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Société Mathématique de France 
Astérisque 173-174 (1989), p.257-269. 

ON THE HOMOLOGY CLASSES FOR THE COMPONENTS OF SOME FIBRES 
OF SPRINGER'S RESOLUTION 

J.J. Guemes 

ABSTRACT: We compute the homology classes of the components of the fibres of 
Springer's resolution in terms of Schubert classes when the unipotent element is 
of "one hook" type. 

0. Introduction 
Let G be a connected reductive group over C. Denote by B the variety of 

all Borel subgroups of G. If u is a unipotent element of G, the fibre of Springer's 
resolution B^ is the variety of Borel subgroups containing u. The inclusion 
B c—> B induces a homomorphism of homology groups WAB ;Z) —> H„(/?;Z), which u * u * 
is injective if G = GL̂ (C) [8]. When w runs over the elements in the Weyl group 
W of G, the Schubert classes [X ] form a basis of Ĥ (Z?;Z) [2]. If C is a component 
of B , it defines a homology class in H„(B ;z)» whose image in H„(Z?;Z) is u * u * 
denoted by [c]. We can then write 

[c] 
w e W 

nc(w)[Xj with nc(w) € Z 

In this paper we shall consider the case with G = GL̂ CC) and with u a 
unipotent element whose Jordan decomposition is of "one hook" type, i.e. such 
that there is at most one Jordan block of size greater than one. The result in 
that case is that n̂ ,(w) is the cardinal of a set of reduced expressions of w, 
depending on C. We believe that a similar result could be true in general, at 
least for GL (C). For example, we have obtained such a result in the case that n 
the Jordan decomposition of u has only two blocks. 

We want to express our deep gratitude to Professor Springer. He proposed 
the problem [13] , and inspired all our work. He also read the paper and implemented 
it considerably. The clarity the reader can find comes from him. 
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//. GÜEMES 

1. Combinatorial results about tableaux and permutations 

1.1. A good reference for some terminology about tableaux is Macdonald's book 

[10] , for links between tableaux and reduced decompositions the reader is 

referred to [5], [9], [14]. 

Consider "strict standard staircase tableaux" with entries in the set 

1,...,n-l}, i.e. tableaux T for a Dartition (m,m-l,...,1) such that the integers 

a << 
in the place xcw satisfy a 

i 
PtQ 

< a p+l,q a p+l,q < a p,q+l 
[the columns are 

strictly increasing and the diagonals are increasing, it follows that the rows 

are strictly increasing). 

In the symmetric group S 
V 

let s PiQ denote the transposition ip.q) » let 
s. 
l 
be the fundamental transposition s 'i, i+1' 

1 < i < n-1. Let 1 (w denote the length 

of an element weS 
n 
and w<w' the Bruhat order relative to the set of generators 

(s i 1 < i < n-1 [3] . 

Denote by |x| the cardinality of a set X. 

Associate to such a tableau T a permutation w = w T 
e S n namely w = c '1 .. .c m 

where c P = s a m-p+1,p 
. . .s a *i.p 

We say T is reduced if l(w, "T $ 1 çm m+1). 

1.2. We list a number of properties. 

1.2.1. Write r 
P = s a P.l 

.. .s a p, m-p+1 
. Then w = r 

m 
.. .r. x< 

1.2.2. If T is reduced then a P+lf q = a p,q+l 
implies a 

p,q+l = a P,q 
+1. 

1.2.3. Let i defined by wi = 1. Then a p,q = p+q-1 for p+q_<i 
and a 

l,i 
> i. 

Define the number T = T 
P 

= T(T,P) as follows: in the p 
th column of T we 

have 

a 
1,P = a, 2,p 

-1 = . .. = a 
T,P 

— T + 1< a T+l.p - T . 

1.2.4. For p < q £i-l we have T 
P > T < If p < i then w 

P = T P 
+1 . Hence if p < q_< i 

then wp > wq. 

