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Character sheaves

J.G.M. Mars and T.A. Springer

Introduction

These notes on character sheaves are an outgrowth of a seminar at the University of
Utrecht (in 1985-1987) and lectures by one of us in Paris (in June 1987). The aim of the
notes is to give an exposition of some of the main ideas of Lusztig’s theory of character
sheaves (contained in the five papers cited as [CS] in the references). His aim is to give
a geometric theory of ”characters” of a connected reductive algebraic group G over an
arbitrary algebraically closed field k.

The ”characters” in question are the character sheaves. They are certain perverse sheaves
on G. We have to assume familiarity with these objects (treated at length in [BBD]).
In no.1 some basic facts and auxiliary results about perverse sheaves are discussed very
briefly.

In no.2 we introduce certain local systems on an algebraic torus T (up to a dimension shift
these are the character sheaves on T). If X is the character group of T, the isomorphism
classes of such local systems can be identified with the elements of X = X ® Q/X with
denominator prime to the characteristic exponent of the underlying field. If T is a maximal
torus in a reductive group G, the Weyl group W of (G, T) operates on X.If ¢ € X denote
by W} the isotropy group of £ in W.

No.3 contains a number of auxiliary algebraic results, for example about the groups W;.
We have found it useful to introduce a generalized Hecke algebra K = Ky, associated to a
W-orbit O in X and a set of generators S of the Coxeter group W. It is an algebra over
the ring of Laurent polynomials Z[t,¢™1], with a basis (e¢w)eco wew -

The multiplication rules generalize those for the usual Hecke algebra of (W, S), which one
recovers if £ = {0} (see 3.3.1 for these formulas). The e¢,, with fixed £ and w¢ = £ span a
subalgebra ¥; of K which is isomorphic to the Hecke algebra of groups like W; introduced
in [CS, no.6]. We establish in no.3 some basic properties of the algebras K and introduce
their Kazhdan-Lusztig elements cg,.

In no.4 we deal with material contained in Lusztig’s book [L1], which is needed in the
theory of character sheaves. Let B be a Borel subgroup of G containing the maximal torus
T. The double coset BwB(w € W) is isomorphic as a variety to the product of T and
an affine space. The local system on T parametrized by ¢ € X gives, by an appropriate
pull-back, a local system L, on G,. This defines an irreducible perverse sheaf A¢, on
G (the "perverse extension” of L¢,, or the intersection cohomology complex defined by
L¢w), whose support is contained in the closure G,,. There is a connection between A,
and the Kazhdan-Lusztig elements c¢,, of an algebra K. We also describe, after [L1, Ch.1],
the cohomology sheaves of the perverse sheaves A¢,,. We have found it convenient to work
with G (and not with G/B, as in [loc.cit]). For example, we can then exploit equivariance
properties of left- and right translations by B.

The character sheaves are introduced in no.5. If A¢, is as before with w¢ = £ one con-
structs a complex of sheaves C¢,, on G, obtained by "making A¢,, equivariant for conju-
gation”. It turns out that C¢,, is a direct sum of shifted irreducible perverse sheaves. The
irreducible perverse sheaves thus obtained (for varying w and ¢) are the character sheaves
on G. (The definition given in no.5 of character sheaves is not the one of [CS, no.2|, but is
equivalent to it by [loc.cit., 12.7]). We discuss in no.5 some basic properties of character
sheaves. Important for the sequel is the construction (implicit in [CS, no.6]) of a general-
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ized trace function 7 on an algebra K (i.e. a linear map satisfying 7(uv) = r(vu),u,v € K),
with values in the Grothendieck group of character sheaves with Laurent polynomial co-
efficients (see 5.1.7). In no.5 we also discuss briefly the example G = SL,, with C¢,, such
that w is a Coxeter element.

There is a machinery of parabolic induction and restriction for character sheaves. Much of
the later sections is taken up with the discussion of these operations and their properties.
In no.6 parabolic restriction is introduced, for conjugation equivariant perverse sheaves,
as well as the important notion of a cuspidal perverse sheaf. This notion was introduced
by Lusztig in [L2]. We review the results of that paper which we need. This included the
precise description of irreducible cuspidal perverse sheaves (6.3.1). We also introduce, as
in [L2], a stratification of G. Parabolic induction is introduced in no.7. Induction of an
irreducible cuspidal perverse sheaf on a Levi group produces a direct sum of irreducible
perverse sheaves on G. These are called admissible perverse sheaves. They are discussed
in no.8. As a matter of fact, Lusztig has shown (under some mild assumptions) that the
admissible perverse sheaves coincide with the character sheaves, as a consequence of results
which we do not discuss here (see [CS, 17.8.5]). It is shown that the restrictions of the
cohomology sheaves of an admissible perverse sheaf to the strata of the stratification men-
tioned before are locally constant. This is a consequence of results about the restriction
of induced perverse sheaves to the centralizer of a semi-simple element (8.2).

Restriction and induction of character sheaves are taken up in no.9 and no.10. The basic
result for restriction, discussed in 9.2, is the description of the restrictions of the perverse
sheaves C¢,,. The proof given in [CS, nos.3,6] is not easy to follow. We hope that our ap-
proach, using the algebra K, is more accessible. As a consequence of this result it follows
that parabolic restriction carries a character sheaf to a direct sum of character sheaves.
A similar result holds for induction. One can then develop formal properties of charac-
ter sheaves which are quite similar to properties familiar in the character theory of finite
groups of Lie type.

No.11 discusses the further analysis of character sheaves. Here material about Hecke alge-
bras is needed (reviewed in 11.1 and 11.5, see also [Cu]). The function 7 mentioned before
induces a generalized trace on the Hecke algebras Xé, which is a linear combination with
coefficients in the field of rational functions E(t) (E being the coefficient field for cohomol-
ogy), of trace functions defined by the irreducible representations of };. One of the main
results (11.2.1) is that under an extra assumption on G, these coefficients are constants
(this is equivalent to [CS, 14.9]). We review the proof given in [loc.cit., nos. 15,16] that
one can attach to a character sheaf a two-sided Kazhdan-Lusztig cell in a suitable X;.
Finally, in no.12 we state the main results of[CS] (one of which is that the extra assump-
tion on G is almost always fulfilled). These results are proved in [CS] via a case by case
analysis which we did no go into in these notes. Perhaps we can come back to this analysis
in a sequel.

It will be clear from the preceeding review of the contents of these notes that we have
rearranged considerably the presentation of [CS] and that we also have included relevant
material from [L1] and [L2]. The proofs given here of the main results are fairly complete
(of course, modulo results from Lie theory and the theory of perverse sheaves), although
occasionally we have referred to the literature, if there was a straightforward reference.

As already mentioned, we did not include proofs of the results of [CS| which involve a case
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by case analysis. Nor did we discuss in detail the results of [CS, nos. 9,10] about orthogo-
nality relations, for example of generalized Green functions. However, the technical results
needed for these are established. The orthogonality relations in question are discussed in
[Sh]. There one also finds a review of the results about generalized Green functions of [CS,
no.24j.

If k is an algebraic closure of a finite field F, and if G is defined over F, there is a
Frobenius morphism F on G, which can act on various objects. In the proofs one often
uses, after Lusztig, a reduction to this situation, whose special features (like purity) can
then be exploited.

We did not discuss the use of character sheaves in the theory of character of finite groups
of Lie type. There is a description, as yet conjuctural, of the irreducible characters of such
groups in terms of character sheaves (see [L1, p.348]). We want to mention in passing that
our approach to character sheaves, starting with the perverse sheaves A;,, has a counter-
part in the situation treated in [L1]. We hope to come back to this at another occasion.

If Kk = C one can attack to any perverse sheaf on G a regular holonomic D-module.
The D-modules defined by character sheaves can be characterised by properties of their
characteristic varieties (see [G] or [MV]). Ginzburg [G] also characterizes character sheaves
by an admissibility property of their D-modules. This can be used to give new proofs of
several results of [CS] (over C). We did not go into these matters in our notes.
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1 Perverse sheaves

In this section we review some basic facts about perverse sheaves, and we discuss some
material to be needed later. For the theory of perverse sheaves see [BBD].
Let k be an algebraically closed field. We consider algebraic varieties over k.

1.1 Derived category

1.1.1. Let X be an algebraic variety over k. We deal with sheaves of vector spaces on X
over a coefficient field E, and complexes of such sheaves. There are two cases:

(a) £-adic sheaves, where £ is a prime number different from the characteristic of k. Then
E is an extension of Q, (for example an algebraic closure Q,),

(b) k = C, we consider sheaves on X for the classical topology. Now E can be any field
(for example Q).

We denote by DX the bounded derived category of constructible sheaves (of E-vector
spaces) on X. For the definition in case (a) (which requires some care) see [D, p.148-149].
If K is a complex in DX we denote by H'K or H'(K) its #** cohomology sheaf, which is
a constructible sheaf on X, by H’(X, K) the ¢*» hypercohomology group and by DK the
Verdier dual.

1.1.2. If f : X — Y is a morphism of algebraic varieties we have functors between the
derived categories DX and DY. As in [BBD, p.17] we denote them by f., f*, fi, f' (and
not by Rf.,,...).

Let U be an open subset of the algebraic variety X with complement F and denote by
J:U <> X, 1: F — X the inclusion maps. If K € DX there is a canonical distinguished
triangle (ji5° K, K, ¢,s°K) in DX.

1.2 Perverse sheaves

1.2.1. Let DX=° be the full subcategory of DX whose objects K satisfy dim supp H*(K) <
—1 for all integers ¢ and put DX2° = D(DX=").

Let MX be the full subcategory of DX whose objects are in DX<° N DX20 The objects
of MX are the perverse sheaveson X. MX is an abelian category in which all objects have
finite length [BBD, p.112].

1.2.2. The inclusion of DX=<C (resp. DX2°) in DX has a right adjoint 7<o (resp a left
adjoint 750) and the functors r>o7<o, T<oT>0 are canonically isomorphic. If K € DX, the
complex 7>07<o K is a perverse sheaf PH°K.

We define a functor PH' : DX — MX by PH'K = PH°(K|i]), the square brackets
denoting dimension shift. If (K, L, M) is a distinguished triangle in DX we have a long
exact sequence in MX

..— PH'K - PH'L - PH'M — PH'V'K — ...

Also, if K € DX then PH'K = 0 if |1 is large. See [BBD, no.I] for these facts.

A complex K € DX is said to be split if K is isomorphic in DX to the direct sum
@®; PH'K[—1] and to be semi-simple if it is split and all PH*K are semi-simple objects in
MX. A constituent of the semi-simple complex K is an irreducible constituent of some
PH'K, in the abelian category MX.

1.2.3. Irreducible perverse sheaves. Let U be a locally closed, smooth, irreducible
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subvariety of X of dimension d and let £ be an irreducible local system on U. There exists
a unique irreducible perverse sheaf I = I(U, £) on X whose support is the closure U and
whose restriction to U is L[d] (see [BBD, p.112]). Any irreducible perverse sheaf on X can
be obtained in this manner.

We call I the perverse extension to X of the local system L. The intersection cohomology
complex of Deligne-Goresky-MacPherson is I[—d]. We shall need only local systems £ with
finite monodromy, i.e. such that there is an étale covering U’ — U such that the inverse
image of £ on U’ is trivial.

We notice that DI(U, £) = I(U, L), where LV is the dual local system.

Perverse extensions I(U, £) exist for any local system £ on U, not necessarily irreducible.
Such a complex I is characterized by the following support conditions

dimsupp H'(4) < -t
dim supp H(D4) < —i,

if { > —dim U. Moreover, A |y= L[dim U] and
H'(A) =0fori < — dim U.

We say that a perverse sheaf K is even if H(K) =0if { # dim supp K (mod. 2).

1.2.4. Examples.

(a) Let X be a flag variety associated to a semi-simple linear algebraic group over k. If U
is a Bruhat cell in X and £ the constant sheaf E, the corresponding perverse extension I
is even. We shall discuss a more general result below (4.1).

(b) Let X be a smooth irreducible variety of dimension d and let D;,...,D, be smooth

divisors with normal crossings in X. Let L be a one dimensional local system on X — ,L'JID;,
i=

coming from a representation of the fundamental group of X — .L'JID.- which factors through
f=

a finite quotient of order prime to char k. Then H'I(X, L) =0 if 1 # —dim X.

In fact, If J is the set of ¢+ € [1,r] such that the local monodromy of £ around D; is

non-trivial and U = X — .éJJD.- then £ can be extended to a local system £ on U. The
%

restriction of I(X, L) to U is £[d] and the restriction of I(X, L) to X — U is zero.
These facts can be proved using the explicit construction of I(X, £) given in [BBD, p.112].
It reduces, essentially, the proof to the case that dim X = 1.

We next establish a lemma which is needed later.

1.2.5. Lemma. Let K and L be two perverse sheaves on X.

(i) H{(X,K® L) =0 for i > 0;

(i) If K and L are irreducible then H)(X, K ® L) = 0 ¢f and only sf K s not isomorphic
to DL.

Here H! denotes hypercohomology with proper support. We sketch the proof given in [Cs,
74].

There is a spectral sequence converging to H,(X, K ® L) with E,- term given by

Ej = Hi(X,H (K ® L)).
From the definition of perverse sheaves it follows that

dim suppH’ (K ® L) < —1j,
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whence E3’ =0 if i + j > 0, and (i) follows. o
Now let K and L be irreducible and put d = dim supp K. Then we see that E;* = 0
unless supp K = supp L, + = 2d. We then have

B3 = B2(X, H(K) © H™(L).

Let U be a smooth open subset of suppK such that the restrictions of H~¢K resp. H™ %L
to U are local systems L resp. M. Then

E3*7 = H¥(U,L ® M).

By Poincaré duality this is zero if and only if H°(U, (L ® M)Y) = 0, i.e. if and only if
L ® M is non-constant. The assertion (ii) follows.

1.2.6. Let f : X — Y be a morphism of algebraic varieties. We then have the four functors
between DX and DY of 1.1.2. As in [BBD, p.36] we say that such a functor is t-exact if
it carries DX<° to DY'<° and D X2° to DY 2° or similarly with X and Y interchanged, as
the case may be. We note the following facts:

(a) If f is finite then f; = f, is t-exact and if f is étale then f' = f* is t-exact ([BBD,
p-69]);

(b) I f is smooth with connected fibers of dimension d then f' = f*[2d] and f*[d] induces
a fully faithful functor of MY onto a subcategory of MX which is stable under taking
subquotients ([BBD, p.108- 110]).

1.3 Finite ground fields

Assume that k is an algebraic closure of the finite field F, of characteristic p.

1.3.1. Let X be an algebraic variety which is defined over F,. We use the convention of
[BBD, p.122], so we view X as being obtained by extension of scalars from a scheme X,
over F,. We have a Frobenius morphism F : X — X (raising coordinates to the ¢** power).
The fixed points set of F" is the set X(Fgn) of points of X rational over Fgn.

If Sp is a sheaf of E-vector spaces on X, and S the sheaf on X which it defines we have a
canonical isomorphism ¢ : F*S58S.

Recall that Sp (or S) is said to be punctually pure of weight w if for each z € X(Fgn) all
complex absolute values of all eigenvalues of ©" in the stalk S, are qg“"" and that Sp (or S)
is mized of weight < w if Sy has a finite filtration whose successive quotients are pure of
weight < w. Moreover, a complex Kj in DX, (or the corresponding complex K in DX) is
mixed if the cohomology sheaves H* K, are mixed, it is (mixed) of weight < w if the H'K,
have weight < w + 1. Such a complex Kj is of weight > w if DK, is of weight < —w. The
complex K is pure of weight w if it is of weight < w and > w.

1.3.2. With the previous notations, we have the following results about purity (see [BBD,
pp.136, 138, 142)):

(a) An srreducible mized perverse sheaf is pure;

(b) A mized complez K, is pure of weight w if and only if each perverse sheaf PH'K, is
pure of weight w + t;

(c) If Ko 1s a pure complez then K is sems- simple.

From these purity results one deduces the following theorem, which holds for algebraic
varieties over an arbitrary algebraically closed field k (see [BBD, p.163]).
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(d) (Decomposition theorem) Let f : X — Y be a proper morphism of algebraic varieties.

If K € DX +s a semi-simple complez of geometric origin then so is f, K.

For the notion of perverse sheaves of geometric origin see [BBD, p. 162- 163]. We shall

only encounter perverse sheaves of this kind.

The proof of the decomposition theorem uses a "reduction of characteristic 0 to charac-

teristic p”, explained in [BBD, no.6]. We shall have to use that reduction procedure. We

shall then need the following lemma.

1.3.3. Let f : X — Y be a morphism of varieties over F;. Assume that X is a disjoint

union of finitely many locally closed subvarieties X,(a € A) and that there is a function

¢ : A — N such that the closure X, is contained in X, U U X, for any a € A. Denote
e(d)<e(a

by f, the restriction of f to Xj,. (et

Lemma. Let K be a mized complez in DX. Let K, be its restriction to X,. Assume that

all complezes (f,)1 K, are pure of weight 0. Then fLK is isomorphic in DY to a?A( Jah1 K,.

Put Z, = (L)J<hX¢, then Z, is closed in X. Let 1, (resp. j,) denote the inclusion Z, — X
¢(a)<

(resp. Zn — Zp—1y — X). We have a distinguished triangle
(GWhIn K, (n) 3 K, (5h-1) 851 K)
in DX, whence a distinguished triangle
(AR K, A(EA)R K, filin-1)dh-1 K)

in DY. As Zy — Zj, is the disjoint union of the X, with ¢(a) = h, we have
fl(]h)l]hK = c(‘?:h(fu)lKa-
We have a long exact sequence in MY (see 1.2.2) :

LS 3 PHY((fa)1Ka) = PH(fi(in)inK) = PH? (fi(in-1)iih-, K)

¢ PRI+l R
- c(§=h H ((fa)lKa) voes

Notice that f,(i;.).i;.K = fiK if h is large and = 0 if —h is large. Under the assumptions of
the lemma (?_h PH?((fa)1K,) is pure of weight j. By induction on k one deduces, using

the exact sequence, that ?H7(f,(:s)15;K) is pure of weight j. In particular, fiK is pure of
weight O (see property (b) in 1.3.2). It also follows that the maps § of the exact sequence
are zero so we get a family of short exact sequences. Since f) K is semi-simple (property (c)
of 1.3.2) we conclude from the short exact sequences that fjK has the asserted property.

1.3.4. Characteristic functions.

Let X be as in 1.3.1, let K € DX and assume given an isomorphism ¢ : F*K K. We
define the characteristic function

XK, * X(Fq) —E
by )
XKp(Z) = Z("l)'T"(‘Pz»H‘(K)z)-
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More generally, we can define xk,n : X(Fgn) — E. One can show that if K is a semi-simple
perverse sheaf the family of functions (x K"P")nzl determines K up to isomorphism.

If necessary we write Xk,p = X%,

1.3.5. In the situation of this section one has to take into account Tate twists, in construc-
tions with perverse sheaves where weights are involved.

1.4 Equivariance

In this section X denotes an algebraic variety and G a connected algebraic group which
acts on X. Let a : G x X — X be the action morphism. It is a morphism whose fibers are
all isomorphic to G.

1.4.1. Definition. A perverse sheaf K € DX s G-equivariant if the perverse sheaves
a*K[dim G] and E ® K[dim G| are isomorphic in Mgxx.

Notice that by 1.2.6 (b), a*[dim G| sends perverse sheaves to perverse sheaves. We denote
by X the exterior tensor product of complexes. We say that a split complex K € DX
(1.2.2) is G- equivariant if all PH'K are so.

Remark. One can define a notion of G-equivariance for complexes K € DX, see [MV,
appendix|. The definition is more complicated. We shall not use it here.

We list a few properties, which are easy to prove. K € MX is a G-equivariant perverse
sheaf.

