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0. Introduction 

This paper arose from an attempt to get better understanding of 

the notion of Character sheaves introduced by G. Lusztig. It is be

yond any doubt that Character sheaves play a fundamental role in the 

Representation theory: they are closely related to irreducible cha

racters of (finite) Chevalley groups, to unipotent representations of 

complex reductive groups, and, perhaps, to many other matters as well. 

Unfortunately, there was no simple definition of a character sheaf. 

Lusztig tried various ones (see £Lul, Lu2, Lu4 ch. 13]), but all of 

them seem to be far too complicated for such a basic object and, more

over, it was unclear (while known from tables) why these definitions 

were equivalent. The definition 1.2 below, given in terms of D-modu

les, is,I believe, the simplest possible one. Also, it became gradual-

V.Ginsbrug, Moscow State Univ., Dept.of Math., 117234 Moscow, U.R.S.S. 
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V. GINSBURG 

ly apparent, that replacing the group G by an arbitrary symmetric va
riety G/K provides a natural setting for the subject. In short, our 
conclusion can be informally summarized as follows: the class of D-
modules arising from character sheaves (in the "G/K-setting") is es
sentially the same as the class of differential systems (i.e. D-mo-
dules) satisfied by K-finite matrix coefficients. 

Two ingredients of our approach are especially important to be 
mentioned here. The first one is the Harish-Chandra functor, taking 
D-modules on G/K to D-modules on the Flag manifold. The second is a 
compactification of G/K introduced by De Concini and Procesi [DP ] 
under the name of "complete symmetric variety". 

I am grateful to A. Beilinson for explaining to me the defini
tion of a regular compactification. 

Quite recently, I have received a preprint by Mirkovic-Vilonen 
[MiViJ containing a different approach to some of the results of this 
papers. In particular, one should consult [MiVi] for a new simple cha
racteristic free definition of character sheaves due to Lustig. 

1. Basic definitions and main results 

1.1. Let G denote a connected complex reductive Lie group. Let 
© be an involutive automorphism of G and let K := G denote the 
fixed point subgroup of G. Let X = G/K be the "complex symmetric 
variety" associated to the pair (G; ©). 

Lemma 1.1. (i) K is a reductive subgroup of G; 
(ii) G/K is a smooth affine algebraic variety. 
For a proof of (i) the reader is referred to [HelgJ. (ii) fol

lows from (i) since G/K is an orbit-space of the reductive group K 
acting freely on G, an affine variety. Such an orbit-space is known 
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ADMISSIBLE MODULES ON A SYMMETRIC SPACE 

to be an affine variety with its regular ring C[G/KJ being equal to 
C[GJK. 

Here are 2 basic examples of symmetric pairs (G, K). 
(i) Given a complex reductive group K set G = K * K and let 6 be 

the involution on G defined as e : (a, b) \—> (b, a). Then G = K 
(= the diagonal of K x K) . Such a symmetric pair (G = K X K , K) will be 
referred to as a diagonal pair. Consider the map r : G —> K, r(a, b) := 
a-b ^. The map r clearly factors through G/K and gives an isomor
phism G/K = K. The left G-action on G/K corresponds to the K x K-ac-
tion on K by left and right translation. 

(ii) Let © be an involution on a complex reductive group G, K = 
G , and G^ a real form of G such that 1^ := K /1 GR is a maximal 
compact subgroup of GR. Then, G/K may be viewed as a "complexifica
tion" of the symmetric space 

1.2. Let D(X) be the ring of global algebraic differential ope
rators on X, let g and k be the Lie algebras of G and K and let 
U(g), U(k) denote the respective enveloping algebras. The action of G 
on X = G/K by left translation gives rise to a Lie algebra homomor-
phism: g —> "algebraic vector fields on X". The Lie algebra homomor-
phism can be naturally extended to an algebra homomorphism: U(g) —> 
D(X). Hence, any D(X)-module may be viewed as a U(g)-module, via the 
above homomorphism, and also as a module over a subalgebra of U(g) 
(e.g. U(k)),by restriction. 

Let Z(g) denote the center of U(g). 
Definition 1.2. A finitely generated D(X)-module M is said to 

be admissible if it is locally-finite both as a U(k)-module and as a 
Z(q)-module, that is 

dim U (k) -m < ©o and dim Z (g) »m < o© for any m 6. M. 

We remark that speaking about D(X)-modules is the same as speak
ing about quasi-coherent sheaves of D-modules on X, for X is an affi-
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ne variety. Yet, there is no obvious way to rephrase the definition 

of admissible modules in terms of sheaves of D-modules because the 

algebras U(k) and Z(g) have global nature. A local (actually, even 

microlocal) characterisation of admissible modules is provided by 

theorem 1.4.2 below. 

oo 

Let f be a Z(g)-finite C -function on GR, a real form of G. 

If f is right-K^-invariant and left K^-finite, then the D(G/K)-mo

dule generated by f is admissible. In particular, f satisfies a 

holonomic system with regular singularities (thm. 1.4.2). The assump

tion of the right K^-invariance can be easily replaced by the 

right K^-finiteness. 

* 
1.3. Let T be a maximal torus of G, X(T) := Horn(T, C ) the lat 

* 
tice of weights, t the Lie algebra of T, and t the dual of t. We 

* 
view X(T) as a lattice in t . Let W be the Weyl group of (G, T), 

* 
acting on t, t , X(T), etc. We form the semidirect product W^ = 

a 
WXX(T), called the affine Weyl group. There is a natural W -action 

a 

on t by affine transformations. 

Maximal ideals of Z(G) can (and will) be parametrized by points 

of the orbit-space t /W via the Harish-Chandra homomorphism Z(g) = 
m * W 

C[t ] . Let I^ denote the maximal ideal of Z(g) corresponding to a 

point a € t . 

Given a locally-finite Z(g)-module M, one has a root space decom

position 

V = 

a € t /w 

V 
A 

V = |v é V I 
q 
n v = 0, n » 0 j 

The module V is said to have a central character J £ t /W& if all 

the roots y in the above decomposition belong to the W -orbit in t 
a 

corresponding to 5 • 

Remark 1.3.1. Let T := t /X(T) be the torus dual to T and 
* * 

let G be the complex reductive Lie group containing T as a maximal 
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torus and dual to G in the sense of Langlands £Lan]. There are natu
ral orbit space isomorphisms: 

* * /s* * t /W = T A? = the set of semisiitple conjugacy classes in G . a 
* 

Thus, there is a bijective correspondence between the set t /Wa 
a of all central characters and the set of semisimple conjugacy classes 

of the dual group. 
Admissible modules form an abelian category Admiss(X). Let 

Admiss(X, J ) denote the full subcategory of Admiss(X), consisting of 
those modules that have a central character ) $t /wa- Tne follow
ing result will be proved in section 2. 

Theorem 1.3.2. Admiss(X) 
5 € t * Wa 

Admiss(X, 3 ), i.e. 

(i) any admissible module V is isomorphic to a finite direct 
sum of admissible modules that have central character and 

(ii) Hom(V1, V2) = 0, provided and V"2 have different central 
characters. 

Remark. In section 8 we111 prove a much stronger result, saying 
* 

that ExtD^ (V^r V2) = 0 for any admissible modules V̂^ and V2 with 
different central characters. Here the Ext-group is computed in the 
ambient category of all D(X)-modules. * L 1.4. Let g be the dual of g and k-** the annihilator of k 

•ff i -ff in g . The subspace k eg is stable under the coadjoint action of 
* * K on g . Further, let T X be the cotangent bundle on X. We observe 

that TQX, the cotangent space at the base point e £ G/K, can be na-
* i 

turally identified with (g/k) - k . Hence, there is a vector bundle 
isomorphism: 

T X = G x 
K 

ww 
^^ (1.4.1) 

The G-action on X induces a hamiltonian action of G on T X. This 
latter one gives rise to a moment map ju : T X —•> g . Using the iso
morphism (1.4.1), the map ju can be described explicitly as follows: 

203 



V. GINSBURG 

ji : G x K 
^cx » (x, A ) -1 * 

x • 7i • x e g 
Let SSV denote the characteristic variety of a finitely-gene-

rated D(X) -module V and let NgC g be the nilpotent cone (= the 
* 

zero-variety of the set of invariant polynomials on g without 
constant term). 

Theorem 1.4.2. The following conditions are equivalent 
(i) V is an admissible D(X)-module; 
(ii) V is a regular holonomic D(X)-module such that 

SSV C ju -1 N g 0 k 
1 (*) 

The proof of theorem 1.4.2 is rather long. The implication 
(i) i) is proved in section 3 with the exception of the fact 
that an admissible module has regular singularities. The regularity 
follows from theorem 8.5.1 on the Harish-Chandra transformation. The 
proof of the implication (ii) zẑ >(i) is given in section 3. It heavi
ly depends, however, on results of sections 4, 5 and of Appendix A, 
concerning characteristic varieties of D-modules on a regular compac
tif ication. 

Remarks. (a) Write the Cartan decomposition g = k © p , where p 
is the (-1)-eigenspace of the involution on g induced by 0. Let g 
be identified with g via a ©-invariant Killing form isomorphism. 
Then we have: k"̂ "= p and N = variety of nilpotents in g, so that 
N g k „1 w N P (= the subvariety of nilpotent elements of p). The mo
ment map (1.4.1) turns into the map: 

* 
ni : T X = G x K P —> g. 

(x, v) x«v-x -1 

(b) An estimate similar to 1.4.2 (*) was first considered by G. 
Laumon [Lai] in connection with the work of V. Drinfeld [Dr] on the 
Langlands1 conj ecture. 

1.5. < We'll see in section 3 that < 
<< 

•1 (N fi k L 
) is a Lagran-
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gian subvariety of T X. This observation suggests the following prob
lem. 

Let H and K be Lie subgroups of a Lie group G, let g, h, k 
be the corresponding Lie algebras, and N an Ad G-stable conic subva-
riety of g . Set X = G/H and let ju : T X —> g be the moment map. 
The problem is to classify (for a given G) all the triples (H, K, N), 
such that ju (N (1 k ) is a Lagrangian subvariety of T X^and to study 
the category of holonomic modules on X whose characteristic varieties 
are contained in f1 

-1 (N k' s If N = 0 is a single coadjoint orbit 
* 

in g , then we have the following general criterion 
Proposition 1.5.1, The following properties are equivalent 

(i) J1 
-1 (0 ks s is a Lagrangian (resp. isotropic, coisotropic) sub-

* 
variety of T X; 

(ii) both 0 h and 0 k 1 are Lagrangian (resp. isotropic, co
isotropic) subvarieties of the orbit 0, viewed as a symplectic 
manifold. 
Here are some interesting examples of triples (H, K, N) for a 

reductive group G. The case H = K = G and N = N is just that of 
admissible modules. Further, if H is a maximal unipotent subgroup 

9 
of G, K = G and N = N , the category in question is the category 

g 
of Harish-Chandra modules. Next, set G = SLN(C), X = G/H = Grass-
mann manifold, K = diagonal matrices, N = matrices of rank ̂  1 (= 

* 
the closure of the minimal orbit in g ). Then, one can show, that 

s -l E k JL = the closure of the union of conormal bundles to all 
1-codimensional B-orbits in X, where B runs over the set of n! Borel 
subgroups of G containing K. The category of holonomic modules on X 
arising in this case is formed by D-modules generated by the genera
lized hypergeometric functions in the sense of I.M. Gel1fand et al 
[Gj, [ GG] There is a similar example for G = Sp2n (O and x = Lag
rangian grassmannian. 
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1.6. Two final sections are devoted to a more detailed study of 
the diagonal case. Let K be a connected reductive group. As was exp
lained in example (i) of n.1.1, an admissible module in the diagonal 
case can be viewed as an Ad K-monodromic D-module on the group K it
self. Using the Harish-Chandra transform of section 8, we prove 

Theorem 1.6.1. The following conditions on an irreducible Ad K-
equivariant D(K)-module V are equivalent: 

— * 
(i) V is an admissible module with central character 3 £ t /VT 

a 
* 

of finite order in T (cf. n. 1.3); 
(ii) The perverse sheaf DR(V), associated to V, is a character 

sheaf in the sense of £Lu2]. 

2. Admissible (g, k)-modules 

2.1. Let UQ (g) a Ux (g) a ... be the standard increasing filtra
tion on U(g). By the Poincare-Birkhoff-Witt theorem we have Gr U(g) = 
C[g J. Given a finitely-generated U(g)-module V, let SSV denote the 
characteristic variety of V, i.e. the support of the graded C£g ] = 
(= Gr U(g))-module associated with a good filtration on V. 

A finitely-generated U(g)-module V is called a (g, k)-module if 
the U(k)-action on V is locally-finite. We remark that the U(k)-action 
is not required to be completely reducible. 