1.2.5. If T is reduced and a, ai,i = i+1 then T i T i-1 
. Moreover T i-1 = T i +1 

if and 

only if T i 
+2 = w(i-l) < w(i+l) and T, Ti-1 > T.+l i 

if and only if w(i-1) > w(i+1) = T 1 
+2. 
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FIBRES OF SPRINGER'S RESOLUTION 

PROOFS 

1.2.1. * If p >u, q >v then a 
p.q 

-a u, v 
>2. It follows that s a p.q 

and s a 
u, v 

commute. 

The proof follows from this observation. 

1.2.2.* Let T be not necesarilly reduced. We show by induction on m-i that 

1 r - - . r m 
> Kr . . .r s 

L m 
m 

i a i, j 
[1 < i < m, 1 £ j £m-i+l). This is clear if j = m-i+1 

or a li,j+l > a i. 3 
+1. otherwise s a I.J 

E a. i,j+l 
s 
'a 1,J 

< s 
a. 
i, 
,j+l 

s 
a i.J 

s a. . . 
i, J+l 

»a î, j+l 

= a i+1. j [diagonals increase) so that r.s i a i, j 
= s a. <x<<< 

r i * 
By the induction 

hypothesis we have Kr 
m . .r i+1 s 'i+l.j 

) < li r m .r <x ), whence the asserted 

inequality. 

It follows that if a P+l.q = a p,q+l 
and a p.q 

+1 <x <x<<x we have 
Kr 

m* . .r p+1 < a p+i.q 
) <1 .(r m ,. .r V i 

, showing that T is not reduced. 

1.2.3, < We have w 
-1 

= r -1 
1 .r 

-1 
' m and r P 

fixes 1 if p>2, so i = w 
-1 (1) = r 1 

-1 ;i 

= s a. 1 ,m 
s 
ai . ,m-l 

. . .s. $ al,l 
(1). Since a. x< >P it follows that a l.P 

= p for p £ i-1 , 

a. 1,P: . p for p > i. 

1.2.4.* That T 
P 
> T q 

if p < q < i follows from the definitions (T is a strict 

tableau). Now c j 
fixes p if i > p, c 

P ù = P+T P 
for p < i and c j a t-l if j < t <_ j+ Ty 

thus because p < i we have wp = c. '1" c 
V 

p' ù c, '1 c. :P-1 P+T p 
= T +1. 

P 
1.2.5.* That T . i T. 

1' 
-1 

follows from (1.2.2). From (1.2.4) we have w(i-l)=« T. i-1 +1. 

Also w(i+l) = r ' m" r 1 i+1) = r m .r 2 
(i+2) =...= r 

m 
r 
T . 
i 
+1 [i+ T.+l) i ; now r 

i 
.+1 

f 1 XftR i + T +1 . i ù T.+2 1 
i+T.+l ) 1 = T.+2 if i i i-1 T.+l 1 and r T.+2 i 

i+T.+1) > T.+2 if 1 1 

Ti-1 = T.+l. 
1 

The result now follows from the observation that r j fixes (1, i +2] 
if j >T4+2. i 

1.3. The following known result (see [6, pg. 156] as reference) is useful. 

LEMMA 1.- Let w c S 
n' assume 1 _< p <_ q £n. 

We have l(ws 
p.q 

i <l(w) if and only if 

wp >wq, moreover in this case Kw)-Kws 
p.q 

=1+21 {ks.t. p<k<q and wp > wk > wq} | . 
As a consequence if ws >w for some fundamental transposition s and l(ws s 

P.qJ =Kw) 

then ws(p) >ws(q) and there is no k with p<k<q and ws(p) > ws(k) > ws(q). 

