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§0. Introduction 

0.0 By the celebrated work of Beilinson-Bernstein of the vanishing 
theorem on the D-modules over flag varieties ([BB]), we can study 
representations of Lie group through the geometry of flag varieties. 
In this lecture, we review this and add what happens when the 
infinitesimal characters are not regular. 

0.1 Let G be a reductive group and X its flag variety. Let g 
be the Lie algebra of G, t the Cartan algebra and A the root 
system. For A£t*, let xx be tne corresponding character of the 
center Z(g) of the universal enveloping algebra U(g). We 
normalize this so that = XwX for w in the Weyl group W. 
For A6t*, set UA(g) = U(g)/U(g)Ker xx-
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M. KASHIWARA 

Then we can construct a twisted ring of differential operators 
D^ on X such that r(X;D^) = U^(g). Beilinson-Bernstein's 
achievements are summarized by the following three theorems (The last 
one is an easy consequence of the first two) 

Theorem A If X is regular and anti-dominant, any coherent D^-module  
is generated by global sections. 

Theorem В If_ X is anti-dominant, then any coherent D^-module 
M satisfies Hn(X;M) = 0 for n И 0 

Theorem 0 If X is anti-dominant and regular, the category of  
finitely generated U^(g)-modules are equivalent to the category of  
coherent D ̂ -modules. 

In [BK], Brylinski and Kashiwara proved these theorems in a 
very special case (x^ trivial, M is U-equivariant) in an ad-hoc 
manner, in order to prove the Kazhdan-Lustzig conjecture. 

0.2 Let GR be a real semisimple group, KR a maximal compact 
subgroup of G_ and let G and К be their complexification. 
Let g and k be their Lie algebras. Then by Harish-Chandra [H], 
admissible representaion of GR is described by (g,K)-modules, so 
called Harish-Chandra module. 

By Theorem 0, (g,K)-module with infinitesimal character x^ 
is described by K-equivariant D^-module. 

The structure of irreducible K-equivariant D^-module M can 
be described by using the geometry of K-orbits. The crucial point 
here is that X has only finite many K-orbits. First the support 
of M is a closure of a K-orbit S. Assume, for the sake of 
simplicity, x^ is tne trivial infinitesimal character. Then, M 
determines a K-equivariant local system F on S, and M is 
completely described by the pair (S,F). If x^ is not trivial, we 
have to replace F with a twisted local system. When X is not 
regular, we have to put some auxiliary condition on F(see §9). 

0.3 Except the irregular case, the contents of this article are 
more or less known. In the appendix of the paper by Hecht, Milicic, 
Schmid and Wolf [HMSW], we can find also the review of the result 
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of Beilinson-Bernstein. Also see Ginsburg [G]. 

0.4 We did not include the following important topics concerning 
D-modules on the flag variety. 

(1) The derived category of D^-modules are equivalent to that of 
D .-modules for any w e w and A e t * . This is obtained by — 
Beilinson-Bernstein ([BB]2). 

(2) There is a one-to-one correspondence between K-orbits of X 
and GR-orbits of X by Matsuki [M]. This gives the construction 
of representations of GR corresponding to Harish-Chandra 
modules by W. Schmid - J. Wolf. See [SW] , [K]. 

(3) Relations with representation of the Weyl group, the affine 
Weyl group and their Hecke algebras, Hodge modules, invariant 
eigendistributions on the group. 
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§1 Vanishing theorem for cohomology groups of modules over Ox~rings. 

1 . 1 Let (x/2.x̂  ke a. commutative ringed space over a commutative 

ring k. A (k,0x)-ring is a sheaf of rings A with a ring homo-

morphism 0 A such that the image of k 0V A is contained 

in the center of A. We do not assume that the image of 0X •> A is 

contained in the center of A. 

If there is no afraid of confusion, we simply call O^-ring for 

a (k,Ox)-ring. We shall study in this section the criterian for 

the vanishing of cohomology groups of modules over Ox~rings. 

1.2 Let us recall Serre's result on ample invertible sheaves. 

Let k be a con 

variety over k. 

Let k be a commutative field and let (X,0X) be a projective 

Definition-Theorem 1 . 2 . 1 Let L be an invertible 0^-module. Then  

the following conditions are equivalent. 

(1) There exists an integer r > 0 and a closed embedding  

j :xC+Œ>N such that L®r= j *0X ( 1 ) . 

(2) For any pair of distinct closed points x,y of X, there exists 

r > 0 and s€T(X;L ) such that s(x)=0 and s(y)^0. 

(3) For anY coherent sheaf F, F®L is_ generated by global 

sections for r » 0 (i.e. T(X;F@L ) 0 0X -> F©L is surjective) , 

<4) For any coherent Ox-module F, H3(X;F©L®r) = 0 for j^O 

and r » 0. 

If these equivalent conditions are satisfied, we say that L 

is ample. 

Here, for s 6 r(X;L) and x6X, s(x) is the image of s in 

(Ov /m ) ® L with the maximal ideal m of Ov 
—A f X —X X —X —A / X 

-X,x 

1.3 Let (X,Ox) ^ a projective scheme over k and L an ample 

invertible Ox-module. Let A be an Ox~ring. Throughout this 

section, we assume 
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(1.3.1) A is quasi-coherent as a left Ox-module. 

Theorem 1.3.1 Under the condition (1.3.1), the following conditions  
are equivalent. 
(1) For any left A-module M, quasi-coherent over 0X, M is 
generated by global sections (i.e. A ® r(X;M) M is surjective) . 

(2) For n » 0, A ® L®(-n) ^ generated by global sections. 

Proof. (1) => (2) trivial. 
(2) => (1) M is a union of coherent sub-Ox~modules F. For such an 
F, there exists a surjective morphism Ov -> F ® L for n » 0. 
Hence (A ® L®"n)N A ® F is surjective. Since A ® L®"n is 

generated by global section, there exists A — A ® F. Hence the 

image of A ® r(X;M) M contains F. This shows (2) => (1) . 

1.4 Let (xf0.x̂  ' L anĉ  — ^e as -*-n t*le Prece<*ing sections. 

Theorem 1.4.1 Under the condition (1.3.1), the following conditions  
are equivalent. 
(1) For any left A-module M, quasi-coherent over 0>x, Hn(X;M) - 0 
for n^O. 

(2) For r » 0, 

T(X;A ® L®~r) 0 r(X;L®r) -* T(X;A) 
°X 

is surjective. 

(3) For r » 0, 

A (L®r ® T(X;L0r)*) ® A 
k 2x 

has a cosection (i.e. a left inverse) as right A-modules. 

(4) For r » 0, 
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A ® (L® r® r(X;L®r)) + A 
ox k 

has a section (i.e. right inverse) as a left A-module. 

Remark For r > 0, Ov 0 r(X;LGr) + L®r gives Ov L® r ® r (X;L®r) *  
"X k "X 

and L®~r qx®r(X;L®r)*. The morphisms in (3) and (4) come from 
them. 

Proof (3) O (4) follows by the operation of the functor Horn^(*,A). 
(2) <=> (4) obvious. ~ 
(1) => (2) follows from the exact sequence 

0 + M + A ® (L® " r ® r (X;L0r) ) A + 0 and H1(X;M) = 0 

(3) => (1) . 

We have 

(1.4.1) Hn(X;M) = lim Hn(X;F) 

where F ranges over coherent sub-Ox~modules of M. For such an F, 
we shall show that Hn(X;F) + Hn(X;M) is the zero map for n^O. 

We have Hn(X;F®L0r) = 0 for n^O, r » 0 . 
Set V = T(X;L0r). By letting ® M operate on A ^ (L0r®V*) ® Af 

M -ML ®V*) ® M has a cosection by (3) . 
k ° x 

Now, letting Hn(X;*) operate on a commutative diagram 

®r 
F L ® V* ® F i i 
M + L ® V* ® M 

we obtain a commutative diagram 
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Hn(X;F) • Hn(X;L®r ® V* 0 F) 
a 

Hn(X;M) • Hn(L®r 0 V* ® M). 

Since Hn(X;L0r 0 V* 0 F) = 0 for n^O, boa = 0. Since b has a 
cosection a = 0. By (1.4.1), we have Hn(X;M) = 0. Q.E.D. 

1.5 Let (X;Ox), L and A be as in §1.3. Set R = r(X;A). 
Let ModgC(A) be the category of left A-modules quasi-coherent over 
Ox and Mod(R) the category of left R-modules. We define the 
functors 

r: Mod (A) -* Mod(R) -
and 

0: Mod(R) -+ Mod (A) 
by 

r : M H- T(X;M) , 0: N ^ A0RN. 

Then 0 and r are adjoint functors; i.e. 
Horn(N, r(M)) = Hom(0(N),M). 

Proposition 1.5.1 (a) If_ the equivalent conditions of Theorem 1.4.1 
are satisfied, then r is an exact functor and r°0 = id. 
(b) rf the equivalent conditions of Theorem 1.3.1 and those of 
Theorem 1.4.1 are satisfied, then To0 = id, 0oT = id. 

Proof (a) The first assertion is obvious. Let 0 «- M «- R ^ «- R ^ 
be a free resolution. Then we have 0 «- A0M +• A^^ «- A ^ . 
Since T(X;*) is an exact functor, the rows of the following diagram 

0 «- T(X;A0M) <- r(X;A(I)) «- T (X;A(J)) 
î ft n 

0 « M < A(I> < A(J> 

are exact. Hence M + r(X;A©M). 
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(b) The proof is similar as that of (a). For M e Ob Mod (A), 

there exist an exact sequence 

0 + M <- A(I) +- A(J) . 

This gives the exact sequence 

0 <- r (X;M) <- R(I) «- R(J) . 

Operating ®, we have 

0 +- A®r(X;M) «- A(I) «- A(J) . 

Hence A ® r (X;M) •> M is an isomorphism. 

Proposition 1.5.2 Assume the equivalent conditions of Theorem 1.4.1 
Let E be the full subcategory of Mo^qC(A) consisting of M such  
that M is generated by global sections and M has no non-zero  
subobject N such that T(X;N) = 0. Then r: E Mod (R) is an  
equivalence of categories. 

Proof We shall show first r is fully faithful. For two objects 
Mx and M2 of E, <P: Horn(M^,M2) Horn(r (5^) ,T (M2) ) is injective 
because is generated by global sections. Let f: T(M^) r(M2) 
be a homomorphism. Since the kernel N of A0Rr(M^) M^ satisfies 
r (N) = 0f the composition of N A®Rr (M^) A0Rr (M2) M2 is zero, 
and hence, this gives a homomorphism g: M^ •> M2. It is evident 
that <p(g) = f. 

Let us show r : E •> Mod (R) is essentially surjective. For 
an R-module N, Let I be the set of subobjects M of A®RN such 
that r(X;M) = 0. Then I is inductively ordered and the sum of 
any two subobjects in I belongs again to I. Hence I has the 
largest element MQ. Then M = (A®RN)/MQ is an object of E and 
satisfies r(M) = N. 

Corollary 1.5.3 Assume the equivalent conditions of Theorem 1.4.1. 
The set of isomorphic classes of the simple R-modules is isomorphic  
to the set of the isomorphic classes of the simple objects M in 
Modac(A) satisfying r(X;M) f 0. 

62 



REPRESENTATION THEORY AND D-MODULES ON FLAG VARIETIES 

§2 Twisted ring of differential operators 

2.0 Let X be a complex manifold. Let £x be the ring of differ­
ential operators on X. We shall call twisted ring of differential 
operators an Ov-ring locally isomorphic to DY. If L is an 
invertible Ox-module, L®Q DX®Q L gives such an example. 

In this section, we shall study the properties of such Cu­
rings. 