Proposition 2.1.1. The following properties of a (g, k)-module 
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V are equivalent: 
(i) Any irreducible representation of <wk sw<<occurs in V, viewed as a 

U(k)-module, with finite multiplicity; 
(ii) V is a locally-finite Z(g)-module; 
(iii) SSV d N (= N k 1, ) . 

Remarks. (i) A finitely-generated U(g)-module V, which is a local
ly-finite Z(g)-module, is necessarily Z(g)-finite, i.e. there is an 
ideal in Z(g) of finite codimension, annihilating V. 

(ii) Let us clarify the meaning of condition (i) of the Proposi
tion. Our module V is the union of an increasing sequence VQ cz c 

V2 c ... of finite-dimensional U(k)-stable subspaces V^. The condi
tion means that for any irreducible (finite-dimensional) k-module E 
the multiplicity sequence (V : E) £ (V̂  : E)^ ... is bounded. In 
that case there is a canonical infinite direct sum decomposition V = 
= <& V(o< ) into finite-dimensional k-isotypical components V(o( ). The ©< 
components are uniquely defined by the following properties: (a) V(o() 
is a k-module with all of its simple subquotients being isomorphic to 
each other; (b) different V(o< )'s are disjoint, i.e. have no isomor
phic subquotients. • 

A (g, k)-module V is said to be admissible if it satisfies the 
equivalent properties (i)-(iii) of Proposition 2.1.1. 

Lemma 2.1.2. Let V be an U(g) (resp. D(X))-module, generated by a 
finite-dimensional subspace VQ. Suppose that VQ is both U(k)-stable 
and Z(g)-stable subspace of V. Then we have 

SSV CZ N P (resp. SSV P 
-1 (N P )) . 

Proof of the Lemma. Let Z+(g) denote the augmentation ideal of 
Z(g) and let Z+(g)± = Z+(g)0 U±(g) be the standard induced filtration 
on Z+(g). The zero-variety of the subset Gr Z+(g) a Gr U(g) = Cfg*J 

is known to be equal to N , the nilpotent variety. 
Now let V be as in the Lemma. On V define the good filtration 
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Vi = Ui(g)-Vo (resP- vi = Di^x)"Vo where Di(x) denotes the standard 
filtration on D(X)). It's easy to see that k-V. <Z V. and Z,(g)-V. cz 

1 1 T 1 
V.. Hence, Gr V is annihilated both by k and by Gr Z (g) . So, 
supp Gr V is contained in k 1 N a (resp. ju 

-1 (k 1 N g ,))> 
and the sta

tement follows. D 

Proof of Proposition 2.1.1. We begin with an observation that a 
finitely-generated U(g)-module V is both U(k)- and Z(g)-locally-finite 
iff it is generated by a U(k)-stable and Z(g)-stable finite-dimensio
nal subspace V . This, combined with lemma 2.1.2, yields the implica
tion: (ii) =£> (iii) . 

The implication: (i) zz^(ii) is clear, since the action of Z(g) 
on V commutes with that of U(k), hence preserves each k-isotypical 
component V{U ), mentioned in remark (ii) after proposition 2.1.1. 

We now turn to the implication (iii) =>(i) . For an U(k)-module M, 
which is the union of a sequence of finite-dimensional k-submodules, 
consider the following property 
(*) Any irreducible representation of k occurs in M with finite 

multiplicity. 
We have to show that the property (*) holds for V, provided SSVC N^. 
This will be done in four steps. 

Let J c C[g] be the ideal of all polynomials on g vanishing 
on N , so that CfN J = C[gJ/J is the ring of regular functions on N . P P P 
The ideal J is clearly stable under the adjoint k-action on C[g] since 
Np is an Ad K-stable subvariety of g. So, C[Np] is a locally-finite 
U(k)-module. 

Step 1. The property (*) holds for M = CtN J. 
This claim is essentially due to Kostant-Rallis. In effect, it was 
shown infKoRa] that any irreducible K-module occurs in C£n J, a com-
pletely-reducible K-module, with finite multiplicity. If we now turn 
from the K-action to that of the Lie algebra k, we see that only fi
nitely many copies of the simple k-modules with highest weight of 
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fixed modulus may occur in C[N ] . The claim follows. 
P 

Step 2. Let M be a finite-generated C[N]-module with a locally-

finite k-action compatible with that on C[Np] . Then, the property (*) 

holds for M. To prove this claim, pick up a finite-dimensional k-stab-

le generating subspace MQ <z M. Then M is k-isomorphic to a quotient of 

C[Np]^MQ so that it suffices to prove (*) for C[Np]®MQ. Let MQ be the 

semisimplification of MQ, a semisimple k-module. Replacing MQ by MQ 

does not affect multiplicities. Hence, for the multiplicity of a simp

le k-module E we have 

(C[Np3#Mo : E) = Hor̂ CE, CCNp] <8>MQ) = Hcm^E^M*, CÏN ]) 

The last term is finite-dimensional by Step 1. 

Step 3. Let M be a finitely-generated C[g]-module endowed with a 

locally-finite k-action compatible with the adjoint one on C£gJ. If 

supp M c N then M satisfies (*). 
hr 

To prove this, observe that if M is supported on N^ then it is 

killed by some power Jn of the ideal J annihilating N^. Since J is an 

ad k-stable ideal, the J-adic filtration 
M => J-M => J2-M ... z=> jn.M = 0 

is a k-stable finite filtration on M. Furthermore, the successive quo

tients Ji-M/Ji+̂ ".M are annihilated by J, hence, may be regarded as 

C[N ]-modules. The statement now follows from Step 2. 
hr 

Step 4. Finally, let V be a (g, k)-module. Choose a finite-dimen

sional k-stable generating subspacevvxvvv V and let = u^(9)-v0 ^e 
a k-stable good filtration on V. Now, if SSV c n , then the associated 

P 

graded C[g]-module Gr V is supported on N , hence satisfies (*) by 

step 3. But, applying the functor Gr does not affect multiplicities. 

So, (*) holds for V iff it holds for Gr V. That completes the proof. • 2.2. Given g-modules E and V we let E ® V denote the g-module 

induced by the diagonal action of g. The following result is fairly 

well-known (see e.g. [Kos]) 209 
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Proposition 2.2. Let E be a finite-dimensional g-module. 
(i) If V is an admissible (g, k)-module, then so is E ® V; 
(ii) Suppose that E arises from a representation of the group G. If 

T * 
V has a central character /let /W (see n.1.3), then E ® V 
has the same central character Jl . • 
2.3. Proof of theorem 1.3.2. Let the ring D(X) be viewed as a G-

module with respect to the adjoint action. The action being locally 
finite, we have an infinite direct sum decomposition D(X) = © E^ into 
finite-dimensional G-modules E Ji 

Now let V be an admissible D(X)-module and let VQ be a Z(g)-stable 
finite-dimensional subspace of V, that generates V. Using the root-
space decomposition of VQ, one obtains a finite direct sum decomposi
tion U(g)-VQ = © Vj , where Vj is an U(g)-module with central cha-

— * 
racter A e t /W . 

The D(X)-action on V gives rise to a surjective g-module homo
morphism D(X) ®U(g)-VQ —>V where the g-module structure on D (X) 
is induced by the adjoint action. Hence, there is a surjective homo
morphism: 

© E . ) ® ( © V . ) -> V 

Proposition 2.2 (ii) shows that the module ( © Ei) ® V has the 
central character J . So, V is a finite sum (automatically direct) 
of the D(X)-modules D(X)-V_ that have (different) central charac
ters. D 

3. Outline of the proof of theorem 1.4.2. 

3-1. Proposition 3.1.1. ji -<Ng n k -l 0 is a Lagrangian subvarie-
ty of T*(G/K). 

Proof. Since Ng is the union of finitely many G-orbits, it 
suffices to show (prop. 1.5.1) that for any nilpotent orbit O C N 
the subvariety 0/1 k ̂  is Lagrangian. We identify k"̂  with p via 
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a 6-invariant Killing form isomorphism g = g. Given a smooth point 

a £ 0 fl p, we claim that the tangent space to 0 fl p at a equals [k, a3 

(where brackets stand for the (co-)adjoint action). To check this. 

take a tangent vector ;x, aj, X £ g, and write x = x^ + x^, x^^ k. 

xp £ p. Since a €P we have >k, a J C p, [x , aj £ k . But x, a]€ P, 

hence xp, a] = 0. Thus, [x, a] = [xk, aj e [k, aj and the claim fol

lows. 

Obviously, [k, a] is an isotropic subspace: a, [xx, x2]^ = 0 

for any ^l'^2 ^ Next, suppose that ; a, [x, k j > = O for some 

x £ g. Then, ; x, a J , k > = 0, so that >, aj 6 p. Writing x = 

= xk + xp as above shows that ;x, a] = £xk, aj É£k, a] . Whence, 

!k, a, is a coisotropic subspace. Q.E.D. 

Sketch of proof of Proposition 1.5.1. Given a i Oil k^flh1, 

let Sk = l x € g x-a £ leí- ana sh = x é g I x-a € h 1 where 

x-a denotes the coadjoint action of x. Clearly, the tangent space to 

0 H k X at a equals V a -

Further, let X = G/H and let 3 be a point in the cotangent 

space at the base point 1 É G/H. We can write the tangent vector to 

T X at • in the form X- Ï - erf , where vxxw denotes the action 

of x ^ g on 3 and * 6 
* 

T 3 
X = h* is a "vertical" tangent vector. 

Assume now that ju( A ) = a. One shows easily that the tangent space 

to 
ES 
-i ¡a) (at A is formed by the vectors x é g I x where 

x é g I x and o( = sh*a. Whence 

T J* 
-1 to nkl) = { (Sfc + s^. a -u LÀ 

to nkl) = { (Sfcxx + s^. a -u 

Now, the standard symplectic form on T X is given by the for

mulas: 

u> (x- % , y-a ) =<a, [x, yl>, CO (x-3 , o< ) = U (x), x, y£g. 

Using these formulas one finds that ES9 <X = sh-a, oí' = s¿ . a) : 
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Proof. We shall see qq<<(cf. lemma 3.5.6 (ii)) that the varietyq 
pleting the proof in adjoint case (cf. 2.1.1 (iii)).cw$*ljhw<<< 

Thus, J " 
-1 E B E 1 is isotropic iff so are Oflk 1 and Oflh 1 

The rest of the proof is left to the reader. • 
3.2. Proof of theorem 1.4.2. We first show the part of the impli

cation: (i) (ii) of the theorem, saying that if V is an admissible 
D(X)--module then V is a holonomic module and 

SSVCZ ju -1 NP xw (3.2.1 

The regularity of V will be proved later, in section 8. 
The inclusion (3.2.1) is an immediate consequence of lemma 2.1.2. 

The holonomicity of V then follows from proposition 3.1.1. 
The implication: (ii) = ^ (i) of the theorem follows from Propo

sition 2.1.1 (ii) and the following 
Lemma 3.2.2. Let V be a regular holonomic D(X)-module such that 

j11 SSV)C N . 
ir 

Then, any finitely-generated U(g)-submodule M C V is 
an admissible (g, k)-module. 

Proof. We shall see (cf. lemma 3.5.6 (ii)) that the variety 

J " 
-1 p: equals the union of conormal bundles to K-orbits in X. By 
our assumptions, SSV is contained in that variety. Hence, V is a K-
monodromic module (see Appendix B) so that the U(k)-action on V is 
locally-finite. Thus, M is a (g, k)-module. 

Next, we have SSMCju(SSV), provided the group G is of adjoint 
type. This estimate on SSM follows from the existence of a nice com
pactif ication of G/K (Proposition 6.1) combined with a general theo
rem 4.3.3 (see sections 4 and 5). The estimate yields SSM cz Np com
pleting the proof in adjoint case (cf. 2.1.1 (iii)). 

In the general case consider a diagram 
G2 = G1 x C i 

Gl 
P2 pl 

(3.2.3 

G G' 
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Here G1 is the derived group of G, the group G1 (resp. G2) is a fini
te central extension of G' (resp. G), so that p1 (resp. p2) denotes 
the natural projection, and C is a torus. To arrange such a diagram, 
one can take, for instance, G1 to be the connected and simply-connec
ted covering of G' and C to be the connected center of G. In that ca
se the homomorphism G2 = G^ x C —^ G is induced by the natural inc
lusion C c—>G and by the homomorphism G^ —> G, arising from a Lie 
algebra splitting homomorphism Lie G' —> Lie G. 

The construction, just given, shows, that an involution Q on G 
can be extended to involutions on G1, G^ and G2, so that the diagram 
(3.2.3) becomes a diagram of symmetric pairs. Hence, it gives rise 
to a similar diagram of symmetric spaces: 

X2 = X1 x (C/C .0 i_ 
*1 

P2 Pi (3.2.4) 
X X' 

Given a D(X) -module V, let v2 = p2 * = c£x2J ® 
c fx ; 

v be a D(X )-
module (here c r x j denotes the ring of regular functions on X, etc.). 
let Vl = i 

* 
V2 be the restriction of V2 to a D (X, -module, and 

V1 = (Pl)1tVl a D(X") -module. We identify V with an U(g: ) - submodule of 

V2 via the embedding ?2 x : v ir-> 1 ® v and also identify V with V^, 
for p-ĵ  is an etale covering. It can be easily verified that all the 
modules V , and V2 satisfy the assumptions of lemma 3.2.2 if so 
does V. In that case V2 is a C-monodromic module. 

