [¢,aleF,. Hence a— [¢,a]€gx
gives a derivation of ex. If we denote it v, then [¢Xl®l),a]=v(a)egx.
Hence ¢(1®1)Ef*F1(§Y) and its image on f*OY coincides with the
image of v. Hence we have F, > f*Fl(éy)xf*eYGX. It is easy to
check that this an isomorphism.

2.9 Let f: X > Y and AY be as in the preceding section. Then
f*éY has a structure of (f Ay, £ AY) -bimodule. If M 1is a left
éY—module, then

rh
*
=
1
O
®
Hh
=
R

1 M=f*A@ | £ M

Oy £ 2y

has a structure of left f#éy-module.

2.10 Let f: X+ Y and g: Y » 2 be two morphisms of smooth
varieties and let éz be a twisted ring of differential operators on
Z. Then we have a canonical isomorphism

*a

"

(2.10.1) £tg (gof) *a,.

Z
In fact, g*AZ is a left g#éz-module. Hence f*g*A, =(gof)*A is a
left f# # Z-module. Hence we obtain f# #A > End((gof)*A ). It
is easy to prove that this gives an 1somorphlsm from f#g#A to the
subring (gof) A of End((gof)*éz).

2.11 We have the following lemma, whose proof is left to the reader.

Lemma 2.11.1 Let f: X > Y be a morphism of smooth varieties, and
éY a twisted ring of differential operators on Y. Then
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# ,,0p,0p _ 0 1
eyt . ‘*’x/Ye (A )90 X/Y
_ odimx dimy, -1
‘ll:_lgie_ wx/y - Qx Q(QY ) .

. op . . # .,OP, OpP_ % (aAOP ;
since f*(a,") is a right £'(A;") "-module, f*(Ay )@o x/y is a

right f#(éy) module by this lemma. Together with the right module

structure on f*(égp), gives a (f_léy, f#éY)-bimodule structure on

f*(AYp)ew . We set

(2.11.1) Ay, —f*(AYp)ew £ AYe -1, U
—Y

/Y

Then for a left f#éY module M, f (éY«

M) is a left éY_
module. (AY)
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§3 Twisted sheaves and regular holonomic modules over twisted
rings of differential operators

3.0 We know that the derived category of Qx-modules with regular
holonomic Qx—modules as cohomology groups is equivalent to the derived
category of ¢X-modules with constructible cohomologies. In the case
of twisted rings of differential operators, we have the similar
theories. However, we have to introduce the notion of twisted

sheaves that we are going to discuss in this chapter.

3.1 Let (X,QX) be a smooth algebraic variety defined over a field
k of characteristic O or a complex manifold. The notion of
regular holonomic system can be generalized in the case of twisted

rings of differential operators.

3.2 Let A be a twisted ring of differential operators on X and
let F(A) be the order filtration of A.

3.3 For a coherent A-module M, a filtration F(M) over F(A)
(i.e. F (@A)F MCF . (M) is called a good filtration if there
exists locally a finite number of sections {ui} of M and integers

m; such that F (M) =ZFk_mi(é)ui. Such a filtration exists

always at least locally.

3.4 If F(M) 1is a good filtration, then ngg is a coherent
(ngé)—module. If we denote T7: T*X » X, the cotangent bundle of X,
then we have a ring homomorphism

F
(3.4.1) gr A > T4Onuy-

In the algebraic case, (3.4.1) is an isomorphism. We set Ch(M)=
supp(g,I,*x ® -1 F nhlngM) and call this the characteristic variety
™ Tgr A

of M. Since this is independent from the choice of F(M), this is
a well-defined closed subset of T*X.
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3.5 We have

Proposition 3.5.1 Ch M is always involutive. (i.e. the ideal

defining Ch M 1is closed under the Poisson bracket).

In particular the codimension of Ch M is < dim X at any point of
Ch M.

Definition 3.5.2 A coherent A-module is called holonomic if
codim Ch M = dim X.

Let M be a holonomic Qx—module and A = Ch M. If there exists

a good filtration F(M) such that flngg = 0 for any fé-ngé
with fIA = 0, then we call M regular holonomic.

3.6 If X is an open subset of T and if M = D/DP with a non-
zero differential operator P, M is always holonomic. Moreover M
is regular holonomic on a neighborhood of x=0, if and only if 0 is
a regular point of the equation Pu=0 in the classical sense; that
is, if we set P=j20aj(x)3j, with ap # 0, ord aj 2 ord am-(m-j).

Here ord is the order of zero at the origin.

3.7 Since any twisted sheaf of differential operators is locally

isomorphic to EX (in the complex case), many properties of regular

holonomic Qx—modules are valid for those over A. Here are some of

their properties.

Proposition 3.7.1 (i) A coherent submodule and a coherent quotient

of regular holonomic module is regular.

(ii) If M' » M > M" is an exact sequence of coherent modules and

if M' and M" are regular holonomic, then so is M.

3.8 In this section, we assume X is a smooth algebraic variety,
and we work in the algebraic category. Let j: X<«+X be an embedding

into a proper smooth variety X. For any holonomic Ex—module M,

75



M. KASHIWARA

jxM is always holonomic. If j,M is regular holonomic, we say
M is completely regular. This property does not depend on the

embedding j.
Regular holonomicity has the following functorial properties.

Proposition 3.8.1 Let £f: X - Y be a morphism

(i) If M is a (completely) regular holonomic QY-module, then
f"lgY

Torj (£*D,,, M) is a (completely) regular holonomic Qx-module.

(ii) If M 1is a completely regular holonomic Qx-module, then

. L
J i i -
R f*(EY‘ngxM) is a completely regular holonomic Dy module.

Proposition 3.8.2 Let f: X »Y be a surjective map of smooth

varieties X, Y. Let M be a holonomic Qy—module. Then M is

D
completely regular if and only if Tor;Y(f*Qy,g) is completely

regular for any j.

3.9 Let D(Dx) be the derived category of the abelian category
of Dx-modules and let Drh(Dx) be the full subcategory of D(DX)
consisting of bounded complexes with regular holonomic cohomology

groups.

3.10 Assume X complex analytic. Let D(gx) be the derived

category of sheaves of C-vector spaces and let Dc(gx) be its full
subcategory consisting of bounded complexes whose cohomology groups
are constructible. Recall that a sheaf F 1is called constructible

if there exists a complex analytic stratification on whose strata
F 1is locally constant of finite rank.

3.11 Now the Riemann-Hilbert correspondence says

Theorem 3.11.1 Let X be a complex manifold

RHomEX(QX,*): Drh(Qx) > Dc(gx)

is an equivalence of categories.
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An object FeDc(gx) is called perverse, if codim Supp HJ(F)zj and

codim Supp ExtJ(F,gx);j for any j. Let RH(QX) be the category of

regular holonomic Qx-modules and Perv (gx) the full subcategory

of Dc(gx) consisting of perverse objects. Then

Theorem 3.11.2 RHom_ (O

. . .
DX Oy ) RH(DX) > Perv(gx) is an equivalence

of categories.

Remark 3.11.3 Let X be a proper smooth algebraic variety defined
over €, and let xan be the underlying complex manifold. Then

by GAGA, we have Drh(gx) = Drh(gxan) and RH(QX) = RH(QXan). This
is also true in twisted cases.