(a) All sheaves H'K are G-equivariant in the sense of sheaf theory. If G acts trivially on
X then G acts trivially on the H'K;

(b) Any subquotient of K is G-equivariant;

(c) Let f : X = Y be a G-equivariant morphism, Y being a second G-variety. Then all
PH(fiK) are G-equivariant. If L € MY is G-equivariant then so are the PH'(f*L).
1.4.2. Lemma. Let f : X — Y be a locally trivial principal fibre space with group G. Then
K € MX is G-equivariant if and only if there exists L € MY such that K = f*L[dim G|.
First assume that X = G x Y is a trivial principal fibre space, f being the projection. Let
ty = (e,y). If K € MX is equivariant it follows that K is isomorphic to f*i* K, so we may
take L = * K[— dim G]. Then L is perverse by 1.2.6 (b). If X is arbitrary one constructs
L locally and uses a gluing argument (see [BBD, p.65], in [CS, 1.9.3] a somewhat different
argument is given).
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2 Kummer local systems on tori

2.1. Let T be an algebraic torus over k. Its character group is denoted by X. If p is
the characteristic exponent of k we denote by Z(; the ring of rational numbers with
denominator prime to p (so Z(y) = Q if char k = 0). Put

X =X(T) =1, ®2 X/10:1 X,

this is an abelian torsion group without p-torsion.

We consider local systems on T with coefficients in our fixed field E, which we assume now
to be sufficiently large, say E = Q, or C. Fix an isomorphism  of the group p of roots of
unity in k onto the group of roots of unity of order prime to p in E.

2.1.1. Definition. A local system L of rank one on T s Kummer if there is an integer
n # 0 prime to p such that L®" ~ E (the constant sheaf).

The set of isomorphism classes of Kummer local systems is an abelian group KT.

2.1.2. A construction.

Let m > 0 be an integer prime to p. Consider the m** power isogeny m : T — T. It is a
Galois covering whose group is the group ,,T of elements of T whose order divides m. If
z € X define a character xzm of nT by

Xem(t) = $(2(t)) (¢ Em T)-

The character lifts to a one dimensional representation of the fundamental group (T, ¢),
which defines a local system L, ,, of rank one on T'. The following properties are immediate
from the definition:

(i) an,mn = E:,m;

(ii) Lzm = Ly if and only if my — nz € mnX;

(ili) Lgm is trivial if and only if z € mX.

It follows that L, ,, depends only on the class £ € Xofmlez (which we write m™1z)
modulo X. We write L¢ = L m, if necessary we write L¢r.

It is clear that L¢ ® L, = Lesn (€,1 € X), from which we see that L¢ is a Kummer local
system.
If m:T — T is as before we have

(1) mE= @ L
¢eX,mé=0

Let ¢ : T — T' be a homomorphism of tori. The induced map of character groups defines
a homomorphism ¢ : X(T") — X(T).

2.1.3. Lemma. For ¢ € X(T") we have *Leqr = Logr.

The proof uses that if a local system L on T" is defined by the representation p of m; (T, €),
the local system ¢*L comes from the composite of p and the canonical homomorphism
m (T, e) = m (T, €).

2.1.4. Proposition. Let £ be a Kummer local system on T. There is a unique £ € X such
that L ~ L¢.

Corollary. £ — L¢ defines an isomorphism X > KT

L is defined by a one dimensional representation p of m;(T,e) whose image lies in the
group of m** roots of unity, for some m prime to p. Then Ker p defines a Galois covering
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7 : X — T such that the corresponding extension of function fields k(X)/k(T) is cyclic
of degree dividing m. By Kummer theory there is z € k(T) such that k(X) = k(T)(z=).
Since 7 is unramified, £ cannot have zeros or poles in T, if X # T. It readily foliows that
z is a character of T. But then the m-isogeny of T factors:

T-X53T

and it follows that £ is a constituent of m,E. The proposition follows from (1).
We record a few easy properties.
2.1.5. Lemma. If ¢ # 0 then H' (T, L¢) = H,(T,L¢) =0.
It follows from (1) that

H(T,E)=H(T,EY@ @ H(T, L),

££0,m¢=0

and similarly for H,. The lemma follows.
2.1.6. Lemma. The dual DL is isomorphic to L_¢[2dimT).
Here L is viewed as a complex concentrated in dimension zero.

2.2 Weights of torus actions

Let Z be an algebraic variety with a T-action a : T X Z — Z. If £ is a Kummer local
system on T then L[d] is a perverse sheaf on T, where d = dimT.

2.2.1. Definition. A perverse sheaf K € MZ has weight L for the T-action a if a*K|[d] is
isomorphic to L{d] R K, as perverse sheaves on T x Z.

If £ is constant this just means that K is T-equivariant in the sense of 1.4. If £ € X is
such that £ =~ L (2.1.4) we also say that K has weight .

Let m be an integer prime to p. In the previous situation define a T- action a,, on Z by
am(t,2) =t™2(t € T,z € Z).

2.2.2. Lemma. A semi-simple perverse sheaf K on Z i8 anm-equivariant if and only if each
trreducible constituent K; of K has a weight &; € f(, with mé; = 0.

The a,,-equivariance of K means that

(m x id)*a*K|[d| ~ E[d| K K,

m : T — T being as before. To prove the only if-part use that for any irreducible perverse
sheaf K on T X Z there is an injective morphism of perverse sheaves

K — (m x id).(m X id)*K.
The rest of the proof is easy.

Now let G be a connected linear algebraic group and ¢ : G — T a homomorphism.
Let a: G X Z — Z be a G- action on Z.

2.2.3. Definition. A perverse sheaf K € MZ has weight L (relative to a and p) if
a*'K[dim G| =~ ¢*L[dim G] R K.

If £ ~ L, we also say that K has weight ¢.

2.2.4. Lemma. In the previous situation assume that U is a locally closed, smooth, irre-
ducible G-stable subvariety of Z. Let L be a local system on U such that the perverse sheaf
L[dimU] on U has weight ¢ € X. Then the perverse extension I(U, L) has weight ¢.

The notation is as in 1.2.3. The proof of the lemma is straightforward. In the situation of
the lemma we shall say that £ has weight ¢.
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2.3 Finite ground fields

Assume that k is an algebraic closure of the finite field F, and that T is defined over F,.
Let F be the Frobenius morphism of T (1.3.1). The fixed point set TF of F in T is the
group T(F,) of Fg-rational points.
F operates on the group KT of Kummer local systems (via F*), as well as on X and X.
2.3.1. Proposition. The fized point group (KT)¥ is canonically isomorphic to the char-
acter group Hom (T¥,E*) of TF.
By 2.1.3 and 2.1.4 we have that (KT)F is isomorphic to the fixed point group X¥. Using
that F has no fixed points on X we see that XF ~ X/(F — 1)X. The latter group is
well-known to be isomorphic to Hom (TF,E*) (the isomorphism comes from the homo-
morphisms

TF x X —ud E*,

the first one being induced by the pairing T x X — k*).

The elements of (KT)¥ are represented by the £¢ with F¢ = ¢. These L come from a sheaf
on the scheme T; over F, (see 1.3.1). There is a canonical isomorphism ¢ : F* L, ~ L.
2.3.2. Lemma. Let £ € XF , m¢=0.Ifac T(F,) then o acts on the stalk (L¢), by scalar
multiplication with an m'™* root of unity €(£). We have e(—¢) = €(¢) .

Let L¢ = Lzm, as in 2.1.2. We can view (m.E), as the vector space of E-valued functions
on S = {s€T|s™=a}. The group ,,T and F act on it. Fix s, € S, then S = ,,T.s.
Define f € (L¢)q to be the function S — E with f(tso) = ¢(z(t)) ™ (t €En T). If to € T
is defined by F'sy = tgso then for t €,, T

(pf)(tso) = f(F(tso)) = f(F(t)toso) = $(z(F(t)t0)) ™ = (z(tto)) "

It follows that @ f = ¥(z(to))~1f, which proves the first statement. The last point is easy.
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3 Some algebraic tools

We shall have to deal with Kummer local systems on a maximal torus in a reductive group.
In this situation we require some algebraic tools, to be discussed in the present section.

3.1 Tori in reductive groups

3.1.1. Assume that G is a connected reductive linear algebraic group over k. We assume
that the torus T of the previous section is a maximal torus of G.

Denote by R the root system of (G,T) and by W = NgT /T the Weyl group, NeT being
the normalizer of T in G. Then W acts on T, X and X.

Let £ be a Kummer local system on T'. Put

Wry={weW|wLl=L}

If £ = L¢ (¢ € X) then by 2.1.3 we have w* L¢ = L,+¢ whence
Wi, = {we W |wé = £,

We also write W; for this group. If L¢ = L,m (2.1.2) then

(1) Wi={weW |wz—zemX}.

Let Y be the dual of the character group and <,> the pairing X XY — Z. fa € R
denote by s, € W the corresponding reflection. So for x € X

sax =x— < x,a" > a,

where aV is the coroot defined by a.
With the previous notations, put

R =R¢={a € R|<z,a" >€ mZ}

and let W = W, be the subgroup of W; generated by the s, with a € R¢. If B¢ # ¢ it is
a root system (in a suitable vector space), with Weyl group W,. We recall the following
known lemma.

3.1.2. Lemma. If G has connected center then Wy = We, for all £ € X.

If ¢ = m~lz + X, as before, it follows from (1) that the stabilizer of m~'z € R® X in the
semi-direct product W x X is isomorphic to Wé Let @ be the subgroup of X generated
by R. If the center of G is connected then Q is a direct summand of X. It follows that
then W; is the stabilizer of an element of R ® Q in the affine Weyl group W x Q. It is
well-known that such a stabilizer is a reflection group (see [St2, p.10]). This implies the
lemma.

Notice that 3.1.2 implies that

2 We={weW |wz—zemQ}.
It is clear that if @ € R¢ then s, € Wé The converse is not always true, but does hold if

1
;a ¢ X.
3.1.3. Lemma. If w € Wy then L¢ is equivariant for the action of T on itself given by
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(t,u) =t (wt)u (t,u € T).

This is consequence of 2.1.3.

Let Z = Zg be the center of G. The T-action of the previous lemma induces an action of Z
of L¢, associated to the trivial map of T. Let L¢ = L,m be as in 2.1.2. Then m™(wz —z)
is a character y of T and one sees that the Z-action is induced from an action of the finite
group Z/Z° (Z° denoting the identity component), given by multiplication in the stalks
by ¥(y(2)), for z € Z. Notice that y(z) = 1 if z € Z°. Also notice that by (2) we have
y(2) = 1 if w € W,. We have thus attached to w € W; a homomorphism of Z/Z° into E*.
3.1.4. Lemma. This defines a homomorphism W; — Hom (Z/Z°,E") whose kernel is
We. In particular, W; /W, is isomorphic to a subgroup of Hom (Z/Z°, E*).

We skip the proof of this well-known fact. See [CS, 11.1], or [St 2, no.9] (where closely
related results are established).

3.2 The groups W;

The results which follow are based on those of [CS, no.5]. The notations are as before.
3.2.1. Let R* be a system of positive roots of the root system R of 3.1.1. We denote
by D the corresponding basis of R and by S the generating set of reflections {s,)aep. Fix
¢ € X. Then R} = R*N R is a system of positive roots in R and D¢, S¢ have the obvious
meanings. (Notice that these are not necessarily subsets of D resp. S.)

We denote by £, £; the length functions on W resp. W, defined by S resp. S¢ and by <, <,
the corresponding Bruhat orders.

3.2.2. Lemma. Each coset wW; contains a unique element w* of minimal lenght charac-
terized, by w*R} C R*.

The easy proof is omitted.

Let W; be the set of minimal elements of the lemma. We can then write any w € W
uniquely in the form w = w*w,;, with w* € W¢, wy € W,. We then put £;(w) = £¢(w,).
Notice that £¢(w) equals the number of a € R} with wa € —R*.

Let 8 = (s1,...,8,) be a sequence of elements in S U {e}. If s; # e write s; = s,,, where
oa; €D.Fort=1,...,r put

i = Sp..e8i418iSit1 -« Spy

and let
I ={i€[1,r]|ti € W — {e}},

w=w(s) =8...8.

3.2.3. £e(w) <| Iy |, with equality sf £(w) = £(s1) + ...+ £(s,).

If « € R} and wa € —R* then there is ¢ € [1,7] such that s; # e and a = s,... 810
(compare with (B, p.14]), and then ¢; € W¢. This gives the asserted inequality, since £¢(w)
equals the number of such roots a. If £(w) = £(s;) + ... + £(s,) the ¢; # e are all distinct
[loc.cit], which implies the last point.

Let m be the largest number in I; (assuming I; # ¢).

3.2.4. Lemma. t,, € S¢.

An equivalent statement is : there is only one a € R€+ with t,,a € —R*. Assume « has
this property. So s,...Sm+18m8m+1-..S,@ € —RT. If 8;8;41...8,a € —R* for some i > m
we can find such an ¢ with s;41...8,a = a; (take the largest), whence t; € W, a contra-
diction.
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If SSmt1.-.8,a € R* there is ¢ > m such that s;...Sm+18mSm+1...8-a = @i41. Then
tm@ = —S8,...8i420i41 € —Rg and we get the contradiction t;;, € Wp. It follows that we
must have sp41 ... 8,a = a,, and « is unique.

If J C [1,7] is a subset such that s; # e for all i € J denote by s; the sequence ob-
tained from s by replacing by e all s; with ¢ € J. Write I = I,;. Write w = w*w;, as before.
3.2.5. Lemma. w* = w(sy).

We prove this by induction on | I |, the statement being true for I = ¢ by 3.2.3. K I # ¢
let m be as in the previous lemma and put 8' = 8{m), J = Iy. Then wt,, = w(s') and
| J <] I'|. We have w* = (wt,)* = w(s')* = w(s)), by induction. Since s} = s; the
assertion follows.

One now constructs the decomposition w = w*w; in the following manner. Write ¢,, =

o(s). Let I = (my,...,m,), where the m, are increasing (so m, = m as in 3.2.4). Write

J; = (mi1,...,m,) and define o; € S¢ by 0; = o(s5,)

3.2.6. Proposition.

(i) w = w*w; with w* = w(sr),w; =01...0,;

(i) If e(w) = £(s1) + ... + £(s,) then £e(w) = a.

The first point follows from 3.2.4 and 3.2.5 and the second one from 3.2.3.

Corollary. £(w) = £(w*) + £¢(w) (mod 2).

The next result is another consequence of the preceding lemmas.

3.2.7. Proposition. Let s€ S, w e W.

(i) If wsw & W then £e(sw) = l¢(w) and (sw)* = sw* ;

(ii) If wlsw € W¢ and sw > w then (sw)* = w* and £¢(sw) = £¢(w) + 1.

Moreover (w*)"1sw* € S;.

To prove (i) we may assume that sw > w. Let 8 = (sy,...,8,) be a reduced decomposition

of w. Then s' = (s,sy,...,8,) is one of sw. If w™lsw ¢ W, then (with the previous

notations) | Iy |=| Iy | and the first part of (i) follows from 3.2.3. The second part follows

by applying 3.2.5. The proof of (ii) is quite similar.

3.2.8. Lemma. Let s be as before. If w(s) € W; and J C I, then w(ss)eWy.

It suffices to consider the case that J has one element. If I = (m,,...,m,) as before then
w(sy) = w(8)tm, € w(s)We,

whence the lemma.

3.3 Hecke algebras

We shall now introduce an algebra which generalizes the Hecke algebra of W.
Let O be a W-orbit in X. Denote by K = Ko the free Z[t,t™] -module on O x W, with
canonical basis e¢. (£ € O,w € W).
3.3.1. Theorem. There exists a unique structure of Z[t,t~]- algebra on K such that for
&n,e0,z,yeW,s€ 8
(a) egzeny =0if &# yn,
(b) ey sny = en;v ifsy>yors &'.VVW,
= (t2 = 1)epy + t2enuy if sy <y and s € Wy,
(¢) € =X ¢eo ¢, is the identity element.
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Moreover we have

(d) esgz€es = €gif z,8 > z0rs g We.

= (2 —1)egs +tlegqss if s <z and sEWe.
(€) eynzeny = €q,zy if L(zy) = £(z) + £(y)-
Notice that if £ = 0 the algebra K is just a Hecke algebra of the Weyl group W (see for
example [B, p.55]). The proof of the theorem, which we indicate below, can be given along
the lines sketched in [loc.cit].
Introduce endomorphisms P, and Q¢, (£ € O,s € S) of the module K defined by

Peo(eny) = 0if EFyn,
Pyps(eny) = enuif sy>yorsg Wy,
= (12— 1),y +tey,y if sy <yand s € W,

and
Qeoleny) = 0if £ # sm,
Quns(€ny) = €mysifys>yorsgW,,
= (t? = 1)esmy + t2eum,ys if ys < y and s € W,,.

One checks that for ¢§,n € 0,s,t €S

(3) P€.:Qn,t = Qn.tPe,c

(this uses the following fact : if z € W and sz > z,zt > z resp. st < z,zt < r and
£(szt) = £(z) then sz = zt). Let z € W and let 8 = (sy,...,s,) be a reduced decomposition
of z, where s; € S. Then

P’!n-‘rf"l e P‘rf"v—lpe»‘r (eﬂ,e) =0 if n # E
= €tz if n= fy
and
Qe Qs s, -+ Quas, 601 (€n,e) = 0if 9 # z€
= e, if n = z¢.
Putting € = Y ¢cp €¢,e We have
(4) €tz = Puy a0y - Peo, (€) = Qepa, - Qus..onton (€)-

We may now define for r = I(z) > 0

Peo = Puy.sngor - Pesr 1@tz = Qeor -+ - Qs -

To show that, for example, P, does not depend on the choice of the reduced decomposition
s write ey, as a product of Q's applied to € (see (4)) and use (3) and (4).
Define P, and Q¢ by
Pee(eny) = 0 if &#yn,
eny if E=yn

and
Qecleny) = 0 if &€#mn,
eqy if E=m.
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Then eg, = Pgz(€) = Q¢,z(€) for all ¢ € O,z € W, moreover P and @Q,, commute for all
&,n € 0,z,y € W. Define a product on K by

e¢zny = Pea(eny) = Quylees)-

This has the required properties.
We shall extend to K a number of properties of ordinary Hecke algebras.
3.3.2. Lemma.
(i) Let ¢ € O,z € W. There ezists a unique linear combination &, of the ey, € K with
yn = z& such that
€ze,z-1€¢z = €¢c;

(ii) There is a unique automorphism u — @ of K sending e¢, to &¢.(6 € O,z € W) and t
tot™1.
If z € S U {e} this is proved by a computation. One finds
€e = €ge
€, e, if s€ S, s gWe,
= tle,+ (872 —1)ec. if s€ S, s €W,

We now proceed by induction on £(z). Let z = sy > y,8 € S. Then e,¢ -1 = €ygy-1€2¢,.
Using the previous formulas and the induction hypothesis one finds that &, = &y .&¢y,
and (i) follows. We omit the straightforward proof of (ii). For £ = 0 the lemma reduces
to a familiar result from [KL].

On the group W we have the Bruhat order <; (3.2.1). We extend it as follows. Let
z,y € W lie in the same right coset of W,. Write z = z*z,,y = z"y;, where z;,y; € W;
(see 3.2). We now write z <, y if z; <¢ v1.

3.3.3. Lemma. Let £ € O,z € W. There exists polynomials with integral coefficients
Reyz(y € W) such that

&ee =t 3 Reya(t")ecy
v

We have R, = 1. Moreover, Ry, # 0 if and only if y € zW, and y < z. In that case
Ry, has degree £¢(z) — £e(y).

This is similar to results of [KL, §2]. We have the following inductive formulas. Let
z = sv > v, then

Reye = Regyoif visvgWeorsy<y,
(1 =T)Reyy + TRey if visv € Weand sy > y

(T denotes the indeterminate).
We next introduce Kazhdan-Lusztig elements in K.
3.3.4. Theorem. Given £ € O and z € W there is a unique element c¢, in K such that
Cez = C¢pz and
cee =t 37 Pea(t)ecy,
yEzW,
y<¢z

with Pgyy € Z|T), Peze = 1 and deg Pgy, < 1(Le(z) — Le(y) — 1) if y € Wi,y < =.
The proof is similar to the one of Th. 1.1 in [KL]. We omit the details. One has the
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following formulas, which provide an inductive definition of the elements c¢; :

Cée = Cges
Ces €¢s if s é We,
Ces t_1(¢€', + Ce’e) if s We.