Now let M be a finitely-generated U(g)-submodule of V. We'll 
view M as a submodule of V2 via the embedding P2 

* . Let c = Lie C. The 
U(c) -action on M is locally-finite since V2 is a C-monodromic module. 
Hence, there is a finite root-space decomposition M = © M , ©t € c * x 
Each is, clearly, an U(g) -submodule of M and it suffices to pro
ve the lemma for the modules w<<< 

^*c<< Let i * : V2 — V l be the restriction map and * 
i M the image 

213 



V. GINSBURG 

of a certain <x<< It's not hard to show that the restriction map 
M —> i M , 
4 o< 

is, in fact, a U(g^)-module isomorphism (where g1 = Lie . 
But now. * 

i M xw may be viewed as an u(gr )-submodule of the D(X')-mo
dule V . Hence, * 

i M 4« is an admissible (gx, kx -module, for G' is an 
adjoint group. So, x<< s i m is an admissible (g, k) -module. Q 

3.3. Let Pl = [y € G J e(y) = y -1 y We define a G-action on 
by h : y i—> h-y-G(h) ,-1 h € G. The restriction of the G-action to 
the subgroup K clearly reduces to the adjoint K-action on P^. 

Let P denote the identity component o£ P^. This is a G-stable 
part of P^ and we shall prove below the following 

Lemma 3.3.0. The "Lang map" G ̂  y »—» y©(y -1 gives rise to 
a G-equivariant isomorphism G/K P. 

We record a few well-known properties of P (see e.g. [Helgl). 
Let A be a maximal torus contained in P (such a torus is called 

"split"). 
Lemma 3.3.1. The set of semisimple elements of P equals Ad K-A, 

the K-saturation of A under the adjoint action. 
Lemma 3.3.2. For an element y £ P there is a Jordan decomposi

tion: 
y = s • u = u • s, s semisimple, u unipotent and s, u £ P. 0 
Lemma 3.3.3. The number of unipotent K-conjugacy classes in P 

is finite. • 
Lemma 3.3.4. The exponential map exp : p —» P gives an iso

morphism of N onto the subvariety of unipotent elements of P. • 
Proof of Lemma 3.3.0. The map y —* y-9(y) w< obviously factors 

through G/K and the resulting map is clearly injective. Its image 
belongs to P^ and, in effect, to P since G is connected. It suffices 
to prove the surjectivity. Let y^ € P. Write y^ = s^,u^ (lemma 3.3.2). 
Since a torus is a divisible group, lemma 3.3.1 shows that one can 

2 
find s ̂  P such that s = s^. Similarly, there is u € P such 

214 



ADMISSIBLE MODULES ON A SYMMETRIC SPACE 

that u 2 u l l lemma 3.3.4). Then, for y = u • s we have 

y© (y) -1 = u-s.0(s xw wcw -1 pleting the proof in adjoint case 

where WQ have used that u - being a function of u-̂  - commutes with 
cnb< 

3.4. Let Z°(S) denote the identity component of the centrali-
zer in G of a subset S C G . A subgroup of G of the form Z°(s), where 
s is a semisimple element of P, is said to be a relevant Levi sub
group of G. It is a 6-stable reductive subgroup of G. The number of 
K-conjugacy classes of relevant Levi subgroup of G is finite. 

Given a relevant Levi subgroup L, set KL = L r© = L 0 K , PT : = 
J_l the identity component of (P 0 L), ZL = Center : d n P L . It is clear. 

that the variety PT is stable under the adjoint action of cvx and un
der multiplication by elements of vx 

vcw 
the identity component of the 

group <<x< 

We introduce a stratification p = Upr by smooth Ad K-stable 
locally-closed subvarieties $ 

w 
The index r runs through the set 

of K-conjugacy classes of triples (L, Z, 0) where L is a relevant 
Levi subgroup of G, Z is a connected component of the group Z^ and 
0 is a unipotent KT-conjugacy class in PT. The stratum P_ „ _ is 

Ju Ju Ju , & § U defined as follows (cf. [Lui]). Let Zreg = (s€ Z | Z°(s) = L } . 

Clearly zreg is a Zariski-open part of Z. We put: 

p 
L,Z,0 

= Ad K-saturation of (Zreg.O) = |k.s.u-k" -1 
r 

, k € K, s € Zreg, ) 
u e o 

Given an element x<x<< write y = s -u lemma 3.3.2) and let 
L = z£(s), a relevant Levi subgroup. It is clear that u is a uni
potent element of P . Furthermore, if A is a split torus in P contain
ing s (lemma 3.3.1), then A C PT . Hence, s € ZL = Center I (L) fi 
So, if Z is the connected component of ZL that contains s and 0 = 
Ad K -u. then we have Y « PL ,Z,0-
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3.5. Let L be a relevant Levi subgroup of G. A unipotent ele
ment u £ PL (or its conjugacy class) is called distinguished if u 
does not belong to any proper relevant Levi subgroup of L. A stratum 
PT „ _ is called distinguished if 0 is a distinguished conjugacy 
class in PL. 

Now let * 
T P be the cotangent bundle to P, let A CZ T*P be 

the union of conormal bundles to all the strata PL,Z,0' and let A 0 
be a part of J\. , equal to the closure of the union of conormal bund
les to all the distinguished strata. By definition. A and c<<cv 

p^*vww 
are 

Lagrangian subvarieties of * 
T P. 

Let * * 
ju : T P —> g be the moment map, arising from the G-action 

on P, defined in n.3.3. The importance of the lagrangian subvariety 

A 0 becomes clear from the following 
Proposition 3.5.1. xw< -l [Np) - A 0 . 
To prove the proposition we have to analyze the geometry of T P 

first. Identify TG with the trivial bundle g x G via right transla
tions. Lemma 3.3.0 shows that P is a smooth subvariety of G, so that 
its tangent bundle is a subbundle of TGlp- More precisely, we have 

TP = I(v, y) £ gxP I ©(v) = -y x<< •v-y (3.5.2 

Observe, that the tangent space to P at the identity equals p. 
Lemma 3.5.3. The restriction of the (©-invariant) Killing form 

to a tangent space TyP, y s P is a non-degenerate form. 
Proof. One decomposes the Lie algebra g into the orthogonal 

direct sum g = g+ © g_ where g+ = jv ^ g J e(v) = + y -1 v y r • 
Hence, the restriction of the Killing form to Xxbn^$*x is a non-de
generate form. 

Let v e. g and let v(y) £ TyP denote the value at y € P of 
the vector field on P, arising from v via the G-action. It's easy 
to see that 

v(y) = v - y-©(v)-y -1 (3.5.4) 
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We now identify T P with TP via the Killing form (cf. lemma 

3.5.3). From (3.5.2) and (3.5.4) one finds the following formula for 

the moment map ju : T P —» g 
vvcx (notation of (3.5.2)): 

ju(v, y) = v - y ri •e(v)-y = 2«v !3.5.5) 

In what follows we adopt the following notation. Given a subset 

S CG and an element y of either G or g let Zs(y) ={s€ S J s-ys" -1= 

xcvww Similar notation is used if S C g . 

Lemma 3.5.6. Let y € P. Then: i) p H TyP = Zp(y); 
* 

m r 

[ii) the conormal space at y € P to the adjoint K-orbit through y 

equals 

ju (P) f\ TyP = pf| TyP. 
-1 
L 

* 
P T 

x 

Proof. Formula (3.5.2) yields: 

p f] Typ = {v € Typ J e(v) = -v} = {vé g J -v = e(v) = Tl 7 * 
1 r 

= -y -v-y J = | v £ p J v = yv-y J = Zp(y) 
x< 

and the statement (i) follows. Part (ii) is clear. 0 

3.6. Let 1 be the Lie algebra of a relevant Levi subgroup L, 

£l, lj the derived Lie algebra, zL the Lie algebra of the group ZL 

and the orthogonal complement to zL in g with respect to the 

Killing form. It is clear that 

i /1 z^ f) p = i i , i] n P 
1 

(3.6.i; 

The proof of the following result is left to the reader. 

Lemma 3.6.2. A unipotent element u € PL is distinguished iff 

the space | [i, i ] f | z1(u) n p is contained in the nilpotent variety 

of 1. 0 

Proof of proposition 3.5.1 is based on the following result (re

call that A denotes the union of conormal bundles to all the strata). 

Lemma 3.6.3. (i) p -1, (Np)cA ; 

(ii) The conormal bundle to a stratum P 
LfZ,0 

is contained in -i 
NP 
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iff 0 is a distinguished conjugacy class. 
Proof. Let cwc< PL,Z,0# We may (and will) assume, by Ad K-equi-

variance, that y = s • u :$c< Sre9.0. Then, the tangent space at y to 
the stratum P 

L,Z,0 
equals 

Ey = ZL + tangent space at y to the M K-orbit through y 3.6.4) 

Let E c T P 
y y 
.1 * denote the conormal subspace at y to the stra

tum PL,Z,0" It follows from (3.6.4) and lemma 3.5.6 that we have 

Ey = z L H pfl TyP = zL H Zp(y) D fs x 

Recall now that y = s-u (s € Z ,reg x u e o; is a Jordan decomposi
tion. Hence, 

Z (y) = Z (s) fl Z (u) = 1 H Z (u) = Z1(u) f) p 3.6.5] 

Thus, we obtain 

s) fl Z (u) = 1 H xcci I (3.6.1) 
w< 11, i] 0 zx(u) f\ p (3.6.6) 

Further, it follows from (3.5.2) and lemma 3.5.6 that we have 

s1 ( v 
r1 = {(V, y) £ P x P J V € Zg(y) fl NG (3.6.7) 

This formula, combined with (3.6.5), yields 

ju X(NP) f l TyP = Zp(y) 0 NG = NG f l Z^u) f l p. -1 
L 

* 
r T 

Using an obvious equality N g A 1 = NG H [1, 1] one finds 

ju"1(NP) n T*P = N g n [1, 1] H z1(u) 0 P (3.6.8) 

The first part of lemma 3.6.3 now becomes clear from looking at 
(3.6.6) and (3.6.8), and part (ii) follows from lemma 3.6.2. Q 

We are ready to prove proposition 3.5.1. Lemma 3.6.3 (i) shows 
that ju 1(N ) is a subvariety of the lagrangian variety./^. It fol-j P 
lows from Proposition 3.1.1 that each irreducible component of 
/ 1 ( N P ' is also a lagrangian subvariety. Hence, <c<c<<< 

c<c<<<c is the 
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closure of those conormal bundles that are contained in 
s) fl Z 
(u) = 1 

. It 

remains to apply lemma 3.6.3 (ii). • 

4. Regular compactification 

4.1. Let Z be a smooth complex algebraic variety. 0 
v z 

the 

sheaf of regular functions on Z and Tz the tangent sheaf on Z. Fur

ther, let Y C Z be a normal crossing divisor with defining ideal 

JY<= 0Z and let T 
Z,Y 

denote the sheaf of those vector fields on Z 

that preserve JY, i.e. T = {v € TZ J W J C J J } \. More geometrical

ly, the sheaf T„ v consists of the vector fields that are tangent to 

Y at generic points of Y. 

Lemma 4.1. T 
Z,Y 

is a locally-free sheaf of C?z-modules. 

Proof. Let xw x<x< be local coordinates on Z so that Y is 

locally defined by the equation V •tk = o. Then, the vector fi

elds <<< 3/ x<< < V 
x <x< 

i^ù 
r 
3tk+l' 

x xv< form a local x<x< 
x<x< 

basis of T a 

There is a natural Lie algebra structure on Tz given by the Lie 

bracket. It is clear that the subsheaf s) fl Z is a Lie subalgeb

ra of Tz. 

4.2. Let G be an algebraic group acting on a smooth algebraic 

variety Z. Let Y be a G-stable normal crossing divisor in Z and let 

g denote the Lie algebra of G. The infinitesimal g-action on Z gi

ves rise to a Lie algebra homomorphism g -» T(Z, TZ^Y) . For any 

point z £ Z we get, by restriction, a linear map from g into 

TZ,Y,z' the fibre of T 
Z,Y 

at z. 

The following definition is due to A. Beilinson. 

Definition 4.2.1. The action of G on Z is said to be G-regular 

with respect to Y if the map g —• T 
Z,Y,z 

is surjective for any 

point z Ç Z. 

Let Z be an irreducible variety with G-regular action with res

pect to Y. Note that the restriction of the sheaf T 
Z,Y 

to Z ̂  Y coin-
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cides with the tangent sheaf on Z \ Y. Hence, the following readily 

follows from definition 4.2.1. 