3.12 We shall generalize the Riemann-Hilbert correspondence in the
twisted case.

3.13 Let (X;A) be a commutative ringed space. Let us take an
open covering {Ui}

ieI of X, invertible A|Uint—modu1es Lij and
A-linear isomorphism e (Lij@ij)lu.nU.nUkl__ﬁ LiklU.nU.nUk
which satisfies 3 13
(3.13.1) L.. =z A.
ii
(3.13.2) ¢ .. =id_ , g...=id_ .
iij Lij ijj Lij
(3.13.3) For 1i,j,k, 2¢I, we have a commutative diagram of
morphisms of A|U AU.nU, qu. ~—Todules:
i "3 k'8
7iix
J
L 5805x80xy - Ly 8L o
’fjkl ‘fikll,
P, .
L. .8L. 134 ) L,
ij LJQ > le .

In this case, we say ((Uj); 7, {L; 3}, {f;5, D) a twisting data.
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Remark that (3.13.1) and (3.13.2) are consequences of (3.13.3).

3.14 Let g;({Ui}ieI, {Lij}, {7ijk}) be a twisting data. For an
open set Q@ of X, a twisted sheaf F on Q with twist T is
data F={Fi' pij} with

(3.14.1) F, is an AlgnUi-module,
(3.14.2) Pi5* (LijQFj)lgnUint 5 FiIQnUint ,

such that

(3.14.2.1) p..=1.

nQ

(3.14.2.2) For 1i,j,k, on UintnUk

Li-®L ®F, —— L., 8F

3 Jjk "k g ik "k
ijk
P5k Pik
P
L,.8F, — =3, P,
i3 i

commutes.

Then the category M(Q;T) of twisted sheaves on @ with twist
T form an abelian category. If QCZUi for some Ui’ then M(Q;T)
is equivalent to the category of (AIQ)-modules.
Moreover it is a champs in the sense of Giraud [G], i.e.
. ' . . .
i) For F,F'€M(Q;T), U*- HomM(U,g)(Flu’F |U) is a sheaf on Q.
ii) Let Q=U9j be an open covering and let Fje M(Qj,g). If
Yot o 3 F. is given so that
JkT “klTagngy Ilaynay

(3.14.3) 9ii = id
(3.14.4) %5%x = fix:

. . . . -1_
Then there exists Fe€ M(Q;T) and that ai.FIQi > Fi with ai“j _93j'

3.15 Remark that a twisting data T gives an element c(T) of
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HZ(X;AX). If two twisting data 21’ T2 satisfy c(gl)=c(gz), then
M(82;T,)
equivalence is not unigue. In fact the ambiguity is given by L for
a twisted invertible A-module L. Also, note that for any

c eH2(X;Ax), there exists a twisting data T with c(T)=c.

1 the twisting

and M(Q;gz) are equivalent (as a champs). But this

For a twisting data g:{Lij}, we denote by T
®-1
data {Lij .
3.16 Let X be a complex manifold and A a twisted ring of
differential operators. Since A 1is locally isomorphic to D,
there exists an open covering X=UU; of X and an §|U.—module L;
i

which is an invertible O, -module. Set

Uy
L.. = Hom, (L. | v Lilg )
1j —A'-1 Uij J Uij
Then Lij is an invertible gUij-module. Moreover Lijeij 3 Lik

canonically. Thus {Lij} defines a twisting data T on X. Then
we have
Lyii®Lsly, . % Lily, .-
1] 1]
Hence E={Ej} is a twisted sheaf with twist I_l. Moreover A -

End (L) defines a structure of A-module on L. Then we can define
DR(M) == RHom, (L,M)

for an A-module. This gives a functor from the derived category of
A-modules to the derived category D(T) of twisted sheaves with twist T.
Similarly to EX’ we have the following Riemann-Hilbert correspondence
in the twisted case. Let us define Drh(é) and Dc(z) just as

Drh(EX) and Dc(¢x).

Theorem 3.16.1 Drh(é) is equivalent to Dc(g).

Theorem 3.16.2 The category of regular holonomic A-modules is

equivalent to the category of twisted perverse sheaves with twist T.

3.17 Let X be a complex manifold and A a twisted ring of differen-
tial operators on X. Let Y be a closed analytic set. Let M Dbe a
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regular holonomic §|X\Y-module which can be extended to a holonomic
A-module defined on X. Then there exists a regular holonomic A-
module “ﬂ defined on X satisfying

m
(3.17.1) Mgy =M

(3.17.2) ng has no non-zero coherent submodule supported in Y
nor non-zero coherent quotient supported on Y.

This vg is unique and called the minimal extension of M.

3.18 This can be generalized into an algebraic case. Let X be a
smooth algebraic variety, A a twisted ring of differential operators.
Let M be a holonomic A-module defined on an open set U of X.

Then there exists a holonomic A-module “g defined on X satisfying
(3.17.1) and (3.17.2). Such a ™™ is unique.

3.19 Let X be a complex manifold and A a twisted ring of

differential operators on X.

Theorem 3.19.1 The set of the isomorphic classes of irreducible

regular holonomic A-modules is isomorphic to the set of pairs (S,F)

where S 1is a Zariski locally closed non-singular connected subset

of X and F 1is an irreducible twisted locally constant sheaf of
finite rank on S with twist T. Here (S,F)=(S',F') if 8nS' is

open dense in both S and S' and if FISAS’ z F'|Sns,.

Let M be an irreducible regular holonomic. Then Supp M must
be irreducible. Let S' be a non-singular locus of Supp M. Then
Ezzg(g,g)ls vanishes for k# codim S and when k=codim S, this is
a twisted local system on some Zariski open subset S of S' with
twist T. Conversely, for (S,F), there exists a regular holonomic
A-module M defined on X\3S such that REQEA(E,Q);F[—codim s].
Then we associate to (S,F) the minimal extension of M onto X.

3.20 Let us give an example of twisting data

Example 3.20.1 X=lPl=UOUUl with U0=Pl\{°°}, U1=P1\{0}. For ),
let €, be the invertible € -module with the monodromy eZHlA.
Uu.nuU
01 2T
Then T = {(UO’Ul);CA} defines a twisting data on X. If e° *"#1,

there is no twisted local system on X.
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§4 Equivariant twisted rings of differential operators

4.1 Let X be a complex manifold or a smooth algebraic variety
defined over €. Let G be a complex analytic group or algebraic
group acting on X. Let g be the Lie algebra of G and @X the
sheaf of vector field on X. Then the infinitesimal action induces

a Lie algebra homomorphism

D:g > I(X;0,)

4.2 Let gx(g) be the ring generated by QX and g with the

fundamental relation:
(4.2.1) QX 3 U,(g) 1is a ring homomorphism,
(4.2.2) g 3 Uy (g) 1is a Lie algebra homomorphism,

(4.2.3) [(j(a),i(a)] = i(D(A)(a)) for A€g and aeQ_X.

Then gx(g) = 9X ® U(g), where U(g) is the enveloping algebra of
g. The multiplication rule of QXQU(g) is given as follows:

g acts on 9X and U(g) (by the left multiplication) and hence

we have g *-End(9X®U(g)), which extends to U(g) ~» End(QXQU(g)).
Moreover QX acts on 9X®U(g) and we obtain QXQU(g) > End(QXQU(g)).
This gives the left multiplication of sections of 9X®U(g) on
9X®U(g). This gives the ring structure on 9X®U(g). We can easily

prove that 9X®U(g) is isomorphic to gx(g).
4.3 Let g be the kernel of gxeg 4-OX. Then we have [g,g9]l ¢ §
(in gx(g)). If G acts transitively on X, § is a vector sub-

bundle of 9X ® g.