Let z = sy > y(s € S), then

Cex = CyeoCey if Yy 1oy & W,
(5) Cexr = CyeaCey — Y ne(zy)ees if yTlsy € W,
zEYWe
3<¢y,83<3

where p¢(z,y) is the coefficient of t%W)-%(*)-1 in P, (t?).
This leads to the following inductive formula for the Kazhdan-Lusztig polynomials P,
where z =sv > v(s € S):

(6) Peyp = Peyyo if vsv & We,
Pévz(tz) + )M ”'é(z’”)tte(z)—t‘(x)th(tz) =
z€VWe
(7) 2<ev,08<s

_ | Peao(t?) +t7Pg(t?) o 4 sy<y
B { tzpf.'v.v(tz) + Piw(tz) ifv™ev € W€ and sy>y -’

We also record the formulas

Cealny = Oif £ # yn,
Cmatny = (t+tV)ey, if y~lsy €W, and sy <y,
cezCes = (t+t Ve, if s€ Weand zs < z.

Fix £ € 0. We use the notations of 3.2. We shall see that the Hecke algebra X of (W, S¢)
is a subalgebra of K.
3.3.5. Lemma. Leto € S¢,z € W.

i) ecr€c0 = eguoif Le(zo) > Le(z),

£2C4, & (3 3
(2 — 1)egs + tlegq, if Le(z0) < Le(2);
(i) If z € Wy then

€to€ez = €goz if le(oz) > ee(.’ﬂ),
= (tz - l)ee,, + tzee'az if te(o'i) < le(z).

Let 8 = (s1,...,5,) be a reduced decomposition of o, with s; € S.
By 3.2.6 there exists a unique m € [1,r] such that

O =S8p...80+15m « - Sy,

it follows that s,...S8m+1 = 81...8m-1.
We now have

€¢,2€60 = €£,2€55...0,6,81 + - - €5, €,8,-166,0, ¢

By the formulas of 3.3.1 we see that this equals

ea,,....c,E,za;...lm_leam.'.l...a,f,am e eé,a' ’
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which equals

Comir.-8r€,281..0mComta...00€,8m41 - - €€ 0, if £81...8m > T81...8m-1

and
((t2 - l)e‘m-f["."f,z‘l...‘m—l + tzel.,..n.‘.c,(,zsl...a,..) ec,..+3...:,€,c...+1 e e€,a, lf
Z81...8m < ZTS1...8m-1.

Since $1...8m-1 = 8y ...8m+1, another application of the formulas shows that
€¢z€¢0 = €¢,zo TESP. (tz - l)ee,, + tzee,m.

The condition zs;...8, > £81...8m-1 is equivalent to 3 > 0, where 8 € Rg' corresponds
to 0. Hence this condition is equivalent to l¢(zo) > l¢(z). This proves (i), and (ii) is proved
similarly.

The next lemma is proved in a similar fashion (using 3.2.3).

3.3.6. Lemma. Let z* € W{. If y € W we have

€ze¢yCezs = CLyzty €Lz Cy-igy = €Y1y

In particular, if T, € W, then ez, = €¢zv€gs,.

The following result is a consequence of 3.3.5 and 3.3.6.

3.3.7. Proposition.

(i) The elements e¢, with z € W, span a subalgebra X¢ of K which is isomorphic to the
Hecke algebra of We;

(ii) The elements e¢. with z € W span a subalgebra }; of K. As a Z[t,t™']- module it is
isomorphic to the tensor product of }¢ and the group algebra of the group W¢ N Wi.
Notice that we have e¢.e¢, = €¢qy if 2,y € W} and at least one of the elements z,y lies in
W nW

3.3.8. We also see that the automorphism u — @ of K stabilizes ¥¢ (and ¥;) and induces
the automorphism of X introduced in [KL]. It follows that for z € Wy, the element ¢ of
3.3.4 is the corresponding Kazhdan-Lusztig element of the Hecke algebra X;.

We state a few properties which readily follow from the preceeding observations.

Let z,y € W,y € zW,. Put = = z'z,,y = z*y; with z* € W¢, 21,51 € We. Then

C¢z = €£a°Cezy

and
Peyz = Py, z:-
It follows that the polynomials P¢,, can be described by the Kazhdan-Lusztig polynomials
for the Hecke algebra X¢.
The next lemma will be needed later (5.1.10 and 11.3.17). The proof offers no difficulty.

3.39. Lemma. Let y € W¢. The map f : egz > €ygyey—1 defines an isomorphism
Hg — X e, commuting with the bar automorphism. We have f(u) = eg uéye,—1 (u € Xg).
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4 Some perverse sheaves on a reductive group

The results of this section are variants of the ones contained in the first chapter of [L1].

4.1 The perverse sheaves A;

4.1.1. We use the notations of 3.1 and 3.2. So G denotes a connected reductive group over
k and T a maximal torus in G. Fix a Borel subgroup B of G containing T' and assume
that the system of positive roots R* of 3.2 is the one defined by B. The unipotent radical
of B is denoted by U.

For a € R denote by z, : k = G a one parameter addivite subgroup of G associated to
oa. Put X, = im z,. If w € W we denote by w € NgT a representative, for the moment
chosen arbitrarily. The subgroup of U generated by the X, with « € R*, —w™la € Rt is
denoted by U,,. By Bruhat’s lemma, G is the disjoint union of the locally closed, smooth
subsets G,, = BwB. Also, the closure G,, is the union of the G, with z < w.

The map U, x T x U — G,, sending (u,?,u') to uttu' is an isomorphism of varieties.
Define a morphism pr : G,, — T by pr(uwtu') =t.

If £ = L¢ is a Kummer local system on T then pr*L = L is a (tame) local system on
G,. We denote by Ag, the perverse extension of L¢y to G (see 1.2.3). Its support is
contained in G,,.

It is clear that A¢, is determined by w up to isomorphism. If we are only interested in its
isomorphism class we shall write A¢, (and also L¢4).

We shall next establish some equivariance properties. The group B operates on G by left
and right translations, and also by conjugation.

4.1.2. Lemma.

(i) Agw has weight w¢ for left B- action and weight —¢ for right B- action;

(ii) If wé = € then Ag, is equivariant for the conjugation action of B;

(ili) DAgw =~ A_g .

The notion of weight is as in 2.2.3. The assertion (i) follows from 2.2.4, as the local system
L¢ .y clearly has the properties required in that lemma. Then (ii) is a formal consequence
of (i) and (iii) follows from 2.1.6.

We next consider the restriction to G, (z € W) of the cohomology sheaf H'(A¢u)-

4.1.3 Lemma.

(i) H(Agw) le. ®L-¢,; 18 a constant sheaf;

(ii) If H(A¢w) lg.7# 0 then z€é = wé and z < w.

$ = H'(Agw) |e. is a constructible sheaf on G, ~ U, x B which is U,-equivariant for
left U,- action and has weight —¢ for right B-action. These facts imply that S is locally
constant and that § ® L_¢; is constant, whence (i). They also imply that $ has weight
z§ for left B-action. But by the previous lemma, S has weight w¢ for B-action. Hence
z& = wé. That § # 0 implies £ < w is clear. The lemma is proved.

4.1.4. The Borel group B acts on G x G by b(g,h) = (gb~1,bh). A quotient G >B< G exists

B
and the product map G x G — G induces a proper morphism 7 : G X G — G. More
generally, if V and Z are right resp. left B-stable locally closed subsets of G there exists

B B
a similar quotient V' X Z and a morphism V X Z — G, also denoted by #. If V and Z are
closed this is a proper morphism.
Let £ € X, z,y € W. It follows from 4.1.2 that the exterior tensor product A¢: XA -¢; is
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an irreducible perverse sheaf G x G which is B-equivariant, for the action just considered.
It follows from 1.4.2 that there exists an irreducible perverse sheaf A¢;y; (or Ags,) on

G i G such that Ag; X A -1, is the pull-back of A¢:; (up to a dimension shift).
We shall sometimes identify Ag;® Ay-1¢, resp. Ags:y with its restriction to G x G, resp.
G, % G,.
We put

Tu(Agsy) = Ags * Ay-rgs
this is a semi-simple complex on G, by the decomposition theorem (1.3.2). The product *
has the obvious associativity property.

The restriction of Ag;y to G, X Gy is of the form L¢;;[dimG, x G,), where L¢;  is a
local system. Its pull-back on G. X Gy is L¢: ® Ly-1¢4. If convenient we write L¢,. for
Lesie

4.2 The cohomology sheaves of A,

4.2.1. We first collect a number of auxiliary results. Let w € W, s € S. So s = s, with
a€D. 5

We may take G, X G, = X, X G,, with 7(u,g) = uég (v € X,,9 € G,,). There are two
cases: B

(a) sw > w. Then 7 defines an isomorphism G, X G, = G,, and one checks that
o Leiw = Luw-1¢4iw (viewing $1b as a representative of sw).

B
(b) sw < w. Now 7(G, X Gy) = Gy Il G,v. Moreover, with obvious notations, G, g Gy =~

(Gs X G,) X G,y. This reduces the analysis of the geometric properties of = to the case
w = 8, in which case the analysis can be carried out in a group of semi-simple rank one.
We omit the details. The results are as follows.

If g € G, then 77 'g ~ k and the restriction of L¢,w to 7-1g is constant.

If g € G, then 77'g ~ k*. Let Ly = L.m (as in 2.1.2) and define a € Z(,)/Z by
a = m™ < z,0" > +Z (notations of 2.1 and 3.1). Then L, is a Kummer local sys-
tem on k*. Notice that a = 0 if and only if s € W. The restriction of L¢,,. to 771g ~ k*
is isomorphic to L,.

We next consider Ag,.

4.2.2. Lemma.
(i) If s € W the local system L¢, on G, extends to a local system L, on

G, and Ag, = L¢,[dimG,]. We have Ag, x Ag, = Ag,[1] © Ago[—1);

(ii) If s & W the restriction of A¢, to G, = G, — G, 1s zero. We have Asgs * Ags = Ag,e.
G, is a smooth subvariety of G (it is a parabolic subgroup) and G, = B is a smooth divisor
in G,. Applying 1.2.4 (b) we see that Ag, can be given by one sheaf, placed in dimension
— dim G,. If the local monodromy of L, around the divisor G, is trivial, L, extends to a
local system L¢, on G, and A¢, = L¢,[dim G,]. Otherwise the restriction of A¢, to G, is
zero. One checks that the local monodromy of L¢, is trivial if and only if s € W¢. To see
this one uses that for any g € G, there exists in G, a cross section P to G, passing through
g, which is isomorphic to k, such that the restriction of L¢, to P — {g} ~ k* corresponds
to the Kummer local system £, on k*, where b=m™! < z,a > +Z € Z(;)/Z(L¢ = Lam).
We have established the first assertions of (i) and (ii).
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_ B _

If s € W then Ag,, = L¢,,0[dimG, + 1], where L¢,, is the extension of L¢,, to G, x G,
_ B _ _

(the existence follows from the preceding results). Any fiber of 7 : G, X G, — G, is

isomorphic to the projective line and the restriction of L¢,, to it is constant. If follows
that if g € G, we have, putting A = A, ,, that

H‘(F.A), — H"(vr'lg, A) = H:'+dimG.+l(7r—lg, EC.‘,‘)

is one dimensional for : = — dim G, +1 and is zero for all other ¢. Using the decomposition
theorem we conclude that
T A = Ag,[1] ® Ag,l[-1].

B
If s ¢ W the restriction of A = A,¢,, to the complement of G, X G, is zero. It follows
that if g € G,

Hi(m,A), = H:((xg) N (G, X G.), A) =

HiHdmGetl((2-19) N (@, X G.), Lag,e,0)-

Using the facts stated in 4.2.1 we see that this is zero if g € G, or if g € G, t # —dim G,
and is one dimensional ifg € G,, t = —dim G,. It follows that m,A = A¢ .. This proves 4.2.2.

We shall now analyse the perverse sheaves A¢,., using induction on £(w). Let s € S,w € W

~ B - = _'B .
and v = sw < w. Consider 7 : G, X G, — G. Its image is Gy,. On G, X G, we have the
perverse sheaf A = A,¢,,. The inverse image of A on G, x G, is Ay, X A¢y[— dim B].
Using 4.2.2 we see that the inverse image of H*A on G, x G, is

@) H™ 6 (Aye,) @ H'(4¢,).

We denote the rank of the local system H*(A¢,) |gy (see 4.1.3 (i)) by ng.
4.2.3. Theorem.

(i) If H (A¢w) |6.7# O then z € wW;

(i) Let g € G,. Then

dim HY (1 A)y = nugeit1 if wlsw g We, sz < z,
Noz,i-1 8f W lsw & We, sz > z,
Nzvi-1 + Noz,v,+1 ’f wlsw € Wé’ s <z,
= Mpgei-1 1 Nauitl if wlsw € Wé”sz >z

(i) mA = Agw of wlsw € W; and

TA = Ae,w ® ,anz,u—dimG,—lAe,z if wlsw e We;

(iv) Agw is even.

(We have denoted by nB the direct sum of n copies of the perverse sheaf B.)

We assume that the theorem is true if w is replaced by an element of smaller length. Notice
that (i) and (iv) are trivially true if w = .

First assume that w™lsw ¢ W,. We see using (1) and 4.2.2 (ii) that the restriction of A

B . ~ )
to G, X G, is zero and that the inverse image of H'A on G, x G, is L,¢, K H**(Ag,).
Using 4.1.3 (i) we see that the restriction to G, X G, (z < v) of this inverse image is

133



JGM. MARS, T.A. SPRINGER

a direct sum of n,4i+1 copies of Ly¢,s X L¢z. If it is non-zero then z¢ = v¢ (4.1.3 (ii)).
So the restriction of H'A to G, i G, is a direct sum of n,,.y; copies of L;¢,,. Put
V = Hi((r™1g) 0 (G, X Gu), A).

(a) If sz > z then G, i G. ~G,; and L;¢,2 = Ly If g € G,, then (771g) N (G, g G.)
is a point and it follows that dimV =n, ;4. If ¢ € G,; then V =0.

B
(b) If sz < z and g € G,, then (77'g N (G, X G.) ~ k, and the restriction of Lz, to it
is constant. It follows that now

V ~ H(k,H'?A),

which is a vector space of dimension n,4 ;.

B .

If g € G, then (771g) N (G, X G;) = k*. If the restriction of H'A to this intersection is
non-zero then the restriction of H**!(A¢,) to G is non-zero and by induction we obtain
z € vWy. Since w™lsw & W, we have z7'sz ¢ W;. Now 4.2.1 shows that the restriction of

B
Lrgsz to (771g) N (G, X G,) is a non-trivial Kummer local system. We conclude that now
V =0 (see 2.1.5).

Using the decomposition of G, g G, into the locally closed subvarieties G, g G.,G, )'2 G.
(z < v) it follows from the preceding observations by standard arguments that if g €
G:(z < v) the vector space H'(m, A), has dimension n,s,y:+1 T€Sp. M1 if ST < T resp.
sz > z. This proves (ii) if w™lsw ¢ W,.

Using that A, is a perverse extension we see that dim suppH* (7, 4) < —¢ if § # —dimG,,
(see 1.2.3). The same is true for H*(Dm.A), since 7 is proper and DA = A_,¢,, by 4.1.2
(iii). Hence m, A is a perverse extension. Since the restriction of m, 4 to Gy, is L¢[dim G,]
we have 71,A = Ag,. The assertions of the theorem now readily follow.

Next assume that w™!sw € W,. The inverse image of H'A on G, x G, is now f.,el, X

. _ B _ _
H*1(Ag,), where Ly¢, is as in 4.2.2 (i). The variety G, x G, is stratified by the G, Q G.,

] _ B

where z < v. If the restriction of H*(A4) to G, X G, is non-zero then the restriction
of H**1(A,,) to G, is non-zero and we have, again by induction, that z € vW¢, hence
z7lsz € W, and also ¢ = dim G, (mod 2).

The restriction of H*A to G, >B< G, is a direct sum of n;,41 copies of a one dimen-
sional local system L., which extends the local system L,¢,. on G, % G,. Put
V = Hi((r1g) N (G X Ga), A).

(a) If sz > = we have 7 : G, X G, ~ G,;11G, and 7, L,¢, . extends L¢,,. Now V is

a vector space of dimension 7,41 if ¢ € G,z [1G, and ¢ = dimG,, (mod2) and is zero
otherwise.

(b) If sz < z then(r~1g) N (G, % G,) is an affine line if g € G, [I G,, as follows from the
facts stated in 4.2.1, and is empty otherwise. The restriction of £.¢, . to such affine lines
is constant. It follows that now V ~ H?(k, H*-%2A), which is a vector space of dimension
Ngyi-1 if § € G4 [1 G, and 1 = dim G, (mod 2) and is zero otherwise.

_ B _ ~ B
Using the decomposition of G, x G, into the locally closed subvarieties G, X G,(z < v)

134



CHARACTER SHEAVES

we obtain that for g € G, we have

dim H'(r,A), = O0if i #dimG,, (mod2),
= Nggi-1t Nezpiir if 4 = dim G, (mod2) and sz < z,
= Nyzi-1 + Nzpit1 if ¢ = dim G, (mod2) and sz > z.

This proves parts (ii) and (iv) of the theorem.
Using that dim suppH*(A¢,) < —1 if i > — dim G, we see that

dim suppH* (7, A) < —i

for all ¢, and similarly for DA. Hence 7. A is a perverse sheaf. More precisely we find the
following: if the restriction of H*(w, A) to G, is non-zero then dim G, < —1 except possibly
when ¢t = —dim G, and either z =w or z < v,s8z < z.

By the decomposition theorem, 7, A is a direct sum of simple perverse sheaves and the
facts stated above show that m, A has to be as asserted in part (iii) of the theorem. Parts
(ii) and (iv) were already proved, and part (i) also follows readily.

We can now identify the integers n,,;. Put

sz (tz) — tdimG;+tg(w)—¢¢(z) Z nzm’ti
i€z

(this makes sense because of parts (i) and (iv) of the theorem and the corollary of 3.2.6).
Here £; is as in 3.2.
4.2.4. Corollary. F,, s the Kazhdan - Lusztig polynomial Pe,,, of 3.3.4.
Let w = sv, as in the proof of the theorem.
(a) w™lsw & W¢. By 4.2.3 (i) we may assume that z € wW;. It then follows that £¢(w) —
Le(z) = Le(v) —Le(sz) (use 3.2.7 (i)). We conclude from 4.2.3 (ii), (iii) that Fpy = Fiz4. By
an induction on ¢(w) we may assume that F,,;, = P¢,;,. Formula (6) of 3.3 then shows
that sz = Pezw-
(b) w™lsw € W¢. Using 3.2.7 (ii) and parts (ii) and (iii) of 4.2.3 we now obtain that

sz (tz) + Z n:,v,— dimG,-ltle(w)_te(')Fz:(tz) =

sz<sz

_ | Fuzp(t?) +t2F,(t?) ifsz<z
T\ 2 F ey (t?) + Fuo(t?) if sz > z.

That Fy, = P, follows again by induction, using now formula (7) of 3.3.
Notice that by 3.3.8 the F,,, can be expressed in terms of the Kazhdan- Lustzig polyno-
mials for the Weyl group W,.