LEMMA 2.- Let w = wr V w ' = w, T' be permutations corresponding to tableaux T=(a p.q 
T' = (a 

P.q 
as in the beginning of the section. Suppose there are positive integers 

t,j,k, j < k, with a P.q = a' p.q if q̂ t or p > k, a' P.t = a p.t = t+p-1 if 1< p < j and 

a' P.t" =a 
i 
Pit 

+1 = t+p if j <p <_k, Then w 
-1 
w' is the cyclic permutation (t,b,c), where 

b is defined by wb = j and c by w'c = k+1. 
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//. GUEMES 

PROOF.- Write w = c "1* .. .c xw w' = c « I 
'1 
.. .c m 

then c P = c' 'P if p / t and c t h cww < (h: exactly for three values of h, namely h=t, t+j, t+k. Therefore w -1 u 
w' is a cyclic 

permutation [a,b,c). Moreover wt = k+1 and w't t = c '1 . .c t-1 t+j-1) = j, so we can take a = t and b,c defined by wb = w't = j, w'c=wt= k+1. 

2. Combinatorial correspondences 

2.1. Let L be the set of tableaux T = (a ) as in section 1, with w(i+l) = 1. 
p.q 

Let ft be the set of tableaux with wi = 1 and a, . = i+1. 
l,i 

Let N be the set of tableaux with w(i-l) =1, . ̂  = i and â  ̂  = i+1. 
2.2. Define a map \p :L —> ft as follows: \pT is obtained by replacing the numbers 
i,i+1, ... ,i+ i\-l in the ith column of T by i+1,i+2, ... ,i+xi. Define : ft—-»/V 
similarly (change i for i-1). Define e = eT by w^e = ii+l ( = x(T,i)) if 
T eL (similarly if T e N ). 

If T € N then xi_1 > by definitions. Define a map x: N—> ft as follows: 
XT is obtained by replacing the numbers i,i+1,...,i+in the (i-1J**1 column of 
T by i-l,i,...,i+f -1. 

We list a number of results. 

2.2.1. We have ipo.-x = identity, in particular X is injective. 
2.2.2. Suppose T e L , then e>i+l, wT = wlpTsisi ± and ipT is reduced if T is 

reduced. 
2.2.3. Suppose Te /V is reduced, then wT = ŵ Tsisi_1 and XT is reduced. 
2.2.4. We have that = <PT' and eT = eT( , implies T = T'. 
2.2.5. If T e ft is reduced and ltws.^ = l(w) for some t < i, then t = i-1 

and x = T.+l, in particular T =x^T, i> T e N . 
2.2.6. Given T»e ft reduced, e>i+l, l(wTsisi ) = l(wT,) then there exists a 

reduced T e Z. with lpT = T' and e = eT , if and only if w^e < T (T' , i )+l. 

PROOFS 
2.2.1.* This follows from the constructions of the maps. 
2.2.2.* Write wim = c„...c as in section 1. We have: lbT 1 m 

e = w 1(T.+1) = c 1...c 1(T.+1) = c 1. . .ĉ 1(T.+2) =...= c 1...c.1i (T.+i+l). |JT i m i l m 2 l m l+l i 
Now c. ......c fix {l,...,i+l} therefore e >i+1. 

l+l m 
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FIBRES OF SPRINGER'S RESOLUTION 

Applying lemma 2 to T, ipT with t=i, j=l and k=x̂  we obtain ŵ  = w^( i , e, i+1) 

because b = i+1 and c=e, thus w_ = w,_s.s. 
T \pT 1 i,e 

We shall prove ŵ T(i+l) > x̂ +1 = ŵ e-p* Then we shall have lCŵ ) < l(ŵ ,ŝ  g) = 

= l(w ms.) (c.f. lemma 1), thus \pT is reduced if T is. Write w,m = r ...r. then \pT l \pT m l 

wim(i+l) = r . ..r\,(i+l) = r ...r (̂i+x.+l), now r ,...,r . fix {l,...,x.} and ipT m 1 m x.+l I m x.+l I 
l l 

ŵ T(i+l) ̂  T±+̂- Decause e>i+l. 