4.4 Let us recall the notion of G-equivariant Qx—modules. Let us

consider
p
-1, u
Py i
(4.4.1) G xG xX ——E—ﬁ G x X ¢—— X
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where pr is the projection, M the multiplication map :(g,x) -+ gx,
i(x) = (1,x) and the pj are given by
pl(gl’gZ'x) = (gllgzxZ) ’ pz(gl'gZ'x) = (glgzrx)l
p3(glr921x) = (gzrx)-

Then we have WoPy=WoP, Prop,=pr P,, HUopP3=pProp; and jpoi=proi=id.

An gx-module F 1is called G-equivariant if an QGxx-linear iso-

morphism a : p*F 3 pr*F 1is given such that it satisfies:

(4.4.2) ixuep S appap
5" S“ commutes.
p3(a)
(4.4.3) piu*F — PAPT*F
il il
p3 (@) p3(®)
piu*F _— pipr*F = p3u*F _— pgpr*F

commutes.

4,5 For a G-equivariant Qx—module F and for ge€G, let ug:X+X be

the map x » gx. Then we have u;F > F. Let Tg be an inverse

. . _d
homomorphism. Then setting A.u= EE(TetAu)|t=0 for Aeg and u€F,

we obtain a Lie algebra homomorphism D:g *—EndE(F), which satisfies
D(A)au = aD(A)u + D(A) (a) u

and hence it extends to a ring homomorphism gx(g) -> Endm(F).
Thus F has a structure of left gx(g)-module.

4.6 Similarly to G-equivariant gx-modules, we shall define the notion
of equivariant twisted rings of differential operators. Let A be
a twisted ring of differential operators on X. We say that A is

G-equivariant if an Qx—ring isomorphism o : u#é 3-pr#é is given
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satisfiying the following property:

. #
(4.6.1) ityta 2 (@ it
Sl S| commutes.
a -4, a
#
p, (@)
(4.6.2) Pgu#é 2 - pgpr#é
# #
py (@) p3 (@)
phfa L plorfa =pfifa 2 plorfa

commutes.

Let A be a G-equivariant twisted ring of differential

# ta oz fa s uma

by operating on 181 ¢ u*A. Hence we obtain p*DG > pr#A + p*a,

operators. Since u*A is a y'A-module, we have pr
where p: G XX > G 1is the projection. Thus we obtain i*p*DG -
i*Wa, This gives g > A. This extends to an Qx-ring homomorphism
gx(g) > A. Note that the composition g - Fl(é) > GX coincides
with D.

4.7 Let A be a G-equivariant twisted ring of differential opera-
tors. Then pr#é = EG 8 A, and hence pr*A C pr#é becomes a subring.
A left A-module M is called G-equivariant if B:u*M 3 pr*M gives
a structure of equivariant Qx—modules and g is pr'A-linear
(through u#é s.pr#é and the u#éfmodule structure on u*M).

If B is only pr*A-linear, we call M quasi-G-equivariant.

If N 1is a G-module (see §4.8), then é@gN has a structure

of G-equivariant A-module.

>

.8 We shall investigate the description of G-equivariant twisted

rings of differential operators and quasi-G-equivariant modules

when X 1is a homogeneous space. Let x be a point of X. Let H

be the isotropic subgroup of X at x and let h be its Lie algebra.
We assume G/H 3 X. An H-module of finite dimension is, by definition,
a finite-dimensional vector space V with a group morphism H + GL(V)
and we assume that this is algebraic in the algebraic case and
holomorphic in the complex analytic case. An H-module is a vector
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space with H-action, which is a union of finite-dimensional H-modules.
The following is well-known.

Theorem 4.8.1 The category of G-equivariant gx-modules is equivalent

to the category of H-modules by M = M(x), where M(x) = € ® Mx‘
X ,X
Let !X be the inverse functor of M ~ M(x). Then in the
analytic case (and in the algebraic case with suitable interpretation),

for an H-module V, we have for an open set U of X:

(4.8.1) T(U;V,(V)) = {f;V-valued function on p ‘U such that

£(gh) = h™Yf(g) for g €¢P U and h € H}.

Here p:G » X 1is the projection g = gx. Note that
(4.8.2) g = YX(E) (see §4.3)

Also note that

(4.8.3) If V is a G-module and W is an H-module,

Vy (VOW) = Vo (W) gv.

4.9 Let A be an H-invariant element of h*. Then A([h,h])=0

and hence A gives a l-dimensional representation LY =¢-1A of h
by A’lA = A(A)lx for Aé€¢h. On the other hand, A gives an H-linear
homomorphism from h to & and hence a G-equivariant homomorphism
gx(h) =g to YX(E) = Oy-.
Agagx(g)(A-A(A)) is a both-sided ideal. We set

Then we can easily check that

(4.9.1) A, (V) = Uy (g)/ ] Uy(g) (A= X(A)).
Aeg

Theorem 4.9.2 (i) Ay()) is a G-equivariant twisted ring of

differential operators .

(ii) Any G-equivariant twisted ring of differential opetators is

isomorphic to Ay (1) (for a unique 1).
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We shall give only a sketch of the proof. Let A be a G-
equivariant twisted ring of differential operators.

As in §4.6, we have a ring homomorphism gx(g) + A. Since X
is a homogeneous space, this is surjective, and § is mapped into
Fo(é) = 9X' Since this is H-linear, it comes from some H-invariant
X € h* and we obtain éx(k) + A, which is an isomorphism.

4,10 In order to describe quasi-G-equivariant éX(A)-modules,
we shall introduce the notion of twisted (g,H)-module. Let X € h*

be an H-invariant form.

Definition 4.10.1 A twisted (g,H)-module M with twist ) 1is a g-
module M with a structure of H-module on ¢A@M such that

(4.10.1) Two h-module structures on ¢A®g which come from the g-

module structure on M and the H-module structure on €, @M coincide.

(4.10.2) g ® (EA ® M) >~ C)®M given by A® 1, & u lx ® Au

is H-linear.

If M is an H-module, then U(g) @ (E—A@ M) 1is a twisted
h

(g,H)-module with twist A. Here the action of H on

C, ® U9 ® (T A8M) is given by H3h : 1. e P®@ 1 _©® u -
= h - - A -A

1, @Ad(h)P © 1_,6 hu.

Theorem 4.10.2 (i) The category of guasi-G-equivariant éx(k)-

modules is equivalent to the category of twisted (g,H)-modules with

twist ).

(ii) For a twisted (g,H)-module M with twist A, the corresponding
guasi-G-equivariant A, ())-module is isomorphic, as a G-equivariant

Qx-module, to YX(EA@Q).

We shall give here only the sketch of the proof.

Let M be a quasi-G-equivariant éx(k)—module. Then M has two
actions of g on M which comes from the éx(x)-module structure
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and the structure of G-equivariant Qx-module (see §4.5). Let o

the first action and g the last action. Then Y= f-a is Oy-linear
since [a(A),al=[B(A),a] = D(A)(a). Since g®M +M via a is
g-linear with respect to the B-action, we have

(4.10.3) [B(A) ,a(A')] = a([A,A']).

This implies v : g ->-End0 (M) is a Lie algebra homomorphism. Hence

we obtain Y :g -»End;(M(xy)). For A€h, y(A)=B(A)-a(A) = B(A)-A(A)
we have B(A) = Y(A)+A(A). Since the infinitesimal action of H on'li(xo)
coincides with g, the h-module structure of g(xo) by y is
isomorphic to E_A@g(xo). Therefore €_,gM(x,) is a twisted
(g,H)-module with twist A. Conversely let M be a twisted (g,H)-
module with twist . T oM is an H-module. Let M = YX(EA@g) be
the corresponding G-equivariant O, -modules. The morphism (4.10.2)

X
gives a g-action y: g > End, (M) and the G-equivariant structure

defines g: g »End(Oy). Then a=g-y defines and A, (A)-module
structure on M.