Next we shall tie up the product * of 4.1.4 with the Hecke algebras of 3.3. Let O = W.¢
and let K be as in 3.3. If A is a semi-simple complex on G of the form

A= @ Apz[nn,q]

n€0 ,zeW

we associate to it the element

h(A) = Z "= Cpzs
n€O0,zeW
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where ¢, ; is as in 3.3.4.
In particular, h(4,z) = ¢y 2.
4.2.5. Corollary. For n € O0,z,y € W we have

h(Aygz * Any) = eyn,zCny-

We use the notations of the proof of 4.2.3. We then have m,A = Ay, * A¢,y. It follows
from 4.2.3 and 4.2.4 that

h(Ayg,s ¥ Agy) = cgo if wlsw & Wy,
= cgw t LoewW, ooz be(T, V) ez if wlsw € We.

The right-hand sides equals cy¢,c¢,0 (see formula (5) of 3.3). It follows that the asserted
formula holds if x € S and zy > y. If s € S and sy < y application of the preceding
formula for sy and of 4.2.2 readily gives that the asserted formula is true for z € S.
Repeated application of this fact and induction on £(z) now proves the corollary.

4.2.6. Corollary. Let {,n € O,z,y € W. Then c¢,cpy ts a linear combination of the
¢.:(¢ € 0,2 € W) whose coefficients are Laurent polynomials with non-negative integral
coefficients.

This follows from the previous corollary and the decomposition theorem (see 4.1.4).

4.3 Finite ground fields

Assume that k is an algebraic closure of the finite field F;. As before, F' denotes a Frobenius
morphism.

4.3.1. Assume that G is defined over F,, and that T and B are defined over F, and that
T is split over F,. Let £ € X be F-stable. This means now that (g — 1) = 0 (since F
operates on X by multiplication by g).

We may and shall choose the representatives w of the Weyl group elements in G(F,). We
also assume that for z,y € W with £(zy) = £(z) + £(y) we have (zy) = &y (which can
be arranged, as follows from [Spl, 11.2.8]). It then follows that the local system L of
4.1.1 comes from one on the F - scheme Gy underlying G. The same is then true for the
perverse sheaf Ag . In particular, we have a canonical isomorphism p : F* Ay — Agy.
4.3.2. Proposition. Let z,w € W be such that H'(A¢y) |g.# 0. There ezists a (g — 1)-th
root of unity €, depending on ¢, (w*)' only such that the eigenvalues of p on H*(A¢y); are
all qu(i-l-dimG.)‘

Here w* is as in 3.2.

This emerges from the proof of 4.2.3, if one also takes into account the p-actions. The
root of unity € comes from 2.3.2. We omit the details of the argument. Notice that the
g-powers occuring in the proposition are integral and non-negative.
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5 Character sheaves, definition and first properties

The notations are as in the preceding section.

5.1 Definition of character sheaves.
5.1.1. Consider the action of B on G X G defined by

b.(g,h) = (gb72,bhb™?) (b € B,g,h € G).

A quotient G Xp G exists and the map (g,h) — ghg~' of G X G — G induces a proper
morphism v : G Xg G — G. More generally, if Z is a locally closed subset of G which is
stable for B-conjugation there exist a similar quotient Gx pZ and a morphism GxgZ — G,
also denoted by 4. It is a proper morphism if Z is closed.

Let ¢ Xand w € Wi (ie. w € W and w¢ = ). By 4.1.2 (ii), the perverse sheaf A
of 4.1 is equivariant for B-conjugation. There exists by 1.4.2 an irreducible perverse sheaf
Ag on G x g G whose pull-back to G x G is ER A¢,4[dim G — dim B). Then v, A¢y = Ce
is a semi-simple complex on G. If we are only interested in its isomorphism class we write
C¢w- If necessary we write C¢,, or C¢,,.

5.1.2. Definition. A character sheaf on G is an srreducible constituent of some Cy .

By properties (b) and (c) of 1.4.1 it follows from the definitions that character sheaves are
perverse sheaves which are G-equivariant for conjugation action.

In 5.4 we shall discuss some concrete examples. With the notatlons of [CS] we have
G xp Gy =Yy, G xp Gy =Y, and Cgy[— dimG — L(w)] = KL¢ (see [loc. c1t 12. 1])

B
5.1.3. Similarly to the variety G X G in 4.1.4 one can introduce V, = G x eee >< G (r
factors). The B-action b(gy,...,9,) = (b91,92,---,9-,b7!) on G" induces a B-action on V.
There exists a quotient Y, for the B-action on G X V, defined by

b(g,v) = (gb7*,b.v)

The map G"+! — G defined by (g,91,...,9r) — gg1...9,9~* induces a proper morphism
v : Yy — G. The product map V, — G induces a morphism =, : Y, — G Xp G such that
Yy =7 O Wy

Let 8 = (wy,...,w,) be a sequence of elements in W. Put w = wy...w,. If § € X is such
that w¢ = €, the exterior tensor product on G”

A\uz.‘.w,é,wl X..® Awrf,wr—l Af.\"r

is a perverse sheaf on G", which up to a shift [—(r — 1)dim B] is the pull-back of a
perverse sheaf A on V,. There is a perverse sheaf Ae. on Y, whose pull-back to G x V, is
E X A[dim G — dim B]. We put C¢g = (7). Ae.

B _
We introduce (obvious notations) Ye = Gxp(Gu, X G ) this is a closed subvariety
of Y, and supp Ae s = Y;. We have a proper morphlsm = 75 = ¥ — G, induced by 7,.
Then C¢, is the extension by zero of (vs). (Ae,. lp,) and Cf_, is a semi-simple complex on

G. Similarly, we can introduce Y3 = G X g (G, i Q Gu,)
If all w; lie in S U {e} then ¥; is smooth and then Cgs[—dim B — £(w;) — ... — £(w,)] is
the complex Kot of [CS, 2.8].
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5.1.4. Lemma. The character sheaves are also the irreducible constituents of the various
complezes C¢q, where £ € X,s= (815++58,) with s; € SU {e} and s,...s, € W.

Let A be a character sheaf, which is an irreducible constituent of C,,, for some ¢ € X
and w € W|. Let 8 = (8y,...,5,) be a reduced decomposition of w. It follows from 4.2.5,
using the multiplication rules in the algebra K of 3.3, that A¢,, is a constituent of

(1) Al;...uf.h ¥k A'rf-'r-l * A€.ar'

It follows from the definitions that C¢, = 7. A,y is a direct summand of Cgs = 7. ((7,)s Ag,s),
hence A is a constituent of Cp¢g.

On the other hand, if s is an arbitrary sequence in S U {e} with s;...s, € Wé, it follows
from 4.2.5 that all irreducible constituents of (1) are of the form A¢,, for some w € W
with w¢ = £. We conclude that all irreducible constituents of C¢4 are character sheaves.
The lemma is a conjunction of part of [CS, 2.9] and [CS, 12.7].

Let s = (wy,...,w,) be a sequence in W and £ € X be such that w;...w, € W;. Put
8' = (w,,wy,...,w,—1). Then wow;... w,—y €W, ..

5.1.5. Lemma. C¢g = C,, ¢+

The map (g,91,.-..,9-) — (9972, 9r,915- - - »9r—1) induces an isomorphism ¢ : ¥, — ¥, such
that p,A¢s = Ay, ¢ and that 4, o o = 4,. The lemma follows from these observations.

5.1.6. Let KG be the Grothendieck group of the category of perverse sheaves on G. If
A = ®A;[n;] is a semi-simple complex on G, with A; € MG, we associate to it the element

X% (4) = x(4) = 2o t7™[4]]
i

of Z[t,t7!] ® KG. We denote by a bar the automorphism of this tensor product induced
by the automorphism of the first factor sending ¢ to ¢~1.
Now let O be a W-orbit in X. Define a Z[t,t~!]-linear map 7 (or 7€) of the algebra K to
Z[t,t"'| @ KG by
X(Cew) if wé=¢,
=0 if we# ¢

Notice that if 8 = (wy,...,w,) is a sequence in W and w; ...w, € W} we have

7(cew)

T(cwz...w'f,wl s cé,\"v) = X(Cf.')

The next proposition gives the basic properties of . The second one shows that it is a
generalized trace function on the associative algebra K. The proposition is similar to [CS,
6.2).

5.1.7. Proposition.

(i) For u € K we have () = 7(u);

(1) If u,v € K then 7(uv) = r(vu).

In (i) @ is as in 3.3. It suffices to prove (i) for u = ¢¢,, with £ € O. The assertion is then
a direct consequence of the relative hard Lefschetz theorem [BBD, p.114, p.165], applied
to the projective morphism v : G xg G — G. It suffices to prove (ii) for u = c¢.,v = c¢y
with ¢ € 0, z,y € W;. The assertion follows from 5.1.5, applied with s = (z,y).
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Let X! be as in 3.3.7 (ii) (¢ € X).
5.1.8. Corollary. If z € W¢ , 0 € S¢ then

T(ego) = (17 —1)7(ecos) +1'7(ece) i Le(0z0) > Le(2),
= 7(egz) if Le(ozo) = Le(z).
In the first case we have e¢0z0 = €¢0€¢:€¢0 and
T(egoze) = T(€foe2) = (8* — 1)7(egoees) +t*7(egs),

by 3.3.5 and 5.1.7 (ii). The asserted formula follows.

To prove the second formula observe that if £¢(0z) > £¢(z), €¢(ozo) = L¢(z) we have
€¢ozo = €06z and apply 5.1.7 (ii).

The corollary can be viewed as a version of [CS, 11.2 (b)].

5.1.9. Lemma. Let w € W,y € W;. Then C¢o = Cygyuy-1-

We have x(Cyeyuy—1) = T(€cyCentyey—1) = T(Epe1€60cen) = 7(cgw) = X(Cew) , by 3.3.9,
5.1.7 (ii) and 3.3.2. This implies the assertion.

The following result is a consequence of 4.1.2 (iii).

5.1.10. Lemma. DCe,w = C—f,w-

5.2 Some invariants of character sheaves

We denote by G the set of isomorphism classes of character sheaves of G and by G(¢)(¢ €
X) those coming from some C¢,, with w € Wy.

5.2.1. Lemma. Let ¢&,n € X withn g W¢. Forz € Wi,y € W, we have
H,(G,C¢:®C_p,y) =0.

Write ¥, = G x5 G,,Y, = G xp G,. We have 4, : ¥, = G, the restriction of 4. Let
Y.y, C Y. x Y, (resp. Y., C Y, x Y,) be the inverse image for (v.,7,) of the diagonal in
G X G. The assertion of the lemma is equivalent to

HQ(Yz.vvgt.z X *’i—n,v) =0.
Now Y., is stratified by the Y., with v < z,v < y and it suffices to show that
Hc.(Yu.m A~€.z X ‘i—mv) =0

for such u,v. By 4.1.3 (ii) the restriction of je,, by /i_,,,,, to Y, is non-zero only if u§ =
z€,vn = yn. Using also 4.1.3 (i) we see that it suffices to prove that

H;(Yz,w ﬁé.z P ﬁ—n,v) =0,

&,n,z,y being as in the lemma, fe,, denoting the restriciion of fie,, to Y, etc. Projection
on the first factor determines a morphism G x G — G/B, whence a morphism o : ¥, —
G/B x G/B. It suffices to prove for a € G/B x G/B that

H (e 'e,fe,RE_,,)=0

and, moreover, it suffices to do this for representatives a of the G- orbits in G/B x G/B,
so for a = (B, wB), where w € W. Then

e la={(g,h) € G. X G, | g = wh(w)™}.
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But now o la is a product of the maximal torus T and another variety, such that the
restriction of fe,, X ﬁ_,,,, to o 'a corresponds to the exterior tensor product of the Kum-
mer local system L¢_,-1, on T and a constant sheaf. Application of 2.1.5 now gives the
desired vanishing of cohomology.

5.2.2. Theorem. Let &n GA}A{.

(i) If n € W¢ then G(€) = G(n);

(ii) If n € WE then G(&) and G(n) are disjoint.
Let s € S,s ¢ W;,w € Wg. By 5.1.5 we have

C&(','y‘") = Cle,(a,w,a)
It follows from 4.2.5 and 4.2.2 (ii) that

CE.(l.a,w) =Ceu-

Using again 4.2.5 we see that any constituent of Cyg(sw,s) lies in G(s€). It follows that
G(¢) c G(s¢). This is clearly also true for s € W;. We then conclude that G(¢) c G(wé)
for all w € W and (i) follows.

(ii) is a direct consequence of 5.2.1, 5.1.9 and 1.2.5(ii).

5.2.3. Let A be a character sheaf on G, which is an irreducible constituent of C¢,,, where
e X,we W¢. Let Z be the center of G and Z° its identity component. Then Z acts on
G by left translations (or right translations, which is the same). It follows readily from
the definitions that A has a weight for this Z°- action in the sense of 2.2.1. The weight is
the image of ¢ in X(Z°).

5.2.4. In the previous situation, Z acts trivially on G by conjugation. It follows (see
property (a) in 1.4) that there is a homomorphism of the finite group Z/Z° into the
automorphism group of our character sheaf A, which is E*. In other words, there is a
homomorphism « : Z/Z° — E* such that the action of Z/Z° on the stalks of H4 is given
by ~.

If A is a constituent of C¢,, as before it follows from the definitions that ~ is as described
in 3.1 (before 3.1.4).

5.2.5. Proposition. Let ¢ € X. There is a map G(§) — W¢ /W such that the image
of the isomorphism class of the character sheaf A is wW, whenever A is a constituent of
Ceuw(w e Wé)

We have an injective homomorphism « : W;/W; — Hom (Z/Z°,E") (see 3.1.4). The
preceding remarks lead to a map 8 : é’(ﬁ) — Hom (Z/Z°, E*) and one shows that im § C
im a. So we can define a map G ¢ — Wé /We, it has the required properties.

5.2.6. Corollary. Let z € W. Then é(zf) = C:‘(f) and the map of 5.2.5. for z£ s the
composite of the map for £ with the bijection W;e/er — Wé/We defined by w — z 'wz.
See [CS, no.11] for results of this kind.

5.3 Finite ground fields

We now assume that we are in the situation of 4.3.1. We write GF for G(F,) etc.
5.3.1. If £ € X, F¢ = £ then the complex C¢ y of 5.1.1, where ¥ is as in 4.3.1, comes from
a complex on the Fy-scheme Go. By a theorem of Deligne [D, p.248], C¢ ,; is pure of weight
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dim G + £(w).
We denote by ¢, the characteristic function of C¢,; (see 1.3.4), which is a class function
on the finite group GF. It can be described in terms of an explicit representation of GF
and the Hecke algebra )¥{. We shall review this description, without going into the details
of the proofs (for which we refer to [CS, no.13] and [HK]).
5.3.2. The element ¢ € X defines a character ¢ of TF, according to 2.3.1. If ¢ = (¢ -
1)"'z + X then for t € TF

o(t) = ¥(=(t)),
with ¢ as in 2.1.2.
Consider the vector space V,, of functions f : GF — E such that for g € GF,t € TF,u € UF

flgtu) = fg)e(t)™".

Then GF acts on V,, by left translations. The representation p of G¥ thus obtained is the
one induced by the character BF — TF % E* of BF. If n € (NT)F has image in W}
define the endomorphism 8, of V,, by

(6n1)(9) = U" | > f(h) (9 €G").

hEGF, g~1heUnU

Then 0, commutes with left translations. In fact the 8, (w € Wé) span the commuting
algebra of p.

Let w = w*w,(w* € W¢,w, € W), as in 3.2.

5.3.3. Proposition. There ezists a choice of representatives (w) in G¥ such that for
geGrF

Ve (g) = (—1)8m E+4v) 2 Peyu(q) g e)-t)-tellt 4D T (90,05, V).

yEWWe, y<ew

Here Py, is as in 3.3.4.
Let Y, = G Xp Gu,7w : Y, — G be as before. The restriction of A%,,-, to Y, is a local
system L, up to a shift. One first shows that the characteristic function of the complex
YL is given by

g+ Tr(g04,V,)

(see [CS, 13.4]). Then one uses the stratification of ¥,, given by the Y, (y < w) and 4.3.2
to obtain the proposition.

5.4 Some examples.

The easy proof of the following reduction results is omitted.

5.4.1. Lemma. Let G be a product G1 X G, of two connected reductive groups. The
character sheaves on G are the complezes of the form A; K A;, where A; € C:';(i =1,2).
Next let p : G — G’ be a central isogeny of connected reductive groups. If T is a maximal
torus of G then T' = T is one in G' and we can identify the Weyl groups of (G, T) and
(G',T"). Moreover, ¢ induces a surjective homomorphism ¢ : X(T") — X(T) with finite
kernel.

5.4.2. Lemma.
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(i) If ¢ € X(T"),w € W and w¢ = ¢ then ©4C8e v = Oreker ¢C’g_mw and qp‘Cg; =C§e u
(i) If Ae G is such that the action of ker o on A induced by the action of 5.2.4 is trivial
then p. A is a direct sum of character sheaves of G';

(i) If A' € G' then ©* A is a direct sum of character sheaves of G.

(One should recall here the properties of 1.2.6 (a)).

5.4.3. Lemma. The character sheaves on a torus are the Kummer local systems.

The previous properties can be used to reduce the study of character sheaves to the case
that G is a connected, quasi-simple, simply connected linear algebraic group.

5.4.4. The casew =e.

We have G, = G, = B and for ¢ € X(T) the complex A, is pr* L¢[dimB], where pr is the
projection map B — T. Now v : G xg B — B is Grothendieck’s simultaneous resolution
map, studied at length in [Sl]. The map (g,bd) — pr b induces a morphism ¢ : GxpB - T
and Ag, = 7* L¢[dimG].

It is known that in this situation 4 is a small map in the sense of Goresky-Mac Pherson.
This means that there exists a stratification of G by locally closed, irreducible, smooth
subvarieties (S;)1<i<n such that for z € S; we have

dim~y7 'z < %(dimG — dimS;),

if S; is not dense in G. It then follows from the definition of perverse sheaves that
Cee = "uAg,. is perverse, hence a direct sum of character sheaves (see [Sp 2]). Tak-
ing &€ = 0 we deduce (using the description of irreducible perverse sheaves in 1.2.3) that
E[dimG] is a character sheaf.

In the general case we can describe in the following manner the character sheaves which
occur.

Let Greg be the open subset of G consisting of the regular semi-simple elements and put
Tieg = T N Greg. We can identify 77 }(Greg) With G/T X Treg, such that ~ is the map
(gT,t) — gtg~'(g € G,t € Treg). This shows that v : 47} (Greg) — Greg is a Galois covering
with group W, this group acting by w(gT,t) = (gu™'T,wt). Now § = v.(E R L¢ |r,.,) is
a local system on Greg, and Cy,. is its perverse extension to G (in the sense of 1.2.3). The
local system § is a sum of irreducible ones (as will be shown presently), and the irreducible
constituents of C¢, are the perverse extensions of the irreducible constituents of S. We can
describe § as follows. Let L¢ = L, (see 2.1.2). Consider the map Ypm : G/T X Treg — Gireg
with 4, (9T, t) = gt™g~1. then <,, is a Galois covering whose group is the semi-direct prod-
uct T' =W x,, T of W and the group ,,T of elements of T of order dividing m(W operates
in the natural way). As in 2.1.2, £ defines a character x of ,T. Then § is the local
system on Gye; defined by the representation of I' induced by x. In particular we see that
if £ = 0, the representation in question is the regular representation of W. If W; = {e}
the representation is irreducible, by familiar results about representations of semi-direct
products.

Since the representation is semi-simple, we see that § is semi- simple, as asserted above.
In the case £ = 0, the irreducible constituents of C¢, correspond to the irreducible repre-
sentations of W.

5.4.5. The case of a Coxeter element w.
We use the notations of 3.1.1 and 3.2.1. Write S = (s;,....5,) and let w =s;...5,. Sow
is a Coxeter element of W. We first record the following result.
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5.4.6. Lemma. B B B o

(i) The map 7 : G,, X G,; X ... X G,, = G,, induced by the product map G" — G 1s
bijective;

(ii) Gy is smooth. .

The statement (ii) is equivalent to the smoothness of the Schubert variety G, /B. (This is
well-known). It is a consequence of (i). We sketch a proof of (i).