2.1 Let (X,0X) be either a smooth algebraic variety over a field 
k of characteristic 0 or a complex manifold. The following 
discussions are almost same in the both cases. We shall recall 
the properties of the sheaf D of differential operators. Let 0V 
be the sheaf of tangent vector fields. Let F^(DX) be the sheaf of 
differential operators of order at most k. Then this gives an 
increasing filtration called the order filtration of D that satisfy 
the following properties. 

(2.1.1) F (Dv) = 0 for m<0 
m —A 

(2.1.2) FQ(DX) = Ox. 

(2.1.3) Fm(Dx) = {PeDx; [P ,Ox]€ F ^ (Dx) } for m>0. 

(2.1.4) Dv = U F (Dv) —X m —X 

(2.1.5) F (D ).Fm (D-.) C F . (D__) 
m^ —x m2 —X m^+n^ —X 

i2'1'6) l * * ^ ' Fm2^X)]CFmi+m2-l(-x) 

(2.1.7) grF(Dx) = Fl(Dx)/F0(Dx) * 0X 

(2.1.8) S(0X) * grFDx = ®grFDx = ®Fm (Dx) / F ^ (̂ J 

where S(0X) is the symmetric algebra of Sx over Ox, and the 
arrow in (2.1.8) is given via (2.1.7). 
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2.2 Let ak: Fk<Ex> Sk(0X) be the homomorPhism 9iven bY S(0X) = 
grFDx. Then for a€Sp(0x) and b€Sq(0x) taking P€Fp(Dx) and 
Q6F (D ), we define 

{a,b} = o p+q-1 ([P,Q]). 

This does not depend on the choice of P,Q. We extend this by the 
linearity: 

{ , }: S(0x)®S(0x) - S(0X) . 

This is called Poisson bracket. This satisfies the following 
well-known properties: 

(2.2.1) {a,b} = -{b,a} 

(2.2.2) {ab,c} = b{a,c}+aib,c) 

(2.2.3) {{a,b},c}+{{b,c},a}+{{c,a},b} = 0. 

(2.2.4) If v€0x and â 2.x/ then {v,a}=v(a). 

The following properties are easily checked. 

Lemma 2.2.1 (2.2.1), (2.2.2) and (2.2.4) characterises { , }. 

Lemma 2.2.2 Let x^2.x (i=l,•••,n=dim X) be sections such that 
dxi are linearly independent. Then for m>l, and ai€Sm-i^0x^ 
with {a^x..} = {aj,xi>, there exists unique u^Sm(0x) such that 
{a,x.}=a.. 

Proof Let {v.} be the dual base of idx .K Then S(0V) = 
O Y I V T . ' # ' v ] anc* {f,x.} = -r—. This shows immediately this lemma. 
— J . n 3 oVj 

2.3 We shall study Ox~rings with the similar properties as E>x. Let 
A be an Ox«ring with increasing filtration F(A) satisfying 

(2.3.1) A = U F (A) — m — 
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(2.3.2) Ox * FQ(A) 

(2.3.3) Fm(A)=0 for m<0 

(2.3.4) F ^ W . F ^ ^ C F ^ ^ A ) 

(2.3.5) [F^ (A) , F ^ (A) ] CZ (A) . 

Then grF(A)=e(Fm(A)/Fm-1(A)) has the structure of commutative 
ring. Moreover [*,*]:Fw (A^F^ (A) Fm , (A) gives the 

ro^ 2 1 2"™ 
bracket { , } on grF(A). 

Associating to PGF^A), the derivation 

0x3a - [P,a]€F0(A) = 0X, 

we obtain gr^ (A) -* ©x« 
Assume further 

(2.3.6) gr^ (A) ex is an isomorphism. 

This gives a ring homomorphism S(0X) -* gr (A). This preserves the 
bracket { , }. 

Lemma 2.3.1 Under the conditions (2. 3.1) - (2 . 3. 6) , S(0X) -> grF (A) 
is injective. 

Proof We shall prove that, for m>2 the injectivity of 9̂  ,: 
Sm_1(0x) -> grm.1(A) implies the injectivity of <Pm: Sm(0x) grm(A) 
Assume u€S (0V) satisfies 9*Mu)=0. Then for any a€0v, m A m —A 
^^({Uja}) = {^m(u)fa} = 0, and hence {u,a}=0. Then Lemma 2.2.2 
implies u=0. 

Proposition 2.3.2 Under the conditions (2.3.1)-(2.3.6), the follow­ 
ing conditions are equivalent 

F 
(2.3.7) S(0X^ gr ^—' is an isomorphism. 

(2.3.8) Fm(A) = F1(A)Fm-1(A) for m>l. 
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(2.3.9) Fm(A) = {P€A; [P, a]€ Fm-1 (A) for any a€0x} for m>0. 

(2.3.10) The condition (2.3.9) holds for any m>l. 

Proof 

(2.3.7) (2.3.8) clear by the preceding lemma. 

(2.3.7) =p (2.3.9) It is enough to show 

Fm(A) = {PeFm+1(A) ; [P,a]6Fm_1(A) for any a60x> for m^O. 

This follows from 

{u6Sm+1(0x); {ufOx}=0}=0 for m>0. 

(2.3.10) =» (2.3.7) Assuming that S. (0V) -> gr^ (0V) is an 
isomorphism for j<m, we shall show the surjectivity of sm^0x^ 
grF(A). For j<m, let 0.: F.(A) -* S.(0V) be the composition 
F . (A) -* gr . (A) £ S . (0V) . Let x,,...,x 60v be such that dx, , • • • , 
dx forms a base of fiv. For P€F (A), set u.=a , ([P,x. ]). 
Since [[P,x^] ,Xj]=[[PXj],xi], {u i f X j } = { U j,x^}. Hence there exists 
u€S (0 ) such that {u,x.}=u.. Let Q€F (A) be an element that 
gives the image of u by S (0V) -> gr (A). Replacing P with P-Q, 
we may assume that [P,x. ]6F 9 (A) for any i. Since ty: a [P,a] 
is a derivation from Ov to gr , (A) and ib(x.)=0, we have ib=0. 
Hence, we have [PfOv]€Fw 0 (A) . This shows P6F ..(A). 

Q.E.D. 

Definition 2.3.3 An O^-ring A is called twisted ring of differ­
ential operators if it admits a filtration F(A) satisfying (2.3.1)-
(2.3.6) and the equivalent conditions (2.3.7)-(2.3.9). 

Remark that if A is a twisted ring of differential operators, 
then the filtration F(A) is uniquely determined by (2.3.3) and 
(2.3.9). We call F(A) the order filtration of A. 

2.4 Let A be a twisted ring of differential operators. Let F ^ A ) * 
be HomQ (F1(A),0X) with the left Ox-module structure of F^(A). 

—X 
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Then, similarly to the de Rham complex, we can define a complex: 

A A 2 A 3 

q x 2 F 1 ( a ) * - ^ A F ^ a ) * - 5 - > A F 1 ( A ) * — 

p P+l 
Here d: A F ^ A ) * — > A F ^ ( A ) * is defined by 

(df) ( P Q A . • - AP ) =1 ( - D i a 1 ( P ± ) (f ( P Q A - • • A P ^ A P ^ A - ' - A P p ) ) 

+ I ( - l ) 1 + j f ( [ P I , P , ] A P 0 A - - - A P I - 1 A P I + 1 A - - - A P . _ 1 A P , + 1 A - - - A P ) 
i<j J 

The exact sequence 0 + q x -> F1 ( A ) -> 0 X -* 0 gives 0 + ^ X + F 1 ( A ) * ^ 
0 X ^ 0 and we obtain a short exact sequence of complexes. 

0 0 0 

° — ° x ^ - 4 — > "x 
+ 4 

(2.4.1) ^ ^ 2 3 
0 > O X — ^ — » F X ( A ) * — > A F X ( A ) * > A F ^ ( A ) * > • • • 

+ + + + 
o > o x > ^ > n£ >• • • 

4- + + 
0 0 0 

Assume that there exists i€F 1(A)* that is mapped to 1 by F^(A)* 
q x (such an i exists locally). Then n=di belongs to ftx and 
satisfies dn=0. Remark that n corresponds to curvature form. 

Take another section i 1 of F^(A)* satisfying the same 
property as i and set ri^di*. Then ^=i'-i is a 1-form and 

2.5 Conversely let n be a closed 2-form. Let us define an C^-ring 
A the Ov-algebra generated by 0 V with the fundamental relation 

(2.5.1) j : 0 V + A is left 0 -linear, 
A —f| —A 

(2.5.2) [ j (v.̂  , j (v2) ]=j ([v 1,v 2] )-<n/V 1Av 2> for v l f v 2 e 0 x . 

(2.5.3) [j(v),a]=v(a) for v€0 v, a€O v. 
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Then we can check easily that A^ is a twisted ring of differential 
operators. 

If A, i and n are as in §2.4, then A^Aiq. 
If n is a closed 2-form and £ is a 1-form then we have a 

canonical isomorphism A = A L, by A a 0V3V I—^ v-<£ , v >e A . , r. 

Proposition 2.5.1 If X is a complex manifold, then a sheaf of  
twisted differential operators is locally isomorphic to Dx« 

In fact any closed 2-form is locally the exterior derivative of 
a 1-form. 

2.6 Let fi^ be the de Rham complex ftx -+ Qx ftx + and let 
a>1(fi^) be its subcomplex 0 •> ftx -> ft2 

Theorem 2.6.1 The set of isomorphic classes of twisted rings of 
2 

differential operators is isomorphic to H (X;g > 1(fi x)). 

Proof We can calculate H (X; o>1(Q^)) by the Cech cohomology. 
Let Vt = (Ui> be an open covering. Then H 2 (K; o>1(Q^)) is given 
by 

n i 6 r ( U i ; n ? ) 5ij e r ( Ui nV 4> 
such that 

(2.6.1) dn.,=0, Hi-n^dCij on O i n u j 

(2.6.2) 5i;j+£jk+eki=0 on U^UjHUj^. 

Then we can patch twisted rings of differential operators An on 
i 

U ± by 

ani |UiNUj ani |UiNUjani |UiNUj ani |UiNUj 
and obtain a globally defined twisted ring of differential operators. 
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Conversly if A is a twisted ring of differential operator, then 
there exist an open covering VC = {U..} of X and a section i : 
0 J ~> F, (A) |y of ai ITT • As in §2.4 i. defines a closed 2-form 

J J J 3 
T) ., and i--iv gives a 1-form £ ., , so that (2.1.1) and (2.6.2) 
are satisfied. Hence they give an element of H (2^;a>1 (ft^)) . 

It is easy to see that they do not depend on the choices 
introduced there and these two correspondences are inverse to each 
other. 

Corollary 2.6.2 If X is a complex manifold, the set of the  
isomorphic classes of twisted rings of differential operators is  
isomorphic to H (X;d 0X). 

In fact, o>i(&x) is quasi-isomorphic to dOx[-l]. 

Remark 2.6.3 In an algebraic case, a twisted ring of differential 
operator is not locally isomorphic to Dx even in the etale 
topology. In fact, for a closed 2-form nr An is isomorphic to Dx 
if and only if n is a coboundary. 

Remark 2.6.4 Let A be a twisted ring of differential operators. 
Then 

Aut(A)=End (A) = H1(X; a> jfl̂) =Ker (d: r(X;^x) + r(X;ft2)). 

Here Aut and End signify the sheaf of automorphisms and endo-
morphisms as Ox~rings. For a closed 1-form GO, the associated 
automorphism of A is F^ (A) 3 P i > P+<a1(P) ,oo> e F^ (A) . 