4.11 If moreover M is G-equivariant, then we have 8 =o
Therefore Y=0 and the g-module structure on C_,8M(x,) is trivial.

The converse is also true and we obtain the following proposition.

Proposition 4.11.1 The category of G-equivariant QX(A)-modules

is equivalent to the category of H-modules M such that h acts
trivially on C_,8M.

4,12 We have

)).

(4.12.1) Ay () = V(@0 (U0,

For a twisted (g,H)-module M with twist A and a G-module V,

M ® V has canonically a structure of twisted (g,H)-module and
T
(4.12.2) YX(¢A®(M:V)) & YX(QAQM)gV
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4.13 In a complex analytic case, we can describe éX(A) as follows.
Let p: G > X be the projection g » gXg. Let F be the sheaf on
G defined by

(4.13.1) F

{9€05: Ry¥ = -A(A)¢ for any A€h}.

Here R,¥(g) = a% 9(getA)|t=o'

Then F 1is locally constant along fiber of p with the
monodromy corresponding to ), and F has a structure of p_lgx-
module. Then g acts on F through the left action of G on G.
Then éx(x) is the subring of p*Endm(F) generated by QX and g.

4.14 Let G' be another Lie group and H' its subgroup. Let

¥: G'>G be a group morphism such that ¢(H')C H. Set X' = G'/H',
X = G/H. Then ¢¥ induces the map f: X' > X. Let h,h' be the
Lie algebra of H and H'. Let A¢ h* be an H-invariant form.
Then, we can easily prove

#

Proposition 4.14.1 (i) £ A (\) = éx,(AIE').

(ii) For a twisted (g,H)-module M, we have f*YX(EAQQ) = YX'(EA®E)
as Ay, (i|h')-module.

4.15 For a homogeneous space X with the isotropy subgroup H,

we have the following proposition.

Proposition 4.15.1 éX(A)OP £ éx(29~x ), where pe h* 1is given

by o (A) =—%-trg/h(adA) for A€h.

This follows from the following observation. By g3Aw~ -Ag€g,
we have an anti-isomorphism ¢ of Oy-ring Uy(g) onto it self.

Then, we have ¢(A) = -A+2p(A) for Ae€g. Here p: g > O

Ox 1ls

the G-equivariant homomorphism given by p € h*.
4.16 Even in algebraic category, any G-equivariant twisted ring A

of differential operators on homogeneous space of G is locally
isomorphic to EX in the Zariski topology. In fact, if p:G > X
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#

is a G-equivariant projection, then p"A = D;. Hence if p has a

secton i, then A = i#p#é = DX‘ Since G » X has a section locally
in the étale topology, A is locally isomorphic to Dy in the

étale topology. Hence there exists a non empty set U and an

étale map f: U > X such that f#é is locally isomorphic to Dy.
There exists an open set Q of X such that f—lQ + Q 1is finite
and étale. Now, A is isomorphic to érl for some closed 2-form N
defined on ¢, by shrinking Q if necessary. Since f#é is locally
isomorphic to Dy f*n = dw for some 1l-form w. Hence n=d(f,w)/n
where n is the number of sheets of f-lﬂ + U. Hence én = QX

on Q. Since A is G-equivariant, A 1is locally isomorphic to

Dx on the G-translates of §, which cover X.
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§5 Flag variety

5.1 We shall review about flag varieties. Let G be a connected
algebraic reductive group defined over &. The set of Borel group
forms an algebraic variety and called the flag variety of G. We
shall denote it by X. Then G acts on X transitively. For xe€ X,
the isotropy subgroup b(x) at x coincides with the Borel sub-
group corresponding to x€X and G/B(x) - X (g » gx) gives an
isomorphism.

Let b(x) denote the Lie algebra of b(x) and n(x) =
[b(x),b(x)] the nilpotent part of b(x). Then x » b(x) and
X » n(x) form G-equivariant vector budles on X. Note that x»
b(x)/n(x) is the trivial bundle, because the isotropy subgroup B(x)
acts on b(x)/n(x) trivially.

5.2 Let us fix xoe X, B= B(xo), and let U denote the unipotent
part of B. Let us take a Cartan subgroup T of B. Then T = B/U.
Let us denote by g,b,n, and t the Lie algebra of G,B,U and T,
respectively. Let A be the root system of (g,t) and Ay the
set of positive roots consisting of roots appearing as weight of b.
For oaeldA, let hae t the coroot of o and S, the simple
reflection corresponding to o,i.e. t* 3 Aw» A —<ha,A>u. Let W be the
Weyl group,i.e. the group generated by sa's. Recall that we have

W = NG(T)/T and we have the Bruhat decomposition :

(5.2.1) G = | BwB
weEW
(5.2.2) X = | Bwx,
weW
(5.2.3) X XX = UG(wxo,xo).
WEW

Here w 1in the right hand side is an element of NG(T) which gives
w by taking mod T. Let Qct* be the 2-module generated by A.
Set

(5.2.4) Q+ = z Z+a.
Q€A
Here 2+ is the set of non-negative integers.

We say )et* is anti-dominant (resp. regular) if <ha,x>#l,2,3,...
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(resp. <ha,>\>7£0) for any 0€A, - The following lemmas are well-known.

Lemma 5.2.1 The following conditions are equivalent.

(1) A is anti-dominant.

(ii) For any weW, A-wi ¢ Q+\{0}.

Lemma 5.2.2 The following conditions are equivalent.

(i) A is regular and anti-dominant.

(ii) For any wE€W with w # 1, we have i-w) ¢ Q,.

5.3 Let P be the lattice of weights of T. We regard Pct* and
for A€P, let b » b>‘ denote the character of B given by B +> T »
C*, where the last arrow is the character given by .

Set

(5.3.1) P, = {A€P; t<>\,ha> 2 0 for any aeA+}
and

(5.3.2) P = {)\€ P;t<>‘,ha>> 0 for any o€},

t*

5.4 For )€P let us denote by Oy()) the G-equivariant line
bundle corresponding to the character B3 b » bl

Let p: G » X be the projection g - gx,- Then by the defini-
tion, for any open set U of X

(5.4.1)  T(U;0,(A) = {f£€T(p 1U;0,); £(gh) = b £ (g)

for (g,b)Ep-lU x B}.

The following results are well-known.

Proposition 5.4.1 If ¢P_, T(X;0.(1)) =0 and if A€P_,T(X;0,(1))
is an irreducible representation of G with lowest weight A.

Proposition 5.4.2 If A€P__, then O, () is ample.
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Proof We shall use the criterian of Definition-Theorem 1.2.1 (2).
Let V, be an irreducible representation of G with lowest weight
A and let v be a lowest weight vector and u € (V)\)* be a highest

weight vector. Then f =<v,gu> gives a section of gx()\) . We
have £(1) = <v,u> # 0 and f(w) = <v,wu> = 0 for any w#l, because
the weight of wu is not =-A. Hence the corresponding section s

of QX()‘) satisfies s(xo) # 0 and s(wxo) =0 for w#l, wewWw.

Since U G(wxo,xo) = X x X\{the diagonal set} , for x#y€G,
weW\{1l}

there is g€ G such that g-1x=x0, g—1y=wxo. Hence (g*s)(x) # 0,
(g*s) (y) = 0. Hence QX(A) satisfies the condition (2) of
Definition~Theorem 1.2.1. Q.E.D.