G,, is a parabolic subgroup of G and the G,;(2 < i < r) are contained in a parabolic
subgroup P of G such that P NGy = B (as a consequence of [B, p.27-28, Th.3]). Now let
9i,9! € G,,(1 <1 <r) and assume that g;...g, = g}...g}. Then g7'¢} € PNG; = B and
similarly g;'¢! € B(1 < ¢ < r). This implies (i).

B B
Now =(G,, X . X G,,) = G, and L¢, determines a local system on G,, X ... X G,,,

B B

which is an open subset of the smooth variety G,, X ... X G,,, whose complement is a
— B B B _B

union of smooth divisors crossing normally. These divisors are G,, X ... X G,,_, X B X

Gaipr %% G,, = D;, say. Let #D; = E;(1 < i < r). The result of 1.2.4 (b) shows
that Ag . is a complex ff_.,,[r + dim B] concentrated in one dimension, where Eé.w is a
constructible sheaf on G,,. To describe it according to 1.2.4(b), we use the following result,
which is proved by a straightforward verification, using 4.2.2. We put L; = £, .

5.4.7. Lemma. The local monodromy of L¢. around E; ts trivial if and only if <
Z,Sp...8ip10f SEmL, fori=1,...,r.

5.4.8. We now consider a particular case. Take G = SL,, and let T be the torus of diagonal
matrices, B the subgroup of upper trangular matrices. Now X = Z"/Z(1,...,1),XV =
{(z1,...,2n) €I"/z1+ ...+ z, = 0}. The roots are the images in X of the ¢; — ¢; (¢ # j),
where (e;) is the canonical basis.

W = S,, operating in the obvious way. We now take s; = (1,i+1)(1 <i<n-1),a
transposition. Then w = s;...8,_; is the cyclic permutaion ¢ — 7 + 1(mod n). Assume
that the characteristic of k does not divide n. We now take ¢ = n~laz + X, where z is the
image in X of O.e; + €3 +...+ (n —1)e, and a is prime to n. It is easy to see that w¢ = ¢
and that W = {e}.

In this situation we conclude from 5.4.7 that fe,w is the extension by zero of L¢,,.

Now consider the morphism v : G Xg Gy, — G of 5.1.1. It is clear from the preceding
observations that, ﬁ€,w denoting the restriction of /ie,.,, to G xp G, (this is a local system),

Cf,w = '7!£€,wa

in particular we see that the right-hand side is semi-simple. We shall briefly describe it
more precisely. Recall that an element g of a connected reductive group G is called regular
if its centralizer Z(g) has dimension equal to the rank of G.

5.4.9. Lemma.

(i) All elements of G, are regular;

(i) Two elements of G, which are conjugate tn G are conjugate by an element of B;

(ili) The centralizer of an element of G,, intersects B in the center of G.

(i) is a result due to Steinberg, stated in [St1, 8.8]. (ii) follows readily from [loc. cit. 7.6,
7.16a and 8.9]. These results hold for arbitrary semi-simple simply connected groups. To
prove (iii) we may in the present case G = SL, assume the element of G, to have the
normal form described in [loc. cit. 7.4b)]. The assertion of (iii) then follows by a direct
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matrix computation.

5.4.10. Proposition. (G = SL,). H(C¢y), # 0 only if g is a regular unipotent element
times an element of the center of G and i = —n? + n.

Onmne knows that the centralizer of a regular element of SL,, is abelian. It suffices to prove
the proposition under the assumption that Z(g) C B. We have

Hi(CE,W)a = H:('y_lg, ﬁ€.W)’

where fe,,., is the restriction of the complex /ie,‘,, to G xg G,. It now follows from 5.4.8
that v~ 1g ~ Z(g)/Z (Z denoting the center of G). If g is not unipotent modulo Z then
Z(g) contains a non-trivial torus and the restriction of L¢.w to it is non-trivial. By 2.1.5 we
have H¥(C¢w), = 0. If g is unipotent modulo Z then 4~ g is an affine space of dimension
(n — 1) and we have Hi(y7lg, ﬁe,,,,) = E if 1 = —n? + n and = 0 otherwise.

Now let U be set of regular unipotent elements of G. It is a conjugacy class in G. If g€ U
then Z(g) = Z(g)° x Z. It follows that for any injective character x : Z — E* there exists
a G-equivariant local system (for conjugation) £, on U, which is a direct summand of
the direct image of the constant sheaf under the map G/Z(¢)° — G/Z(¢) = U (a Galois
covering with group Z).

5.4.11. Corollary. The restriction of C¢,, to U is the perverse extension I(U, L,).

This follows from 5.4.8. We find a similar result for the varieties zU(z € Z).

5.4.12 The case of SL,.

Now consider the special case G = S Ly, when char k # 2. We now have X= Q/Z (resp.
1,)/1). If £ € X and 2¢ # 0 then Cg, is a character sheaf, as follows from the results of
5.4.4. The same results give that if 26 = 0 we have that C¢, is a sum of two character
sheaves. By 5.4.10 for £ # 0,2¢ = 0 the complex C¢, is a sum of two character sheaves,
concentrated on the set of regular unipotent elements and its negative.

Finally, Co, = E[4] ® E[2] = A[1] ® A[—1], where A is the character sheaf E[3].

Any character sheaf on SL, is isomorphic to one of those just reviewed.
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6 Parabolic restriction, cuspidal perverse sheaves

We keep the notations of the preceding sections. The center of G is denoted by Z(G)
and its identity component by Z(G)°. We denote by P a parabolic subgroup, by U(P) its
unipotent radical and by L a Levi subgroup of P. We then say that L is a Levi subgroup
of G.

P is the semi-direct product of L and U(P). We denote by 7p the canonical homomorphism
P — L sending fu to £ (£ € L,u € U(P)).

6.1 Parabolic restriction

6.1.1. We define a functor res =res§ : DG — DL by
res K = (7p)1i"K (K € DG)

where 1 is the inclusion P — G. If G, P, L are defined over a finite field F, and K comes
from a complex on the Fy-scheme Gy, so that we have p : F*K ~ K (see 1.3.1.) then a
Tate twist (dim U(P)) is added.

In this situation, res K inherits ¢ : F*res K ~ res K and one shows that we have the
following relation between characteristic functions (see 1.3.4):

Xewkp® = UP)T |71 3 xFp(tu) (L€ LF).
ueU(P)F

The right-hand side is well-known in the character theory of finite groups of Lie type (see
for example [Ca, p.263]). If x%, is a character of GF then x5,k is the character of L¥
obtained by parabolic restriction (called ”truncation” in loc.cit.]).

We shall call the functor res just defined parabolic restriction.

6.1.2 Definition. A perverse sheaf K € MG ts cuspidal if

(a) K has a weight for the action of the connected center Z(G)° by left (= right) transla-
tions;

(b) K is equivariant for the conjugation action of G;

(c) For any proper parabolic subgroup P with Levi group L we have resSK € DL<°.

K € MG is strongly cuspidal if we have (a), (b) and

(c)' For any proper parabolic subgroup P with Levi group L we have res§ K = 0.

For weights of torus actions see 2.2.1. The condition res§ K € DL< of (c) can also be
written as PH'(res§K) =0 if 1 > 0 (see 1.2).

The definition of cuspidal perverse sheaves adopted here is slightly stronger than the one
of [CS, 7.1.1]. We shall analyse cuspidal perverse sheaves, following [CS] and [L2].

6.2 A stratification of G

6.2.1. Isolated classes. It is well-known that if G is semi-simple the number of conjugacy
classes of connected, semi-simple, closed subgroups of G with rank equal to that of G is
finite. The center of such a subgroup is finite (cf. [BS]).

A conjugacy class in G is #solated if it contains an element g whose semi-simple part g,
lies in such a center. Alternatively, a conjugacy class C in G is isolated if for g € C the
centralizer Zg(g,) has semi-simple rank equal to the rank of G.

145



JG.M. MARS, T.A. SPRINGER

If G is an arbitrary connected reductive group we call isolated class in G the inverse im-
age of an isolated class in the semi-simple group G/Z(G)°. It is clear that the number of
isolated classes is finite.

6.2.2. Now let L be a Levi subgroup in G and Y} an isolated class in L. We put
Treg = {z € T | Zg(z,)° C L}.

This is a non-empty open subset of 3. If z € 3°; then L is the smallest Levi subgroup
of G containing Zg(z,)°. (These facts readily follow from the explicit description of Levi
subgroups.)

We put

N(L,Z)={9€G|gLg'=L,gxg™' =X},W(L,X) = N(L,X)/L,
and
Y5 = UgBres™.
9€G

Let G XL Y,eg be the quotient of G x ¥ for the L-action £(g,z) = (g€!,£zL™") (¢ €
L,g € G,z € ¥1¢g). The map (g,z) — gzg~! induces a morphism

’Y:GXLZ—'Y(L,E)-

reg

6.2.3. Lemma.

(1) Y(Ly) 18 a locally closed, smooth, irreducible subvariety of G, of dimension dim G - dim
L+ dim Y. If g € G we have Y(L-Z) = Y(aLr'.nE"a);
(i) 7:G XL Xreg — Y(L-E) 18 a Galois covering with group W(L,Y);

i) G = U Yz,
L% @y

Most of this is straightforward. To prove (iii), let g € G. There is a smallest Levi subgroup
L containing Zg(g,)° (viz. the centralizer of the connected center of Zg(g,)°). If ¥ is the
product of Z(L)° and the conjugacy class of g in L then g € Yoy

6.2.4. The closure of Y(L'E). Assume that L is a Levi subgroup of the parabolic group
P. As above, we define G xp L U(P), and a morphism 6§ : G xp L U(P) — G, which is
proper (¥ denotes the closure of 3 in L). The inclusion G X 3 — G x S U(P) induces a
morphism a : G X ¥,y = G xp LU(P), which is easily seen to be an open imbedding.
Also, im 6 is the closure Y(L'E) and it will follow from 6.2.7 (iii) that 67'Y{; y~) = im .
6.2.5. Lemma. The set of semi-simple parts of elements of 3 cotncides with the set of
semi-simple parts of elements of 3.

It suffices to proves this statement for the semi-simple group L/Z(L)°, in which case it
follows from the known fact that the set of elements whose semi-simple part is conjugate
to a given element is closed (see [St1, 6.6, 6.11]).

6.2.6. Lemma. Let z = Lu be an element of P (£ € L,u € U(P)) Then z, 1s conjugate to
¢, by an element of U(P).

Let L' be a Levi subgroup of P containing z,. There is u' € U(P) with L' = u'L(u')".
Write z, = u'¢'(v')~!. Then z, € ¢U(P). But also z, € £,U(P). Hence £ = ¢,, whence the
lemma.

6.2.7. Lemma. Let (L,Y) be as before and let 3, be an isolated class in a Levi group L;.
Assume that £ € LU (P) s conjugate in G to an element of (T)reg-
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(i) L 4s conjugate to a subgroup of L;;

(i) Yi,5) € Yepy

(iii) If Ly = L,%; = ¥ then z is conjugate in P to an element of (T1)req-

If H is a connected reductive group we write r(H) for its radical Z(H)°. By the previous
lemmas there exists y € 3 such that z, is conjugate to y, by an element of U(P), say
z, = uy,u”!. We then have r(Zg(z,)°) = ur(Zg(v:)°)u! C ur(Z(y,)°)u! = ur(L)u™?,
by the definiton of isolated classes.

Let g € G and £ € (T;)reg be such that z = glg~'. Then r(Zg(z,)°) = gr(Zc(L)°)g™! =
gr(L1)g~1, since Zg(¢,)° C Ly. We conclude that

gr(L1)g™! C ur(L)u™,

whence gL;g™! D uLu™}, and (i) follows. It also follows that ¥°; C 17(,‘,2), which implies
(). ¥ L; = L, ; = ¥ we must have u~'g € N(L,X), whence (iii).

We denote by (Y;);er the finite set of varieties of the form Yy for any Levi group L
and isolated class I of L. (Notice that ¥{;z,-1,53,-1) = Y1 3), if g € G.) We state the
following consequence of the results established above.

6.2.8. Proposition.

(i) (Y:)ier is a stratification of G by a finite number of locally closed, smooth irreducible
subvarieties which are stable under conjugation;

(ii) The closure Y; is a union of certain Y;.

The varieties Y(L:E) will be referred to as strata. Notice that there is one open stratum,
namely the set of regular semi-simple elements.

We shall see later (8.3.1) that if A is a character sheaf the restriction to a stratum of H*A
is a locally constant sheaf, for all 1 € Z.

6.3 Cuspidal perverse sheaves

We shall now establish some basic properties of irreducible cuspidal perverse sheaves, after
[CS, no.7] and [L2].

6.3.1. Theorem. Let K be an srreducible cuspidal perverse sheaf.

(i) There is a unique ssolated class £ in G and a local system L on T, unique up to
isomorphism, such that K = I(3, L);

(ii) If P is a proper parabolic subgroup of G , with Levi group L, then for £ € L,i >
dim ¥ — dim Z(G)° — dim L + dim Z.(¢) we have

H!(U(P)N X, L) =0;
(iii) If g € X then Zg(9)°/Z(G)° is a unipotent group.
Recall that K has a weight for the action of Z(G)°. Also, it is clear that the local system

L of (i) is G-equivariant. In the proof we need some auxiliary results. For the first one,
let P and L be as before. Let C be a conjugacy class in L and put T' = CZ(L)°,

Z = {(9,z1P,z2P) € G x G/P x G/P | z7'gz; € TU(P),i = 1,2}.

If O is a G-orbit in G/P x G/P we denote by Z, the piece of Z defined by adding the
condition (z, P, z;P) € O. Define Z' similarly to Z, with TU(P) replaced by CU(P) and
let Z} = Z' N Zo.

6.3.2. Proposition. Let C' be a conjugacy class in G.
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(i) If L€ C then
dim (LU(P)NC") < %(dim C' —dim C);
(ii) Ifge C', L€ C then

dim {zP € G/P |z gz € TU(P)} < %(dim Zg(g) — dim Z(€));
(iii) If O is as above then
dim Zp < dim G — dim L+ dimT.

If equality holds then for any (z, P, z3P) € O the parabolic groups z,Pz;! and z,Pz;' have
a common Levs group;

(iv) dim Z, < dim G — dim L + dim C.

This result (part of which we need in the proof of 6.3.1) is established in [L2, §1]. We refer
to the proof given there.

6.3.3. Lemma. For all £ € L the intersection U(P) N Zg(£) is connected.

The following proof is due to Spaltenstein [HS]. Let S be a maximal torus in Z(€).
Choose a Borel subgroup B of P such that S C B and that £ € B. Then L D Z¢(S) (since
Zg(L)° C S), hence S is a maximal torus of Zg(€) and also of Zg(€). Therefore every
irreducible component of Zg(f) contains an element normalizing S. But such an element
centralizes S, since it belongs to B. Hence every irreducible component of Zg(¢) meets L.
We have B = (B n L)U(P), so

Zp(t) = (LN Zp(8)(U(P) N Z(8)),
and it follows that U(P) N Zg(£) is connected.

We can now prove 6.3.1. Choose a locally closed, smooth, irreducible subvariety V' of
G and an irreducible local system £ on V such that : V is dense in suppK, V is stable
under conjugation by G and multiplication by Z(G)®°, £ has the same Z(G)°-weight as K
and is G-equivariant, K |y is isomorphic to £L[dim V.

This is possible by 1.2.3. There is a stratum Y{; y~) which intersects V' in a dense open
subset. We may therefore assume that V C ¥, 3 zirepla»(:ing V by a smaller set).
Choose g € V N ¥, . Let P be a parabolic subgroup with Levi group L. We claim that

(1) {ugu™ |u € U(P)} = gU(P).

The set of the left-hand side is irreducible and closed (being an orbit of a connected
unipotent group acting on an affine variety) and is contained in gU (P). The isotropy group
of g in U(P) (acting by conjugation) is U(P) N Zg(g) € U(P) N Zg(g,). Since g € T\,
the latter group is trivial (see 6.2.2) and (1) follows.
The restriction of £ to gU(P) is a U(P)-equivariant local system, which must be constant
(and non-zero). It follows that H2¢(gU(P),L) # 0, where d = dim U(P). This means
that H'(res A), #0, if : =2d — dim V.
Hence

supp H'(res A) DV N, if 1 =2 dim U(P) — dim V.
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It follows from 6.2.3 (ii) that dimV N ;= dimV + dim L — dim G. Since dim G =
dim L + 2 dim U(P) we see that there is an ¢ such that

dim supp H'(res A) > —i.

Since K is cuspidal we must have P = G = L, and Y is an isolated class in G. We have
proved (i).
Let P be as in (ii). Since res§K € DL<° we have for i € Z

dim {£ € L | H:(LU(P), K) # 0} < —i.
Using the equivariance of K it follows that for £ € L
Hi(eU(P),K) =0if i > dim Z;(¢) — dim L — dim Z(G).
By 6.3.2 we have
2) dim (€U(P) N ) < %(dim T+ dim Z;(¢) — dim L — dim Z(G)°).

It follows that the assertion of (ii) is true for 7 > dim ¥ — dim Z(G)°— dim L+ dim Z;(¢).
Let € be the number in the right-hand side. The assertion of (ii) for ¢ = e will follow from
the exact sequence

3) HS Xy (P)n (£ - 5),K) S H((U(P)N 5, L) —
— H” 9™ 2(eU(P), K)(= 0),

if we show that the map § is zero.

To prove this we may by a reduction argument ([BBD, 1no.6]) assume that k is the algebraic
closure of a finite field and that K is obtained from a complex K as in 1.3.1. We may
assume that £ has weight zero. If the vector space H(¢U(P)NL, L) is non-zero, we must
have ¢ = 2 dim (¢U(P) N X) (by (2)). Then H:(EU(P) N Y, L) is pure of weight e (in the
sense of 1.3.1). We shall prove that H:™ “™ & '(¢(U(P) NS — T, K) is a vector space of
weight < e. It suffices to prove that for any 3°' C 3° — 3° which is the inverse image of a
conjugacy class in G/Z(G)°, the vector space H dim z:_I(ZU(P) N Y',K) has a similar
property.

Let 3’ be such and put j = dim ¥'. We have a spectral sequence

HP(LU(P)NZ',H'K) = H,(LU(P) N T ', K).
If the left-hand side is non-zero, we must have
p<2dim(U(P)NE')<e— dim T +j,

by 6.3.2 (i). Also ¢ < —j, since K is a perverse extension (see 1.2.3). If also p + ¢ =
d — dim Y- —1 it follows that p = 2 dim ((U(P)NY') and ¢ = —j — 1. Since K is pure of
weight dim Y-, we have that H~~'K is pure of weight dim 3> —j — 1 (see 1.3.2 for these
properties). Then HP(LU(P)NY',H 7"14) has weight < p+ dimY —j—1=-e—1, by
Deligne’s theorem ([D, p.247]).

It now follows that in the exact sequence (3) the first term has weight < e and the second
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has weight e. It follows that § = 0, as asserted. This concludes the proof of (ii).
Let g € 3 and choose a maximal torus S in Zg(g). Let L = Zg(S) and choose a parabolic
subgroup P with Levi group L. Now

V ={ugu! |u € U(P)}

is a closed subvariety of gU(P) on which U(P) acts transitively. The isotropy group of g
in U(P) is connected by 6.3.3. It follows that the restriction of the local system £ to V is
constant, whence H24mV(V, L) # 0.

We claim that

(9) dimV = (dim 3 - dim Z(G)° — dimL+ dim Zy(g)) =

= %(dim G — dim L — dim Zg(g) + dim Z;(g)).

If this has been established it will follow from (ii) that P must be G itself. Hence S = Z(G)°
and (iii) follows. To prove the asserted equality for dim V we introduce a parabolic
subgroup P' with Levi group L which is opposite to P, i.e. such that PN P' = L. Let V'
be defined as V relative to P'. One knows that the product map defines an isomorphism
of U(P) x L x U(P') onto an open subset of G. It follows that

dim Zg(g) > dim Z;(g) + dim Zg(g9) N U(P) + dim Zg(g) NU(P') =

= dim Z;(g) + 2 dim U(P) — dimV — dim V',

whence
dimV + dim V' > dim G — dimL — dimZg(g) + dim Z.(g).