Lemma 4.2.2. Z\Y is the unique open G-orbit in Z. 

The G-orbit structure of Y can be described as follows. For each 

n = 1, 2, ... let Yn denote the subvariety of all points Y É Y that 

have the following property: y belongs to the intersection of n 

irreducible components of Yf)u, where U is a small open neighbor

hood of y. 

Lemma 4.2.3. * Each irreducible component of Y 's Y , n n+1 is a 

single G-orbit. In particular, the number of G-orbits in Z is finite. 

Proof is left to the reader. • 

4.3. Let G be an algebraic group and X = G/K, a homogeneous G-

variety. 

Definition 4.3.1. An equivariant embedding X ¿—> X into a G-va-

riety X is called a regular compactification of X if the following 

holds : 

(i) X is a smooth compact algebraic variety; 

(ii) the image of X is a Zariski-open part of X and XNX is a nor

mal crossing divisor in X; 

iii) the action of G on X is G-regular with respect to x \ x . 

Example 4.3.2. Let T be a torus and T a smooth toroidal compacti-

fication of T. Then, T «—> T is a T-regular compactifica

tion. Q 

Now let V be a regular holonomic D-module on X = G/K, a homogene

ous G-variety. Let g denote the Lie algebra of G and D the sheaf of 
A 

regular differential operators on X. We have a natural homomorphism 
U(g) —» T(X, D ) so that r(X, V) may be viewed as a U(g)-module. 

Let ju : T X —» g * be the moment map. 

Here is the main result of this section 

Theorem 4.3.3. Suppose that X has a regular compactification. 
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Then, for any finitely-generated U(g)-submodule V CT P(X, V) we have 

SSV d JU(SSV) 

and the equality holds, provided VQ generates V, i.e. v = w 

A proof will be given in the next section. 
Remark. ,J.IJJJ,UJJJi^».»I.UI.IUJ.»„U.I;II.Lm»AUiaaiJT!IFIg 

ed to representation theory of the Virasoro algebra in the same way 
(see [BeSch] and [BeFeJas the symmetric space G/K (or the Flag mani
fold) is related to the representation theory of the group G. These 
are the moduli spaces of algebraic curves with some additional data 
(namely a number of points of the curve and infinite jets of parame
ters at these points). Such a moduli space is non-compact but can be 
shown to have a smooth "compactification" (by "stable" curves) which 
is regular (with respect to the Virasoro action) in the sense of de
finition 4.2.1. 

A similar picture seems to be true for adelic groups, where 
moduli spaces of vector bundles on a curve play the role of G/K (see 
£LalJ) . Moduli spaces of that kind are also expected to have a regu
lar compactification. 

5. D-modules on a regular compactification 
This section is devoted mainly to the proof of theorem 4.3.3. 

We begin, however, with some general results that might be of inde
pendent interest. 

5.1. We keep to the notation of n.4.1, so that Z is a smooth va
riety, Y is a normal crossing divisor in Z and T_ is the sheaf of 

* L*x 
vector fields on Z that preserve Y. Let T„ v be the dual sheaf. The 

* ti\ ' 
sheaf T7 v is a locally-free sheaf of vy^-modules (lemma 4.1), hence, 
the sheaf of sections of an algebraic vector bundle on Z. The vector 
bundle is denoted T (Z, Y) and is called the logarithmic cotangent bundle on Z (with respect to Y), for the 1-forms t, *dt,, 
-1 
fck "dtk' dtk+l' dtn (notation of tne proof of lemma 4.1) provide 
a local basis for its sheaf of sections. 

let Dz be the sheaf of algebraic differential operators on Z and let Dz y be 
the subsheaf of the operators that preserve the Jv-adic filtration on i.e. 
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DZ,Y = l P € DZ I P*JY CiJY' n = lf 2' • • • i 

One can show that v equals the 0-subalgebra of D„ generated by 

the sheaf T_ v. 
£i , X 

Let ©_ = F O F ^ cz ... be the standard "order" filtration 

on D„ and F.D,, v = F.D„ D„ v the induced filtration on D7 ... Let 

¿1 l Z i , X X Z i Z i , x ^ / x 
Gr and Gr D,, v denote the associated graded -algebras. ¿ ¡ ¿ 1 , 1 . a 

Proposition 5.1. (i) Gr DZ = X. ^ T * Z ; 

(ii) Gr DZfY = »-.0T*(z, Y) 

(in either case the symbol JF stands for the projection of the vec

tor bundle to the base Z.) 

Part (i) of the Proposition is, of course, well known. Part (ii) 

follows from a local coordinate computation. • 

5.2. Let G be an algebraic group acting on a smooth variety Z. 

Let g be the Lie algebra of G and let x-f denote the Lie deriva

tive of f € (9 „ along the vector field on Z corresponding to x e g. 

We endow g = ©z ® g, a free ©z-sheaf, with a Lie algebra structure 

as follows: 

[ fx® xx, f2 «> x2] = f-^fj* x2] + f±' (xx-f2> ® x2 " f2* (x2'fl) 9 xl 

To understand the meaning of this formula it's instructive to put 
f2 = i. 

Now let Y be a G-stable normal crossing divisor in Z and let 

g — • P(Z, T^ v) be the natural Lie algebra homomorphism, considered l , x 

in n.4.2. We extend it, bgjsqqqqqf£?z-linearity, to a sheaf morphism —> 

T„ v (it turns out to be a Lie algebra homomorphism). ¿¡,1 

Suppose, further, that the G-action on Z is G-regular. Then, the 

morphism g —> T„ v is surjective and we get an exact sequence of 

Lie algebra sheaves: 

0 > k > g > TZ^Y > 0xx (5.2.1) 

where k = ker(g —> T ). The sheaves g and T_ __ being locally-
"—~ — ¿1,1 — ¿1,1. 
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free, the same is true for xc< Hence, the geometric fibres of form 
a smooth family kz, z € Z ^ of Lie subalgebras of g. We remark, that 
if z € Z sY, then (see lemma 4.2.2) kz is the Lie algebra of the iso-
tropy group of z. 

Let z denote the annihilator of kz in 
* 

g and let k1 be the vec
tor bundle on Z with fibres k z 

< Dualizing (5.2.1) yields 
Lemma 5.2.2. Given a G-regular action on Z, one has a G-equiva-

riant vector bundle isomorphism 

T (Z, Y) = k = {( A / z) ̂  g * Z I A « k < < * 
r V 

1 

Remark 5.2.3. Let r = rank k and Gr(g) the Grassmannian of r-
dimensional subspaces of g. The assignment z H-* k2 gives rise to a 
G-equivariant map X : Z —> Gr(g) , a kind of the Gauss map. 

Now, let G/K be a homogeneous space and Jf : G/K —> Gr (gi the 
Gauss map. Let G/K denote the closure in Gr(g) of the image of G/K. 
(If G/K is a symmetric space, then G/K is exactly the compactifica-
tion of proposition 4.4, as explained after the proposition.) If G/K 
is itself a regular compactification of G/K, then it is the minimal 
regular compactification. That is, for any other regular compactifi-
cation Z of G/K the Gauss map y : Z —> Gr (g) gives rise to a natu
ral proper surjective morphism Z —> G/K inscribing into the diagram: 

G/K 
Z 

G/K 
5.3. To an arbitrary G-action on Z and a G-stable normal cross

ing divisor Y c Z one can associate a moment map ju : T (Z, Y) —> g < * 
rr < 

For z € Z, the restriction of x to the fibre Tz 
* (Z, Y) = T Z,Y,z is 

defined as the linear map s1 x T 
Z,Y,z 
* 

g * < obtained by dualizing 
the map g TZ,Y,z of n.4.2. 

Next, consider the standard increasing filtration on U(g), the 
enveloping algebra of g, and the filtration on Dz,y introduced in 
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n.5.1. The Lie algebra homomorphism g —* T(Z, T 
Z,Y 

can be unique
ly extended to a filtration preserving algebra homomorphism U(g) 
r<z, D Z / Y : and, hence, to the associated graded algebra homomorphism 
Gr U(g) —» T(Z, Gr D Z Y; . Recall now that Gr U(g) = C[g ; * [Poincare-
Birkhoff-Witt theorem) and Gr D Z f y = 3 T . 0 T * ( Z / Y ) Lemma 5.1 (ii)). We 
conclude that a G-action on Z gives rise to an algebra homomorphism 
vvw * —» regular functions on T (Z, Y). * 

Lemma 5.3.1. The homomorphism c[g * —> 0(T (Z, Y) * is induced 
by the moment map ju : T (Z, Y) —> g . • * 

n 
* 

This lemma might be used as an alternative définition of ju. 
In case of a G-regular action the moment map ju can be describ-

ed explicitly, using lemma 5.2.2. Namely, it assigns the point 
A € g * to a pair A , z) € k" ,1 As a consequence, we get 

Corollary 5.3.2. The moment map ju is proper, provided Z is a 
compact variety with G-regular action. • 

5.4. Given a cvx< r-module M let SSM C T*(Z, Y) denote the charac
teristic variety of M. The variety SSM is, by definition, the sup
port of the graded Gr D Z,Y (= X. (0 T*(Z, Y) -module, associated with 
a good filtration on M. 

Proposition 5.4. Let a group G act G-regularly on a compact va
riety Z with a G-stable normal crossing divisor Y. Then, for a cohe
rent D Z Y-module M, the space f(Z, M) is a finitely-generated U(g)-
module and we have 

SS f(Z, M) = ju (SSM) . 

In the special case Y = 0 the Proposition is due to Borho-Bry-
linski [BBj. The proof of the general case goes along the same line 
as follows. Let m a m cz ... 

o 1 
be a good filtration on M and 

r i [Z, M) := T(Z, M ±) the induced filtration on T(Z, M). Then, 
we have 

Gr f(Z, M) C T(Z, Gr M) = P(g , ju* Gr M) * 
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The sheaf J1* (Gr M) here is a (0 g x -coherent sheaf since ju is a pro
per morphism (corollary 5.3.2). So, r g , Gr M) * and hence 
Gr f(Z, M), are finitely-generated U(g)-modules. Thus, the above de
fined filtration on HZ, M) is good and we have 

SS P(Z, M) = supp Gr f(Z, M) CZ supp( ju* Gr M) = ju(SSM) 

The proof of the opposite inclusion is easy (cf. the proof of 
lemma 2.1.2). D 

5.5. Proof of theorem 4.3.3. Let j : X «—• Z be a regular com
pactif ication of X, so that Y = Z n x is a normal crossing divisor. 
Let °Z,Y •Vo be the cv< -submodule of x< generated by Vo . It is 
clear that V 

o 
c T(z, D, 'Z,Y <x<x . Hence, Proposition 5.4 yields: 

SSV C SS I o (Z, D( 'Z,Y .•V o' = ju(SSl (D 'Z,Y < o' 5.5.1) 

Applying now theorem Al.2 (of Appendix A) to M = D Z,Y ,-V < we obtain 

ju (SS (D Z,Y .•V V c ju(ssv) c: ju(ssv) (5.5.2) 

Combining (5.5.1) with (5.5.2), we get SSV o CZ ju(SSV) , the estimate 
of the theorem. 

If VQ generates V, then one can show, as in the proof of lemma 
2.1.2, that SSV CZ ju -1 !SSV vo' ) . Whence, the opposite inclusion: 
ju(SSV) CZ SSV o So, the equality holds. • 

5.6. We conclude this section with a few general remarks concern
ing the algebra D % Y for a smooth variety Z with G-regular action. 

Set U(g) = u(g ras << We endow the sheaf U(g) with an algebra 

structure as follows (x-j_'X2 6 g, fi'F2 € ®7) 1 

xx® f . x2 ® f2 = (x1-x2) <S> (f1,f2) + xi# (X2# F 1^ "F2 

The algebra U(g) is a sheaf-theoretic version of enveloping algebra 
of the Lie algebra sheaf g introduced in n.5.2. So, there is a na
tural morphism ĝ  —> U(g). Furthermore, the Lie algebra map g —>T^ y 
extends naturally to an algebra homomorphism U(g) —» D . Now, the 
G-action on Z being G-regular, the Lie al9ebra exact sequence (5.2.1) 
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yields the following exact sequence of algebras: 

O > k-U(g) > U(g) » Dz Y > 0 (5.6.1) 

Here k.U (g) denotes the right ideal of U (g) generated by k,. We note 

that k_ = ker (g —» T Z,Y is an ideal of jg, so that k»U(g) is actual

ly a two-sided ideal. Thus, we obtain the following 

Proposition 5.6.2. For a variety Z with a G-regular action we 

have an algebra isomorphism 

D 'Z,Y 
w k'U(g) u(g). • 

s) fl Z (u) = 1 H Zc<<< (u) 

6.1. Let G be a connected complex semisimple Lie group of ad

joint type and let X = G/K, K = G 6 be the complex symmetric space 

associated with an involution 0 on G. In this section we will prove 

the following result, used in the proof of theorem 1.4.2. 