5.5 Let U(g) be the universal enveloping algebra of g and let
Z(g) Dbe the center of g. By Harish-Chandra's result, we have

(5.5.1) Xx: z2(g) = W[E*]W
Let us recall how the isomorphism (5.5.1) is defined. For PEZ(g),

C{t*] such that P-fe
U(g)n. Then we set X,(P) = £(A-p) for A€ t*. Here p=

n

there exists a unique £fE€U(t) = S(t)

( ZX )/2. Then x,(P) is W-invariant polynomial in i€ t*, and
aE

gives the isomorphism (5.5.1).
If we denote by * the anti-isomorphism of U(g) given by g3
A » -A€g, then we have

(5.5.2) X)(P*) = X_,(P) for PezZ(g).
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§6 Twisted rings of differential operators on the flag variety

6.0 The notations are as in §5.

6.1 We shall study G-equivariant twisted ring of differential
operators on the flag variety X. 1In order to do this, we shall
apply Theorem 4.9.2. Since b/[b,bl=t and B acts trivially on ¢t,
the isomorphic classes of equivariant twisted ring of differential
operators are parametrized by t*. For JM€t*, let us denote by 2%
the twisted ring of differential operators éx(k+p) corresponding to

the character b ~» EMC, By Prop.4.1.5.,we have

(6.1.1) 0d% =D

A -X

The shift p is added so that (6.1.1) holds. Hence the ring

of differential operators is D -0 For u€P, we have

(6.1.2) 0, (W)@D,80,(-1) =D, .

6.2 By 4.6 and 4.10, we have a Lie algebra homomorphism

g - F(X;EA)' which extends to a ring homomorphism:
(6.2.1) U(g) » I(X; EA)‘

Lemma 6.2 2 Ker X is contained in the kernel of (6.2.1).

Proof Since (6.2.1) is G-equivariant it is enough to show that

Ker xxﬁ-cx ® D

0o % ~*
is the zero map, where ¢€_ =0 /m(x,) with the maximal ideal m(x,)
x0 —X,xo 0 0
of 9X,x . Note that D, = Uy (g)/ z~(A—<A+p,A>)U(3) where § is

0 Aeg
the kernel of 0,89 -~ 0, (See § 4.10 ). Hence we have

C, D, =U(g)/ ] (A-<i+p,A>)U(g).
0 A€b

For PeZ(g), we have
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P € nU(g)+f

with feu(t) and X, (P)=f(A+p). Hence we obtain P€ ] {A-(A+p)A}U(g)
if x, (P)=0. A¢D g E.D.

We define
(6.2.2) Ux(g) = U(g)/U(g)(Ker(xA: zZ(g) -~ C)).

Proposition 6.2.3 UA(S) > F(X;QA) is an isomorphism.

Proof Let F(U(g)) be the filtration given by Fm(U(g)) =
Fl(U(g))'Fm_l(U(g)), Fl(U(g)) = g ec, FO(U(g))=C. Then ngU(g)Z-S(g).
Let F(U,(g)) be the induced filtration. Then we have

F _
gr Ux(g_) = S(g)/s(g)I,

S(g))G. Now, we have the following lemma.

where I+=(

Lemma 6.2.4 I'(T*X; O

Opxy) = S(2)/S(Q)T,.

For x€X, the infinitesimal action of g on X gives g ~» TXX.
Taking the dual, we obtain T;X + g*. This gives p: T*X > g*.
If we identify g with its dual by G-invariant non-degenerate
symmetric form, p(T*X) coincides with the set N of nilpotent

elements. Then N is normal and
T(N; C_)E) = S(9)/s(g)I,.

Since p is birational and proper, r(T*X;gT*x) < T(E;QN).

Q.E.D.

F F
Hence TI(X;gr EA) = F(T*X;QT*X) = S(g)/S(g)I+ = gr UA'
Therefore we have a diagram

F
— _— e —_—
0 Fm-l(UA) Fm(UA) grmUA 0

l *m-1 % § l

0 — T(X;F, 1 (D)) — I(X;F (D)) — T(X;gry, (D))
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Therefore, if ®n-1 is bijective, Omn is bijective. Thus by the

induction, L is bijective for every m.

Remark 6.2.5 In the course of the proof, we used the fact that
P(T*X) is normal. This is not true if X 1is a generalized flag
manifold (i.e. a projective homogeneous space of G), and
P(X;éx(x)) « U(g) 1is not necessarily surjective (See [BoBl).

6.3 We shall prove the following theorem.

Theorem 6.3.1 Assume that ) is anti-dominant. Then for any D,-

module M gquasi-coherent over QX' we have

Hk(X;§)=0 for k#0.

Proof If uw is in P then O(u) is ample. Hence by Theorem

++7
1.4.1, it is enough to show that

(6.3.1)  D,80, (-u)8T(X;0, (W) > D,
splits. Set VvV, = F(X;Qx(u)). Then (6.3.1) corresponds to a morphism
of twisted (g,B)-modules

(6.3.2) U(g)ey(c_,__ V) > U(g)ec_

~p- A=p®

Hence it is enough to show (6.3.2) splits. Let us take a filtration
of Vu by B-modules:

DV, Deee DV DOV =0

(6.3.3) Vu=V0 1 N

N+1
such that

(6.3.4) VO/V1=Cu

6.3.5 V. . = C for some j.

( ) 57V5+1 by 3
Hence Ho=HrHys***,uy are weights of Vu.

Hence we have
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(6.3.6) uj-LieQ+

(6.3.7) uj-u6Q+\{0} for Jj#0.

Set Mj=U(3)®g(C—A-u-p®Vj)' Then we have

(6.3.8) M;/M., = U(9)@,C

j+1 “A=p-u+u.’

- ]
and (6.3.2) is given by M0 > MO/Ml' Hence Mj/Mj+l has an infini-

tesimal character Y .
- A= u+
U uj

Lemma 6.3.2 #X—A for uj#u.

Xe p=p+ s
A—U UJ
Admitting this lemma for a while, we shall complete the proof of
Theorem 6.3.1. We have
-2 .
M0 S (MO/Ml).

(X_4)
Here M, A ={ueM0; Pu=x_A(P)u for any Pez(g)}.

Hence, M0 > MO/Ml splits. Q.E.D.

=X . Then there exists
TS TR *

J
w €W such that -A—u+uj=-wx. Hence u—uj=A-wA€Q+. Since ) is

Proof of Lemma 6.3.2 Assume Yy

anti-dominant, u-uj=0. this is a contradiction.

Theorem 6.3.3 If A is regular and anti-dominant, then for any D,-

module M quasi-coherent over Qx, M 1is generated by global sections.

Proof By Theorem 1.3.1, it is enough to show that EAQQX(_“) is
generated by global sections for u€P_. 1In order to see this, it

is enough to show the morphism

D,8T (X;04 (1)) * «— D 0, (~u)

A

splits. Consider the corresponding morphism of twisted (g,B)-modules

(6.3.9)  U(Q)8, (€, 8V)«— U(IOL ,_ .

Here V=T(X; gx(u))* is an irreducible representation with highest
weight -u. Take a filtration of V by B-modules:
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0=V_; CVCVy Cove CV=V

such that

(6.3.10) Vg =C_,

(6.3.11) VN5 = C 5.

Then Hg=—WrUysec*suy are weights on V. Then Mj=U(g)@§C-A-p&vj

gives a filtration of M=U(g)09?_x_pev and Mj/Mj_le(g)ehF_k_p+uj.