It follows from 6.3.2 (i) that dim V and dim V' are majorized by the asserted value (4).
The last inequality then shows that (4) does hold. This concludes the proof of 6.3.1.
Remarks.

(a) The results of 6.3.1 are contained in [CS, nos.3,6] and [L2, §2]. The proof of (ii) is not
given in [loc.cit], it was communicated to us by Lusztig.

(b) In [L2] several other properties of cuspidal perverse sheaves are established, which are
used to give a complete classification. We shall not enter into this here.

Example. Let G = SL,. Using 6.3.1(iii) it is not hard to see that if K is an irreducible
cuspidal perverse sheaf on G, Y must be the class of an element g = g,9,, where g, lies in
the center and g, is a regular unipotent element. Examples are the character sheaves of
5.4.11 (they are, in fact, the only possible ones, by [L2],p.246).

6.3.4. Definition A cuspidal perverse sheaf K on G is clean if it is a perverse extension
I(X,L), where T is the inverse image of a conjugacy class in G/Z(G)° such that the
restriction of K to 3 — 3 1s zero.

It will be seen in 9.2.15 that the perverse sheaves of the previous example are strongly
cuspidel. Hence they are clean, by 5.4.10.

For later use we record a result on clean sheaves. Let K = I(3, L) be a clean irreducible
cuspidal perverse sheaf on G. Assume that € is a G-equivariant non-constant local system,
which has a weight for Z(G)°.

6.3.5. Lemma. H,(¥,£) =0.
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Put Z = Z(G)° and fixa € . We can choose a morphism ¢ : G/Z x Z —  of the form
(g, Z,2) = gag~'z" (g € G, z € Z) such that p*& is constant. Let

Gi={g9€G|gag~! €aZ}.

Then G;/Z is a connected unipotent group by 6.3.1 (iv).
We factor i
GlZx28% 5%,

where ¢, is a fibering with fibers Gj/Z and & is a finite Galois covering such that $*¢ is
trivial with group G;/Gj. ~
It suffices to prove that G;/G? acts trivially on all H:(Y, E). But

H!(E,E) = H"*(G/Z x Z,E)

where a = dimG3/Z and the action of G1/Gj on the cohomology group of the left-hand
side is the restriction of an action of the connected group G/Z on the one of the right-hand
side. The latter action is trivial, and the assertion follows.

A direct consequence of the previous lemma is the following one ([CS, 7.8]).

6.3.6. Lemma. Let K and K' be two clean irreducible perverse sheaves on G such that
K' is not isomorphic to DK. Then H,(G,K @ K') = 0.
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7 Parabolic induction

G, P and L are as in no.6.

7.1 Parabolic induction

7.1.1. Let G xp P be defined as in 6.2.4, i.e. the quotient of G x P by the P-action
z(g,y) = (9z7!,zyz™?) (¢ € G,z,y € P). We have a proper morphism § : G xp P — G
induced by (g,y) — gyg~'(g9 € G,y € P). Consider the diagram

L&EGxPAhaxpPSa,

where a(g,y) = 7py and B is the canonical map. If K is a perverse sheaf on L which
is L-equivariant for conjugation then by property (b) of 1.2.6 we have that a*K[dim G +
dimU(P)] is a perverse sheaf on G x P. It is P-equivariant and 1.4.2 shows that there
exists a perverse sheaf K on G x p P such that

B'K = o*K[2dimU(P)],

moreover K is G-equivariant for the action via left translations on G.
We put

ind K = ind§ K = 6,K.
By property (c) of 1.4.1 the PH*(ind K) are G-equivariant (for conjugation).
If K is irreducible then so is K and it follows from the decomposition theorem that ind K
is a semi-simple complex, so is G-equivariant (see 1.4.1).
Examples.
(a) Assume that everything is defined over a finite field F, and that k is an algebraic closure
of F,. Assume that we have ¢ : F*K = K. Then ind K inherits ¢ : F*(ind K) = ind K
and one checks from the definitions that the characteristic function Xyna ¥ on GF is the
class function induced by the class function x, x on LF, in the sense of parabolic induction
of finite groups of Lie type (i.e. lifting from LF to PF and induction from PF to GF in
the sense of Frobenius).
(b) Assume that P = B, our Borel group and L = T. Take K = L[dimT], where £ € X.
The definitions show that

ind§ L¢ = CE,.

We review some properties of induction.
Let Q@ C P be another parabolic subgroup, with Levi group M contained in L. Then QN L
is a parabolic subgroup of L, with Levi group M.
7.1.2. Proposition. Let K be a perverse sheaf on M which 1s M-equivariant for conjuga-
tion such that indgnLK ts perverse. Then

ind§K = indgindg K.

This is transitivity of induction. The straightforward proof is omitted (see [CS, 4.2]).
The next result is of the Frobenius duality type.

7.1.3. Proposition. Let K; (resp. K) be a perverse sheaf on G (resp. L) which is
equivariant for conjugation. Assume that resS K; € DLS°. Then

Hompe (K, indgK) = Hompy (res§ Ki, K).
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Consider the diagram

G x P L ¢ xp PS5 oa
Ve l dxaxp 1 ,
L&¢x L &5 ¢ xpL

~

where G Xp L is the quotient of G X L by the P-action
z(g,1) = (9=, np(z)lmp(z)')(9 € G,z € P,l € L).

The maps a, 3,6 are as before and o', ' are defined in an obvious way. The map + is such
that the square is cartesian. Since res K; € DL=° we have (see [BBD, 1.3])
Hom (res Ky, K) = Hom ( PH’(res K;), K) =
= Hom ((')* PH (res K,),(c')*K) = Hom ((')* (resK,), (') K),

here we also use property (b) of 1.2.6.
Now we have a diagram

G x P B pig
| idxxp 1 m
G x L 45 L

and, by the definition of restriction in 6.1.1,
()" (res Ky) = ()" ((mp)ii* K1) = (id X mp)y((pr)*s" K,).
From the G-equivariance of K; it follows that (pr)*:* K, is isomorphic to 8*6*K;, whence
(a!)*(resK,) = (B')*16* K;.
It follows that 4,6*K; € D(G xp L)S4mU(P),
Asin 7.1.1 there is a perverse sheaf K'on G Xp L such that (8")*K'|dim P = (!)* K[dim G|
and one sees easily that 4*K'[dimU(P)| = K.

We now have
Hom(resK;, K) = Hom ((c')*(res K3), (')*K) =

= Hom((f')*né" K, (8)'K'[- dimU(P)]) =
= Hom (46" Ky, K'[- dimU(P)]) = Hom (6*K;,+'K'[- dimU (P)]) =
= Hom (6*K;,4*K'[dimU(P)]) = Hom (6*K;, K) =
= Hom (K;,6,K) = Hom (K, ind K),
which proves 7.1.3.

The preceding results about induction are contained in [CS, no.4]. There is also a Mackey
type formula, which we use for character sheaves (to be established in 10.1).
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7.2 Induction of cuspidal perverse sheaves

7.2.1. With the previous notations let K be an irreducible cuspidal perverse sheaf on L. By
6.3.1 (i) there is an isolated class ¥ in L and an irreducible local system £ on Y such that
K = I(L, L£). Moreover, L is equivariant for conjugation and has a weight for translation
action of Z(L)°.

Let Y =Y(; 5, as in 6.2.2. With the notations introduced there we have a diagram

Z ?—l G X an 'p—l) G XL Ereg l’
i) i {
S &G x SUP) S 6 xp SUP) S

=

Here v and § are as in 6.2.2 resp. 6.2.4. The horizontal maps are the evident ones and the
vertical maps are imbeddings (use 6.2.7(iii) for the map G X1 ¥,y = G Xp ZU(P)).
There is a local system £ onGx L Zreg Such that oL = ﬂlﬁ Since 4 is a Galois covering
(6.2.3(ii)) we have that Y.L isa semi-simple local system on Y.

7.2.2. Theorem. ind$K = I(¥,7.£).

(This result is prop. 4.5 of [L2].)

It follows from the definition of induction that the restriction of indf K to Y is '1.f[dim Y].
Put X = G xp ZU(P). The image of (z,y) € G x ZU(P) in X is denoted by z + y. It is
clear that ind K is zero outside ¥ and that the restriction of ind K to ¥ is 6, K, where K
is the irreducible perverse sheaf on X with

B*K[dim P] = " K[dim G + dim U(P)].
To prove the theorem it suffices to show that
(1) dimsuppH'(6,K) < —iif i > —dimY

and a similar assertion with £ replaced by the dual LY (which follows if (1) is established).
We have a partition 3 = [IS;, the S; being the orbits of L x Z(L)° in 3 (L acting by
conjugation and Z(L)° by translation). Write So =¥ .
Let X; = {z*y € X |y € S;U(P)}. Then X =[] X; is a stratification of X, with smooth
strata. Also, X, is open dense and the closure of a stratum is a union of strata. We have
ifgeY ;

H'(6.K), = H'(67g, K).

If this is non-zero, we have H!(6-!g N X;, K) # 0 for some j. Using the spectral sequence
H?(6"gn X;, H'K) = H,(67'¢ N X;,K)

we see that in this situation there are p,q with p + ¢ = ¢ such that the left-hand side of
the last formula is non-zero. Then p < 2dim(6~'g N X;). Moreover, since K is irreducible
we have ¢ < —dim Xj if j # 0 and ¢ < — dim Xj if j = 0. We conclude that

t < 2dim(67'g N X;) — dim X.
Now since dim X; = dimY — dim ¥ + dim S, we see that

dim(67'g N X;) > 4(i — dim T + dim §; + dimY),
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with strict inequality if § # 0.

The support inequality now follows from the following lemma, which is a consequence of
6.3.2.

7.2.3. Lemma.

(i) If 5 # 0 then
dim{g € Y | dim(67'g N X;) > 4({ — dim X + dim S;)} < dimY —3;

(ii) dim{g € ¥ |dim(6~'g N Xo) > 31} < dimY —1 #fi > 0.

We have §7'gNX; = {z+y € X | y € S;U(P),zyz™" = g}. This is isomorphic to the
variety {zP € G/P | z7'gz € S;U(P)}. Let Z; = {(9,z1P,z:P) € G x G/P x G/P |
z;lgz; € S;U(P), = 1,2 }. By 6.3.2(iii) we have dimZ; < dimG — dim L + dim S; =
dimY —dim Y + dim S;. The assertion of (i) now follows readily from these facts. We also
see that for all § the left-hand side of (i) is majorized by the right-hand side.

Now assume that 7 is such that the inequality of (ii) does not hold. It follows that the two
sides of the formula of (ii) are equal. Let Z and Z5 be as in 6.3.2 (with ' = 3°). We have
dimZ, < dimG — dimL + dim}, = dimY for all G-orbits O in G/P x G/P. It follows
that Z has an irreducible component of dimension > dimY', whose projection onto G has
dimension < dim Y — i. This component contains some Zo with dim Zy = dimY. It follows
from 6.3.2(iii) that the orbit contains an element (P,nP), with n € NgL. We then must
have n3n~! = ¥ and it follows that the projection of Zp on G contains Y. Since this
projection has dimension < dimY — ¢ we must have ¢ = 0 and (ii) follows.

This concludes the proof of 7.2.2.

7.2.4. Corollary. If K is as in 7.2.2 then indgK 18 sems-simple and perverse.

The next result is a complement to 7.1.3.

7.2.5. Lemma. Let K; be a perverse sheaf on G which is equivariant for conjugation.
Assume that

resS Ky = @Kx[nxl,

where the K, are perverse sheaves on L such that indgK ) 18 perverse. Z:hen. res$K; € DL=°.
We use the notations of the proof of 7.1.3. We define K} similar to K' in that proof. We

have
Hom(Kj, (ind K))[s]) = Hom (1:6* Ky, K}[s — dim U(P)])

for all s € Z. Since K; and ind K, are perverse Hom (K, (ind K,)[s]) is zero if s < 0,
whence .
(2) Hom (16" K1, Kj\[s]) = 0if s < —~d, d = dimU(P).

Put C = 6" K;. Then (8')*'C = (/)" res K1 = @(c')* Ki[na] = ®(8')* K}[na — d), hence,
by 1.2.6 (b), PH'C = & K.

ny=d-1
It follows, using (2), that, if C € D' and 1 > d, then the canonical morphism C — PH*C[i]
is zero. So we have C € D=? and resK; € D<° by 1.2.6 (b).
Remark. The condition of the lemma is satisfied when the sheaves K, are irreducible
and cuspidal (7.2.2) and, more generally when they are admissible, see section 8.
7.2.6. Let A = End (ind K) be the algebra of all endomorphisms of the perverse sheaf
ind K of 7.2.2. It is a finite dimensional semi-simple E-algebra. It follows from 7.2.2 that
it is also the endomorphism algebra of the local system ~, [ on Y.
Recall that v : G X1 X, — Y is a Galois covering with group N(L,Y)/L = W(L,Y).
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Consider the subgroup W (L, ,£)=N(L, ,L)/L, where
N(L,%,L) = {n€ N(L,5) | n*L ~ L}
(n acts on ¥ by conjugation). For w € W (L, X, £) we put
Ay = Hom (£,w*f),

where w represents w. This is a one dimensional vector space. Since '7.f = ~,%* L we have
a natural imbedding B
Aw — End (1.L) = A.

Now A = ® A, and the multiplication in A maps A, X A, onto Ay . In particular, we see
that all endomorphisms of '1.£~ are G- endomorphisms.

7.2.7. Now assume that k is an algebraic closure of the finite field F, and that G is defined
over F,. Assume that FL = L,F }, = }_ and that we are given an isomorphism of local
systems ¢ : F*L 5 L. The varieties G X Yreqy G XL Yreq, Y are defined over F, and ¢
induces isomorphisms F*f£ = £, F*~,f = 4,f. The latter isomorphism determines an
isomorphism ¢ : F*K' = K', where K' = I(¥,~,[). Note that P does not enter the
picture here. In general, there need not exist a parabolic subgroup with Levi subgroup L
which is defined over F,.
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8 Admissible perverse sheaves

G is as before.

Definition. A perverse sheaf on G is admissible if it is an irreducible constituent of a
perverse sheaf indS K as in 7.2.2.

It follows from transitivity of induction that if K is an admissible perverse sheaf on the
Levi group L of a parabolic subgroup P then indgK is a direct sum of admissible perverse
sheaves. We shall prove later that character sheaves are admissible (see 9.3.2).

In [CS] and [L2] admissible perverse sheaves are called ”admissible complexes”.

8.1 Some properties of cuspidal perverse sheaves

8.1.1. Let K be an irreducible cuspidal perverse sheaf on G. We have K = I(¥, L), where
Y and L are as in 6.3.1.

Let 3, be the set of semi-simple parts of elements of 3> (or T, see 6.2.5). Fix s € &, and
put H = Zg(s)?, this is a connected reductive subgroup of G. Since ¥ is isolated we have
Z(H)® = Z(G)° (8.2.1).

The set of elements in 3~ with semi-simple part s is sC , where C is the set of unipotent
elements u in H with su € 3. Then C is an orbit of the group

{9€G|gsg~! € s2(G)°},

which has H as its identity component. It follows that C is a union of finitely many
unipotent conjugacy classes of H, all of the same dimension (as a matter of fact, C itself is
a conjugacy class in H, see 8.1.4). Put ' = CZ(G)°® and define a =Y’ — ¥ by az = sz.
We put

K'=a'K[dimE '~ dimX].

8.1.2. Proposition. K' is a cuspidal perverse sheaf on H.
Let £' be the pull-back under a of the local system £ on ¥, it is a local system on ¥ .
We claim that
K'=1(2, L".

to see this consider the fibration & — 3, /Z(G)°. The fibers are all isomorphic to 3+ and
the basis is smooth. One checks without difficulty the support conditions of 1.2.3, for K’
and its dual. So K’ is perverse.
Now let @ be a proper parabolic subgroup of H and choose a proper parabolic subgroup
P of G with @ = PN H. Also choose Levi groups, L, M of P resp. Q with M = LN H.
Notice that U(Q) = U(P) N H. Put res K' = res§ K'. We have to show that for all i we
have

dim supp H'(res K') < —i.

Let g € M be such that H'(res K'), = Hi(gU(Q), K') is non-zero. Then sg € 3 and
H;(gU(Q), K') = H*(sgU(Q) N £, K),
where @ = dimX —~ dimX .

Consider the map
B :sgU(P) — (sU(P)Z(G)° N L,)/Z(G)°,
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sending = € sgU(P) to the coset modulo Z(G)° of z,. Then B is U(P)-equivariant for the
actions induced by conjugation. The action of U(P) on X = (sU(P)Z(G)°NL,)/Z(G)° is
transitive and U(Q) is an isotropy group. It follows that X is an affine space and that the
U(P)-equivariant local system H’(5,K) on X is constant for all j. For j = ¢ — a this local
system is non-zero, since the stalk of H*~(8,K) over the image of s is H:~*(sgU (Q)NL, K).
We have a spectral sequence

E?? = H*(X,H'(BK)) = H,(sqU(P), K).

We see from the preceding remarks that EX? = 0 if p # 2d and that E3%*~® £ 0, where
d = dim X. Consequently, H:~**24(sgU(P), K) # 0. Let A be the conjugacy class of sg in
L and A’ the conjugacy class of g in M. We conclude that

AZ(G)° C supp H**% (resK).
Since K is cuspidal we have
dimAZ(G)° < —t+a—2d

Now observe that
dim AZ(G)° — a + 2d = dim A'Z(G)".

We conclude that

dim A'Z(G)° < —1.
Since supp H'(res K') is a union of finitely many sets of the form A'Z(G)°, we conclude
that res K' is cuspidal, as asserted.
The proof also gives
8.1.3. Corollary. If K is strongly cuspidal then K' is strongly cuspidal.
Another consequence is the following result.
8.1.4. Corollary. C 1s a single unipotent class.
This follows from the following result, which we do not prove here.
8.1.5. Lemma. Let G be semi-simple and stimply connected, and let s € G be an isolated
semi-simple element. Assume that Cy and C; are two unipotent classes in Zg(s) such that
(a) there ezists a local system L; on C; such that I(C;, L;) are cuspidal perverse sheaves on
Zg(s)(+ = 1,2),
(b) there is g € G with gCy1g7! = Cp,g9s¢™'s™! € Z(G). Then C, = C,.
The proof uses the classification of cuspidal perverse sheaves given in [L2], see [CS, 7.12].
8.1.6. Corollary. K' is clean if and only if K s clean.
See 6.3.4 for the definition of clean cuspidal sheaves. The corollary follows from the proof
of 8.1.2, using 8.1.4.

8.2 Restriction of an induced character sheaf to the centralizer
of a semi-simple element

We fix a parabolic subgroup P of G, with Levi subgroup L. We also fix a semi-simple

element s € G. Put H = Zg(s)°. Let ¥ be an isolated class in L. Denote by 3, the set of

semi-simple parts of the elements of }-.
The set S = {g € G | g"'sg € ¥,} is a union of finitely many double cosets Hg;L
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(1 <7< h)andtheset {g € G|glsge ,U(P)}is the disjoint union of the double
cosets Hg;P.
If g € S then gPg~'N H is a parabolic subgroup of H, with Levi group gLg"'NH.Ifg=g;
we write P; resp. L; for these subgroups.
Define

C; = {h € H | h unipotent, sh € g;Xg;''},

and let 3, = C;Z(L;)° |1 < i < h).

8.2.1. Proposition. There exists an open neighbourhood U of s in H with the following
properties:

(a) U ts stable under conjugation by elements of H;

(b) h €U if and only if h, € U;

(c) fgeGandUNgY,g ' #0thensegy,gandUNgy, g7t C sZ(gLg™?)°%;

(d) fg€e Gand he UNgSU(P)g™! thens€ gy, U(P)g™! and h, € sgZ(L)°U(P)g~1.
Put Hyeq = {h € H| Zg(h,)° C H}. Then H, is an open subset of H which contains s.
8.2.2. Lemma. Let g € G.