Remark 2.6.5 Let A be a twisted ring of differential operators 
and L an invertible 0 -module. Then L©^ A®. L is also a 

twisted ring of differential operators. Then the cohomology class 
c(L®A®L0""1) € H2(X; a>, ) corresponds to [L]+c (A) . Here [L] is 
the image of the class of L in H (X;0X*) by the homomorphism 

H1(X;Ox*) + H2(X; a^Q') given by 0X* Ker(d1:^ -> ft2) -> 
a^ft'tl]. More generally, for any A6k (k is the base field when 
X is algebraic and k=C when X is a complex manifold), we can 
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define L0X®A®LQ~X such that c(LQx®A®L® X)=c(A)+A[L]. In fact take 
an open covering °f x and s^eT(U^fL) such that L=qxs^. 
Then we can patch A |y and A| y by u ' | u OU 9 P ' * 
(si/sj)XP(si/s;.)"x €(A|u<)|Uinu>. Remark that for any 

x \ — \ D 1 D a£0x, P»-> a Pa is a well-defined automorphism of A (See Remark 
2.6.4). Hence if s is an invertible section of L and P is 
a section of A, sXOP®s~X gives a section of L®X®A®L®~X. 

Remark 2.6.5 The map from the set of the isomorphic classes of 

twisted rings of differential operators to H (X;c>^(^x)) is also 
given as follows. 

Let us consider the diagram (2.4.1). Since the columns are 
exact, it defines a morphism in the derived category [qx ftx • • • ] 
—• a>1(^)[2]. Hence we obtain H°(X;^) + H2 (X;a> 1 (fl£)) . The image 
of 16H°(X; C r(X;Ox) gives the corresponding class c(A)€ 
H2(X;a^1(^)) . 

2.7 If A is a twisted ring of differential operators, then its 
opposite ring Aop is also a twisted ring of differential operators. 
If c(A)6H (X;a>1(fi^)) denotes the corresponding cohomology class. 

then c(Aop) = [^AlllA]-c(A) . Here [ f l p 6 H ' ( X ; o a ^ ) is the one 
given in Remark 2.6.4. We omit its proof. We just remark that it 
follows from the following fact: 

^dimXn dimX. 

fl 1 a 1 L^i(v)(n) (2.7.1) If we define <p: v H>-N ®v®n + n ®- n n , then 

<P defines a left qx-linear isomorphism F1(Aop) + F1 (co®""1®^®^) 

where ^ ^ ^ X ^ * and ^^^x" The dia9ram 

°X F,(A°P) 
fdg 

dfg 

dfg 
ст1 

qx — > F1^x l0A®u>x) 

commutes. Moreover, <p( [v1,v2]) = № ( v ^ ,9(v2) ] for v ^ v ^ F ^ A ^ ) . 
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This shows c(Aop) = -c(oo® 1®A®(A)X) by the construction given by 
Remark 2.6.5. 

2.8 Let f: X Y be a morphism of smooth algebraic varieties or 
complex manifolds. Let Ay be a twisted ring of differential 
operators on Y. Let f * (Ay) be qx© _± f"1^. Then f * (Ay) is a 

-1 ~^ -1 right f Ay-module. Let End^(f*Ay) be the ring of right f Ay-
linear endomorphisms of f*Ay.~ Let us define subsheaves Fm of 
EndA (f*^) inductively by 

—Y 

(2.8.1) Fm = 0 for m < 0 

(2.8.2) Fm = {P€EndA (f*Ay); [P,qx]€Fm-1} for m > 0 

Set f#Ay =UFm. 
# Proposition 2.8.1 f A^ is a twisted ring of differential operators 2 i 

with Fm(f ^y^=Fm' and we have a Cartesian diagram 

(2.8.3) F1(f#AY) >f*Fx(AY) 

1 n I 
ex »f*ey . 

Proof It is enough to check fq=0x and (2.8.3) by Proposition 
(2.3.2). The other properties are easily derived by the definition 
of F . 

m 

Lemma 2.8.2 {P€f*(Ay); [P,a]£f*Fm_1 (Ay) for any a€0y} =f*Fm(Ay) 

for m>0. 

Proof Take Yi' • • •'Yn€ 9y such that dy1,...,dyn forms a base, 
and vlf...,vne0Y be its dual base. Then P«—• [P,yil gives a 
homomorphism from f*Sm(0y) + f*Sm_1(0y). If we identify f*S(0y) = 
°X®k[vl'# # #'vn] ' then p ^ [P'vi] is given by a/3v±. Hence for 
m*l, {P6f*Sm(0y); [P,yi]=0 for any i}=0. This shows 

{Pef*Fm(Ay); [P^yi]^f*Fm_2(Ay)}czf*Fm_1(Ay) . The lemma follows 
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immediately from this. 

Proof of Proposition 2 . 8 . 1 (continued) If ^€FQ, then for aGOy, 
[9?(1®1) ,a] = 0 . Hence <p(l®l)€qx by the preceding lemma. Hence 
^(a®P)=a^(l®l)P= #>(l®l)a®P for a€qx and P€Ay. Thus 9^0^. 
Assume <p€F^. Then for a e q x , [p,a]6F0. Hence a«—• [$0,a]eqx 
gives a derivation of 0X« If we denote it v, then [^)(M) ,a]=v(a)6 0, 
Hence $0(101)6f*F1(Ay) and its image on f*0y coincides with the 
image of v. Hence we have F1 + f *F1 (Ay) xf ̂Q 0X. It is easy to 
check that this an isomorphism. Y 

2 .9 Let f: X Y and A^ be as in the preceding section. Then  JI i 
f*Ay has a stri; 
Ay-module, then 

# - 1 
f*Ay has a structure of (fffAy,f Ay)-bimodule. If M is a left 

f*M = qx® _ f""1̂  = f*Ay® _x f_1M 
f qy f~ Ay 

# 
has a structure of left f Ay-module. 

2 .10 Let f: X •+ Y and g: Y Z be two morphisms of smooth 
varieties and let Az be a twisted ring of differential operators on 
Z. Then we have a canonical isomorphism 

( 2 . 1 0 . 1 ) f#g#Az = (gof)#Az. 

In fact, g*Az is a left gAz-module. Hence f*g*A_z= (gof) *AZ is a 
left f#g#A(7-module. Hence we obtain f#g#A_ -> End ((gof) *A„) . It 
is easy to prove that this gives an isomorphism from f g K„ to the 
subring (gof)ttA of End((gof)*A ). 

2 . 1 1 We have the following lemma, whose proof is left to the reader. 

Lemma 2 . 1 1 . 1 Let f: X •> Y be a morphism of smooth varieties, and 
Ay a twisted ring of differential operators on Y. Then 
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f # ( A o P ) o p 
" wX/Y®O x 

f #(A Y) „ 0-1 
0O X

WX/Y 

, n dimX^ , ndimYN ®-1 where ^X/Y = &x ®(^Y ' 

Since f*(A°p) is a right f# (A°p)op-module, f*(A^p)®Q o>x̂ y is a 
right f (Ay) module by this lemma. Together with the right module 
structure on f*(AyP), gives a (f~ A^, f AY)-bimodule structure 
f*(Âp)®ci)v/,r. We set 

(2.11.1) ^X=f*(^P)^X/Y= f " Vf-ln *X/Y" 
—Y 

Then for a left f#Ay module M, f * (Ay^x® # M) is a left Ay-
module. f (̂ Ŷ  
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§3 Twisted sheaves and regular holonomic modules over twisted 
rings of differential operators 

3.0 We know that the derived category of Dx-modules with regular 
holonomic Dx-modules as cohomology groups is equivalent to the derived 
category of Cx-modules with constructible cohomologies. In the case 
of twisted rings of differential operators, we have the similar 
theories. However, we have to introduce the notion of twisted 
sheaves that we are going to discuss in this chapter. 

3.1 Let (XfOx) be a smooth algebraic variety defined over a field 
k of characteristic 0 or a complex manifold. The notion of 
regular holonomic system can be generalized in the case of twisted 
rings of differential operators. 

3.2 Let A be a twisted ring of differential operators on X and 
let F(A) be the order filtration of A. 

3.3 For a coherent A-module M, a filtration F(M) over F(A) 
(i.e. Fm(A)Fk(M)C Fm+k(M)) is called a good filtration if there 
exists locally a finite number of sections {u^} of M and integers 
mi such that F^(M) =IFk_m> (A)ui. Such a filtration exists 
always at least locally. 

3.4 If F(M) is a good filtration, then gr M is a coherent 
(gr A)-module. If we denote IT: T*X X, the cotangent bundle of X, 
then we have a ring homomorphism 

(3.4.1) gr A 4 TT*OT#X. 

In the algebraic case, (3.4.1) is an isomorphism. We set Ch(M)= 
supp(qT* ® n 7T gr M) and call this the characteristic variety 
of M. Since this is independent from the choice of F(M), this is 
a well-defined closed subset of T*X. 
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3.5 We have 

Proposition 3.5.1 Ch M is always involutive. (i.e. the ideal 
defining Ch M is closed under the Poisson bracket). 

In particular the codimension of Ch M is £ dim X at any point of 
Ch M. 

Definition 3.5.2 A coherent A-module is called holonomic if 
codim Ch M = dim X. 

Let M be a holonomic D -module and A = Ch M. If there exists — — F F a good filtration F (M) such that f|gr M = 0 for any f 6 gr A 
with f|A = 0, then we call M regular holonomic. 

3.6 If X is an open subset of <C and if M = D/DP with a non­
zero differential operator P, M is always holonomic. Moreover M 
is regular holonomic on a neighborhood of x=0, if and only if 0 is 
a regular point of the equation Pu=0 in the classical sense; that 

is, if we set P= I a_.(x)83, with am f 0, ord a.. > ord am-(m-j). 

Here ord is the order of zero at the origin. 

3.7 Since any twisted sheaf of differential operators is locally 
isomorphic to D (in the complex case), many properties of regular 
holonomic Dx-modules are valid for those over A. Here are some of 
their properties. 

Proposition 3.7.1 (i) A coherent submodule and a coherent quotient 
of regular holonomic module is regular. 
(ii) lf_ M1 -> M M" is an exact sequence of coherent modules and 
if M1 and M" are regular holonomic, then so is M. 

3.8 In this section, we assume X is a smooth algebraic variety, 
and we work in the algebraic category. Let j: X<-*X be an embedding 
into a proper smooth variety X. For any holonomic D -module M, 
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j*M is always holonomic. If j*M is regular holonomic, we say 

M is completely regular. This property does not depend on the 

embedding j. 

Regular holonomicity has the following functorial properties. 

Proposition 3.8.1 Let f: X Y be a morphism 

(i) If M is a (completely) regular holonomic Dy-module, then 

Torj (f*DY, M) is a (completely) regular holonomic D^-module. 

(ii) If M is a completely regular holonomic D^-module, then 

R-Jf^(DY^x®D M) is a completely regular holonomic Dy-module. 

Proposition 3.8.2 Let f: X Y be a surjective map of smooth  

varieties X, Y. Let M be a holonomic D^-module. Then M is 

completely regular if and only if Tor^ (f*DY,M) is completely  

regular for any j. 

3.9 Let D(DX) be the derived category of the abelian category 

of Dx-modules and let Drn(Dx) be the ful1 subcategory of D(DX) 

consisting of bounded complexes with regular holonomic cohomology 

groups. 

3.10 Assume X complex analytic. Let D ((Çx) be the derived 

category of sheaves of C-vector spaces and let D (Œ ) be its full 

subcategory consisting of bounded complexes whose cohomology groups 

are constructible. Recall that a sheaf F is called constructible  

if there exists a complex analytic stratification on whose strata 

F is locally constant of finite rank. 