The last module has an infinitesimal character If we have

X—)‘+uj'

(6.3.12) LHu-#X-A—u for any j#0,
J

)L)\_u)

=M and M is a direct summand of M. Thus

then we have M 0 0

(6.3.9) splits.
Finally, we shall prove (6.3.12). If X-A+u-= Xepmp?
exists wE€W such that w(—x+uj)=—x—u. Hence we-have -u—wuj=x-wx.

there

Since WUj is a weight of V, -u-wqu(LJ Since ) is regular and
anti-dominant )=w) and w=l. Hence y.=-.
Remark 6.3.4 In the situation of Theorem 6.3.3, M 1is generated by
global sections not only as a Qx-module but as an Oy-module because

so is D._.
=X

6.4 Thus we can apply the result of 1.5.

Theorem 6.4.1 If ) 1is anti-dominant and regular, then the category

of Qx—modules quasi-coherent over QX is equivalent to the category

of Ux(g)—modules.

Theorem 6.4.2 If A 1is anti-dominant, the category of Ux(g)-
modules are equivalent to the category of Qk-modules M quasi-coherent
over Oy satisfying the following properties

(a) M is generated by global sections.

(b) If a gx—submodule N of M which is quasi-coherent over QX
satisfies T (X;N)=0, then N=0.

Remark that finitely generated Ux(g)-modules corresponds to
coherent Ek—modules.
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§7 SL2—case

7.1 We shall exhibit the results in the preceding section in the
case of SL,. Set G=SL,, g=sl,. Take a base of g

1 0 1

_ 0 o0
_l)l e—(o 0)! £

Q.

(7.1.1) h=(
The flag manifold X can be identified with Pl. Set UO#PI\{w},
UlaPl\{O} and take coordinates x of U, and y of Uy related
by xy=1. The action of G on X 1is given by

_(a b, ax+b dy+c
(7.1.2) 9=(c gt ¥ GFg r ¥ by+a °

Take x)= » (i.e. y=0 in U;). Then B={(g g)} and b=ChecCe.
Take t=Ch. Then A={a,-a} with o(h)=2. We have p=a/2 and
p(h)=1. The center of U(g) is generated by

A =(h-1) 2+4ef= (h+1) 2+4fe.

7.2 The infinitesimal action g - Ox is given by

h — —2x8x=2y3y

e — —3x=Y29y

2 =—
f — x ax— By

and hence the kernel ¢ of gx@g — Ox is generated by h-2xe and

f+xh—x2e (on UO) and p:g -~ QX is given by p(f+xh-x2e)=0,
p (h-2xe)=-1.

7.3 For Ae€t* , set c=)(h). Hence A=cp. If c 1is an integer
Ox (A)=0y (-cx) where O, (-cw) is the sheaf of meromorphic functions
with pole of degree -c at w,

7.4 For A=cpet¥*, EA is given as follows

(7.4.1) iy: D,|, 3 D, , i,: D,|
0" =alg, =y, 1" =y, 7 =u
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. os=1 . . -
and i.i : D D, is given by P » X Px . The
1o luw,* Buou, Boj vy
homomorphism a: g = F(X;QA) is given by
io°a: h — —2xax-(c+l) ilo oa: h+— 2y3y+(c+1)
e e — vy +(ctl)y
X Yy
f — xza +(c+l)x f — =)
X vy’

7.5 For example, let M be a D, -module given by

A

M| = D,/D,y and M|, =0.

Uy
Then supp M = {xo}, and if we denote by ¢§ the generator 1
mod QAY’ then
X;M) = M = C = C[£
PG = M= €layls = €l
with the relation h5=(28yy+c-1)6=(c-1)6, e6=(y3y+c)y5=0. Thus we have
I'(X;M) is isomorphic to the Verma module U(g)/U(g)e+U(g) (h-(c-1)).

7.6 If ) is not anti-dominant (i.e. ¢=1,2,3,+++) then
Oy (A+p) =0y (~(c+1)=) is a D ,-module. Since H'(X;0 (- (c+l)=))=c®,
the vanishing theorem for gx—modules does not hold in this case.

7.7 We shall investigate the case where ) 1is anti-dominant and not
regular, i.e. A=0. In this case, for a non-zero Qx-module M,

r(X;M) may vanish. In fact QX(A+p);9X(-w) gives such an example.
The following proposition asserts that essentially this is the only

case.

Lemma 7.7.1 Let M be a coherent go-module. Then the following

conditions are equivalent

(i) As a Qo—module, M is isomorphic to the direct sum of copies
of 0y(p).

(ii) T (X;M)=0

and in this case, g acts trivially on T (X;O,(-p)®M) and
Oy () 8T (X;:0, (-p)OM) 3 M.
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Proof The last statement follows from (i).
(i) = (ii) trivial.

(ii) = (i) since Oy (-p)8M is a D _p—module, it is generated by
global sections.
Hence we have

m
D -0 — gx(-p)eg.
Tensoring Qx(p) from the left we have

(Dy®0y (p))™ > M > 0.
Since T (X;M)=0, we have

(D804 (p) /Dy T (X;D@0 (p)))™ —>> M.
Hence it is enough to show

(7.7.1) D@0y (p) /DyT (X;D80, (p)) = Oy (p).

In fact, any submodule of Qx(p)m has also the same type. We have

an exact sequence

U(g)0,C_ 0 c® > U(g)ecy » € > 0

of twisted (g,B)-modules with twist p. Here Cz is the
fundamental representation of G. Correspondingly, we have

2
Dy®C™ > D8y (p) > Oy (p) ~ 0.
This shows the existence of (7.7.1).

Corollary 7.7.2 For any coherent Qo—module, the kernel and the

cokernel of
Dy@r(x;M) - M

are isomorphic to a direct product of copies of Qx(p).
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§8. Singular case

8.1 For a simple root o, let P, be the parabolic subgroup such

that Lie(Py) =te®g _,® ] gg- Let X =~ be the set of conjugate
BEA
+

subgroups of Pa' Then Xa zlG/Pa. Let P, ¢ X > Xa be the
projection. Then Py is a P "-bundle. For A €t* with <x,ha>=0,
A defines a character Lie(Pa) + t » €, and this defines a G-
equivariant twisted ring of differential operators A, () on X .

X a
By Proposition 4.14.1, we have a

Proposition 8.1.1 pzéx )
a

"

D .
=x-p

Corollary 8.1.2 If )A-p is anti-dominant, then for any coherent
éX (1) -module M, we have HJ(X;g) = 0 for j#O.
o

Proof We have HJ(X;p;M) =0 for 3j#0 since p*M is a DA p_
1002 = o — 2=
module. The relations R'p ,p*M = M for k=0 and =0 for k#0

imply

H) (X;p*M) = HI (X ;M).
o~ o -

Remark 8.1.3 Corollary is true for any parabolic subgroup other
than Pa'

8.2 Let \A€t* be such that <A,h,> = 0. We assume
(8.2.1) pEP.

This is not a strict condition because we can replace G with a
covering group of it. The flag varieties X and Xa do not change
after this replacement.

Proposition 8.2.1 Let M be a coherent QA-module,

(1)  RSp4M =0 for k#0.

(ii) The following conditions are equivalent.

(a) Py = 0.
(b) There exists a coherent A, (A)-module N such that
a

~ * -
M = gx(p)®pa§ as an EA module.
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() M <0y (p)8PEP 4 (Oy (-p)8M)
Proof If (b) is satisfied, then

- = * ~
Pyx (Oy(-p)8M) = p_ ,p*N = N.

Hence N is uniquely determined. Thus, these properties are local
in X. Locally in Xa’ we have

(8.2.2) X =zpP, xX
a

1
(8.2.3) D, =D

\ =Dy .

0

Hence we can reduce them to Lemma 7.7.1.