Proposition 6.1. The G-space X = G/K has a regular compactifica-

tion x . 

The compactification X was introduced by DeConcini and Procesi 

9rid- 9d ^ cteJ .awolloi as ai X 9fiÜ9b od- ybw 9lqmia d-aoni 9riT .[̂al 
Ok 

-firn nnsmaasiD 9rid- 9d (p):c3 cteJ mib = i bn& ( 0 =) H io sidêls 9±J 

9rid- 9d (p)*ïO ^ Qx J-9I bns p io 39oeqadu3 lBfio±an9fli±b—i io bloiin 

no noi^OB-0 ^niocbB 9ríT .p 3 tí B^d9çlBdu3 9rid- od- pnibnoq39iioo :tnioq 

-dus y^0^^08^ odT . (p) iD no 3 io noid-OB L&iuJBn b od- 93x1 39viç p 

lBup9 ŷ^B^àOB ài bas X quo^p 9ríd- snl&Jnoo qx :hiioq edJ io quoip 

od- oiríqiomosi 3± Qx-0 Jidio 9ríd- ^9on9H .^niotbB si 0 b9bivo:cq y7l o J 

(p)iO ni siuboLd 9ííi 9d oí b9n±Ì9b ai X noid-Boiìi^OBqmoo 9riT .X\D = X 
. x-D iidio 9ríd- io o 

noid-BsilB9i i9ríd-onB no b92Bd ai 1,8 noiiiaoqoig io iooig .S.8 

-ib-Bàinî 9ldioub9^ii HB 9d a 3sd .[̂a] oí 9ub oalB ai ríoiríw X io 

-X io a 9DBqadua Lsiviij-non s rliiw D io noiíBín939^:q9i lBnoian9m 

(3) 9 d"9J .1=3 mib d-Bríd- tnwon^[-Il9W ai d-i xn9riT .aiod-09V b9xii 
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denote the projective space of 1-dimensional subspaces of E and let 
xQ be the point of P(E) corresponding to the subspace E . The group 
G acts on IP(E) and one can prove that the isotropy group of xq 
equals K, provided the group G is adjoint and the representation E 
is sufficiently generic. In that case the closure in IP(E) of the 
orbit G«x turns out to be isomorphic to X. 

To prove the Proposition we pick up a maximal "split" torus 
A C G and set L = Z 'G (A ) . Let L-U be a parabolic subgroup of G such 
that u n e(u) = { lj and let x^ be the unique point in IP(E) fixed by 
the group L«©(U). The point x^ has a standard affine neighborhood 
V C IP(E) defined as the set of all points y € IP (E) such that 
lim 

v<wx< 
(exp a)-y = x •1' when a é Lie A approaches oo inside the Weyl 

chamber corresponding to ®(U). One shows CDP] that V fl X is an U-
stable Zariski-open part of X, containing xQ. 

Let S = A«x < be the closure in V fl X of the A-orbit through 
x< . DeConcini and Procesi have proved the following: 

Ci S is a smooth toroidal variety <x< n.n 
< n = dim A) ; 

(ii) The action of U gives an isomorphism Ü x S < > V fl X; 
iii any point of X is contained in g- (V fl X) , the translation of 

V fl X by an appropriate g € G. 
The properties (ii), (iii) show that X is locally-isomorphic 

to U x S. Hence, X is smooth. Moreover, the local G-orbit structure 
of X is essentially-t^c same (up to the factor U) as the A-orbit 
structure of S, a toroidal variety. It follows, that V fl (X - X) = 
U x (S - A-x o' is a normal crossing divisor [DPI and that the G-ac-
tion on X is G-regular. O 

6.3. * It was shown in fDPl that Q := G-x :1 is the unique clos
ed G-orbit in X. Let Vw< denote the normal cone at Q of the open 
G-orbit G/K = XC X. Then, one can prove the following (where L = 
< G [A) and M = ZK < 
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Proposition 6.3.1. The natural fibration wx< Q is G-equiva-
riantly isomorphic to the projection G/M-U —> G/L-U. • 

This proposition might be helpful in trying to find a geometric 
construction of the Jacquet functor [CasCollJ in terms of the Verdier 
specialization. 

7. A saturation theorem for Harish-Chandra modules 

The saturation theorem stated below relates the characteristic 
variety of a Harish-Chandra module with the characteristic variety of 
its annihilator. This result has no connection to the main subject of 
the paper and can be omitted without trouble. We begin, however, by 
recalling the Beilinson-Bernstein theory that will be indispensable 
in the rest of the paper. 

7.1. Let G be a complex connected reductive Lie group, B a 
Borel subgroup of G, U the unipotent radical of B and T a maximal to
rus of B, so that B = T-U. Set Y = G/U. The group T normalizes U, so 
that there is a right T-action on Y that commutes with the natural 
left G-action and makes the projection JT : Y = G/U —» G/B into a 
principal T-bundle. 

Let t = Lie T. A coherent D -module M is said to be admissible 
if it is smooth along the fibres of x< , i.e. if the action of t on 
x<<< arising from the right T-action on Y, is locally-finite. 

Let t < be the dual of t. T < := t < 'X(T; (see 1.3.1), and 5 € T 
We say that an admissible Dy-module M has monodromy % if all the 
eigenvalues of t, acting on ^M, belong to the coset "J mod X(T). 

Let g = Lie G. Given 3 e t * , let I x< 
denote the maximal ideal 

of Z (g), the center of the enveloping algebra, corresponding to A 
via the Harish-Chandra homomorphism. 

Theorem 7.1.1 f BeBeJ. Let 3 € t * be dominant and regular and 
let E be its image in 1 T * . Then, the category of finitely-generated 
U(g)-modules annihilated by some power I < 

< is equivalent to the cate-
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gory of admissible D -modyles with monodromy a . 
Remarks 7.1.2. (a) The equivalence of the theorem assigns to a 

D Y -module M the U(g)-module T (Y, M) 
< 
. Here P(Y, •) denotes the glo

bal sections functor and the subscript } denotes taking the ;)-iso-
typical component of the root-space decomposition with respect to the 
(locally-finite) t-action on p(Y, M) arising from the right T-action 
on Y. 

(b) The left G-action and the right T-action on Y give rise to 
an algebra homomorphism U(g) ® U(t) -» D(Y) . The image of this homo
morphism clearly consists T-right-invariant operators and one can 
prove [BB2J that 

D(Y) T = U(g) x< z(g] 
u(t) (7.1.3: 

where Z(g) is viewed as a subalgebra of U(t) via the Harish-Chandra 
T 

homomorphism, and D(Y) denotes the ring of right T-invariant diffe
rential operators. 

(c) It follows from (7.1.3) that the algebra D(Y; x< is a Galois 
extension of U(g) with the Galois group being isomorphic to W, the 
Weyl group of (g, t). The extension is clearly unramified over regu-

* 
lar points of Specm Z (g). Thus, given regular dominant 3 €: t and an 
U(g)-module M, annihilated by some power of I , there is a unique way A T 
to regard M as a D(Y) -module, by requiring that all the eigenvalues 
of U(t), the second factor in (7.1.3), on M are equal to 3 . 

Using this convention one can describe the equivalence of theo
rem 7.1.1 in the direction opposite to that of remark (a). It assigns to a U(g)-module M the Dy-module DY 0 D(y: T 

M. 
7.2. Now let (G, ©) be a symmetric pair and K = G< ,© By a (g, K)-

module we mean, as usual, a finitely-generated U(g)-module M with an 
algebraic K-action which is compatible with the g-module structure in 
the following sense: 
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< The differential of the K-action coincides with restriction 

of the g-action to the subalgebra k = Lie K; 

ii) (Ad h • x)-m = h-(x-(h x< • m) , h £ K, x € g, m é M. 

Any (g, K)--module is obviously a (g, k)--module in the sense of 

§2. 

7.3. < Let Ann M denote the annihilator in U(g) of a (g, K)-

module M. We suppose that Ann M Z> 1^ , n >> 0. If M and 

T 
U(g)/Ann M are viewed as D(Y) -modules, as explained in remark 

T 

7.1.2 (c), then U(g)/Ann M = D(Y) /J, where J is the annihilator 

T 
of M in D(Y) . So, the Dy-modules corresponding to M and U(g)/Ann M, are 

DY 
D(Y) 

T M and Y D(Y) T 
(U(g)/Ann M) = Dy/DY-J 

We have the following saturation theorem: 

Theorem 7.3.1 SS(Dy/Dy.J) = G-SS(D 
Y D(Y) T 

M) , 

where the RHS stands for the closure of the G-saturation of the cha

racteristic variety of DY O M. • 

Corollary 7.3.2. SS(U(g)/Ann M) = G-SSM. 

Corollary 7.3.3. Let M be a simple (g, K)-module. Then, G-SSM 

is closure of a single nilpotent orbit in g . 

Corollary 7.3.2 follows from CBB1] (cf. also [ Gi3, prop. 8.2] 

and theorem 7.3.1. Corollary 7.3.3 follows from 7.3.2 and from the 

irreducibility of the characteristic variety of a primitive ideal 

(see e.g. [ BBlJ, [Gi3]). 

In the diagonal case (see n.1.1) theorem 7.3.1 has been estab

lished in [BB3] and in [Gi3j. The proof of theorem 7.3.1 is based on 

a relative version of theorem 4.3.3 and is similar to that of QGi3, 

prop. 8.2J. We omit the details. 

8. Harish-Chandra functor 

8.1. Let an algebraic group A act on an algebraic variety Y. Fol

lowing fLu21 consider the diagram: 

A 4 f 

AX Y 
x< Y x Y 

(8.1.1) 
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where p denotes the first projection and the map q is defined by 

q(a, y) = (a-y, y). 

For a variety Z, let D (Z) denote the bounded derived category 

of constructible complexes on Z (or of complexes of D-modules with ho-
— b 

lonomic cohomology). We define a Harish-Chandra functor HC: D (A) —» 

Db(YXY) and a Character functor CH : Db(Y*Y) —* Db (A) as follows 
(see the diagram (8.1.1)): 

HC = q* • p" and CH = p, • q (8.1.2) 

Proposition 8.1.3. The functor CH is the left adjoint of HC. 

Proof. For V € Db(A) and M £ Db(Y * Y) we have 

Horn(M, HC(V)) = Horn(M, q+-p!V) = Hom(q*M, p!V) = 

= Hom(p,-q M, V) = Hom(CH(M), V). Q 

8.2. In the setup of n.8.1 we define a convolution structure on 
b b D (A) , and a similar one on D (YxY), as follows. Let m : Ax A —* A 

denote the multiplication map. Given V.. , V2 € D (A), we set 

V1* V2 = m*(V1 B V2) € Db(A) 

Now, let A • Y > Yxy denote the diagonal embedding and pr: 

Y x y x y —> Y X Y the projection along the middle factor. Given 

M, M' € Db(Y x Y ) , we set 

M *• M1 = pr* ( (idy x à * idy) * (M B M' ) ) é Db (Y X Y) 

The convolution structures on D (A) and on D (Y x Y) satisfy the 

natural associativity law and we have 

Proposition 8.2.1. The Harish-Chandra functor HC : D (A) —> 

Db (Y x Y) is a "homomorphism", i.e. HC (V̂  * V2) = H C ^ ) * HC(V2). 

Proof. Consider the following commutative diagram: 

A * A 
?rAxA 

<x<<< A x Y x A * Y f 

A x A * Y h 

3 
Y x Y * Y < 

Y «Y 

I M Y x Y x y x Y x Y <x<x<< 
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where the maps f, g and h are defined as follows: f{a^, a^r y) = 
(a±, a2-y, a2, y) ; g U ^ a2, y) = (a^a^y, a2«y, y) and M a ^ a2,y)= 
(ax.a2.yf y). 

The definitions of the maps in the top row of the diagram yield: 
HCCV-l * v2) h* ' PrAx A (V1B V -

On the other hand, the complex ECiV^) *• HC(V2) is obtained by 
going along the two other sides of the big triangle, that is 

HCtV^ * HC(V9) = 
= pr* o (idy * A x idy) ' © (q x q) ̂  o (p x p) * (V1 B (8.2.2) 

Now, the definitions of the maps f and g show, that the square 
with the vertex Ax Ax Y at the top and the vertex Y * Y * Y * Y at 
the bottom is a Cartesian square. Hence, the base change theorem 
yields (id * A * id )* • (q xq)^ = g^ • f'. So, the right-hand si
de of (8.2.2) can be rewritten as 

Pr* . g* • f: • (p x p): (v, E9 v2) = h*. Pr ; A(v1H v ) = hc(v B v ) 
Q.E.D. 