2.2.3.* We have w = w— _s. . s. . = w_s. ., s. , e = e _ (c.f. 2.2.2., XT l̂xT l-l l-l,e T l-l l-l,e' XT 

2.2.1.). Now wTe = x(xT,i-l)+l (definition) and x(xT,i-1)= T(T,i)+l by construction. 

We shall prove w (i+1) = x(T,i)+2 then e = i+1 and w = w s.s. .We have: 

w (i+1) = c ...c (i+1) = c ...c (i+1) = C ...C (i+T.+l) = C.....C. _(i+T.), T 
T 1 m 1 l 1 l-l l 1 i-2 l 

is reduced and x_._Q >x̂ _1 (c.f. 1.2.5.), hence 

c1...ci_2(i+T.) = c1...ci_3(i+Ti-l) = ... = CI(T.+3) = T.+2 

Also l(wT) < 1 (wTsi_1 = 1̂ wxxsî  ûse that WT̂ i_1̂  = 1 c,f* lemmawcwwwwf̂ $ù<wx<<< 
<<XT is reduced<x<. 

2.2.4.* If T,T' e L and \pT = i|/T' , eT = eT, implies x(T,i) = x(T',i) (definition 

of e). Then the construction of ipT = 4>T' shows T = T' . 

2.2.5.* We have ws^i+l) = wi = 1. We deduce t = i-1 (c.f. 1.2.4., and lemma 1). 

We must have also (c.f. lemma 1) ws.(i) = w(i+l) >ws.(i-l) = w(i-l), then (1.2.5) 

implies x. , = x.+l. l-l l 

2.2.6.* If T' = ipT, e = eT then by definition wT,e = xi+l£ x(T',i)+l (construction) 

Conversely if ŵ,,e _<x(T',i)+l put k+1 = ŵ ,e and obtain T from T' by replacing 

the numbers i+l,...,i+k in the i^ column of T1 by the numbers i,...,i+k-l 

(T is a strict tableau because x(T',i-l) >i(T',i) (c.f. 1.2.5.)). Then \pT = T', 

wime = wmle = k+1 = x(T,i)+l, i.e. e = eml and T is reduced because wm=wmls. s. \pT T1 v » / i T 1 T T ' ii,e 
(c.f. 2.2.2). 

2.3. Let T e ft be reduced and let t<i be such that ltws^^ ̂ ) = l(w), then t 

is uniquely determined by T (c.f. 1.2.4. and lemma 1). We have also (lemma 1 and 

1.2.4 ) w(i+l) < wt = T +1. 

In this situation construct XTe ft in the following way: 

Replace the numbers t+w( i+1 )-l,..., t+ T̂ -1 in the tth column of T by the numbers 

t+w(i+l),...,t + x̂ . (We obtain a strict tableau because w(t+l) < w(i+l) (c.f. 

lemma 1). 
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Define k = kT by w^k = x(T,t)+l. 
We list a number of results. 

2.3.1. We have k> i+1 and wms.ŝ  . = w, _s.s. . . 
T 1 t,i XT 1 i,k 

2.3.2. XT is reduced and there is no reduced T' e L with \pT' = XT and k = ê , . 

2.3.3. Suppose we have XT = XT', kT = kT, for two reduced T,T'e ft with 
1(wTSiSt,i)= 1(wT}' 1(wTSiSt' i} = 1(wT'}' then t = t% and T = T'. 
2.3.4. Let T e /ty be reduced, let e > i+1 be such that l(wŝ ŝ  g) = l(w), and 
suppose that there is no reduced T' e L with T = ipT' and e = eT, . Then there is 
a reduced T1 e M and t<i with l(wTsist ) = l(wT,)f T = XT' and e = kT, . 