3.11 Now the Riemann-Hilbert correspondence says 

Theorem 3.11.1 Let X be a complex manifold 

is an equivalence of categories. 

ШНогПр ( 0 Х , * ) Drh<°X> kgdklffghfdh 

is an equivalence of categories. 
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An object F6D (ffiv) is called perverse, if codim Supp H3(F)£j and 
c —X 

codim Supp Ext3 (F, (C^)^ j for any j. Let RH (E>x) be the category of 

regular holonomic Dx-modules and Perv ((Cx) the full subcategory 

of D (CDV) consisting of perverse objects. Then 

C —X 

Theorem 3.11.2 EHomp (0X,*): RH(DX) Perv((Ex) is an equivalence  

of categories. X 

Remark 3.11.3 Let X be a proper smooth algebraic variety defined 

over I, and let X&n be the underlying complex manifold. Then 

by GAGA, we have Drh(Dx) = Drn(Ex ' and ^ (̂ x' s RH (-X ' * This 

is also true in twisted cases. 

3.12 We shall generalize the Riemann-Hilbert correspondence in the 

twisted case. 

3.13 Let (X;A) be a commutative ringed space. Let us take an 

open covering ^Ui^ieI of X' invertible A|0 nu -modules L ^ and 

A-linear isomorphism <f. : (L. ®L., ) |TT TT ^ „ I > L., I 

which satisfies 1 1 K 1 D * 

(3.13.1) L±± = A 

(3.13.2) «ii^idL... ^i33=idL.. 

(3.13.3) For i,j,k, £61, wé have a commutative diagram of 

morphisms of fgsdlfdmllmgvds mam 
Lij® Ljk 8 Lk)i 

B E I 
Lik 0 Lk£ 

dfsgsdv 

dfgd 
sg 

y i i £ 
ID DÄ 

sdfv 
dsgf 

In this case, we say <«>i>i«i'{Ln>'<W> a twisting data. 

77 



M. KASHIWARA 

Remark that (3.13.1) and (3.13.2) are consequences of (3.13.3). 

3.14 Let T=({Ui}ieI, { L ^ } , {?ijk}) be a twisting data. For an 

open set Q of X, a twisted sheaf F on Q with twist T is 

data F={Fif p ^ } with 

(3.14.1) 

(3.14.2) 

such that 

F. is an A |Q -module, 

p..: ( L i j S F j M ^ n u ^ u . . * FilfiOUinUj > 

(3.14.2.1) p ± i-l. 

(3.14.2.2) For i,j,k, on U^U^/IU^sl 

Lij0Ljk0Fk 
*Ljk 

* Lik0Fk 

pik 

-+F. 
P. . 
3Q L . . ®F . 

ID D 

fsdf 

commutes. 

Then the category M(ft;T) of twisted sheaves on ft with twist 

T form an abelian category. If H c u . for some U^, then M(ft;T) 

is equivalent to the category of (A |^)-modules. 

Moreover it is a champs in the sense of Giraud [G], i.e. 

i) For F,F'eM(ft;T), U H o ^ y t) (F I U'F ' 1 i S a sheaf on Q' 

ii) Let fi=Ufi_j be an open covering and let F.. 6 M (ft _. ,T) . If 

F,_ I _ _ ; F, 
jk" klßjf\fik J'ftjAftk 

is given so that 

(3.14.3) Y 11 = id 

(3.14.4) y . . ^ = ̂>.k. 

Then there exists F£M(ft;T) and that a.:F|Q -* F. with a-a"1=^ • < 

3.15 Remark that a twisting data T gives an element c(T) of 
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H2(X;AX). If two twisting data T2 satisfy c(T1)=c(T2), then 
MC^;^) and M(ft;T2) are equivalent (as a champs). But this 
equivalence is not unique. In fact the ambiguity is given by ®L for 
a twisted invertible A-module L. Also, note that for any 
ceH2(X;AX), there exists a twisting data T with c(T)=c. 

For a twisting data T ^ L ^ } , we denote by T*"1 the twisting 
data {L^T1}. 

3.16 Let X be a complex manifold and A a twisted ring of 
differential operators. Since A is locally isomorphic to £x, 
there exists an open covering X=ULK of X and an A|y -module L^ 
which is an invertible 0y -module. Set 1 

L. = Hom^IyJ L j l u . . ) . 
J - ID J ID 

Then L. . is an invertible (ET, -module. Moreover L. . ®L., + L., 

canonically. Thus ^Lij} defines a twisting data T on X. Then 
we have 

L j i ^ j l u . . * * i l u . . -
J J 13 ID 

Hence L={Lj} is a twisted sheaf with twist T~^. Moreover A •> 
End(L) defines a structure of A-module on L. Then we can define 

DR(M) = RHomA(L/M) 

for an A-module. This gives a functor from the derived category of 
A-modules to the derived category D(T) of twisted sheaves with twist T. 
Similarly to Dx, we have the following Riemann-Hilbert correspondence 
in the twisted case. Let us define Drh(A) and D (T) just as 
Drh(Dx) and D C ( C X ) . 

Theorem 3.16.1 Drh(A) is equivalent to Dc(T). 

Theorem 3.16.2 The category of regular holonomic A-modules is  
equivalent to the category of twisted perverse sheaves with twist T. 

3.17 Let X be a complex manifold and A a twisted ring of differen­
tial operators on X. Let Y be a closed analytic set. Let M be a 
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regular holonomic A| -module which can be extended to a holonomic 
A-module defined on X. Then there exists a regular holonomic A-
module 77M defined on X satisfying 
( 3 . 1 7 . 1 ) 77 M xxy = M 

( 3 . 1 7 . 2 ) 11M has no non-zero coherent submodule supported in Y 
nor non-zero coherent quotient supported on Y. 

This 77 M is unique and called the minimal extension of M. 

3 . 1 8 This can be generalized into an algebraic case. Let X be a 
smooth algebraic variety, A a twisted ring of differential operators. 
Let M be a holonomic A-module defined on an open set U of X. 
Then there exists a holonomic A-module 77M defined on X satisfying 
( 3 . 1 7 . 1 ) and ( 3 . 1 7 . 2 ) . Such a 77M is unique. 

3 . 1 9 Let X be a complex manifold and A a twisted ring of 
differential operators on X. 

Theorem 3 . 1 9 . 1 The set of the isomorphic classes of irreducible  
regular holonomic A-modules is isomorphic to the set of pairs (S,F) 
where S is a Zariski locally closed non-singular connected subset  
of X and F is an irreducible twisted locally constant sheaf of  
finite rank on S with twist T. Here (S ,F) = (S 1,F1) if SHS1 is  
open dense in both S and S1 and if F l S n S i s F , l s n s f " 

Let M be an irreducible regular holonomic. Then Supp M must 
be irreducible. Let S1 be a non-singular locus of Supp M. Then 
Extk(L,M)|g vanishes for k^ codim S and when k=codim S, this is 
a twisted local system on some Zariski open subset S of S1 with 
twist T. Conversely, for (S,F), there exists a regular holonomic 
A-module M defined on X\9S such that EHom^(L,M) = F[-codim S]. 
Then we associate to (S,F) the minimal extension of M onto X. 

3 . 2 0 Let us give an example of twisting data 

Example 3 . 2 0 . 1 X=P1=U()UU;L with UQ=P1\{«'} , U ^ p K i O } . For A, 
let <C^ be the invertible C -module with the monodromy e27T"*"\ 

Then T = { ( U Q,!^) ;<C x} defines a twisting data on X. If e 7*1, 
there is no twisted local system on X. 
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§4 Equivariant twisted rings of differential operators 

4.1 Let X be a complex manifold or a smooth algebraic variety 
defined over E. Let G be a complex analytic group or algebraic 
group acting on X. Let g be the Lie algebra of G and 0X the 
sheaf of vector field on X. Then the infinitesimal action induces 
a Lie algebra homomorphism 

D : g - r(X;9x) 

4.2 Let £x(g) be the ring generated by 0X and £ with the 
fundamental relation: 

(4.2.1) 0X i U^(g) is a ring homomorphism, 

(4.2.2) £ i Ux(g) is a Lie algebra homomorphism, 

(4.2.3) [j(A),i(a)] =i(D(A)(a)) for A 6 g and aeqx> 

Then £x(g) = 0x 0 u(g), where U(g) is the enveloping algebra of 
g. The multiplication rule of £X®U(g) is given as follows: 
g acts on 0X and U(g) (by the left multiplication) and hence 
we have g + End (0X®U (g) ) , which extends to U (g) •> End (OX0U (£)) . 
Moreover 0X acts on 0X®U(g) and we obtain 0X®U(g) + End(0X®U(g)). 
This gives the left multiplication of sections of 0X®U(£) on 
0X$U(£) . This gives the ring structure on 0X®U(£). We can easily 
prove that 2X®U(£) is isomorphic to £x(g). 

4.3 Let g be the kernel of 0X®£ -> 0X« Then we have [£,£] C £ 
(in £x(£)). If G acts transitively on X, g is a vector sub-
bundle of 0X 0 g. 

4.4 Let us recall the notion of G-equivariant 0 -modules. Let us 
—x 

consider 

p2 i > (4,4.1) G x G xx ^ G x X <— - X 
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where pr is the projection, y the multiplication map : (g,x) gx, 
i(x) = (l,x) and the p.. are given by 

pl(gl'g2,x) = (gi'g2x) ' P2(gl'g2'x) = (gig2'x)' 

P3(g1,g2/x) = (g2^x)• 

Then we have yop^=yop2 prop2=pr p^, y°P3=prop^ and yoi=pr©i=id. 
An Ox~module F is called G-equivariant if an O^^-linear iso­
morphism a : y*F + pr*F is given such that it satisfies: 

(4.4.2) i*y*F 1*a > i*pr*F 

commutes. 
F — ± * > F 

P§(«) 
(4.4.3) p*y*F - > p*pr*F 

ill si 
P?(a) pS(a) 

p*Vi*F — ± > p*pr*F = P3y*F — > p*pr*F 

commutes. 

4.5 For a G-equivariant 0 -module F and for g€G, let y :X-*X b 
the map x ^ gx. Then we have y*F + F. Let T be an inverse 

homomorphism. Then setting A^u= g^(T tAuH t=0 A€— an(̂  u€F, 
we obtain a Lie algebra homomorphism D:£ + End^(F), which satisfies 

D(A)au = aD(A)u + D (A) (a) u 

and hence it extends to a ring homomorphism Ux(g) -* Endg(F). 
Thus F has a structure of left Ux(g)-module. 

4.6 Similarly to G-equivariant Ox-modules, we shall define the notion 
of equivariant twisted rings of differential operators. Let A be 
a twisted ring of differential operators on X. We say that A is 
G-equivariant if an 0 -ring isomorphism a: y A + pr A is given 

82 



REPRESENTATION THEORY AND D-MODULES ON FLAG VARIETIES 

satisfiying the following property: 

(4.6.1) i#y#A —ïii^î > i#pr#A 

$|| $|| commutes. 

A -M > A 

4 4 Po(°0 4 4 
(4.6.2) p*|ifA - > p*prffA 

Pi y A - - > P*Pr*A s p* p A - > p'pr A 

commutes. 

Let A be a G-equivariant twisted ring of differential 

operators. Since y*A is a y A-module, we have pr A +- y A -> y*A 

by operating on 101 e U*A. Hence we obtain P*Dq •> pr A -* y*A, 

where p: G x X G is the projection. Thus we obtain i*p*DG •* 

i*y*A. This gives £ -* A. This extends to an 0»x-ring homomorphism 

£x(g) + A. Note that the composition g -* F^ (A) -> 0X coincides 

with D. 

4.7 Let A be a G-equivariant twisted ring of differential opera-

tors. Then pr A =D^ B A, and hence pr*A C pr A becomes a subring. 