8.3. We now specify the choice of A and Y. Let A = G be a con
nected complex reductive Lie group. Let B be a Borel subgroup of G, 
U the unipotent radical of B and T a maximal torus of B, so that B = 
T-U. We set Y = G/U, a homogeneous G-variety. 

Let us clarify the meaning of the functors HC and CH in our pre
sent setting. First, recall that to a constructible complex M one can 
associate a constructible function X (M, • ) , whose value at a point 
z equals 

PC (M, z) = (-1) I1 dim H^M z 
The definition of the functors HC and CH can be carried over to the 
case of constructible functions. So, given constructible functions f̂  
and f2 on Y and applying the character functor to the function f-jH f2 
on Y x Y, we get 
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CH(f1B f2) (u) = 
Y 

f1 (u.y) -f2(y)dy u é G (8.3.1) 

where dénotes the direct image of a constructible function to the 
point. This expression looks like a "matrix coefficient", provided 
the functions f^, f2 are viewed as "vectors" of a principal series 
representation. 

To give a similar meaning to the functor HC we observe the fol
lowing trivial 

Lemma 8.3.2. The map q : G x Y —> Y x Y is a smooth submersion 
and its fibre over a point (y^-U, y2*U), y^, y2 € G equals 

y r u . y 2 -1 x y0-U . 
Hence, for a constructible function f on G we can write 

H C ( f ) ( y 1 - u , y2-u) = 
U 

f(y1-u-y2 -1 )du 

This formula explains the name of the functor HC. 
8.4. Recall (see n.7.1), that there is a well-defined T-action 

on Y "on the right", that commutes with the left G-action. Let (YxY)/T 
denote the quotient of Y * Y modulo the diagonal T-action on the right. 

It is convenient for many purposes to modify the diagram (8.1.1) 
slightly, replacing it by a more economical diagram 

P 
G 

G x (Y/T) 

(Y x Y)/T 
. q (8.4.1) 

(the "new" map q here is obtained by dividing both ends of the arrow 
G * Y —> Y x Y in (8.1.1) by the right T-action). Using the diagram 
(8.4.1) we now define the modified functors 

HC : Db(G) ->Db((YxY)/T) and CH : Db((Y»Y)/T) —»Db(G) 

by similar formulas HC = q*-p" and CH = p, • q . 

The functorCH is the left adjoint of HC (an analogue of proposi
tion 8.1.3). Furthermore, there is a natural convolution structure on 
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Db((YxY)/T) and an analogue of proposition 8.2.1 holds. To define 

the convolution structure, one should identify the category 

D ((Y x Y)/T) with the category of complexes on Y x Y that come from 

(YxY)/T, i.e. with the category of T-equivariant complexes on Y x Y 

(cf. Appendix B) . The ordinary formula v^ * V2 = m*cvbw<x<< V2) can be 

applied in this equivariant setting to define the convolution. 

8.5. It is, of course, interesting to know to what extent a 

complex V on G can be reconstructed from its Harish-Chandra transform 

HC(V). For that purpose we consider the composition CH oHC : D (G) —> 

Db(G) . 

Theorem 8.5.1. The identity functor Id 
Db(G) 

is a direct summand 

of the functor CHoHC. 

Corollary 8.5.2. The Harish-Chandra functor is fully faithful. 

i.e. (i) V f 0=£>HC(V) f 0 and 

(ii) the natural homomorphism Hom(V1, V2) —>Hom(HC(V1), HC(V2)) is 

injective. 

Remark. Theorem 8.5.1 provides, in effect, the canonical splitting 

of the natural functor morphism CH © HC —> id , that arises due to 
D (G) 

the adjointness of CH and HC (prop. 8.1.3). • 

Recall that Y/T = G/B is the Flag manifold associated to the 

group G. Set 

Z = (u, y) € G x(Y/T) u € yU-y -1 (8.5.3) 

The second projection PrY/T : Z —* Y//T is a fibration with fibre U. 

The first projection pr^ : Z —> G is the so-called "Springer résolues 

tion" of the unipotent variety of G. Let Spr = (prç)^ C^Edim Z] be the 

direct image to G of the constant sheaf on Z, shifted by dim Z. The 

proof of theorem 8.5.1 is based on the following 

Lemma 8.5.4. For V € D (G) we have 

CH o HC(V) V * Spr 
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Remark 8.5.5. Let CG denote the skyscraper sheaf at the identity 

point of G. Lemma 8.5.4, applied to V = CE, yields Spr = CHoHC(CE>. 

Proof of lemma 8.5.4. Consider the following commutative diagram 

P 

G 

G x(Y/T) 

q 

(Y x Y)/T 

idG x pry/T 

1 

q 

Gx Z 

h 

G x(Y/T) 

id x pr 

P 

G x G 

m 

G 

In the diagram, the variety Z is defined by (8.5.3) and the map h is 

defined by M g ^ g, y) = (g-^g, y) , g±e G, (g, y) e Z. 

The key point is that (g, y) £ Z iff g-y = y (cf. lemma 8.3.2). 

It follows easily, that the square of the diagram is a Cartesian 

square. Moreover, the map q is a smooth morphism with (dim U)-dimen

sional fibre. Hence, 

q*-q* = q! -q* C -2-dim U] = h*-(idQx pry/T)! [ -2-dim U ] 

So, for a complex V on the group G (in the left corner of the diagram) 

we have (taking into account that p, = p*, for p is proper): 

CHOHC(V) =p..q .q*-p'(V) = p* .h* . (idQ x prv/T) '-p' (V) f-2-dim Ü ] = 

= P*-h*(VB£z[dim Z]) = m,.(idGxprG), (VHÇz[dim Z]) = 

= m* (V H Spr) = V * Spr. 

Q.E.D. 

Proof of theorem 8.5.1. It is known [BM], that the complex Spr 

is a semisimple perverse sheaf on G and that the skyscraper sheaf £e 

is a direct summand of Spr (occurring with multiplicity one). Hence, 

the functor V h—> V * C is a direct summand of the functor V »—* 
—e 

—» V» Spr = CH © HC(V) . The trivial observation: V * £e = V completes 

the proof. 
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8.7. In this n° we'll establish connection between admissible 
modules on a symmetric space G/K and the Harish-Chandra functor. So, 
it will be convenient for us here to adopt the language of D-modules. 

The right T-action on Y gives rise to a right action on (Y*Y)/T 
of the group (TxT)/T = T, commuting with the natural left G x G-ac-
tion. So, given a subgroup H CT G x G, one has an H * T-action on 
(YxY)/T. Set h = Lie H, t = Lie T. An H x T-monodromic (cf. Appen
dix B) D-module M on (Yx Y)/T will be referred to as an h-admissible 
module. If, in addition,M is H-equivariant (see n. B2 ), it will be 
referred to as an H-admissible module. Let (cf. Appendix B) 

Db A3miss(*, h) := Db (*, hxt); Admiss(*, H) := Db(*, H*t) 

denote the corresponding "derived" categories (here * stands for 
(YxY)/T and the symbol Hxt in the last expression signifies HxT-
monodromicity + H-equivariance). In the equivariant case one may un-
derstand D (*, Hxt) either as the "right" equivariant derived cate
gory, defined by Bernstein-Lunts (see [MiViJ ) and Beilinson-Ginsburg 
(see [Gi3j), or as the "naive" equivariant derived category in the 
sense of n. B2. The "naive" definition gives "wrong" equivariant Ext-
groups and is therefore inadequate in general. It's sufficient however 
for the limited purposes of this paper since we do not care about 
Ext's here and are always dealing with individual objects ((9.2.5) is 
the only exception, for the category as a whole is involved there). 

We turn now to D-modules on the group G. We let a subgroup 
H C G X G act on G by H B (t̂ , h2) : x H h ^ X ' h ^ 1 . A D (G)-module 
is said to be h-admissible if it is locally-finite as a Z(g)-module 
and as a U(h)-module. An h-admissible module is said to be H-admis
sible if it is equipped with an algebraic H-action, compatible with 
that of h. Any h-admissible (resp. H-admissible) D-module is H-mo-
nodromic (resp. H-equivariant). Let Db Admiss(G, h) and Db Mmiss(G, H) 
denote the corresponding "derived" categories in the sense of n.Bl-B2. 
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Proposition 8.7.1. The functors HC and CH give rise to the fol
lowing functors: 

D Admiss(G, h) CH 
HC 

- Db Admiss( (Yx Y)/T, h) 

and to similar functors in the equivariant setting. 
These functors preserve central characters. 
Proof. Define an H-action on G x (Y/T) as follows: 

H 3 (h^, h2) : (u, y) H-> (h-̂ -u*]̂ 1, h2«y). Then, the maps p and q 
in the diagram (8.4.1) become H-equivariant. Hence, it follows from 
results of Appendix B that the functors HC and CH carry H-monodromic 
(resp. H-equivariant) objects into H-monodromic (resp. equivariant) 
ones. 

Proofs of the statements about admissibility and central charac
ters are postponed until n. 10.2. • 

8.8. Let K = G be the subgroup associated to a symmetric 
pair (G, ©) and k = Lie K. Let M and N be k-admissible irreducible 
DY-modules. Then, the group JT̂ (T) acts on M and on N by one-dimensi
onal monodromy representations (corresponding to the principal T-bund-
le Y —• Y/T). If these monodromy representations on M and N are op
posite to each other, then the module M x N on Yx Y is the pull-
back of a D-module on (YxY)/T, that will be also denoted by M x N. The 
complex CH(M*N) is a well-defined k x k-admissible complex on G, 
by Proposition 8.7.1, applied to H = K x K. Let CH1(MxN) denote 
its i-th cohomology module. 

Proposition 8.8.1. (i) Any irreducible kx k-admissible D(G)-
module V is a subquotient of CH1(M x N) for some irreducible k-admis
sible Dy-modules M, N with opposite monodromies and an integer i > 0; 

(ii) If V is Kx K-admissible, then M, N can be chosen to be 
K-admissible DY-modules. 

Proof. By theorem 8.5.1 we know that V is a direct summand of 
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CH o HC(V). The standard spectral sequence for composition of functors 
shows that V is a subquotient of CH1o HC3(V). 

We observe further, that HC^(V) is a kxk-admissible 
D-module on (YxY)/T (proposition 8.7.1). Hence, HC-* (V) is a holono-
mic module with finite Jordan-Haider series. It follows easily, that 
V is actually a subquotient of CH1(L) for an irreducible k x k-admis
sible module L. But the K * K-orbit structure of Y x Y is the product 
of K-orbit structures on the factors. So, any irreducible k*k-admis
sible D-module on (YxY)/T is of the form L = M * N, where M and N 
are irreducible k-admissible D(Y)-modules. The statement (i) follows. 
Part (ii) is proved in a similar way, using proposition 8.7.1 (ii). Q 

Corollary 8.8.2. Any k x k-admissible G-module is a regular holo-
nomic module. 

Proof follows from a version of the Beilinson-Bernstein result 
(cf. [ BeBeJ), saying that any k x k-admissible D-module on (Y x Y)/T 
is regular holonomic. • 

8.9. Let pr : G —> G/K be the natural projection. Given an ad
missible D(G/K)-module V, let pr*V = CfGJ ® V be its pull-

<E [G/K ] 
* 

back to G. One can show, that pr V is a kx k-admissible D(G)-module. 
Moreover, one obtains in this way an equivalence of categories of ad
missible D(G/K)-modules and of kx K-admissible D(G)-modules. 

We are now able to complete the proof of theorem 1.4.2 by showing that 
Corollary 8.9.1. Any admissible D(G/K)-module is regular. 
Proof. It is clear that a D(G/K)-module V is regular iff so is 

pr V. It remains to apply corollary 8.8.2. U 
8.10. We will use monodromy on (Y«Y)/T to prove the following 
Proposition 8.10.1. Let V1 and V"2 be k xk-admissible D(G)-modules 

which have central characters (cf. n.1.3). If the central characters 
* 

are different, then ExtD^ {V^, V2) = 0 . 
Proof. Let M-ĵ , M2 be admissible D-modules on (YxY)/T with dif

ferent central characters. Then, they have different monodromy eigen
values (with respect to the right T-action). It follows easily that Ext*^, Ĵ ) ~ 
= 0, where Ext is computed in the category of D-modules. A spectral se-
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quence argument shows that a similar vanishing statement holds for 
complexes that have different central characters on cohomology. 

Now, let V^, V2 be kx k-admissible D(G)-modules with different 
central characters. Then, HC(V1) and HC(V"2) have different central cha-
racters by proposition 8.7.1. Hence, Ext (HC(V1), HC(V2)) = 0. Corol
lary 8.5.2 (ii) completes the proof. • 

9. Diagonal case (character sheaves) 
In this section and the one that follows we study the diagonal 

case, that is the case of a reductive group G acting on itself by 
left and right translation (from now on we change the notation, as 
compared with that of example (i) of n.1.1, so that the group in ques
tion will be denoted by G and not by K). 