PROOFS 

2.3.1.* Write w._ = C....C then XT 1 m 
—1 —1 —1 —1 —1 —1 —1 

k = Ŵ T(T+ + 1) = Cm •••C1 (T-K+1) = Cm •••C+ ̂  +t) = Cm ...C (T +t+l). 
XTt m i t m t t m t+1 t Observe that 1 (s)> j+ T̂. if j < i and s > j+ T̂  . Also ĉ ,...,c fix {1, . . . , i} , we 

conclude k >i. 
Applying lemma 2 to T, XT, t, w(i+l), T^ we obtain wT = ŵ T (t,c,b) where 

b = i + 1 and w. _c = T.+l. Therefore k ̂  i+1 and w_s.s. . = ŵ ms.s. . . 
XT t T i t,i XT i i,k 

2.3.2.* We have l(w s.s. ) = l(w s.s .) = l(w ) (cf. 2.3.1). We shall prove 
X 1 1 1 , K 1 1 L,1 1 

wXT(i+l) > xt+l = wXTk« Then l(wXTsi) > l(w ŝ ŝ  ̂ )=l(ŵ ) (lemma 1) and XT is 
reduced. Write wm = c, ...c , w, _ = c' ...c1 . Also w(i+l)<T.+l by definition of t. T i m XT 1 m t 
Then w(i+l) = c1« . .ct(t+w(i+l) ) and w^U+l) = c1. . .c^cj.tt+wU+l) ) = ĉ . . .c^Cu] 
where u >̂  t+ T̂ +1 , hencexvwww< >_i^+2. 

We have w^k = T̂ +1 > ̂+1 (cf. 1.2.4, 1.2.5). Hence the second part of 
the statement follows from (2.2.6). 

2.3.3.* In this situation wms.ŝ . . = wmls.s., . (cf. 2.3.1). If t ̂  t1 suppose 
T i t,i T' i t' , i 

for instance f < t, then w^' > w t (cf. 1.2.4) and v̂ t' = wT, ( i+1 ) > wT, t ' = wTt 
against the definition of t'. 

Therefore t = t1 and wT = wTI . We conclude T = T' because they can only 
differ in one column. 
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2.3.4.* In this situation we > T̂ +1 (cf. 2.2.6). We deducexx =<<cp^$ because 

if T > then w(i+l) = -̂ +2 (cf. 1.2.5) against we <w(i+l) (cf. lemma 1). 

We have in fact we >Ti_1+1 (we ̂  Ti-1+1 = w(i_1) (c.f. 1.2.4) because e ̂  i-1). 

Define t to be the smallest number with we >x̂ +l. 

We claim: the t^ column of T is of the form, t, t+1,..., t+x̂ .-l, t+x̂ _+l, 

t+ x̂ +2,...,t+we-l,... . If w = C...C this is equivalent to c.(t+x,+1)> t+we. t l m t t — 
Suppose ĉ (t+x̂ +1 ) < t+we, because weĵ x̂ +̂l (by definition and 1.2.4), we deduce 

c .. .c( t + x̂ +1 ) < we. If we show c. „...c (i+1) = t+T.+l, we arrive to the I t t — t+1 m t 
contradiction w(i+l)£we and the claim follows. 

For j = i-1 we have c. , ...c (i+1) = c.(i+l) = i+x.+l = i+x. , = i + x.+l. J J+l m i i l-l ° j 

Now we show ĉ (j+x̂ +l) = j-l+ Tj_1+1 if t <J <:i- bv decreasing inductioncw<<. 

If thevvn;*ù$w<<column of T has the form j , j+l,..., j + x̂ -1, j + x̂ +1, j + x̂ +2,... . 

.., j + x.+s, ...then x _> x.+s+l (c.f. 1.2.2). If x.>_ x.+s+l then w( i+1 )< w(j-l)= 
J J —"1 J J J 

= x. +1, this is against w(i+l) > x,+l (c.f. 1.2.4). We have x. = x.+s+l and J~1 t j—1 j 

the result follows. 