A left A-module M is called G-equivariant if 3:y*M + pr*M gives 

a structure of equivariant 0Y-modules and 3 is pr^A-linear 
ji 4 4. 

(through y A ;pr A and the y A-module structure on y*M) . 

If 3 is only pr*A-linear, we call M quasi-G-equivariant. 

If N is a G-module (see §4.8), then A0^N has a structure 

of G-equivariant A-module. ~~ 

4.8 We shall investigate the description of G-equivariant twisted 

rings of differential operators and quasi-G-equivariant modules 

when X is a homogeneous space. Let x be a point of X . Let H 

be the isotropic subgroup of X at x and let h be its Lie algebra. 

We assume G/H ^ X . An H-module of finite dimension is, by definition, 

a finite-dimensional vector space V with a group morphism H •> GL(V) 

and we assume that this is algebraic in the algebraic case and 

holomorphic in the complex analytic case. An H-module is a vector 
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space with H-action, which is a union of finite-dimensional H-modules. 
The following is well-known. 

Theorem 4.8.1 The category of G-equivariant O^-modules is equivalent  
to the category of H-modules by M M(x) , where M(x) = (E ® Mx. 

-X,x 
Let Vx be the inverse functor of M H- M ( X) . Then in the 

analytic case (and in the algebraic case with suitable interpretation), 
for an H-module V, we have for an open set U of X: 

(4.8.1) T(U;VX(V)) = {f;V-valued function on p"XU such that 
f(gh) = h"1f(g) for g f P ^ U and h e H}. 

Here p:G X is the projection g ^ gx. Note that 

(4.8.2) g = Vx(h) (see §4.3) 

Also note that 

(4.8.3) If V is a G-module and W is an H-module, 

VY(V®W) = VV(W) ® V. 

4.9 Let X be an H-invariant element of h*. Then A([h,h])=0 
and hence A gives a 1-dimensional representation CC ̂  =(E *1 ̂  of h 
by A-l^ = A(A)1^ for A € h. On the other hand, A gives an H-linear 
homomorphism from h to (E and hence a G-equivariant homomorphism 
Vx(h) = g to VX(CC) = 0X. Then we can easily check that 
I £Y (g) (A-A(A)) is a both-sided ideal. We set 

Aeg A 

(4.9.1) A X ( A ) = Ux(g)/ ^ Ux(g) (A-A(A)). 
At£ 

Theorem 4.9.2 (i) A X ( A ) is. a G-equivariant twisted ring of  
differential operators . 

(ii) Any G-equivariant twisted ring of differential opetators is  
isomorphic to A ( A )(for a unique A ) . 
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We shall give only a sketch of the proof. Let A be a G-

equivariant twisted ring of differential operators. 

As in §4.6, we have a ring homomorphism Ex(g) -> A. Since X 

is a homogeneous space, this is surjective, and g is mapped into 

Fn(A) = 0 . Since this is H-linear, it comes from some H-invariant 

X € h* and we obtain AX(X) •> A, which is an isomorphism. 

4.10 In order to describe quasi-G-equivariant Ax(X)-modules, 

we shall introduce the notion of twisted (g,H)-module. Let X 6 h* 

be an H-invariant form. 

Definition 4.10.1 A twisted (g,H)-module M with twist X is a g-

module M with a structure of H-module on Œ 0M such that 

(4.10.1) Two h-module structures on (Ĉ 0M which come from the g-

module structure on M and the H-module structure on £Ĉ ®M coincide. 

(4.10.2) g 0 (ŒÀ ® M) + ŒÀ ® M given by A ® 1 x 0 u 1 x ® Au 

is H-linear. 

If M is an H-module, then U(g) ® (Œ .® M) is a twisted 
" h "A " 

(£,H)-module with twist X. Here the action of H on 

в ü(g) ® (Œ ,0М) - h -Л - is given by Н Э п : 1 ® Р ® 1 ® и « + 
A ~ A 

1, 0 Ad(h)P 0 1 .0 hu. 

Theorem 4.10.2 (i) The category of quasi-G-equivariant AX(X)-
modules is equivalent to the category of twisted (g,H)-modules with  
twist x• 

(ii) For a twisted (g,H)-module M with twist X, the corresponding  
quasi-G-equivariant Ax(X)-module is isomorphic, as a G-equivariant 
Ox-module, to Vx ((Cx0M) . 

We shall give here only the sketch of the proof. 

Let M be a quasi-G-equivariant Ax(X)-module. Then M has two 
actions of g on M which comes from the AX(X)-module structure 
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and the structure of G-equivariant Ox-module (see §4.5). Let a 

the first action and 3 the last action. Then y = 3 - a is Ox-linear 

since [a(A) ,a] = [ 8(A) ,a] =D(A)(a). Since g ® M + M via a is 

g-linear with respect to the 8-action, we have 

(4.10.3) [B(A),oc(A')] = a([A,A']). 

This implies y : g •> Endn (M) is a Lie algebra homomorphism. Hence 
-X 

we obtain y : £ + EndŒ (M (xQ) ) . For A«h, y (A) = 8 (A)-a (A) = 8 (A)-A (A) 

we have 8(A) = y(A) + A(A). Since the infinitesimal action of H on M(xQ) 

coincides with 3 , the h-module structure of M(x^) by y is 

isomorphic to œ_ ^ ® M ( X Q). Therefore œ_^®M(XQ) is a twisted 

(£,H)-module with twist A. Conversely let M be a twisted (£,H)-

module with twist A. Œ^®M is an H-module. Let M = VX(Œ^®M) be 

the corresponding G-equivariant 0>x-modules. The morphism (4.10.2) 

gives a g-action y : g -* Endn (M) and the G-equivariant structure 

defines 3 : g ->End(Ox). Then a= 8 - y defines and Ax(A)-module 

structure on M. 

4.11 If moreover M is G-equivariant, then we have 8 = a. 

Therefore y=0 and the g-module structure on Œ_^®M(xQ) is trivial. 

The converse is also true and we obtain the following proposition. 

Proposition 4.11.1 The category of G-equivariant Ax(A)-modules  

is equivalent to the category of H-modules M such that h acts  

trivially on Œ ,®M. 

4.12 We have 

(4.12.1) AX(A) = Vx(Œx®(U(g)®Œ_x)). 

For a twisted (g,H)-module M with twist A and a G-module V, 

M ® V has canonically a structure of twisted (£,H)-module and 
Œ 

(4.12.2) Vv(Œ.0(M®V)) = VV(Œ,®M)®V 
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4.13 In a complex analytic case, we can describe (X) as follows. 
Let p: G + X be the projection g 9xQ- L E T F B E THE S N E A F ON 

G defined by 

(4.13.1) F = {yeO^; RAif = -A(A)y for any A 6 h } . 

Here RA<f(g) = g| <f(get )|t=Q. 

Then F is locally constant along fiber of p with the 
monodromy corresponding to \, and F has a structure of p **"0X-
module. Then g acts on F through the left action of G on G. 
Then AX(A) is the subring of p^End^(F) generated by 0>x and g. 

4.14 Let G1 be another Lie group and H1 its subgroup. Let 
f: G'+G be a group morphism such that ?(H')CH. Set X1 = G'/H', 
X = G/H. Then <f induces the map f: X1 -* X. Let h,h» be the 
Lie algebra of H and H1. Let X € h* be an H-invariant form. 
Then, we can easily prove 

Proposition 4.14.1 (i) f#Ax(A) =A x l ( A|hl). 

(ii) For a twisted (g,H) -module M, we have f*Vx(CC^M) = Vx, ((Ĉ ®M) 
as Ax,(X|h1)-module. 

4.15 For a homogeneous space X with the isotropy subgroup H, 
we have the following proposition. 

Proposition 4.15.1 Ax^/OP s —X^ 2p~* 7 ' wnere P 6 h* is given 
by p(A) = -^-trg/h(adA) for A€h. 

This follows from the following observation. By £ ? A ^ -Ae £, 
we have an anti-isomorphism <f of C^-ring U.x(g) onto it self. 
Then, we have <f{A) = -A+2 p(A) for A 6 g. Here p : g + 0X is 
the G-equivariant homomorphism given by p € h*. 

4.16 Even in algebraic category, any G-equivariant twisted ring A 
of differential operators on homogeneous space of G is locally 
isomorphic to Dx in the Zariski topology. In fact, if p:G -> X 
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is a G-equivariant projection, then p A = D^. Hence if p has a 
secton i, then A = i p A = Dx. Since G •> X has a section locally 
in the étale topology, A is locally isomorphic to Dx in the 
étale topology. Hence there exists a non empty set U and an 
étale map f: U X such that f A is locally isomorphic to Dn. 
There exists an open set ft of X such that f ft -* ft is finite 
and étale. Now, A is isomorphic to A for some closed 2-form n 
defined on ft, by shrinking ft if necessary. Since f A is locally 
isomorphic to D__, f*n = do) for some 1-form a). Hence n=d(f^o))/n 
where n is the number of sheets of f ft -»* U. Hence A = Dv 
on ft. Since A is G-equivariant, A is locally isomorphic to 
DY on the G-translates of ft, which cover X. 
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§ 5 Flag variety 

5.1 We shall review about flag varieties. Let G be a connected 
algebraic reductive group defined over (C. The set of Borel group 
forms an algebraic variety and called the flag variety of G . We 
shall denote it by X . Then G acts on X transitively. For xex, 
the isotropy subgroup b(x) at x coincides with the Borel sub­
group corresponding to x € X and G/B (x) -> X (g B- gx) gives an 
isomorphism. 

Let b(x) denote the Lie algebra of b(x) and n(x) = 
[b(x),b(x)] the nilpotent part of b(x) . Then x «- b(x) and 
x n (x) form G-equivariant vector budles on X . Note that x 
b(x)/n(x) is the trivial bundle, because the isotropy subgroup B(x) 
acts on b(x)/n(x) trivially. 

5.2 Let us fix XQ€ X , B = B ( X Q ) , and let U denote the unipotent 
part of B. Let us take a Cartan subgroup T of B. Then T - B/U. 
Let us denote by £/b,n, and t the Lie algebra of G,B,U and T, 
respectively. Let A be the root system of (£,t) and a+ the 
set of positive roots consisting of roots appearing as weight of b. 
For a € A , let h € t the coroot of a and s the simple 
reflection corresponding to a,i.e. t* 3 A »•* A -<ha ,A> a. Let W be the 
Weyl group,i.e. the group generated by sals« Recall that we have 
W = NG(T)/T and we have the Bruhat decomposition: 

(5.2.1) G = U BwB 
wew 

(5.2.2) X = [J Bwxn 
wew 

(5.2.3) X x X = U G(wx0,x0). 
wew 

Here w in the right hand side is an element of N^(T) which gives 
w by taking mod T. Let Qct* be the 2-module generated by A. 
Set 

(5.2.4) Q+ = I Z + a . 
aeAj. 

Here 2 + is the set of non-negative integers. 
We say A6t* is anti-dominant (resp. regular) if <h^,A>^1,2,3,... 
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(resp. <h^,\>j*0) for any a€A+- The following lemmas are well-known. 

Lemma 5.2.1 The following conditions are equivalent. 

(i) X is anti-dominant. 
(ii) For any w€W, X-wX $ Q+\{0}. 

Lemma 5.2.2 The following conditions are equivalent. 
(i) X is_ regular and anti-dominant. 
(ii) For any w €W with w / 1, we have X-wX $ Q+. 

5.3 Let P be the lattice of weights of T. We regard Pet* and 
for X€P, let b H- b* denote the character of B given by B T -> 
(C*, where the last arrow is the character given by X . 