() If HegNgYXg ' # 0 (resp. HregNgY,g7! # 0) then s lies in an isolated class of
gLg™ %

(i) Ifh € HeegNg X g™ (resp. HregNg X, g7 1) then h lies in an isolated class of HNgLg™!.
We may take ¢ = 1. Let h € Hyg N 3. Take a maximal torus T of L containing
h,. Then T is also a maximal torus of H (since Zg(h,)° C H) whence s € T. From
Zi(hs)* € HNL = Zy(s)° and the fact that 3 is isolated in L we see that s lies in an
isolated class of L and that k lies in an isolated class of H N L.

If 3° is replaced by Y, the same argument can be given.

Let ¥°;,..., 2, be the set of semi-simple isolated classes in L, where ¥, = Y,. Put
M = {z € G| z7'sz € U;»; X;}. Let H' be the subset of H, obtained by removing
the elements h such that h, € £3°; 27! for some z € M. It follows from 8.2.2(i) that if
H'NgYg!+#0for g €G,then s € g3, g . The same conclusion holds if ¥ is replaced
by ;. Also, s € H'.

Next we show that H' is open in Hyeg. Since H\M/L is finite it is enough to prove that if
a is a fixed element in G such that a'sa is isolated in L, the set

(1) {h € Hieg | hs € |J zaZ1a7'z7"}

z€EH
is closed in Hyeg. If b € Hyeq,z € H and z7'h,z € a X, a”! then y~'h,y belongs to an
isolated class of H NaLa™!, by 8.2.2 (ii). It follows that the set (1) is the intersection with
H,; of finitely many sets of the form

{heH|h, € |JzbZ(aLa ')z},
zEH

b being a given element of H NaLa™!. Since such sets are closed, the set (1) is closed in
Hioeg.

Now let U be the subset of H' obtained by removing the elements h such that h, €
z¥, 271 — sZ(xLz™)° for some z € G with z7'sz € ;. As in the case of H' , one shows
that U is open. It contains s. The properties (a), (b), (c) of the proposition hold.

To prove property (d) let z € S U(P) and g € G be such that gzg~! € U. Using 6.2.6 we
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deduce (d) from (c).

This concludes the proof of 8.2.1.

8.2.2. Corollary. If G is defined over a finite field, with Frobenius morphism F, then if
FL=L,FYy =Y ,Fs=s we can take U to be such that FU = U.

Next assume that K is an irreducible cuspidal perverse sheaf on L, of the form I(¥, £),
where " is as above. With the notations introduced in the beginning of 8.2, let K; be the
inverse image of K for the map J.; — ¥ sending z to g; 1szg;, shifted by dim¥; —dim}_ =
dim L; — dim L. By 8.1.4 we know that C; is a single unipotent class in L; and by 8.1.2,
K; is a cuspidal perverse sheaf on L; with support ¥;.

Let U be as in 8.2.1.

h
8.2.3. Proposition. s* ((indfK) |v) = P(indf K;) |,-w [dim G — dim H].

8* denotes the inverse image for the ma.l;—:tl; — ST,

We use the notations of the proof of 7.2.2. Solet § : X = G xp LU(P) — Y. Put
Xy =6YY NU) and Xy; ={z*y € Xy | z € Hg;P}. Then Xy is the disjoint union of
the Xy, by property (d) of 8.2.1. Moreover these sets are open and closed in Xy (since
the image of Hg; P Xp P under the canonical map G xp P — G/P is the closed subvariety
H/P; of G/P).

For each ¢ we have a commutative diagram

Si « H x SUPR) - Hxp SUPR) 5 ¥

In 1 lo; s

¥ « G x SUMP) — GxpSUP) 5 7.
The horizontal rows are as in the proof of 7.2.2. Moreover, 7;(z) = g; !szg; and o;(z*y) =
(zgi * 97 (sy)gi). There is a perverse sheaf K on X such that ind K = 6,K. Similarly,
indK; = §,K;, where K; is perverse on H Xp 5; U(FR).
Now indK |pny= 6(XK |x,) and indK; |gine-10=(6:)1 (K ls72(s=10)-
It follows from property (d) of 8.2.1 that the restriction of o; to & (s™1U J) is an isomor-
phism of that set onto Xy;. Under this isomorphism the restriction of K to 67 1(s71U)
corresponds to_ the restriction of K to Xu,, shifted by dim H — dim G, as follows from the
definitions of K and K; (see the proof of 7.2.2 and 8.1.1). This implies the theorem.

8.2.4. We next give some complements to 8.2.3. With the notations of 7.2.1 we have
a commutative diagram

G XL Ereg 1’ Y

~ ~
X= Gxp LU(P)

PutY =G XL Dregs f’y =¥Yn Xy, ffw = f/u N Xy, where U is as before. Then }.’U',‘ is
open and closed in 170 since Xy is open and closed in Xy (see the proof of 8.2.3).
8.2.5. Lemma.
() Yu. 15 non-empty;
(ii) YU. 18 open and dense in Xy, YU s open and dense in Xy and Y N U is open and
dense in Y NU.
To prove (i) we have to show that U Ng; g g; " is not empty, for if z lies in that set then
gi*g; lzg; € 17”,.-. Property (b) of 8.2.1 implies that U contains sC;. Hence UNsY; is open
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denseins ;.Also,g;i ,g9i'Ns ;isopendenseins ;.HenceUNs ;Ngi rg0;'#0.
It follows from the proof of 8.2.3 that Xy is isomorphic to an open subset of the irreducible
variety H xp, $;U(P;). Since Yy is non-empty by (i), we have the first point of (ii). The
rest of (ii) then easily follows.

Now put Yy; = ’7(?[],"). Then Y NU = U;Yy; and Yy, is irreducible, and closed in
Y NnU. Also, Yy; = Yy,; if and only if g; € Hg;Neg(L,X), otherwise Yy; N Yy ; = 0. We
write Y; = Uheﬂh(z,-)“‘h—l.

8.2.6. Lemma.

(i) Yy, is an open subset of sY;;

(ii) Y; is @ smooth variety, of dimension dimH — dim L + dimY".

(ii) is a direct consequence of (i). To prove (i) it suffices to show that if g; * £ € G X1 T,q
and g;zg;! € U then g;zg;! € sY;. By property (c) of 8.2.1 we have g;z,9;! € sZ(L;)°,
hence g;zg;* € s¥;. It follows from the definitions that s T°; Ng; 3y 9! C 8T, 1eq - This
implies (i).

Let K = I(X, L) be as in 8.2.3. Then K; = I(Z!-,ﬂ,-), where [; is the pull-back of £
under the map z — g; 'szg; of T, to 3. We have K = I(X, L) where L is a local system
on Y (see 7.2.1) and ind§ K = I(¥,~.£) by 7.2.2. Similarly, indg',K; = I(Y;, (v} K;), where
v%:H XL; (El’)ng - Y.
From the lemmas just proved and the proof of 8.2.3 we now obtain

~ h ~
8.2.7. Proposition. s*(1.L |ynv) =~ ‘91(('1;).&) le=1(¥ro) -
Notice that (q;).f.' is a local system on Y;. By its restriction to s~}(Y N U) we understand
its restriction to ¥;Ns™} (Y NU), extended by zero on the other components of s7}(Y NU).
The isomorphism of the proposition can also be formulated as an isomorphism

h
8*(ind§ K) |ynv=~ @(indf K;) |,-1(vrv) [dim G — dim H],

=1
this is the restriction of the isomorphism of 8.2.3 to s™}(Y N U).
8.2.8. Now assume that k is an algebraic closure of the finite field F;. With the usual
notations assume FL =L, FY =% , Fs = 8, FU = U and assume given ¢ : F*L = L.
The L; inherit isomorphisms ; : F*L; = L;. It follows from the arguments used to prove
8.2.7 that the isomorphism of 8.2.7 is compatible with the actions induced by ¢ in the
left-hand side and the set (p;) in the right-hand side. As in 7.2.6 we can conclude from
this a similar compatibility for the isomorphism of 8.2.3. Again, the parabolic subgroup
P does not enter the picture.

8.3 Applications

We give here some applications of the preceding results.

8.3.1. Theorem. Let K be an admissible perverse sheaf on G. The restriction of a coho-
mology sheaf H'K (i € Z) to a stratum Yoy of the stratification of 6.2.8 is a local system
with finite monodromy.

Consider the diagram

Treg & G X Trog B G Xp Treg > Y
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of 7.2.1. The restriction of H*K to Yreg is @ G- equivariant constructible sheaf. From the
G-equivariance we see that

A(HK |5 ) =67 (HK y).

Since v is a Galois covering and B, a principal fibration with group L it will be sufficient
to show that the restriction of H*K to ¥, (which is L-equivariant) is a local system with
finite monodromy.

Consider the fibration ¢ : ¥,y — X, /Z(L)°(z + coset of z,). It is compatible with the
L-actions (by conjugation). Since the action on ¥, /Z(L)° is transitive, it suffices to prove
that the restriction of H*K to a fiber of ¢ is a local system with finite monodromy.

Let s be the semi-simple part of a fixed element of 3 ;. Put H = Zg(s)°, as before. Then
H C L and Z(H)®° = Z(L)°. The fiber of ¢ over sZ(L)° is

Z ={z € Lreq | z, € sZ(L)°},
which is an open dense subset of

Z' {zeX |z, €8Z(L)}=

= {syv|y € Z(L)°,v € H,v unipotent, sv € 3_}.

By 8.2.3 there is an open neighbourhood U of s in H such that we have an isomorphism

(K |v) = @K,- |-y [dim G — dim H],
i

the K; being certain admissible perverse sheaves on H, which are H- equivariant for con-
jugation and have a weight for Z(H)°.

Now s~1Z’ is a union of finitely many open sets of the form CZ(H)°, where H is a conju-
gacy class for H. It follows that the restriction of H'K; to s7}(2' N U) is a local system
with finite monodromy. The same is then true for the restriction of H*'K to Z N U.
Replacing s by sz with z € Z(L)° such that Zg(sz)° C L we get a similar open neighbour-
hood of sz. Since such open sets cover Z we can conclude that the restriction of H'K to
Z is also a local system with finite monodromy.

Theorem 8.3.1 is part (a) of [CS, 14.2].

8.3.2. We next review briefly another application, given in [CS, no.8]. Assume G to
be defined over the finite field F, , with Frobenius map F.

Let L be a Levi subgroup in G and ¥ an isolated class in L. Assume there is a unipotent
class C in L such that 3 = CZg(L)° and that € is a local system on C. Moreover assume
that FL = L,FY, =Y and that we are given an isomorphism ¢ : F*§ = €.

Suppose we can extend € to a local system £ on ¥ and 4 to an isomorphism ¢ : F*L 5 L,
such that K = I(3, L) is an irreducible cuspidal perverse sheaf on L. Denote by K; =
ind}G,K the induced perverse sheaf on G. We have an isomorphism ¢ : F*K; = K; (as in
7.2.7).

We define a function @ = Qg,1,c,c,¢ on the set of unipotent elements of GF by

Qu) = Z(—l)'.Tr (s (H‘Kl)u)'
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This definition makes sense, because it is independent of the choice of the extension (£, )
of (£,%) ([CS, 8.3.2.], this fact follows by observing that the restriction of the perverse
sheaf 6,K of the proof of 7.2.2 to the set of unipotent elements of G depends only on ¢,
and not on the extension £).

Let 3, be the set of semi-simple parts of elements of 3. If z,s € G and z71sz € T,
then L, = zLz~'N Zg(s)° is a Levi group in the reductive group Zg(s)°. Let C, be the set
of unipotent elements v in Zg(s)° with sv € zX z71. Let &, be the pull-back of £ under
the map C; — ¥ sending v to z~!svz. By 8.1.4 , C; is a unipotent class in L,.

If z,s € GF then FL, = L, and we have an induced isomorphism 9, : F*&;, = &,.

8.3.3. Theorem. With the previous notations assume that su is the Jordan decomposition
of an element of G¥. We then have, xx, , denoting the characteristic function of 1.3.4

XK 0(su) = > | LF |72 Za(8)°F |7 LY | Qzg(a)° La Cartnrys (W)
zEG’,z“uGE.

The proof is a fairly straightforward consequence of the results of 8.2 (see [CS, 8.8]).

The functions Q introduced above are the generalized Green functions. They are further
studied in [CS, no.9], where among other things orthogonality relations are proved for
generalized Green functions. These are also discussed in Shoji’s contribution to this volume

[Sh].
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9 Restriction and induction of character sheaves

9.1 Preliminaries

We use the notations of 3.1 and 3.2.

9.1.1. Let I be a subset of the generating set S of the Weyl group W and denote by W;
the subgroup of W generated by I. There is a unique parabolic subgroup P = Py of our
connected reductive group G containing the Borel group B such that, L denoting the Levi
group of P containing T, the Weyl group of (L, T) is W;. As before m = 7p is the canonical
map P — L.

We write By = BN L = nB, a Borel group of L. Denote by R; the root system of (L,T)
(which may be empty). Then B defines a system of positive roots Rf in R;, with basis
D;and I = {s, | a € Dy}.

The group Wy is an instance of a group W, considered in 3.2. So we have the results of
that section. However, here we need left cosets Wiw, instead of right ones.

Let W* = W} be the set of minimal length left coset representatives (see 3.2.2). If v € W*
put O, = PvB. Then G is the disjoint union of the O,(v € W*). We have

O, = [] Guo-

weW;

Also, if v € W* then n(9B9~1 N P) = By (v denoting a representative as usual).

9.1.2. Let O be a W-orbit in X and denote by K = Ky the algebra introduced in 3.3.
Let O = ][I O; be the decomposition of O into Wi-orbits. We denote by K; the algebra
Ko,, relative to Wy. Let Ky be the direct sum of the algebras K;. We shall view K; as the
subalgebra of K with basis (e¢)eco wew, -

9.1.3. Lemma. K is a free left Ki-module, with basis

Uy = 2 eco (vEW]).
¢eo
This follows from property (e) of 3.3.1.
9.14. If v € K we define trju € K; to be the trace of right multiplication by u in K,
viewed as a left K;-module, with respect to the basis (u,). So, if

uu= Y azu, (veW?),
zEW*

then

triu = Y Gu.

vEW*

This definition depends on a choice of basis.
Now let f be a Z[t,t~"]-linear function on K, with values in some Z[t,¢!]-module, such
that f(uu') = f(u'u) for all u,u’ € K. Then f(trju) is independent of a choice of basis, as
follows by familiar argumenus.
In this situation, we shall need the following result (in which the bar automorphism of K
is as in 3.3).
9.1.5. Lemma. For all u € K we have f(tr;2) = f(trju).
The lemma follows readily from the definitions, observing that K; is stable under the bar
automorphism of K.
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9.2 Restriction of C,
G

9.2.1. Let 1 : P — G be the inclusion map. Recall that the restriction functor res = resp :
DG — DL is defined by res = mi* (with a Tate twist (dim U(P)) if this makes sense), see
no.6.

Fix¢e X,we W¢ and let C¢y = C§,, be as in 5.1. The following result, which is the
main one of no.9, allows one to deal with parabolic restriction of character sheaves.

Let O be the orbit W ¢. We use the function 7 = 7€ on the algebra K defined in 5.1.6 and
its analog 7~ for K. Notice that 7 is the restriction of 7¢ to K;. The maps x¢ and x*
are as in 5.1.6.

9.2.2. Theorem.

(©) rengw s a semi-simple complex on L, of the form

@ Crlf,z [rna]s

neo ze(Wy)),
(ii) x*(resCg,) = rE(trrcew)-
9.2.3. To prove the theorem we shall establish results like (i) and (ii) for the complex C¢g
of 5.1.3, where 8 = (s;,...,5,) is a reduced decomposition of w. The analogue of (ii) for
Ce" is
(1) X" (resCea) = 7° (t1(Custr oy - - - Corbrr Ceinr)) -
The statements of the theorem follow from their analogues for C¢g, by arguments similar

to those of the proof of 5.1.4.
We first discuss some auxiliary results. Fix v,,v, € W* and s = s, € S. Put

Z=G,No{' Py, Z,=2NG,, Z.= ZNG..
Then Z is a closed subset of G,. Define ¢ : Z — L by
pg = m(i1997"),

and denote by (,,p, the restrictions of ¢ to Z, resp. Z,. Since n(3;Bv;! N P ) = By
(i = 1,2, see 9.1.1), the image of ¢ is a union of double cosets B;zBj.

On G, resp. G, we have the local systems L¢, = L§, and L¢. = L§, of 4.1.1, where
teX.

9.2.4. Lemma. Assume Z # 0. Then v; = v, or v1s = v;. We have several cases :

(a) vis gW*. Thenv; =v; <visando =visvi' € I. We have p Z = L,, 0,2, = L,
and p}L¢, = I"f,"e.- P

(b) vis € W* and pZ = L.(= By), with the following subcases.

(bi) vy =v; <vs. Then Z = Z, and p;L§, = Evci"e.c 7.

(bii) vy = v; > v18. Then p,Z, = L, and <p:[il"¢ ~ Bfr‘é.t |z, if s € Worie

(biii) vis = vy. Then 0,2, = L, and qp:.’ll',, = E',Gz_lm |z, -

If Z # 0 there exists ¢ € P with g9, € ;G,. Assume ¢ € G, where z € W;. Then
gV; € Gyy,. Moreover, 9,G, C Gy, 11 G,,,. It follows that zv; = v; or Tv, = vys.

If z # e we must have v; = v, and z € I (see 3.2.7, so we have case(a)). It is not hard to
see that now pZ = L,,,2Z, = L,.

Next assume we are in case (b), then z = eand pZ = L. If v; < v;s we have G,,,G, = G,,,.
This implies that in the case that v; = v; we must have Z = Z, (if v;s = v, then Z = Z,).
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It remains to prove the assertions about inverse images of local systems. In case (a) we
have a diagram of morphisms (for a suitable choice of representatives v;,9,, $)

G, & 2z, 8 1L,
NP Lot s
T 3T
where pr€ and pr’ are as in 4.1.1 for G resp. L, ¢ is inclusion and the lower horizontal
map is given by the Weyl group action, such that

pr¥op, =v;0 prfoi.

It follows that ©;Lg, = E"Gl_, ¢, In the cases (bi) and (biii) a similar argument gives the
asserted result.
Now consider case (bii). The first assertion of (b i), applied for v;s shows that

§'Zs=Bn ét)l“B(t’;lé),
whence
Z =3$BsIn o7 B(9).

Also, Z, = B N ;! B9;.

We denote by o the simple root of R such that s = s,. Also denote by X_, the one
parameter subgroup defined by —a (see 4.1.1) and by «¥ the coroot defined by a, a
homomorphism k* — T.

The unipotent radical of B is denoted by U. We put U' = U N ¢;'U%;. We then have

Z,=T.(X_o—{e}).U".
More precisely, the product map
TX(X_g—{e})xU' — 2,

is an isomorphism of varieties.
It follows from familiar properties (see for example [Sp1, p.238]) that there is an isomor-
phism ¢ : X_, — {e} = k* such that (for suitable $)

préu = a¥(pu) (u€ Xoa — {c}).
Hence ¢ : tuu' — pu (t € T,u € X_, — {e},u' € U') defines a morphism Z, — k*.
As before, we have a diagram of morphisms, which is now
G, < 7z, 5 L
\pra 1 pre -
T T

If g = tuu' € Z, then pr¥(p,g) = vi(t) and pr®(ig) = s(t)a¥(1g). This can be reformulated
as follows. Let p : T x k* — T be defined by u(t,a) = t.v;s(a¥(a)) and p: Z, — T X k* by
p = (pr¥ o p,,%). Then

(vis) o préoi=ponp.
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It follows that
ﬂf{’f,c |Z'= ﬂ?“vr‘f,l |Z,= (”’ Op)‘ﬂe,

where L is as in 3.1. Since s € W1, i.e. v1s € W, we have ((v18) 0 V)"
L¢ = E, the constant sheaf, and

(op)'Le=p"(LeRE) = (p° 0 pry)(Le),

where pry : T x k* — T is projection. Since pr;op = prl o p,, we obtain the asserted
relation p; LF, = ﬁf;,e" |z.-

With the notations of 9.2.4, we have the following complementary result. The straightfor-
ward proof is omitted.