Now construct T' by replacing the numbers t+x̂ +1,...,t+we-1 in the tx< 

column of T by the numbers t+x̂ ., . . ,t+e-2. 

We have wt = t̂ +l (c.f. 1.2.4), wT,t = we (by construction of T') and 

w (i+1) = x +1 (we had c .....c (i+1) = t+x.+l). Then (by lemma 2) w =w(i+l,t,e) 

and ws.s. = wmis.s, .. 
I i,e T' I t,i 

We have l(w s.s .) = l(ws.s. ) = l(w) and we = w t>w (i+1) = x.+l, 
1 X *U | 1 X. X. 9 6 X X "C 

then l(wT,s.) >l(w) (c.f. lemma 1) and T1 is reduced. 
Also l(wTsist i) = l(w^). One see easily XT' = T (we have wT,(i+l) =x̂ +l) 

and e = kml. 
T' 

3. The main result 

3.1. We start with a unipotent u in the general linear group Gl(n,C), which in 

Jordan normal form has a block of size n-m and m blocks of size one. 

Let us recall that the variety B can be identified with the variety of 

flags fixed by u. 

It is known [ll], that the standard tableaux of shape (n-m,1,...,1) 

parametrize the components of B^. Here we shall follow the convention that a 

standard tableau has strictly decreasing rows and columns. 
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//. GÜEMES 

3.1.1. THEOREM.- The expression of the homology class of a  
component C of 3 corresponding to the tableau Tc in terms 
of Schubert classes is [c] = I[X^ ] , where T runs over the 
set of reduced tableaux T p,q with ai,q : a 

q 
l<q<m . 

n 
a 
m 

x 
Tc 

3.1.2 Example.- The component C corresponding to the tableau Tb is non singular 
and is not a Schubert cycle. There is only one reduced tableau corresponding to 

the component, namely l<q<m.xv 
_5_ 
3 
i 
bd 

Tb 

l<q<m.s 
l<q< 

f3 
Thus [C] = [X ] with w = s s s^s s (w = 415263) and [c] is 

a single Schubert class. The corresponding Schubert cycle is singular and has 
different Poincaré polynomial and intersection homology Poincaré polynomial 
(P = (q2+q+l)(q+l)4, P = (q3+3q2+2q+l)(q+1)3, IHP = (q+1)6). 

3.2. Let us recall some results on the components and on the action of the 
Weyl group. 

Let A be the root system of a reductive group; n is a system of simple 
roots; A+ is the set of positive roots; < , > is the duality pairing between 
roots and coroots; 3* is the coroot associated to the root g ; s e W is the 

3 
reflection defined by 3 [3] . 
3.2.1. According to Bernstein-Gelfand-Gelfand [l th. 3.12] and Demazure [4 pg.80] 
the action of a simple reflection s = s ,aell, on Schubert classes is given by: 

(1) s[x ] = L wJ 
-[x 1 
^$w 

3€ A - {a} 
l(wssD)=l(w) p 

<a,^> [X ] u wss J 
3 

if ws < w 
if ws > w 

Here [X̂ ] is the Schubert class corresponding to weW. 

3.2.2 Let f be the variety of parabolic lines of type s [15] , and II: 3—^> ? 
s s 

the natural projection. Following Hotta [7] we say that a pair of components 
(C,C) form an s-pair if n(C' ) cn(C ) but n(C' ) ^ n(C); in particular C and C 
intersect in codimension one. 

The action of s on the homology classes of the components is given by: 

s[c] = 
wx<< 

tc] + I nCjC, [C] 
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Here the summation is over all the components C with (C,C ) and s-pair 
and the numbers n̂  ̂ , are strictly positive integers [8]. 

REMARK.- In the formulas of Demazure and Hotta we observe 
i) ws < w if and only if the Schubert cycle corresponding to w contains 

lines of type s. 
ii) dim n(C) < dim C if and only if the component C contains lines of type s. 