Set 

(5.3.1) P± = {X€P; ±<X,ha> > 0 for any a€A+} 

and 

(5.3.2) P±± = {X€ P;±<X,ha>> 0 for any a € A+} . 

5.4 For X€P let us denote by 0v(x) the G-equivariant line 
bundle corresponding to the character B9 b ^ b . 

Let p: G -> X be the projection g -* gxQ. Then by the defini­
tion, for any open set U of X 

(5.4.1) r(U;Ox(X)) = {f € r t p " 3 ^ ; ^ ) ; f (gb) =b"Xf(g) 

for (g,b)e p-1U x B } . 

The following results are well-known. 

Proposition 5.4.1 If X$P_, r(X;Ox(X)) = 0 and if X 6 P_, r (X;0X (X)) 
is an irreducible representation of G with lowest weight X. 

Proposition 5.4.2 If xep , then £xU) i£ ample. 
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Proof We shall use the criterian of Definition-Theorem 1.2.1 (2). 
Let V ̂  be an irreducible representation of G with lowest weight 
A and let v be a lowest weight vector and u 6(V^)* be a highest 
weight vector. Then f = <v,gu> gives a section of 2X(A)• We 
have f(l) = <v,u> ^ 0 and f (w) = <v,wu> = 0 for any w^l, because 
the weight of wu is not - A. Hence the corresponding section s 
of 2.x(̂ ) satisfies s(xQ) f 0 and s(wxQ) = 0 for w^l, w€W. 
Since \ J G(wxn,xn) = X x x\{the diagonal set} , for x^yGG, 

weW\{l} u u 
there is g € G such that g~1x=xQ, g~1y=wxQ. Hence (g*s) (x) ^ 0, 
(g*s)(y) = 0 . Hence Ox(A) satisfies the condition (2) of 
Definition-Theorem 1.2.1. Q.E.D. 

5.5 Let U(g) be the universal enveloping algebra of g and let 
Z (g) be the center of g. By Harish-Chandra1 s result, we have 

(5.5.1) x : Z(g) * (C[t*]W 

Let us recall how the isomorphism (5.5.1) is defined. For P6Z(g), 
there exists a unique f 6U(t) = S (t) = (E[t*] such that P-f 6 
U(g)n. Then we set XX(P) = f(X-p) for AG t*. Here p = 
( la )/2. Then XA(P) is W-invariant polynomial in A € t*, and a€A + 
gives the isomorphism (5.5.1). 

If we denote by * the anti-isomorphism of U(g) given by ga 
A H- - A 6 g, then we have 

(5.5.2) XA(P*) = X_A(P) for PeZ(g). 
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§6 Twisted rings of differential operators on the flag variety 

6.0 The notations are as in §5. 

6.1 We shall study G-equivariant twisted ring of differential 
operators on the flag variety X. In order to do this, we shall 
apply Theorem 4.9.2. Since k/[b,b]=t and B acts trivially on t, 
the isomorphic classes of equivariant twisted ring of differential 
operators are parametrized by t*. For A€t*, let us denote by 
the twisted ring of differential operators A (A + p) corresponding to 
the character b t P»(C. By Prop. 4.1. 5.,we have 

(6.1.1) 

The shift p is added so that (6.1.1) holds. Hence the ring 
of differential operators is D _ p. For yep, we have 

(6.1.2) Ox(y)0DA0Ox(-y) = DA+y. 

kjdsgjglsdb xfv 

6.2 By 4. 6 and 4.10, we have a Lie algebra homomorphism 
g r(X;D^) , which extends to a ring homomorphism: 

(6.2.1) U(g) - r(X; Dx) . 

Lemma 6.2 2 Ker is contained in the kernel of (6.2.1). 

Proof Since (6.2.1) is G-equivariant it is enough to show that 

Ker xA - CXQ®OX Ex 

is the zero map, where <C =Ov /m(xn) with the maximal ideal m(xn) 

of 0V . Note that D, = Uv(g)/ T (A-<A+p,A>)U (g) where g is 

the kernel of qx®g + 0X (See § 4.10 ). Hence we have 

<C ®D, = U(g)/ l (A-<A+p,A>)U(g) . 

For P€Z(g), we have 
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P e nU(g)+f 

with feu(t) and X* (P)=f №+p) . Hence we obtain P6 \ {A-(A+p ) A} U (g) 
if xA(P)=0. - Q.E.D. 

We define 

(6.2.2) UA(£) = U(g)/U(g)(Ker(xA: Z (g) - C)). 

Proposition 6.2.3 ux^£) r(X;£^ is an isomorphism. 

Proof Let F(U(g)) be the filtration given by F (U(g)) = 
F1(U(2)) •Fm_1(U(g)) f F1(U(g)) = g ©C, FQ(U(g))=C. Then grU(g)^S(g). 

Let F(U^(g)) be the induced filtration. Then we have 

grFUx(g) = S(g)/S(g)I+ 
where I+=(gS(g)) . Now, we have the following lemma. 

Lemma 6.2.4 T(T*X; qT*x) = S(g)/S(g)I+. 

For xeX, the infinitesimal action of g on X gives g + T X. 
Taking the dual, we obtain T*X -* g*. This gives p : T*X g*. 
If we identify g with its dual by G-invariant non-degenerate 
symmetric form, p(T*X) coincides with the set N of nilpotent 
elements. Then N is normal and 

T(N; Cy = S(g)/S(g)I+. 

Since p is birational and proper, r(T*X ;0T*x) £ r(N,-qN) . 
~~ Q.E.D. 

Hence r(X;grFDA) = r(T*X;qT*x) 3 S (g)/S (g) I+ * grFU . 
Therefore we have a diagram 

-> grFU. > 0 
m A 

[ 

- r ( x < - < ( ° x } ) 

о Vi10»» DFGDG 

m m-1 

0 r(X;Fm_l(Dx)) — . r(X;Fm(DA)) 
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Therefore, if a , is bijective, a is bijective. Thus by the 
m-1 m 

induction, is bijective for every m. 

Remark 6.2.5 In the course of the proof, we used the fact that 

P(T*X) is normal. This is not true if X is a generalized flag 

manifold (i.e. a projective homogeneous space of G), and 

r(X;Ax(X)) «- U(g) is not necessarily surjective (See [BoB] ) . 

6.3 We shall prove the following theorem. 

Theorem 6.3.1 Assume that \ is anti-dominant. Then for any Dé­

module M quasi-coherent over qx, we have 

Hk(X;M)=0 for k^O. 

Proof If y is in p++, then 0 (y) is ample. Hence by Theorem 

1.4.1, it is enough to show that 

(6.3.1) DA€>Ox(-y)€>r(X;Ox(y)) - £x 

splits. Set Vy = r(X;Ox ( y ) ) . Then (6.3.1) corresponds to a morphism 

of twisted (g,B)-modules 

(6.3.2) U(g)®b(C_x_p_ij®V^) + U(g)®C_x_p. 

Hence it is enough to show (6.3.2) splits. Let us take a filtration 

of by B-modules: 

(6.3.3) v p = v 0 ^ v l 3 . . . :>vndvn+1=o 

such that 

(6.3.4) V Q / V ^ C ^ 

(6.3.5) V./V . .T s C for some j. 

Hence ViQ=y/ V]_t * *#, PN are weights of . 

Hence we have 
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(6.3.6) iij-ueQ+ 

(6.3.7) Uj-ueQ+UO} for j^O. 

Set M j=U(g)0 b(C_ À_ y_ p®V j) . Then we have 

(6.3.8) M./M j + 1 * U ^ V - À - p - y + Uj' 

and (6.3.2) is given by M Q + M Q/M 1. Hence Mj/ Mj +i n a s a n infini­
tésimal character X -v . • 

- A- y-t-

Lemma 6.3.2 X- À_ y+ y.^ X-x ^ j ^ ' 

Admitting this lemma for a while, we shall complète the proof of 
Theorem 6.3.1. We have 

(X J 
M Q — ^ ( M Q ^ ) . 

(X_x) 
Here M Q ={ueMQ; Pu=x_x(P)u for any P£Z(g)}. 

Hence, M Q -* M Q/M 1 splits. Q.E.D. 
Proof of Lemma 6.3.2 Assume Y . . =X . Then there exists 

A - À -y+ kj - y 

w6w such that -A-y+y_.=-wÀ. Hence y-yj = À-wA6Q+. Since \ is 
anti-dominant, y-y_.=0. this is a contradiction. 

Theorem 6.3.3 If X is regular and anti-dominant, then for any Dé­
module M quasi-cohérent over 0 X, M is generated by global sections. 

Proof By Theorem 1.3.1, it is enough to show that £ x®2 x(~y) is 
generated by global sections for y 6 p_. in order to see this, it 
is enough to show the morphism 

D À®r(X;O x(y))* « DÀ®Ox(-y) 

splits. Consider the corresponding morphism of twisted (g,B)-modules 

(6.3.9) U(g)yC_ x_ p®V)^— U<a>V-X-p-w-

Here V=T(X; 0 x ( y ) ) * is an irreducible représentation with highest 
weight - y . Take a filtration of V by B-modules: 
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o=v_1Cv0cv1c---CvN=v 
such that 

(6.3.10) VQ = 

(6.3.11) Vj/Vj.! ^ C y j . 

Then y0=-u,y1,---,yN are weights on V. Then M_.=U (g) ®bC_x_p®Vj 
gives a filtration of M=U (g) ®b<C_ x_ p®V and M ^ / M ^ s ^ a ) ^ ^ + . 
The last module has an infinitesimal character Y , , . If we have 

(6.3.12) Lx+nAx-y f°r any 

then we have M M =MQ and MQ is a direct summand of M. Thus 
(6.3.9) splits. 

Finally, we shall prove (6.3.12). If X_x+y = X_x_y' t n e r e 
exists w 6W such that w(-x+yj) =-X~y. Hence we-'have -y-wy_. = x-wx. 
Since wy_. is a weight of V, -y-Wy.. 6Q+. Since x is regular and 
anti-dominant X=wx and w=l. Hence yj=-y. 

Remark 6.3.4 In the situation of Theorem 6.3.3, M is generated by 
global sections not only as a D -module but as an Ov-module because 
so is D . 

6.4 Thus we can apply the result of 1.5. 

Theorem 6.4.1 If x is anti-dominant and regular, then the category 
of -modules quasi-coherent over O is equivalent to the category 
of U (g)-modules. 

Theorem 6.4.2 If X is anti-dominant, the category of U (g)-
modules are equivalent to the category of Dy-modules M quasi-coherent ~ — • — — — — — — _ — — - _ _ _ ^ 
over qx satisfying the following properties 
(a) M is generated by global sections. 
(b) If a D^-submodule N of M which is quasi-coherent over qx 
satisfies r(X;N)=0, then N=0. 

Remark that finitely generated U (g)-modules corresponds to 
A 

coherent D^-modules. 
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§7 SL2~case 

7.1 We shall exhibit the results in the preceding section in the 
case of Sl^. Set G=SL2, g=sl2. Take a base of g 

(7.1.1) h=(1 _x) , e=(J J ) , £=(J J ) . 

The flag manifold X can be identified with P1. Set UQ=P1\-{>}, 
U1=5P1\{0} and take coordinates x of UQ and y of U1 related 
by xy=l. The action of G on X is given by 

T 0x ,a bv ax+b dy+c 
(7.1.2) g=(c d): x — » 5 3 3 , y — + bf+J • 
Take xQ= oo (i.e. y=0 in U1) . Then B={ (a ^) } and b=<CheCe. 
Take t=Ch. Then A={a,-a} with a(h)=2. We have p=a/2 and 
p(h)=l. The center of U(g) is generated by 

A =(h-l)2+4ef=(h+l)2+4fe. 