9.1. Harish-Chandra functor in the diagonal case. We keep the no
tation of n.7.1 so that B = T-U, Y = G/U, etc. Let Db Admiss(G) 
(resp. D Admiss((Y xY)/T)) be the category formed by Ad G-equivariant 
(resp. G-equivariant with respect to the diagonal G-action on (Y x Y)/T) 
complexes of D-modules with admissible cohomology in the sense of 
n.1.2 (resp. n.8.7). 

We define functors HC and CH as it has been done in n.8.4, using 
the diagram (8.4.1). It follows from lemma 8.7.1 (i) (applied to 
K = Ĝ ) that the functors give rise to the following ones: 

Db Admiss(G) CH 
HC 

Db Admiss((Y x Y)/T) (9.1.1) 

The only non-obvious point in proving (9.1.1) is to show that the 
functors HC and CH preserve the property of being Z(g)-locally-finite 
module. This can be done in the same way as in the proof of proposi
tion 8.7.2 (see n. 10.3 below). 

Proposition 9.1.2. Any irreducible admissible D(G)-module is 
a subquotient of a cohomology group of CH(M), where M i s a G-admis-
sible module on (Y xY)/T. 

Proof follows from theorem 8.5.1 and an argument similar to 
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that, used in the proof of proposition 8.8.1. • 
Theorem 1.6.1 is a simple consequence of proposition 9.1.2. In 

fact, Lusztig has defined the character sheaves as simple subquotients 
of complexes CH(M) for a certain finite collection of modules M. How
ever, the modules M, used by Lusztig, contain as a subquotient every 
irreducible G-admissible D-module on (YxY)/T. So, the class of modu
les on G, defined by Lusztig, is the same as that arising from pro
position 9.1.2. 

9.2. Relation to Hecke algebra. Recall the convolution structu-
res on D (G) and on D ((YxY)/T) defined in n.8.2. We claim that the 

b b categories D Admiss((YxY)/T) and D Admiss(G) are stable under the 
convolution. The only problem is to show that the property of "being 
Z(g)-locally-finite" is preserved by the convolution. For D-modules 
on (YxY)/T, this property is equivalent to "being T-monodromic" 
(with respect to the right T-action) which is clearly compatible with 
convolution. To deal with D-modules on G we use the Harish-Chandra 
functor. Let V1,V2 € Db Admiss(G). Then, HC(V^), HC(V2) € Db Ad
miss ((Y xy)/T). Hence, HC(V^)* HC(V2) é Db Admiss((Y xY)/T), so that 
CH(HC(V1) * HC(V2)) € D Admiss(G). But we know, that V2 is a di
rect summand of C H o H C ^ * V2) = CH (HC (V̂ ) * HC (V2) ) . Whence, VX*V2 
Db Admiss (G) . • 

An object M of a category with convolution structure is said to 
be central if M * N = N#M for any other object N of the category. The 
category is said to be commutative if all its objects are central. 

Proposition 9.2.1. (i) The category Db Admiss(G) is commutative; 
(ii) For any V é Db Admiss(G), HC(V) is a central object of 

Db Admiss ((Y* Y)/T) . 
Proof, (i) Consider the commutative diagram: 

G x G f G x G 
m 

G 
m1 
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where the maps m, m1 and f are defined as follows: m(u^, u2) = 

u1»u2; m1 (û , u2) = t^'U^ and f(u1# u2) = (u^, u-^-u^u.^1). It is 

clear, that for V1,V2 € Db Admiss (G) we have V2 = m^(V1Bv2) and 

V2**V1 = m' ̂Vl ® V2^ " 0n tne other nand/ tne Ad G-equivariance of V2 

yields f+iV^B V2) = V1B V2. Hence, we get 

V1itV2 = m^(V1HV2) = mi* f ^ V ^ V ^ = m^ (V̂  8 V2) = V2 * V± 

(ii) Consider the following diagram 

P 

G 

G x (Y/T) G xY 

q 

(Y xY)/T 

x< 

Y X Y 

(9.2.2) 

where horisontal arrows are the natural projections. Next, recall, 

that the convolution of complexes on (YxY)/T is defined in terms of 

their pull-backs on Y xY. The diagram (9.2.2) shows, that in a convo

lution computation, the complex HC(V) should be viewed as a complex on 

Y x Y and the Harish-Chandra functor should be viewed as being defined 

by the diagram (8.1.1) (for A = G) and not by the modified diagram 

(8.4.1). So, the varieties (YXY)/T and Y/T are replaced by YxY 

and Y respectively. 

Now let V € Db Admiss(G) and M £ Db Admiss(YxY). To compute 

HC(V)* M we consider the following diagram: 

G x Y x Y 

< 
G x Y * Y x Y 

à 
G x Y x Y x< 

x< 

Q 

Y x Y x Y x Y 

Y x Y x Y 

A 
x< 

YxY 

(9.2.3) 

The arrows of the diagram are defined as follows: p is the projection 

along the last factor; q(u, y-^ y2, y3) = (u-y^ y1, y2, y3); 

A (Yi' Y2' ¥3) = (vi' Y2' v2' y3^? pr is the ProJection along the 

middle factor; £ (u* Y1t Y2) = <u' Y1f Y±r Y2) and Y]/ Y2^ = 

(u-y-̂ , y.̂ , y ) . Using the diagram, one can write 
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HC (V) * M = pr * • £" • q* • p" (V B M) 

Now, we observe that the square Q in the centre of (9.2.3) is a 
Cartesian square. Hence, & -q* = q*« A" and the diagram (9.2.3) 
yields 

HC(V) * M = f̂ (V B M) 

where the map f : GxYxY —»YxY is defined byvx<f(u,w< y2) = 
(u-y1, y2). 

An argument involving a similar diagram, yields 

M * HC(V) = (pr )* • h (V B M) 
Y x Y 

where pry ̂  y denotes the projection G x Y x Y —> YxY and h is an 
automorphism of GxYxY defined by h(u, y^, y2) = (u, y^, u-y2). To 
compare HC(V)*M with M*HC(V) we consider the following commuta
tive diagram 

G x Y x Y 
r 

G x Y x Y 
h"1 

G k Y x Y 
f 

YxY ' 
prYxY 

where the automorphism r is defined by r(u, y^, y2) = (u, u-y^, 
u-y2)• The complex M being G-equivariant, we have r^(V Q M) = V B M. 
Whence, we obtain 

HC(V)tM=ffc(VBM) = ( p r ^ ^ ' h ^ r ^ V B M ) = 

= (pryx . h^tV B M) = M*HC(V) Q.E.D. 

To proceed further we need the notion of a mixed module on a 
smooth algebraic variety. The reader may think of a mixed module 
either as a mixed 1-adic perverse sheaf in the sense of [BBD ] or a$ 
a mixed Hodge module in the sense of I Sa]. We prefer the latter. So, 
given a complex algebraic variety Z, let D^ix^Z^ denote the bounded 
derived category of complexes of mixed Hodge modules on Z. 
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We are mainly interested, of course, in some categories of mixed 
modules either on Hereductive group G or on the Flag manifold G/B. 
Let Db AdmissQ(G) denote the full subcategory of Db^x (G) formed by 
Ad G-equivariant complexes, whose cohomology modules are admissible 
modules with the trivial central character. Also, let 7 = Y/T = G/B 
denote the Flag manifold and let Db Admiss (YxY) denote the subca
tegory of Db.(YxY) formed by G-equivariant complexes. We define the 
Harish-Chandra functor 

HC : Db Admiss (G) —-> Db Admiss (Y x Y) o o (9.2.4) 

using the diagram (8.1.1) for A = G and Y = G/B. The functor HCQ is 
compatible with convolution structures and an analogue of proposition 
9.2.1 holds for HC . 

Further, given a category C, let K(C) denote its Grothendieck 
group. A convolution structure on C gives rise to an algebra structure 
on K(C). It is known, for example, that the Grothendieck group K(D Ad
miss (Y xY)) is isomorphic to the Hecke algebra H associated to the 
Weyl group of G. Hence, the functor (9.2.4) induces an algebra homo
morphism 

HCQ : K(Db AdmissQ(G)) —»Center (H) (9.2.5) 

Let S be the set of irreducible G-admissible modules on G o 
(i.e. characters sheaves) with the trivial central character. Using 
a case by case argument, Lusztig [Lu2] has attached to each character 
sheaf V € GQ a two-sided cell c (V) in the Weyl group (cf. [KL]). 
The assignment Vi—> c(V) has played a crucial role in the classifica
tion of character sheaves, carried out in [Lu2]. It seems likely that 
the two-sided cell c(V) is closely connected to the two-sided ideal 
of the Hecke algebra H, generated by the element HCQ(V) € Center(H) 
(see (9.2.5)). 
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Appendix A. A characteristic variety theorem 

Al. We keep to the notation of n.5.1, so that Z is a smooth al
gebraic variety with a normal crossing divisor Y. Let X := Z\Y be 
a Zariski-open part of Z and j : X c—» Z the inclusion. There is a 
natural isomorphism 

T*X = T*(Z, Y) 
X 

(Al.l) 
i 

Let V be a regular holonomic Dx-module and let SSV be the charac-
* 

teristic variety of V, viewed as a non-closed subset of T (Z, Y) via 
(Al.l). We have the following 

Theorem Al.2. Let M be a y-coherent submodule of j*V. Then SSM C SSV 

and the equality holds provided M generates V, i.e. V = DX«M. 
A2• The rest of the appendix is devoted to the proof of theorem 
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A1.2. The problem being local, we assume from now on that the divisor 
Y is defined by an equation f = 0. Observe that f-D^ v-f~"̂  = D- v. 

A Dz Y~coherent submodule M C ĵ v is said to be a lattice in V 
if V = DX*M« Clearly, theorem A1.2 is equivalent to the following 

Proposition A2.1. For any lattice M, the variety SSM has no ir
reducible components over the divisor Y = {f = o}. 

Before going into proof we record some elementary properties of 
lattices. 
A2(i) If M is a lattice, then U f"m-M = V 

m > 0 
A2(ii) Given two lattices L and M, one can find integers n,m ^ 0 

such that fn-L C M d f~m-L 
A2(iii) Let 0 —» V1 —> V —» V" —> 0 be an exact sequence of D-modu-

X 
les. Given a lattice L in V, let L" be its image in V" and L1 = 
L 0 V1. Then, we have an exact sequence of lattices: 0 —> L1 —> L —> L" —> 0 

Moreover, the theorem holds for L iff it holds for L1 and L". 

A3. Construction a la Malgrange. Let f̂ , b,cww< fr be regular fun
ctions on a smooth algebraic veriety ZQ and YQ = ̂ f^- ... -f^ = o}, 
a divisor in Z . We set Z = Crx Z and let i : Z * Z be the graph o o o 
embedding i : z i—> (f1(z), fr(z), z) . Let t.̂, tr denote the 
functions on Crx ZQ pulled back from standard coordinate functions on 
Cr. It is clear that Y = (t^« ... #tr = °} is a normal crossing 
divisor in Z and we have 

i(YQ) = i(Zo) ii Y 

Set XQ = Z \ YQ, X = Z\Y. 
Now, given a D-module VQ on XQ, let V = i* VQ. Following Malgran

ge fMa], we give another interpretation of V. To do that, we introduce 
an auxiliary polynomial ring C[slf sn] and set Dx [s1,..., sr]= 

s s ° Dv ® C[Swcbcvww si. The sheaf V -fn • — -f [s. , s J has a natu-j. r o J. r x r-
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ral Dv [s, , si-module structure. We abbreviate notation: 
A J. r 
o s s 

V -fs := V -f-, • ... *f [s-,, . .., s ]. Viewing D„ as a subsheaf 
of D,, that acts along the second factor, we have 

Proposition A3.1. There is a natural Dx -module isomorphism 

v(= i, vo) * vo.fs 
such that 
(i) the action of t.• Vat, on i*VQ corresponds to the multiplication 

by (-Sj); 
(ii) the action of t̂  on i*VQ corresponds to the automorphism of 

g V •f induced by the shift s. i—> s . + 1. o J 3 3 
In the special case r = 1 the proposition is due to Malgrange 

[Ma]. General case is handled in the same way.Q 
A D_ [s, , s ]-coherent submodule L e V «fs is said to be 

u ̂  J. r O O 
a lattice if it is stable under the automorphisms of VQ-fs, described 

~mi "~mr 
in A3.1(ii), and U f± • ... -fr -L = v0#f • xt follows 

m^,. . . ,mr >, 0 
from proposition A3.1 that Dz Y~latticesxxx in i*VQ correspond to latti-
ces in V *f . 

o 
The ring Dz [s^,vxvw< sr] has a natural increasing filtration, 

o 
the product of standard increasing filtrations on Dxvw<<zand C£s^,..., 

r * ° 
sr]. Clearly, Spec Dz [ s-̂,c<c<< srJ = C x T ZQ, so that the characte-

o 
ristic variety of a Dz [s^,c<c<<<< sr]-module is a subvariety of r * ° C x T Zq. From proposition A3.1 one easily derives 

Corollary A3.2. The following statements are equivalent 
(a) Theorem A1.2 holds for V = i*VQ; 
(b) If L is a lattice in VQ-fs, then SSL has no irreducible components 

over the divisor Y . 
o 

In the special case r = 1 the statement A3.2(b) is a key result 
of my paper [Gil]. So, theorem A1.2 may be viewed as a generalization 
of [Gil, thm 2.3J. The strategy of the proof of theorem A1.2 will, 
in fact, be similar to that of [Gil]. 246 
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A4.fvx<< We now turn to the proof of proposition A2.1. Let zQ be a 
point of the normal crossing divisor Y = (f = OJ. On a neighborhood 
of zq in Z we choose a local direct product decomposition Z = T x U, 
local coordinate functions t = (t^, ..., tr) on T and u = (û , ..., 
um) on U, such that in the local coordinates (t, u) on Z we have 
f(t, u) = t1« ... -tr and zQ = (0, uQ). Let YT denote the divisor 
in T defined by the equation t̂ * ... -tr = 0. It is clear, that Y = 
YTx U and T*(Z, Y) = T*(T, Y^) x T*U. 