3.3. In our case the Weyl group W is and the set of positive roots A+ is in 
one-to-one correspondece with set of transpositions in Sn. 

Denote by 8̂  j the positive root corresponding to the transposition 
s. . = (i,i). The roots e. = 8. . „ 1 <i <n-l corresponding to the fundamental i,j ,J I i,i+l - - ^ 
transpositions ŝ  = (i,i+l) form a system of simple roots. Say that a component 
contains lines of type i if it contains lines of type s_̂. Say that two components 
form an i-pair if they form an ŝ -pair. 

3.3.1. PROPOSITION [12 pg. 87].- The component 
corresponding to the tableau T̂  contains 
exactly lines of type {â ,â ,...,â  }. 

w 
<w< 

< 
^m 

Tc 

The intersection pattern of these components is known [l6j , in particular we have: 

3.3.2. PROPOSITION.- Two components intersect in codimension one if and only if 
the corresponding tableaux differ by a transposition of consecutive integers not 
lying in the same row or column. 

As a consequence there are for given i and C at most two components C 
with (C,C) an i-pair. 

We see that the homology classes of the components are a very special 
basis for the action of the Weyl group (Springer representations), i.e. the 
matrices of the fundamental reflections have l's and -1' s in the diagonal and 
O's or positive integers outside. For "hook" components we have: 

3.3.3. PROPOSITION.- All the integers nc c, in Hotta's formula (2) are 1. 

PROOF.- Take a component A whose tableau has i in the first column and i+1£n-1 
in the first row. Let B be the component obtained by interchanging i and i+1. 
Assume : 

a) i ̂ _ 2 and i-1 is in the first column. Let C be the component whose 
tableau is obtained by interchanging i and i-1 in B. 
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b) i+1 < n-1 and i+2 is in the first column. Let D be the component 
whose tableau is obtained by interchanging i+1 and i+2 in A. 

Then 
s l [B] 'B1 + n i BA A + n 

i 
BC C » 

s i+1 s 1 B B + n i BA < +n AB 
i+1 B +n i+1 AD [D] n i BC [C] < 

s l s i-+1 s 1 < IB] -n BA 
i [A; -n BC i [c] n i BA < +n < 

BA n i+1 AB (M +n 
i 
BA [A +n 

i 
BC fcl )+n 

i 
BC C -n 

i 
BA n 

i+1 
AD [D] 

s i+1 B <x< B 

s < s i+1 [B] B < n i BA A n < BC [c] I 
S 1 + 1 .S 1 .S i+1 < [B] n i BA <x + n i+1 AB B] + n 

i+1 
AD <x + n i BC C 

But s i S i+1 S E [Bl S i+1 s 1 s i+1 [B] and the homology classes of the components form a basis, so comparing coefficients: 
-1 + n i BA n AB 

i+1 1 n i BA n AB i+1 and n i BA n 
i+1 
AB 1 therefore n. i BA n i+1 lAB < 1 

If the assumtions a) and b) are not satisfied the components C or D do 
not appear but the proof is the same. 

3.4. The proof of theorem 3.1.1. is by double induction on the length of the 
first row and on the integer in the upper right-hand corner of the tableau. 

Read the tableau n. . .b Ü 
s m 

as the "word" a....n...b. 1 1 

a 1 
i) = case 12...n. If the lenght of the first row of the tableau is one, 

the unipotent is the indentity and 8 = 8. On the other hand s ...s.s 1..s0..s . 
u n-1 1 n-1 2 n-1 

is Wq the longest element in which corresponds to [8]. 
ii) case â ...â n...b̂ b̂ l. If the number in the upper right-hand corner of 

the tableau is 1, all the flags in the component have for one-dimensional subspace 
a fixed line [12] 

The component is isomorphic to the component given by the tableau 
a1~l ,a2~l, . . . ,n-l, . . . ,t>3-l ,b2~l; the isomorphism is given by the natural 
isomorphism between Flags (n-1) and the Schubert variety in Flags (n) of flags 
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that contain the fixed line, and through this isomorphism the Schubert cycle 

corresponding to the permutation w' e $n_̂  goes to the one corresponding to 

weS (w(l)=l, w(i)= w'(i-l)+l if i>l). (See for instance [6, Chapter III §4]). 