8.3 Let ) be the set of simple roots. For Aet*, we set

(8.3.1) A, = {a€d; <h_, 2> =01},

W, = (weW; wix =1},

I, = INa,.
Then AA is also a root system and WA is the Weyl group for AA;
i.e. WA is generated by the S, (o€ Aﬂ.

Let us consider the conditions

(8.3.2) Ay is the lattice generated by ZA’ or equivalently ZA

is the set of simple roots for AA'

Then (8.3.2) implies that

(8.3.3) w, is generated by S, (a EZA).

Theorem 8.3.1 We assume that A is anti-dominant and satisfies

(8.3.2). Then there exists a sequence Opreees Oy in ZA such

that for any coherent Qx-module M the following conditions are

equivalent.

(8.3.4) N(X;M) = 0.

(8.3.5) There exists a filtration M = MyPM;D...D0M =0 by

coherent D .-module such that p M. ./M.)=0 for 3j=1,2,...,N.
= o 5% —3-1"=] —
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Proof (8.3.5) implies (8.3.4) because
X; M. M.) = T(Xy:,Pqq (M. M. = 0.
r( —3-1/—3) r( a3 paj*(_J_l/_J)) 0

We shall prove the inverse implications. Since A-p is anti-
dominant and regular, QX(-p)Qg is generated by global sections.
Hence there exists a sequence

D n

Dy_p — Oy(-p @M.

Tensoring Qx(p) we obtain
(D,® 0, (p))" —» M
2% P =
Hence, setting
M = que Qx(p)/QAF(X;QAQQX(p))

we have @n —>» M. Since for a coherent gx—module N, the relation
paj*(y) = 0 is invariant by taking coherent quotients of N, it is
enough to show (8.3.5) for l‘z for some Otl,...,otNeZ)‘.

Note that

D,80, (p)= \_;X(ct./\+p 2 u(g) @c ).

b -(A+p)+p
Set M, = U(g) ﬁ Ty~

Since p 1is regular and integral with respect to AA' there

exists a;,..., 0y € XA such that, setting u, =p, saj(uj-l)

=uj, My is anti-dominant with respect to ZA’ and <Haj’“j-l> =
1,2,3,... The last property implies Mjc Mj—l’ where Mj =
U(g) ® C .
“A-p+u.
b Uy

It is easy to see that Mj—l/Mj is a twisted (g,Pa ) -module

with twist A. Hence if wet set gj = YX
o
an A () -module. J

J
'(cxe (Mj_l/Mj)) it is
XOtJ
Set My = Vy(C,, ® Mj).

Then ﬂj-l/gj = gx(p) (] p; (gj). Hence it is enough to show that
j
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My is generated by global sections. 1In fact, then there is a
surjective morphism go/gN > QA@QX(p)/QAF(X;QAGQX(p)).

Let V be an irreducible representation with highest weight
p. In order to see that My is generated by global sections, it

is enough to construct a surjective morphism

U(g) 8 ¢C, 0V~ u(g) @ C by

1o

For ¢£e€P, let VE be the weight space of V with weight ¢£.
Set V' = @ VE' Then, V' is a B-module. Set V"=V/V',

Then the weight £ of V" satisfies My~ £€Q Moreover Vh

+ N

is a sub-B-module of V".

Lemma 8.3.2 If ¢ is a weight of V" different from uy+ then
X-A+g 7 X—A+UN'

If this lemma is shown, then U(g)@(c_x_p@cu ) is a direct
b N

summand of U(g)@(C_A_pQV"). Hence we obtain a surjective homo-

morphism

u(g) Cc @V »>U(g) ® (C ec ).

®
b =A=p MN

This completes the proof of Theorem 8.3.1.

Proof of Lemma 8.3.2 Assume that )(_>\+£ = X-A+UN for a weight ¢
of V". Then

A - EEW(A-UN) = W(x-p).
Therefore there exists w such that w(A-g) = A-p, or )A-w) = p=WE.

Since wg¢ 1is a weight of V, p-wg€Q,. Since ) is anti-dominant,
we have w) = ). This implies weW,. Thus we have EEWAp = w)\“N'

A
Since Hy is regular anti-dominant with respect to ZA' we have
E-uy € ) %2,acQ,. Since uN"E€Q,, we have g = y. Q.E.D.
aghy

Remark 8.3.3 For any )€ t*, there exists we€W such that w) is
anti-dominant and satisfies (8.3.2). Hence these two conditions

are not severe.
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§9 Harish-Chandra modules

9.1 Let G, t, A, X,-++. be as in §5. Let H be an affine algebraic
group with a group morphism £f: H -+ G. Let h be the Lie algebra
of H.

Proposition 9.1.1 If M is a (g,H)-module, then EAQQM is an

H-equivariant D, -module. Conversely, if M is an H-equivariant

Qx-module, then T (X;M) 1is a (g,H)-module.

This follows from §4.7.

9.2 Hence if A 1is regular and anti-dominant, the category of
finitely generated (g,H)-modules with infinitesimal character X, is
equivalent to that of H-equivariant D,-modules. When ) is not
regular, we need the modification as in Theorem 6.4.2, that we discuss

later more precisely.
9.3 Let us assume further

(9.3.1) The flag variety X of G has finitely many H-orbits.

Theorem 9.3.1 Under the condition (9.3.1), for any X€t*, any

H-equivariant coherent D,-module is regular holonomic.

A

Remark 9.3.2 The following statement is false: 1let X be a
projective algebraic smooth variety and G an affine algebraic
group acting on X. If X has finitely many G-orbits, then any
G-equivariant coherent module over any G-equivariant twisted ring of
differential operators is regular holonomic.

When G is reductive, I have no counterexample.

9.4 Proof of Theorem 9.3.1 Let 2Z=G/U and let p:Z > X=G/B be the

canonical projection. Then p is the principal fiber bundle with the

structure group T. Then p#QA =D, as G-equivariant twisted ring of

differential operators. Let M be an H-equivariant coherent D,-module.
Then N=p*M is (HxT)-equivariant. It is enough to show that N is
regular holonomic by Proposition 3.8.2. We shall prove by the induction
of the number of (HxT)-orbits in Supp N. Let S be an open (HXT)-
orbits of Supp N. Let 3j: S < Z be an embedding. Then there
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exists an (HxT)-equivariant Dg-module L such that N|g =

J (D ®, L) |q- Let q:HxT-S be an HxT-equivariant map. Then g
Z <S ES S - . . .
is surjective and smooth. Since g*L is HxT-equivariant, it is

isomorphic to the direct sum of finite copies of O, D./ 7 D, (a-
H T Aét T

<)\ p,A>). Hence g*L is completely regular. Therefore E_ is
completely regular by Proposition 3.8.2. Hence EH:j*(BzeJS@D L)
=S

Hg(g) is regular holonomic. Thus we obtain an (H T)-equivariant

Qz-modules

0_—)1:]_. ———)g_—)l_\{“'

Since Supp N'C Supp N\S, N' is regular holonomic by the hypothesis

of the induction. Hence N is also regular holonomic.

9.5 Let M be an irreducible H-equivariant coherent Qx—module
(i.e. there is no proper H-equivariant coherent sub-gx—godule). Then
Supp M is the closure of an H-orbit S. In fact, M ~» ES(M) must be
injective. Furthermore M must be the minimal extension of g|x\as.
Here 35=S\S. Let 3j: St X be the embedding. Then there exists an
H-equivariant j#g
=i, (D 8

A

N) |
s#p = 'X\88.