Further, let V be a regular holonomic Dx~module and let M be a 
D„ -lattice in V. We are going to prove the following 

Proposition A4.1. Let S be an irreducible component of SSM con
tained in T*(T, YT) x T*U. Then, S CZ {o} x T*U. Furthermore, S is an 
isotropic subvariety (viewed as a subvariety of T U ) . 

We first consider a special case of proposition A4.1, arising 
from the graph construction of n.A3. More specifically, we assume gi
ven the following data 
(a) f̂ , fr, regular functions on a smooth variety ZQ, such that 

{f^" ... 'fr = o} is a normal crossing divisor; a point uQ € ZQ 
such that f1(uQ) = ... = fr(uQ) = 0; 

(b) VQ, a smooth regular holonomic module (i.e. a regular local system) 

on Xo = Zo x (Vccvnx<x< *fr = °>; 
(c) i : ZQ «—> Crx ZQ, the graph embedding i(z) = (f1 (z),...,fr (z),z). 

Set T = Cr, U = ZQ, z = Txu = Crx Zq, zQ = i(uQ) = (0, uq) . 
Lemma A4.2. Proposition A4.1 holds for any lattice M in i+V . 
Proof. The construction "a la Malgrange" (see proposition A3.1) 

translates the statement of the lemma into the following one: 
Let L be a Dz [s<c<c<<l7<< s^-lattice in VQ-fs and let S be an 

irreducible component of L over the divisor {f-^ ••• -fr = o}. Then, 
S C (0) x T*ZQC:Crx T*Zq and S is an isotropic subvariety (viewed as 

* 
a subvariety of T ZQ). 
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This statement can be verified directly, using local coordinates 
on ZQ adapted to the normal crossing divisor f̂ * ... -f^ = 0. We omit 
the details. • 

A5. Let Z be a smooth proper variety with a normal crossing di
visor Y. Let XQ be a smooth locally-closed subvariety of Z \ Y and VQ 
a regular local system on XQ. Let i : XQ C—» Z denote the inclusion. 
We assume i to be affine, so that i*v0 is a Dz-module. 

Lemma A5.1. Proposition A4.1 holds for V = i*VQ. 
Proof. Let be the closure of X^ in Z and let p_ : Z — > Z be  o o o o 

a resolution of singularities of X , so that Z N X is a normal cross-
o o o 

ing divisor. 
Recall the notation introduced at the beginning of n.A4. We pull 

the coordinate functions (t, u) back on ZQ and denote the result by 
the same letters. We have the following commutative diagram: 

Z 
o 

f 
T x Z 

o 
h 

T x U x Z 
o 

Po P 
T x U = Z 

where f denotes the graph embedding f(z) = (t(z), z), h denotes the 
graph embedding h(t, z) = (t, u(z), z) and p is the natural projection. 

We have V = i*VQ = p^-h^«f^VQ. Next, note that proposition A4.1 
holds for the module f*VQ by lemma A4.2. It follows easily, that the 
same holds for V1 := h*- f*VQ. 

Let L1 be a lattice in V1 and let L be the image of the natural 
morphism P*L1 —> P*V1 = V. We observe that the map p is proper sin
ce Z and, hence Zq, are proper varieties. Furthermore, the divisor 
YTxu xZQ in Tx U xZQ equals p ^(Y), so that no logarithmic cotangent 
bundles along the fibre direction (of the projection p) are involved. 
It follows, that L is a lattice in V and that the standard estimate 
on SS(p̂ tL1) in terms of SSL1 (see CKa]) can be applied. The estimate 
shows that lemma A5.1 holds for the lattice L (cf. [ Gil, corollary 2.9] 

248 



ADMISSIBLE MODULES ON A SYMMETRIC SPACE 

for a similar argument). 
To complete the proof we have to verify proposition A4.1 for any 

lattice in V = i*VQ. But it follows from the property A2(ii) that pro
position A4.1 holds for every lattice, provided it holds for a parti
cular one, e.g.L. 

A6. We come to final stages of the proof of proposition A4.1 
and of proposition A2.1. The argument copies that of [Gil]. 

The proof of proposition A4.1 is completed as follows. P r o 

perty A2(iii) shows that it suffices to establish the result for a 
family of holonomic D-modules that contain any irreducible regular 
holonomic module as a subquotient. Such a family is provided by the 
modules of the form i*V considered in n.A5. Lemma A5.1 completes 
the proof. 

Proof of proposition A2.1. Let M be a lattice and S an irreduc-
* 

ible component of SSM contained in T (Z, Y)jY, where Y is the normal 
crossing divisor. Let zq £ Y be a generic point in the image of S (un
der the projection to Y). Let Z = T x u be the direct product decompo
sition considered in n.A4 and let £y be the sheaf of microdifferen-

* 
tial operators on T U. It follows from proposition A4.1 that 

® D M is a non-zero holonomic £y-module on a neighborhood of S. 
On the other hand, the module £y © M has a natural action of the 
operators t.̂  and ti« /3ti, i = l,...,r. So, proposition 5.11 of 
[KaJ yields £y ® M = 0. The contradiction shows that S = 0. Q Appendix B; Equivariant and monodromic modules 

Bl. Let G be an algebraic group acting on a smooth algebraic va
riety Z and let p,q : G * Z —> Z denote the second projection and the 
"action-map" q(u, z) = u*z respectively. 

Definition Bl.l. A constructible complex A on Z is called G-
monodromic if the following equivalent conditions hold: 
(i) The restriction of A on any G-0rbit is a locally-constant complex; 
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* 
(ii) The comple c<c<<q A cvvwis locally-constant along the fibres of the 

projection x<x<<p. 
Now let M be a holonomic Dz~module and let DR(M) denote its 

DeRham complex. The module M is called monodromic if D-module counter
parts of Bl.l (i)-(ii ) hold. A regular module M is monodromic iff so 
is DR(M). 

Let g be the Lie algebra of the group G and let U(g) — > P (Z, D^) 

be the natural algebra homomorphism induced by "infinitesimal" g-ac-
tion on Z. 

Proposition B1.2. If M is a regular G-monodromic D-module, then 
the natural U(g)-action on T(Z, M) is locally-finite. The converse 
is true for regular modules, provided Z is affine. 

The key point of the proof is the existence of a natural global 
good filtration - the so-called Kashiwara-Kawai filtration - on a re

ft 
gular holonomic D-module. Furthermore, the graded sheaf Gr M on T Z 
associated with the Kashiwara-Kawai filtration is known to be reduced 
It follows, that if M is G-monodromic, then the filtration on M is 
g-stable. This yields that the U(g)-action on T(Z, M) is locally-fi
nite. D 

B1.3. Observe, that the property of "being monodromic" depends 
solely on the infinitesimal g-action without mentioning the group G. 
So, we let D (Z, g) denote the triangulated category formed by bound
ed complexes of D-modules with G-monodromic cohomology. Monodromic 
Dz~modules form a heart of Db(Z, g). 

B2. Definition B2.1. A constructible complex A (or a regular ho
lonomic complex of Dz-modules) is said to be a G-equivariant complex 

it it 

if a quasi-isomorphism p A = q A is given in such a way that it 
satisfies a natural cocycle condition. 

For the purposes of this paper it suffices to consider a "naive" 
equivariant derived category Db . (Z, G) defined as follows. Its ob-
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jects are G-equivariant complexes and its morphisms are those mor-

phisms A —>B in Db(Z) that induce a commutative diagram: 

* 
P A 

* 
P B 

q A q b 

(B2.2) 

Clearly, D . (Z, G) is an additive category, containing the catego-naive 

ry of equivariant Dz-modules as an abelian subcategory. The word 

"naive" stemms from the fact that Dnaive^Z/ Ĝ  is not a triangulat-

ed category. The point is that given a diagram (B2.2), one can not 

define a natural quasi-isomorphism p cone(A —• B) = q cone(A —• B). 

For a reasonable definition of derived category of equivariant comp

lexes the reader is referred to £Gi2, nn. 7-8J. 

Any G-equivariant D-module M is G-monodromic so that there is a 

natural locally-finite U(g)-action on p(Z, M). 

Proposition B2.3. If M is equivariant, then the U(g)-action on 

T(Z, M) can be naturally integrated to a G-action. The converse is 

true, provided Z is affine. • 

B3. Let f : Z —> 1 be a principal G-bundle and M a monodromic 

Démodule. Then, there is a natural monodromy action of ST^(G) on 

f.M. Suppose that the group G is linear, so that f is an affine 

morphism. 

Proposition B3.1. The following conditions are equivalent 

(i) M is G-equivariant; 

(ii) The monodromy action on f.M is trivial; 

(iii) M = f M is-tiepull-back of a D-module on z\ 

Next, suppose that G is a connected group, H is a closed sub

group of G and Z = G/H. There is a natural group homomorphism «^(Z) —> 

jrQ(H) arising from the fibration G —> G/H. 

Proposition B3.2. (i) G-monodromic D-modules on G/H are in (1-1)-

correspondence with finite-dimensional representations of ST. (G/H). 
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(ii) A monodromic module on G/H is equivariant iff it comes from 
a representation of $"0(H) via the homomorphism JT̂  (G/H) —> ^TQ(H). 

Let F : X —> Y be a G-morphism between G-varieties. 
Proposition B3.3. The natural functors F^, F , F,, F* take mo

nodromic (resp. equivariant) complexes bxww into similar ones. Q 

B4. Recall the notation of n. Bl. 
Proposition B4.1. (J. Bernstein). For any regular D-module M on 

z/ P*-c3 M is a G-equivariant complex on Z. 
* 

Remarks. (a) One can see, that the complex P**q M comes equip
ped with a natural structure of an equivariant complex in the sense 
of CGi2, n.7J (which is stronger than the definition B2.1). 

(b) The functor p*-q has been used by Bernstein to give a D-
module definition of the Zuckerman functor. The recent approach to 
the Zuckerman functor due to Duflo-Vergne [DV]is, actually, nothing 
but the globalization of the Bernstein construction. 

* 
Unfortunately, the functor p*-q does not give rise to a func

tor between abelian categories, for it takes D-modules into complexes 
of D-modules. Suppose, however, that G = U is a unipotent group. 
Then, we have 

Proposition B4.2. There is an exact functor J, taking holonomic 
Dz-modules into U-equivariant Dz-modules. 

The functor J is a D-module analogue of the Jacquet functor of 
the I-adic completion, where I is the augmentation ideal in the enve
loping algebra of Lie U (see [CasCollJ). 

Proof of Proposition B4.2 isby induction on dim U. Let{0}= 
Uo c Ul c ' " C Un = U be an increasing sequence of normal subgroups 
of U such that Ui+i/ui = cvb,w<<Suppose, inductively, that we have con
structed the functor j\xw<<<x< corresponding to the group U^. To define 
J\+^, consider the action-mapping q : U^+^ x Z —• Z and the "partial" 
projection Pi+i/i s Ui+i* z —> (Ui+l/Ui^ *Z> Let M be a Dz~m°dule. 
It easily follows from U^-equivariance of J^M, that there is a uni
que D-module M on (U-^^A^) * z such that Pi+jy^M = <2* (JjM) . 

We now identify ui+]/ui s cvn;s<<witn tne "finite" part of the pro
jective line Jp1 = A1 (J (ooj. Accordingly, we view (Ui+]/u^) * z as 
the finite part of p"*"x Z. Let *f denote the nearby-cycles functor with 
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respect to \oo} x z С P̂ " x z, the divisor at infinity. We set 

J.M (M) := * (M) 

Clearly, Jĵ +̂  is an exact functor, taking D-modules on Z to D-
modules on Joo} x Z = Z. Verification of the Ui+1~equivariance of 
J.+^(M) is left to the reader. • 
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