7.2 The infinitesimal action g -* 0X is given by 

h > > -2x3x=2y3y 

e —^-3x=y29y 

f _ x23x=-3y 

and hence the kernel g of 0 ®g > 0 is generated by h-2xe and 
2 ~~ ~ A 2 f+xh-x e (on UQ) and p:g -> qx is given by p(f+xh-x e)=0, 

p (h-2xe)=-1. 

7.3 For A € t * , set c=A(h). Hence A=cp. If c is an integer 
O x(A) = Ox(-c°°) where 0x(-c°°) is the sheaf of meromorphic functions 
with pole of degree -c at 00. 

7.4 For A=cpet*, is given as follows 

( 7 . 4 . 1 ) i Q: D X | U Q * D U q , i l S D J ^ * 
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and M o !uonui: ^ 0 ^ 1 £uo ui is givenbyPttX Px • The 
homomorphism a: g r(X;D ) is given by 

iQoa: h. > -2x3x-(c+l) i1oa: h» >2yay+(c+l) 

e . > -3X e » > y 9y+(c+l)y 

f • > x23x+(c+l)x f . > - a y . 

7.5 For example, let M be a -module given by 

MlUi £ V ° A * and ^lu0=0-

Then supp M = { X Q } , and if we denote by <$ the generator 1 
mod £^y/ then 

T(X;M) = M = C[a 16 = C[f]6 

with the relation h6=(28^y+c-l)6=(c-1)6, e6= (y8y+c) y<$=0. Thus we have 
T(X;M) is isomorphic to the Verma module U(g)/U(g)e+U(g)(h-(c-1)). 

7.6 If X is not anti-dominant (i.e. 0=1,2,3, •••) then 
0x(X+p) =qx(-(c+1) «>) is a D^-module. Since H1 (X;qx (- (c+l)«>) )s c c , 
the vanishing theorem for D^-modules does not hold in this case. 

7.7 We shall investigate the case where X is anti-dominant and not 
regular, i.e. A=0. In this case, for a non-zero D -module M, 
r(X;M) may vanish. In fact qx (x+p) = £x (-«>) gives such an example. 
The following proposition asserts that essentially this is the only 
case. 

Lemma 7.7.1 Let M be a coherent D^-module. Then the following  
conditions are equivalent 

(i) As a DQ-module, M is isomorphic to the direct sum of copies 
of 0X (p ) . 

(ii) T(X;M)=0 

and in this case, g acts trivially on T (X;0X (-p)-9M) and 
0x(p)®r(X;Ox(-p)0M) + M. 
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Proof The last statement follows from (i). 

(i) (ii) trivial. 

(ii) => (i) Since Ov(-p)®M is a D -module, it is generated by 
global sections. 
Hence we have 

D _pm — » Ox(-p)0M. 

Tensoring qx(p) from the left we have 

(D0®qx(p))m + ?i °-

Since r(X;M)=0, we have 

(D0®qx(p)/D0r(X;D0®qx(P)))m — » M. 

Hence it is enough to show 

(7.7.1) D0®Ox(p)/Dor(X;D0®Ox(p)) ^ 4 q x ( p ) . 

In fact, any submodule of qx(p)m has also the same type. We have 
an exact sequence 

U(g)®b<C_p® C2 + U(g)0bCQ -> C + 0 

of twisted (g,B)-modules with twist p. Here C is the 
fundamental representation of G. Correspondingly, we have 

D0®C2 + DQ®Ox(p) - qx(P) - 0. 

This shows the existence of (7.7.1). 

Corollary 7.7.2 For any coherent DQ-module, the kernel and the  
cokernel of 

DQQr(X;M) -* M 

are isomorphic to a direct product of copies of 0 (p). 
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§8. Singular case 

8.1 For a simple root a, let Pa be the parabolic subgroup such 
that LieCPj = t © g © Y gD. Let X be the set of conjugate 

subgroups of P . Then X = G/P . Let p : X -* X be the 
projection. Then pa is a IP -bundle. For X € t* with <x,h^>=0, 
X defines a character Lie (P ) -* t C, and this defines a G-
equivariant twisted ring of differential operators Ax (X) on X^. 

By Proposition 4.14.1, we have 

Proposition 8.1.1 p A__ (X) = 

Corollary 8.1.2 If X ~ p is. anti-dominant, then for any coherent 
Ax (X)-module M, we have HD(X;M) = 0 for j^O. 

Proof We have H3 (X;p*M) = 0 for j^O since p*M is a 
module. The relations R Pa*P*M = M for k=0 and =0 for k^O 
imply 

HD(X;p*M) = H3(X ;M). 

Remark 8.1.3 Corollary is true for any parabolic subgroup other 
than P . 

8.2 Let X6t* be such that <X,h > = 0. We assume 

(8.2.1) p e p . 

This is not a strict condition because we can replace G with a 
covering group of it. The flag varieties X and X^ do not change 
after this replacement. 

Proposition 8.2.1 Let M be a coherent D -module. 
A 

(i) RkPa*M = o for k^o. 
(ii) The following conditions are equivalent. 

(a) pa*M = 0. 
(b) There exists a coherent A (X)-module N such that   _xa -

M = Ov(p)®p*N as an D -module. 
— —X OT— — A 

100 



REPRESENTATION THEORY AND D-MODULES ON FLAG VARIETIES 

(c) M z ox(p)®p*pa^(ox(-p)®M) 

Proof If (b) is satisfied, then 

c) M z ox(p)®p*pa^(ox(-p)®M) 

Hence N is uniquely determined. Thus, these properties are local 
in X. Locally in X^, we have 

(8.2.2) X = (P. x x 

(8.2.3) Dx ,DQ EDX . 

Hence we can reduce them to Lemma 7.7.1. 

8.3 Let I be the set of simple roots. For A€t*, we set 

(8.3.1) A, = {a€A; <h ,A>=0}, 
wx = {we W; WX = X], 

c) M z ox(p)®p*pa 

Then A, is also a root system and W is the Weyl group for A,; 
i.e. W^ is generated by the s^ (a€A^). 

Let us consider the conditions 

(8.3.2) A, is the lattice generated by J , or equivalently £ 

is the set of simple roots for A^. 

Then (8.3.2) implies that 

(8.3.3) W is generated by s (aeV,). 
Theorem 8.3.1 We assume that X is anti-dominant and satisfies  
(8.3.2) . Then there exists a sequence a-̂, •. ., a N in J such  
that for any coherent D^-module M the following conditions are  
equivalent. 

(8.3.4) T(X;M) = 0. 
(8.3.5) There exists a filtration M = M Q Z D ^ Z D 3 ^ = 0 by 
coherent D -module such that p (M. _/M.)=0 for j=l,2, ,N. 
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Proof (8.3.5) implies (8.3.4) because 

T(X; M.^/M.) = r(XajfPaj^(Mj-1/Mj)) = 0. 

We shall prove the inverse implications. Since X - p is anti-
dominant and regular, Ox(~P)^ 
Hence there exists a sequence 
dominant and regular, Ox(-p)®M is generated by global sections. 

ox_pn q x ( - P ) ® M. 

Tensoring 2x(p) we obtain 

(DA® O x ( p ) ) n — » M. 

Hence, setting 

M = D A ® Ox(p)/Dxr(X;Dx®Ox(p)) 

we have Mn — » M. Since for a coherent D -module N, the relation 
Paj*(N) = 0 is invariant by taking coherent quotients of N, it is 
enough to show (8.3.5) for M for some ,...,aN eI^. 

Note that 

EX®Ox(p)= Vx(Cx+p « U(g) Q€_(x+p) + p). 

Set Mn = U(g) ® C , . 0 - b 
Since p is regular and integral with respect to a,, there 

exists o^,..., aN e lx such that, setting yQ = p, sa_. (yj^) 
= y., y is anti-dominant with respect to Y , and <h"ot.,y._1> = 
1,2,3,... The last property implies M^C M_._̂ , where M_. = 
U(g) ® C . . . 

It is easy to see that M. n/M. is a twisted (g,P )-module 
with twist X. Hence if wet set N. = VV (ONO (M. - / M.) ) it is 
an A (\)-module. 3 

Set M. = VY(C. . Q M.) . 
—3 —x x+p 3 

Then M. T / M . = 0„ ( p ) Q p* (N.) . Hence it is enough to show that 
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is generated by global sections. In fact, then there is a 
surjective morphism M g / ^ -* D^®qx ( p) /D^ T (X; 5^00^ ( p) ) . 

Let V be an irreducible representation with highest weight 
p. In order to see that is generated by global sections, it 
is enough to construct a surjective morphism 

Utg) ® C , 0 V -* U(g) 0 C . , . 
" b "X"p b - ^ P + ^ N 

For ^ P , let be the weight space of V with weight £. 
Set V1 = © V p Then, V1 is a B-module. Set V"=V/V'. 

Then the weight % of V" satisfies y - £€Q+. Moreover V 
N 

is a sub-B-module of V". 

Lemma 8.3.2 If £ is a weight of V" different from yN, then 

X - A + £ * X - * + V N ' 

If this lemma is shown, then U(g)0(C , 0C ) is a direct 
b " A P Y N 

summand of U(g)0(C _ 0V") . Hence we obtain a surjective homo-
b A p 

morphism 

U(g) 0 C . 0 V + U(g) 0 (C _ 0C,, ) . 
" b ~A~P " b " A " P U N 

This completes the proof of Theorem 8.3.1. 

Proof of Lemma 8.3.2 Assume that X_^+^ = X_^+^ for a weight £ 
of V". Then 

A - £e W ( A - y N ) = W ( A - p ) . 

Therefore there exists w such that w ( A - £ ) = A - p , or A-wA = p-w£. 
Since w£ is a weight of V, p-w££Q+. Since A is anti-dominant, 
we have wA = A . This implies WewY Thus we have rew,n = W , u^. 
Since yN is regular anti-dominant with respect to ^ , we have 
€-yN € I VcQ+* Since yN-^6Q+, we have g = y . Q.E.D. 

Remark 8.3.3 For any A € t * , there exists w £ W such that W A is 
anti-dominant and satisfies (8.3.2). Hence these two conditions 
are not severe. 
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§ 9 Harish-Chandra modules 

9 . 1 Let G, t, A, X,••• be as in § 5 . Let H be an affine algebraic 
group with a group morphism f: H -* G. Let h be the Lie algebra 
of H. 

Proposition 9 . 1 . 1 If M is a (g,H) -module, then D, ® M is an - - - _ - A g 
H-equivariant -module. Conversely, if M is an H-equivariant 
D^-module, then r(X;M) is a (g,H)-module. 

This follows from § 4 . 7 . 

9 . 2 Hence if A is regular and anti-dominant, the category of 
finitely generated (g,H)-modules with infinitesimal character Xx is 
equivalent to that of H-equivariant -modules. When X is not 
regular, we need the modification as in Theorem 6 . 4 . 2 , that we discuss 
later more precisely. 

9 . 3 Let us assume further 

( 9 . 3 . 1 ) The flag variety X of G has finitely many H-orbits. 

Theorem 9 . 3 . 1 Under the condition ( 9 . 3 . 1 ) , for any X€t*, any 
H-equivariant coherent -module is regular holonomic. 

Remark 9 . 3 . 2 The following statement is false: let X be a 
projective algebraic smooth variety and G an affine algebraic 
group acting on X. If X has finitely many G-orbits, then any 
G-equivariant coherent module over any G-equivariant twisted ring of 
differential operators is regular holonomic. 

When G is reductive, I have no counterexample. 