-module N such that EIX\aS
A, XS

Since N is an H-equivariant module, it is described as in §4.11.
Namely, take an x€S and let Hx be the isotropy subgroup. Then
we obtain Hx + B(x) » T and corresponding map Lie(Hx) + t. Then
N is described by Hx-module such that its infinitesimal representa-
tion is A+p.

Let S'(H,)) be the set of isomorphic classes of the triplets
(S,x,M), where S 1is an H-orbit of X, x€S and M is an
irreducible Hx—module such that its infinitesimal representation
Lie(Hx) + End (M) coincides with Lie(Hx) - t Atp C CEnd(M). Here,
(s,x,M) ~» (s',x',M'") if s=8', x'=h0x for some h,e H and there

0
exists y:M & M' such that w(hu)=(h0hh61)u for h€H, and ue€M.

Remark 9.5.1 If H<G, then M must be one-dimensional representa-
tion. 1In fact, if we denote by U(x) the unipotent part of B(x),
then HNU(x) 1is connected and its infinitesimal action on M is
trivial. Hence M 1is a representation of Hx/HnU(x)cB(x)/U(x)gT.

Theorem 9.5.2 The set of the isomorphic classes of irreducible H-
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equivariant coherent Qk-modules is isomorphic to S'(H,\).

9.6 As the Corollary of Theorem 9.5.2 and § 9.2, we obtain the
following theorem.

Theorem 9.6.1 Assume that X has finitely many H-orbits and let

A€t* be regular anti-dominant. Then the set of the isomorphic

classes of irreducible (g,H)-modules is isomorphic to S'(H,A).

Remark 9.6.2 As seen in §3, the category of regular holonomic Qx—
modules is equivalent to the category of twisted perverse sheaves
A° Incidentally, S'(H,)) is

isomorphic to the category of the pairs (S,F) of H-orbits S

with the twist T corresponding to D
and irreducible H-equivariant twisted sheaves F on S with twist T.

9.7 Now, we shall investigate the case when )\ is anti-dominant
and satisfies the condition (8.3.2). We shall use the notations
ZA’
obtained as the global sections of a unique irreducible H-equivariant
D,-module M such that T (X;M)#0.

p,: X > Xa as in §8. 1In this case, irreducible (g,H)-module is

=\

We shall interpret the condition T(X;M)=0 in terms of
(s,x,M) €s'(H,A). If T(X;M)=0, then by Theorem 8.3.1, there exists
a€l,  and non-zero coherent submodule N of M such that p ,(N)=0.

The largest N among such N’s must be H-equivariant and hence
M=N. Thus pa*g;o. Let us take a conn?cted covering group é > G
such that p is a weight of G. Let H be the fiber product of
G and H over G. By Proposition 8.2.1, pa*§==0 is equivalent to

the existence of A, ())-module N such that geox(p)ngg. Hence N

X
o

is an ﬁ—equivariant éx (A)-module. Let S be an open H-orbit of
o

Supp M. Then Supp M = §, Supp N = pa(g) and § = p&lpu(§). Take

-1 . -1 epl
o (y). Since Py (y)=p~,

Snp;l(y), which is an orbit of Hy’ must be either Pl, € or

x€S and set y = pa(x). Then Snpal(y) =p

C*. Moreover the condition M=0,(p)®p}N 1is equivalent to saying

that M| is isomorphic to (_)x(p)em for some m. When

-1
n
snp = (y)
Sr\p;l(y);c or Pl, this is simply connected and hence it is true.
The remaining case is the case Sfﬁp;l(y)zc*. Let (S,x,M)€S'(H,])
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correspond to M. Let @: H +~ Aut (M) be the action of H  on M.
Similarly let (pa(S), y,N) corresponds to N. Then N is a
representation of ﬁy whose infinitesimal action is by XA. Here the
suffix signifies the isotropy subgroup at that point and

At Lie(ﬁy) +~ € is given by

Lie(ﬁy) - Lie(&y) + Lie(the reductive part of éy) . E/Cha —l» cC.

5+ Moreover M=C_D®N as an
ﬁx—module. Hence the condition p ,M=0 is interpreted to the

Note that <ha,A>= 0 because a €l

condition: C_p®9: ﬁx :>Aut(¢_p®M) extends to 1p:ﬁy — Aut(C_p@M)

such that dy=A. Now, we have, as ﬁyx=(ﬁyf X,

9.7.1 H =(H_)°-H_.

( ) y ( y) %

Here ° signifies the connected component containing 1. Since

w(ﬁy) is in the center of Aut(C_pGM), in order to extend C_ 8¢9
onto ﬁy’ it is enough to extend ¢ to V°: (Hy)° > Aut(C_p®M) with

dy°=i. Let X be one of the points in p&l(y)\s. Then (ﬁx )°=(ﬁy)°.
1

Since Cp is a representation of (ﬁx )°, it is enough to extend

- N 1

Hx + Aut (M) to (Hx )° > Aut M. Since Ker(H+H) acts identically on
1

1
obtain the following.

Let S(H,)) be the subset of S'(H,A) such that (S,x,M) €
S(H,))\S'(H,)) if and only if (S,x,M) satisfies the following two

conditions for some o GZA.

M, (ﬁx )° > Aut M factors through (H_)° » Aut M. Summing up, we
1

-1

9.7.2 . . L.
(9.7.2) SI\Pu pa(x) )/Hx is not a finite set.

Hy oy
pOt
(9.7.3) If Sf\p;]‘pa(x) ¢ €*, then
H . nH °
x" pa(X)
extends to y: H

-+ Aut (M)

pa(x)° + Aut(M) such that d¥=)+p.

. A+ . . . . -1
Here Lle(Hpa(x)) A0, ¢ is given as follows: taking xle:pu pa(x)\s,

Lie(Hpa(x))=Lie(HXl) > Lie(B(xy)) »t X8 ¢.
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Remark Similarly to the case of ﬁpa(x)' if Hxn(Hxl)o*'Aut(M)
extends onto (Hx1)°=Hpa(x)° as in (9.7.3), then Hanxl -+ Aut (M)
extends to w-Hx + Aut(M) with dy=A+p.

1

Theorem 9.7.1 Assume that X has finitely many H-orbits and that

A is anti-dominant and satisfies (8.3.2). Then the set of the

isomorphic classes of irreducible (g,H)-modules is equal to S(H,A).

Example 9.7.2 Let us take G=SL2 as in §7. Let us take as H the

torus {(a a—l); a€C*}. Then the isomorphic classes of (g,H)-

modules corresponds to the irreducible representations of SLZ(R).
Now X has three H-orbits, namely, {0}, {~} and SO=X\{0,w}.
Then the isotropy subgroups are given by, H0=Hm=H and H1={il}.
If X ¢ Zp, then the infinitesimal representation Ao of
Lie(H) cannot extend to representation of H. Hence

(9.7.4) S(H,\) = {(So,l,M+),(SO,l,M_)} for A¢Zp.

Here M, is the trivial representation of H; and M_ is the other
one-dimentional representation of H,. If )=-mp with a positive
integer m, then

(9.7.5)  s(H,A) = (S4,1,M), (Sy,1,M), ({0},0,%) ({=},=, %)} .

Here * corresponds to the representation of H corresponding
to A+p.
If )=0, then (So,l,M_)¢iS(H,A) because M_ extends to the
representation of H with infinitesimal representation of H with
infinitesimal character p. Hence

(9.7.6) S(H,)) = {(So,l,M+), {0}, {=}} for X=0.
This coincides with the well-known classification of irreducible
representation of SLZ(R). The date (So,l,M+) correspond to the

principal series (when A¢Zp), and ({0},0,*), ({«},0,*) correspond

to discrete series.
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