If one writes w* = s 
x .s 

a k 
as product of fundamental transpositions then 

w = s 
xv 4-1 

. S 

a k 
+1" The result now follows inmediately. 

iii) Case 12...i i+1. . .n.. .b̂  i+1. By induction we have now a fixed component 

A corresponding to a tableau of this form (if the tableau is 1 2...m n n-1 ... m+1 

the proof is the same as in the first step of the induction). 

Let B the component corresponding to the tableau which we obtain by 

interchanging i and i+1 in the tableau of A. 

We will assume i > 2 and we shall not treat the case i=l separately, 

(because the proof in that situation is a particular case of the proof for i>2). 

Let C be the component corresponding to the tableau which we obtain by 

interchanging i-1 and i in the tableau of B. 

Put s = ŝ , and let e = e_̂  be the corresponding fundamental root (i is 

fixed). 

Define I\ as the set of reduced tableaux T = (a ) with a, =a l<q<m. 
A p,q l,q q 

Define r , r similarly. B 0 

We have rA c L , rß c /)), TQ c M 

Hotta formula gives S[B] = [B] + [A] + [c] 

By the induction hypothesis the main result is true for B and C, so we have: 

[B] 
TerB 

[X 
x » 

[c] 
T e I C 

X 
T 

Now T^M then w i=l if Te r (c.f. 1.2.3) and wrT1s>wm. Thus by Demazure formula 
JB •!• Jb I I 

(1) [A] = 
Ter. A 

fx 
V 

is equivalent to: 

(*) 
Ter, A 

x 
T 

+ 
Ter 

[X 
T 

x 
(T,3) € I 

x^^*ù X 
WTss3 

where I is the set of pairs (T,3) with TerD, 3cA -{e} and l(w_ss0) = l(w_). 
D + 1 P 1 

We prove (*) by "counting" terms in both sides of the equality. Put 

1 = 1 U I_ where (T, 3) el if <e,̂ > = 1 and (T,3) e I if < e,̂ > = -1. 
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We shall construct two maps: 
<|): U Tc » I+ injective and satisfying wT, = wTsŝ  if (T,v) = (̂(T1) 
V: I —-* I -im(() bijective and satisfying w_.ss01 = w_ssQ if (T,8) = VCT'.B') — + i p l p 

Define 0 by: <|)(T) = 
(H>T,B ) e = eT if Te rA 

(XT.B i-1,i+1 if Tcrc 

0 is well defined and satisfies the previous requirement (c.f. 2.2.2, 2.2.3). 
$ is injective (c.f. 2.2.4, 2.2.1). 

Suppose (T.v) is in I . Then 8 has the form 8 = 3, t,i with t < i (if 3 has the form 0=6... with e > i+1, then because wTi=l KwT) < l(v T i' s < 1 w_s.s_ T i 8 (c.f. lemma 1)). 
Define ¥ by: 

Y(T,8) = (XT,kT) 
¥ is well defined and satisfies the requirement (c.f. 2.3.2, 2.3.1). ¥ is injective 
(c.f. 2.3.3). 

If (t, 8) e I and 8 has the form 8 = B. . - then (T,8) is in im 0 (c.f. t.i+1 
2.2.5), it follows from (2.3.4) that ¥ is surjective. 

Example.- We have a non trivial example for the tableau 9 7 6 4 3. 
8 
5 
2 
1 

Here the cardinalities of the sets r̂ , T^, are 10, 4, 3 respectively. Moreover 
I is a non empty set. 
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