9 . 4 Proof of Theorem 9 . 3 . 1 Let Z=G/U and let p:Z •> X=G/B be the 
canonical projection. Then p is the principal fiber bundle with the 
structure group T. Then p = Dz as G-equivariant twisted ring of 
differential operators. Let M be an H-equivariant coherent D-^-module. 
Then N=p*M is (H*T)-equivariant. It is enough to show that N is 
regular holonomic by Proposition 3 . 8 . 2 . We shall prove by the induction 
of the number of (HxT)-orbits in Supp N. Let S be an open (HXT)-
orbits of Supp N. Let j: S <-» Z be an embedding. Then there 
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exists an (HxT)-equivariant Dg-module L such that N|g ̂ 
J*(Ez«->s®D Is* Let q:HxT->S be an HxT-equivariant map. Then q 

—S 
is surjective and smooth. Since q*L is HxT-equivariant, it is 
isomorphic to the direct sum of finite copies of qHja £T/ £ 2.T(A-
<A+p,A>) . Hence q*L is completely regular. Therefore L~* is 
completely regular by Proposition 3.8.2. Hence N"=j*(D c® L ) ^ 
0 ~"S Hg(N) is regular holonomic. Thus we obtain an (H T)-equivariant 

£z-modules 
N1 » N > N" 

Since Supp N1C Supp N\S, N1 is regular holonomic by the hypothesis 
of the induction. Hence N is also regular holonomic. 

9.5 Let M be an irreducible H-equivariant coherent D^-module 
(i.e. there is no proper H-equivariant coherent sub-D,-module). Then 
Supp M is the closure of an H-orbit S. In fact, M Hg (M) must be 
injective. Furthermore M must be the minimal extension of ?i|x\3S" 
Here 3S=S\S. Let j: S<—>X be the embedding. Then there exists an 
H-equivariant j D^-module N such that M|x^^g 
-i*{»x,^s ®.#n « lx\as. 
Since N is an H-equivariant module, it is described as in §4.11. 
Namely, take an x € S and let Hx be the isotropy subgroup. Then 
we obtain Hx -> B(x) + T and corresponding map Lie (Hx) -> t. Then 
N is described by Hx-module such that its infinitesimal representa­
tion is A+p. 

Let S1(H,A) be the set of isomorphic classes of the triplets 
(S,x,M) , where S is an H-orbit of X, x € S and M is an 
irreducible Hx-module such that its infinitesimal representation 
Lie(Hx) -> End(M) coincides with Lie (Hx) + t A+P > CCEnd(M). Here, 
(S,x,M) Qi (S^x^M') if S=S', xf=h0x for some hQ 6 H and there 
exists ty-.M M' such that i|> (hu) = (hghh"1) u for h € Hx and u6M. 

Remark 9.5.1 If H<-G, then M must be one-dimensional representa­
tion. In fact, if we denote by U(x) the unipotent part of B(x), 
then HHU(x) is connected and its infinitesimal action on M is 
trivial. Hence M is a representation of Hx/HHU (x)c_B (x) /U (x)̂ :T. 

Theorem 9.5.2 The set of the isomorphic classes of irreducible H-
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equivariant coherent -modules is isomorphic to S1(H,X). 

9.6 As the Corollary of Theorem 9.5.2 and §9.2, we obtain the 
following theorem. 

Theorem 9.6.1 Assume that X has finitely many H-orbits and let 
X€t* be regular anti-dominant. Then the set of the isomorphic  
classes of irreducible (g,H)-modules is isomorphic to Sf(H,X). 

Remark 9.6.2 As seen in §3, the category of regular holonomic Dé­
modules is equivalent to the category of twisted perverse sheaves 
with the twist T corresponding to D . Incidentally, S'(H,X) is 
isomorphic to the category of the pairs (S,F) of H-orbits S 
and irreducible H-equivariant twisted sheaves F on S with twist T. 

9.7 Now, we shall investigate the case when X is anti-dominant 
and satisfies the condition (8.3.2). We shall use the notations 
Z,, p : X -> X as in §8. In this case, irreducible (g,H)-module is 
obtained as the global sections of a unique irreducible H-equivariant 
D^-module M such that r(X;M)^0. 

We shall interpret the condition r(X;M)=0 in terms of 
(S,x,M)6S'(H,À). If r(X;M)=0, then by Theorem 8.3.1, there exists 
a€Z^ and non-zero coherent submodule N of M such that Pa*(N)=0. 
The largest N among such N's must be H-equivariant and hence 
M=N. Thus pa*M=0. Let us take a connected covering group G + G 
such that p is a weight of G. Let H be the fiber product of 
G and H over G. By Proposition 8.2.1, Pa*M =0 is equivalent to 
the existence of A (X)-module N such that M=Ov(p)®p*N. Hence N 

is an H-equivariant A.. (X)-module. Let S be an open H-orbit of 

Supp M. Then Supp M = S, Supp N = Pa(S) and S = pa Pa(S) . Take 

x€S and set y = p (x) . Then SOp"1^) = p""1(y). Since p""1 (y) ̂ P1, 

Snp-1(y), which is an orbit of H , must be either P1, C or 
C*. Moreover the condition M=Ov(p)®p*N is equivalent to saying 

that Ml n is isomorphic to Ov(p)®m for some m. When 

S O p"^" (y)= <C or P̂ ", this is simply connected and hence it is true. 
The remaining case is the case S O p (y)=<C*. Let (S ,x,M)€S1 (H, X) 
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correspond to M. Let <pi Hx -*Aut(M) be the action of Hx on M. 
Similarly let (pa (S)f y,N) corresponds to N. Then N is a 
representation of Hy whose infinitesimal action is by X. Here the 
suffix signifies the isotropy subgroup at that point and 
X: Lie (Hy) <C is given by 

Lie(H ) -* Lie(G ) •+ Lie (the reductive part of G ) t/Ch -̂ -> C. 

Note that <h ,X>= 0 because a e L . Moreover M=<C ®N as an 
H -module. Hence the condition p *M=0 is interpreted to the 

condition: C ®<P: H >Aut(C ^©M) extends to \b :H„ • Aut(C ®M) 
such that d^=A. Now, we have, as Hyx=(Hy) x, 

(9.7.1) Hy=(Hy)°-Hx. 

Here ° signifies the connected component containing 1. Since 
i|>(H ) is in the center of Aut(<C_p®M), in order to extend C_p®9 
onto Hy, it is enough to extend f to *°: (Hy) ° -> Aut(C_p®M) with 

d^° = A. Let xx be one of the points in p^1(y)\s- Then (Hx )°=(Hy)°. 
Since C is a representation of (H )°, it is enough to extend 

Hx -* Aut(M) to (Hx )° Aut M. Since Ker(H^H) acts identically on 

M, (H )° -* Aut M factors through (H )° Aut M. Summing up, we 
obtain the following. 

Let S(H,A) be the subset of S'(H,A) such that (S,x,M) € 
S (H, A) \S1 (H, x) if and only if (S,x,M) satisfies the following two 
conditions for some a € Z , . 

(9.7.2) SOP^1pa(x) = Hp (X)/Hx is not a finite set. 

(9.7.3) If S O p ^ p (x) = €*, then 

HxnHp (x)° * Aut(M> 
extends to : H , . ° •> Aut (M) such that d̂  = A+p. 

Here Lie(H^ , . ) ^±£> C is given as follows: taking x ^ p ^ p (x)\S, 

Lie(H (x))=Lie(HXi) Lie (B (x^) ) + t -A±4 
vl 
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Remark Similarly to the case of Hp (x) , if Hxn(Hx^) ° + Aut (M) 

extends onto (H ) °=H , , ° as in (9.7.3), then H OH + Aut(M) 
1 pot 1 

extends to • H Aut(M) with dip=X+p. 
xl 

Theorem 9.7.1 Assume that X has finitely many H-orbits and that 

À is anti-dominant and satisfies (8.3.2). Then the set of the  

isomorphic classes of irreducible (g,H)-modules is equal to S(H ,A) . 

Example 9.7.2 Let us take G=SL2 as in §7. Let us take as H the 

torus {(a a~l); a€C*}. Then the isomorphic classes of (£,H)-

modules corresponds to the irreducible representations of SL2(R). 

Now X has three H-orbits, namely, {0}, {«>} and SQ=X\{0,«>}. 

Then the isotropy subgroups are given by, HQ=HQO=H and H^={±l} . 

If À ^ Zp , then the infinitesimal representation A+P of 

Lie(H) cannot extend to representation of H. Hence 

(9.7.4) S(H,À) = {(SQ,1 ,M+),(SQ,1 ,M_)} for Xilp. 

Here M+ is the trivial representation of H^ and M_ is the other 

one-dimentional representation of H^. If A=-mp with a positive 

integer m, then 

(9.7.5) S(H,A) = (SQ,1 ,M+), (SQ,1 ,M_), ( {0}, 0 ,*)((«>} ,°° ,*) } . 

Here * corresponds to the representation of H corresponding 

to X+p. 

If x=0, then (SQ,1,M_)^ S(H,À) because M_ extends to the 

representation of H with infinitesimal representation of H with 

infinitesimal character p. Hence 

(9.7.6) S(H,A) = {(SQ,1 ,M+), {()},{«>}} for A=0. 

This coincides with the well-known classification of irreducible 

representation of SL2(R). The date (SQ,1,M+) correspond to the 

principal series (when A^2p) , and ({0},0,*), ({°°},0,*) correspond 

to discrete series. 

108 



REPRESENTATION THEORY AND D-MODULES ON FLAG VARIETIES 

Bibliography 

1. [B] Beilinson, A., Localization of representations of reductive 
Lie algebra, Proc. of ICM (1983), 699-710. 

2. [BB] Beilinson, A. and J. Bernstein, 1. Localisation de g_-
modules, C. R. Acad. Sci. Paris, t.292, Serie 1,(1981)15-18, 
2. A generalization of Casselman's submodule theorem. 

3. [BBD] Beilinson, A, J. Bernstein and P. Deligne, Faiseaux 
pervers, Asterisque, 100 (1982). 

4. [BoB] Borho, W. and J. L. Brylinski, Differential operators on 
Homogeneous spaces, I, II, Invent. Math. 69 (1982) 437-476, 
ibid 80 (1985) 1-68. 

5. [BK] Brylinski, J-L, and M. Kashiwara, Kazhdan-Lustzig conjecture 
and holonomic systems. Invent. Math. 64 (1981) 387-410. 

6. [G] Ginsburg, V, Geometrical aspects of representation theory, 
ICM at Berkeley. 

7. [Gir] Giraud, J., Cohomologie Non Abelienne, die Grundlehren 
der mathematischen Wissenschaften, 179, Springer-Verlag 
Berlin-Heidelberg-New York, 1971. 

8. [H] Harish-Chandra, Representations on a semi-simple Lie groups 
on a Banach space I, Trans. Amer. Math. Soc, 74 (1953), 
185-243. 

9. [HMSW] Hecht, H., D. Milicic, W. Schmid and J. A. Wolf, 
Localization and standard modules for real semisimple Lie 
group I, the duality theorem. Invent. Math. 90 (1987) 297-
332. 

10. [K] Kashiwara, M., 1. Open problems. Proceeding of Taniguchi 
symposium at Katata, held in 1986, 
2. Character, Character cycle. Fixed point theorem and 
group representations. Advanced Studies in Pure Math. 14. 

11. [M] Matsuki, T., Orbits on affine symmetric spaces under the 
action of parabolic subgroups, Hiroshima Math. J., 12 (1982), 
307-320. 

12. [SW] Schmid, W. and J. A. Wolf, Globalizations of Harish-
Chandra modules. Bulletin of AMS, 17 (1987) 117-120. 

Masaki KASHIWARA 
Research Institute for 

Mathematical Sciences 
Kyoto University 
Kyoto 606, JAPAN 

109 