9.2.5. Lemma. The morphism ¢ : Z — L, (case (a)) resp. ¢ : Z — L. (case (b)) is a
locally trivial fibration by affine spaces.

_ _ . B
9.2.6. Let 8 = (s1,...,5,) be as in 9.2.3. We shall need the variety ¥, = ¥, = G x5 (G,, X

% G,,) introduced in 5.1.3. The image of Y, of an element (go,...,g,) € G™* will be
denoted by (go,...,9r)"

Let v = (vo,...,v,) be a sequence of elements in W*, with vy = v,. Define a locally closed
subvariety Z, of Y, by

Zy = {(gos---,9:)" € Ya | go...9i € Oy, for i € [0,7] and gogs . ..9-95" € P}.

1t follows from 9.2.4 that Z, = @ unless v;.v; € {e,s;} for ¢ € [1,r]. For such ¢ define
0; € Wi by 0; = e unless v;_; = v; and v;_; 8,7} € Wy, in which case we put 0; = v;_;1s;v77}.
Let t = (o1,...,0,), a sequence in TU {e}.

If (g05...,9-)* € Zy choose p; € P with

go-.-9i €EpiviB (0< i <1),pp5" = gog1-..9r95 "

Put £, = mpo, & = w(p74p:) (1 < ¢ < r). It follows from 9.2.4 that £ € L,,. We define a
morphism

p:Zy — Y by plgos.--s9r)" = (Loy. .., Lr)".
9.2.7. Lemma. p is a locally trivial fibration. The fibres are affine spaces of dimension

d(v) = dimU(P) + card{i € [1,r] | v;is; € W"* and v;s; < v;}.

This is a consequence of 9.2.5. .
Now consider the perverse sheaf A¢g of 5.1.3, which we identify with the restriction to its
support ¥;. Denote the restriction to Z, by Ay. Put

Iy = {1 € [1,7’] I Sp et 8i418iSi41 ... 8y € We}

(see 3.2) and
Jy=J = {1 € [1,1‘] | Vi—1 = ¥, ¥;_18; € W.}.

9.2.8. Lemma. If J ¢ I; then pAy = 0.
Let 1 € J — I and fix z € Zy.
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(2) vi-1 < vi_18;. For all points (go,...,g,)" in the fiber F, = p~!(p2z) we have g; € B
(9.2.4). Since s ¢ I, the complex Ay is zero in (go, . .., g,)*, by 4.2.2 (ii). Hence H'(p4v), =
H.(F,,Ay) =0.

(b) vi—18i < vi_y. For all (go,...,9,)* € F; we have that either g; € B, in which case again
Ay is zero in z or g; € G,, (9.2.4). In the latter case it follows that H;(F,, Ay) decomposes
into a sum of cohomology spaces of suitable varieties, each of which has a tensor factor of
the form H,(S, L), where § is a torus and £ a non- constant Kummer local system on §.
We conclude from 2.1.5 that H,(F;, Av) = 0. The lemma follows.

Next let J C I,. Then v iow; = s; if ¢ € J and v o;v; = e if ¢ € J. We conclude,
using 3.2.8, that vyloy...0,v0 € Wé oro;...o, € W,:0€. On Y£ we then have the perverse
sheaf A = fifne,a (as in 5.1.3).
9.2.9. Lemma. Let J C Is.
(i) Ay = p*A[dim ¥ F — dim Y]
(ll) (’7{')|pgAv = f",e,t[dim }_’.G — dim KL - 2d(v)].
Here ~{ is as in 5.1.3. The assertion (ii) follows from (i) and the definiton of CL, , (5.1.3),
taking into account that p is a fibering by affine spaces of dimension d(v) (which implies
that pp* = id [—2d(v)]. So it suffices to prove (i).
Put Hy = {i € [1,7] | 0; # €}. then HoNJ = 0. If H C H, denote by Z}; C Y& the locally
closed subvariety of the points (&,...,%)* with & € L,, fori € Hy— H, ¢; € L, for i € H.
The Zy(H C Hp) form a partition of Y;X. Put Zy g = p~*(Z}).
Put

L={i€l,r]|oi#eando,...0i4+10:0i41...5 € Wy},

then Ity = Iy N Hy.

The restriction of A to Ugc 1, Z} is a shifted local system of rank one, as follows from the
definition of the complexes like A in 5.1.3 and from 4.2.2. Moreover, the restriction of A
to the complement of Uycy, Z is zero (see 4.2.2). If K C [1,7] denote by Sk the sequence
obtained from s by replacing by e all s; with : € K (as in 3.2).

Put
Jy = {1 eJ I Vi—18; > 11‘_1}.
Then
ZV,H = U (le n Zv))
HuJ,CKCHUJ

with Ys, as in 5.1.3.

The subset Ugc I Zy g of Zy is open and smooth. The restriction of Ay to it is a shifted
local system of rank one and the restriction of Ay to the complement is zero. It suffices
to prove the assertions of (i) for the restrictions of the complexes in question to the dense
open subset Y 50 Zy of Ugc I ZyH.

We shall apply 9.2.4. Put s} = s; if { ¢ J; and s} = e if i € J;. Let Z; = G,» N 97} P%; and
let p; : Z; — L,, be as in 9.2.4 (1 < ¢ < r). We have a commutative diagram

Px 2y x ...x Z, % LXxLyX...XL,,

'ﬁl l )
Zy N Y 4 vy
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where ¢ = mp X o1 X ... X o, and ¥(p,91,...,9r) = (PV0s91,...,9:)*. By 9.2.4 we have
that
o; L =LY aen (1SEZT).

Oit1.-0r00€,0;
Here we use that J; U J; C I, which implies in particular that v;_1s;...8.§ = 0;...0,v€.
Also notice that s;41...8,& = 8}, ...8£. Hence

‘P‘ (E X E‘I,"ma'”oe,,l X...X £fn€,o,) ~EX ﬂz...a',f,:'l X...X £g.:

The asserted isomorphism between local systems on Zy NY,, follows.

9.2.10. Lemma. rescg, ts a semi-simple complez, tsomorphic to

@ ¢l [dm¥F - dim¥" - 2d(v)],
JvClg
the sum being taken over sequences v as in 9.2.6.
The sets Jy and I; where defined above.
We have a commutative diagram of morphisms

zZ > Y,
1/ i l X l .
L & PS5 G
where Z = ()1 P. The definition of the restriction functor shows that

1esCee = 1es(Ys)1Ags = pi(Ags |2).

By a reduction argument as in [BBD, no.6] it suffices to prove the proposition when k is
the algebraic closure of a finite field F, and everything is defined over F,. We shall apply
the lemma of 1.3.3 to the variety Z, which is the disjoint union of the Z, of 9.2.6. We put
Z4 = dim zy<a Zv- The complex in question will be ﬁe_, |z . Its restriction to Zy is Ay, as
before. Since complexes like C¢,, are pure (see 5.3.1) we conclude that the condition of
1.3.4 is satisfied (taking into account the appropriate Tate twist in 9.2.9 (ii)). The lemma
follows.

9.2.11. We already noticed that 9.2.10 implies part (i) of 9.2.2. It will also imply part (ii),
as we shall establish now.

If v is as before we denote by n(v)(n-(v)) the number of ¢ € [1,r] with v;_ys; € W* and
vi18; > vi_y (resp. v;i_18; < v_1). By ny ¢(v)(n-¢(v)) we denote the similar number of
t € I (i.e. such that s,...si+18i8it1...8 € We ).

It follows from 9.2.10 that

(2) XL(reSCeG,s) = Z t_”+(v)+n-(V)TL(coz--.arvae.al .. -cvoe,ar)-

JvClg
Recall the basis elements u, (v € W*) of 9.1.3. With the notations of 3.3 it follows from
the formulas established there that if v € W*,s € S

UyCes = Cust,ethvs if vseW*,sgW,

= t7leyg (o + Uy if vsEW?*,s € Wevs > v,
tepge(to + uy) if vsEW*,s€We,us<uv,
= Cog,oUs if vsvl=0€l

I

169



J.G.M. MARS, T.A. SPRINGER

It follows from these formulas that

(3) trr(Cogosr by - - - CE,) = Z t_"+"(V)M_"(v)cvz.--amot.ax s+ Cuofor+

JvClg
Formula (1), which is equivalent to the assertion of 9.2.2 (ii), will follow if we show that
for all v with J, C I, the exponents of ¢ in the right-hand sides of (2) and (3) are equal.
This will follow from a combinatorial result.
9.2.12. Let s = (s;,...,8,) be a sequence in S and v = (v,...,v,) a sequence in W* such
that for ¢ € [1,r] we have v} v; € {e,s;} and that v, = v,.
Put t; =s,...8;418i8i+1...8, and let

I, = {iel,r]|tieW},
J = {i€|l,r]| vi-1 = vi and v;_18; € W*},
Ho = {i € [1, f] I v,-_.ls‘-v,-‘_ll € I}.

If ¢ € Ho we put 0; = v;_18;v;". Then v; = v;_;. If { & Hp we put 0; = e. The complement
of Hy decomposes into four subsets, described as follows.

Ji v =00, i8> v,

J2 1 v =00, Y18 < Vo,

Js 1 Ui = 0318, 0;0i-18 > Vi,

Jo 1 v =018, V18 < Vi1,
Then J = J; U J;. We have in the situation of 9.2.11

ne(v) =) =| J1 | = |2 |+ 1 Ja | = | T,
nie(V) —noe(V) =N = | B |+ |IsnL |- |Jin] .

Since v, = vo we have | Js |=| Ji | . The result we need to establish the equality of (2) and
(3) is the following one.
9.2.13. Lemma. If J C I and 5,...8, € Wi then | JsN I, |=| JyN I, | .
Notice that in the situation of 9.2.11 the hypotheses of this lemma are fulfilled.
Let ¢ € I, be such that v; = v;_;. By cancelling s; and v; from s resp. v we obtain sequences
satisfying the same conditions (recall 3.2.8), and | JsN I, |, | J¢ N I; | are not changed. So
we may assume that J =0, HoN I, =0. Theno; = eif s € U J; and t = (0y,...,0,) is
a sequence in T U {e} such that o; = v;_;8;v;! for ¢ € [1,r], whence

— -1 3 :
Op.::044100441...0, = vot.-vo if 1€ Ho,

= e if ¢ H,.

Moreover 0y ...0, = vg8;...8,v; . Weput w =35;...8,80 w € Wé

Since votivg! & Wy, if ¢ € Ho we have by 3.2.5 that vowv;? € W, .. Also, by 3.2.7(i),
Oi...0, €Wy fori € [1,r].

Let a; be the simple root such that s; = s4,. If v;_18; > v;_; then v;_;(e;) € Rt and
conversely. Now v;_;j(o;) = 0;...0,v08,...8;(e;). If ¢+ € I, then vgs,...s(e;) € R, and
since 0y ...0, € W, . we see that v;_1(c;) and vos, ...s;(a;) have the same sign.

To prove the lemma it suffices to show: .
(*) The sets of ¢ € I, such that vps, ... s;q; is positive resp. negative have the same number

of elements.
We need an auxiliary result about decompositions in Weyl groups.
9.2.14. Lemma. Let § € Rt and put Kg = {i € [1,7] | t; = sp}.
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(i) wB € R* if and only if Kg has an even number of elements.

(ii) The sequence of roots s, ...s;c;(i € Kpg) is of the form

iﬂa'“’ﬂa—ﬂ’ﬂ - ﬂ

(i) follows from the results of [B, p.13-14]. To prove (ii) it suffices to consider the case
that K has at most two elements, in which case (ii) follows from (i). (One could also use
[loc.cit.,p.157]).

Fix B € R}. To prove (*) it suffices to prove a similar assertion for the i with ¢; = sg.
Using 9.2.14 (ii) one sees that this assertion is true if Kz has an even number of elements,
i.e. if wB > 0 (9.2.14(i)).

Now (*) will follow from :

(**) The set {voB | B € R}, wB € —R*} has as many positive roots as negative ones.

Put y = vowvgl,n = voé, so y € Wy NW,. Then (**) is equivalent to: there are as
many positive as negative roots o € R, such that vyla is positive and vy 'ya negative.
Now y permutes the roots of R,T . It is clear that in each orbit in R,*,‘ of the group gen-
erated by y there are as many elements a with vy'a, —vy'ya € R* as there are with
—vyla,vylya € R*. Hence (**) and (*) follow, and we have proved 9.2.13, and also 9.2.2.
Remark. 9.2.2 is a conjunction of [CS, 3.9] and [CS, 6.7]. The proof of the latter result
is not given completely in [loc.cit]. Also, the proof of the auxiliary result [CS, 3.5] (corre-
sponding to lemmas 9.2.8 and 9.2.9) is incomplete.

9.2.15. Example. Assume that G = SL,, with n prime to char k and consider C¢, with
w a Coxeter element and W = e. So S = {sy,...,8,} and w = s;...s,. We claim that
now

cf,w = c'!n--‘ven'l e c'-€.'r—|°€.¢r°

In fact, since all s; are distinct it follows that the right-hand side has the properties required
in 3.3.4, all polynomials P¢,, being the constant 1.

The formulas of 9.2.11 now show that tryce., = O for all proper subsets I of S. It follows
from 9.2.2 (ii) and 5.4.11 that C¢,, is a cuspidal character sheaf.

9.3 Induction and restriction of character sheaves

We shall first give the - much easier - counterpart of 9.2.2 for induction.
9.3.1. Proposition. Let ¢{ € X,w € Wy NW/. Then ind§C%, = C§,,.
We have a diagram
L xp, Ly & G x (PxpGy) 5 G xp G,
bt 1 idxs© le N

L & G x P 5 @ xp P Sa.

G

The lower row is the one used to define induction in 7.1.1 and ~€ is as in 5.1.1. The map
a; is given by
a1(g,z * h) = wp(z) * 7p(h),

where g € G,z € P,h € G, and z * h denotes the image of (z, h) etc. The left-hand square
is Cartesian. The map f; is defined by

ﬂl(gsz*h) =gz*h’
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and the second square is also Cartesian. Further, € is the canonical map. The triangle is
commutative.
Let A~§"’w be as in 5.1.1. The projection 7p : P — L induces a fibration G, — L,, with
fibers U(P), and it follows from the definitions, using 1.2.6(b) that 73 Af,[dimU(P)] =
A§,,. This implies that

i Af,[2dimU(P)] = B; A¢,.

Now C§, = '7.0(!1?:.,) = 6,(e.A§,) and
Be(AS,) = (id x 10).(B1 AG,) =

(id x v6).0i(Af,)[2dim U(P)] = o* (vE(AE,)[2dim U (P)] = a*C{,,

by the definition of Cf,, (5.1.1). The definition of induction (7.1.1) shows that C§, =
indgng, as asserted.
Remark. 9.3.1. is contained in [CS, 15.7]. Our proof is somewhat different from the one
of [loc.cit).
Let A be a character sheaf on G. The parabolic subgroup P is as before (9.1.1).
9.3.2. Theorem.
(i) A is admissible;
(ii) resEA is ssomorphic to a direct sum of character sheaves.
We may assume that P is a proper subgroup and that character sheaves on reductive
groups of dimension < dim G are admissible. Admissibility was discussed in no.8.
Let £ € X ,wE Wé be such that A is a constituent of ng. We use the notations of 5.1.6.
Then
X6 (Cew) = Bifi(t)[Ail,

where the A; are character sheaves on G and the f; are Laurent polynomials with non-
negative integral coefficients, such that f;(t) = fi(t™!) (by 5.1.7(i)). It follows from 9.2.2(i)
(using the induction assumption made above) that resA; satisfies the condition of 7.2.5,
hence res A; € DL=°,
So

X" (resA;) = T;g;;(t)[Bj,

where B; € f}, the g;; being polynomials in ¢~! with non-negative integral coefficients.
Hence

x" (resCew) = Z;9;(t)[Bj],

with
9;(t) = T:fi(t)gi; (2).

By 5.1.7(i), 9.1.5 and 9.2.2(ii) we know that g;(t) = g;(t™!). The following elementary
lemma (whose proof we leave to the reader) now shows that the g;; are constant, which
will establish (ii).
Lemma. Let F; resp. G;(i < i < a) be polynomials resp. Laurent polynomials with non-
negative real coefficients. Put F = Y, F;G;. If F(t) = F(t™1),Gi(t) = Gi(t™')(1 < i < a)
then all F; are constant.
We now prove (i). The statement is trivial if A is cuspidal. Otherwise there is a proper
parabolic subgroup @ with Levi group M such that resgA & DM<® We have already seen
that res§A € DM=°, and we now conclude from (ii) that there exists a character sheaf
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C on M with Hom (res§A4,C) # O (one can also see this without the use of (ii)). By
Frobenius duality (7.1.3) we have Hom (A4, indgC) # 0. By induction we know that C is
admissible. Using transitivity of induction (7.1.2) we conclude that A is admissible.

We give a number of corollaries.

9.3.3. Corollary. If B is a character sheaf on L then inng is a direct sum of character
sheaves.

This follows from 9.3.2(i), 9.3.1 and the results of no.8.

9.3.4. Corollary. A is cuspidal if and only if it is strongly cuspidal.

This is immediate from the definitions, using 9.3.2(ii).

The next corollary is proved by an adaptation of the argument used to prove 9.3.2(i)
(using 9.3.4).

9.3.5. Corollary. There ezists a parabolic subgroup Q of G with Levi group M and a
strongly cuspidal character sheaf C on M such that A is a constituent of indgC.

We finally record the following consequence, involving the stratification of G introduced
in 6.2.8.

9.3.6. Corollary. The restriction of the cohomology sheaves H'A to a stratum are locally
constant with finite monodromy.

This is a consequence of 8.3.1 and admissibility of A.

Remarks.

(a) 9.3.2(ii) and 9.3.4 are established in [CS, 6.9], 9.3.3 in [CS, 4.8(b)], 9.3.1 is contained
in [CS, 7.1.14].

(b) For k = C, a different proof of 9.3.2(ii) has been given by V. Ginzburg (private com-
munication). It uses D-module theory.
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10 Further properties of induction and restriction,
duality

Notations are as in no.9.

10.1 Mackey’s formula

10.1.1. The next proposition holds in a more general situation, as the proof will show. To
avoid cumbersome assumptions we formulate it only for the case of character sheaves.
Let P and Q be parabolic subgroups of G with Levi groups L and M, respectively. Choose
a set 3 of coset representatives for Q\G/ P such that L and all conjugates z-!Mz(z € 1)
have a common maximal torus. We write *P,... for zPz~! and P=*... for z ! Pz. For any
z € ), the group *P N M is a parabolic subgroup of M with Levi group *L N M and
LN Q* is a parabolic subgroup of L with Levi group L N M=,

10.1.2. Proposition. For any character sheaf A on L we have

res§(indf 4) = @ indff, op *(resfng.4)
z€E

Consider the diagram

M
)
/1 =
14 4 Q
\ \
L&EGxPA gxppP & ¢

where the row is as before, with V = 6"1Q, and p = mgoé.
If A € L we have a perverse sheaf K; on G xp P with

a*A[2dimU(P)] = B*K,.
Let K be the restriction of K; to V. Then
(1) resg(indfA) = p K.

We have a partition V = H V. into locally closed subvarieties, with

zEE
V:={9*h€GxpP|g€QzPghg! €Q}.
Let K, be the restriction of K to V,. Put P; = M N *P. We have the following diagram

LN Q@ 5 L n Q Ve
! L nq Lo NP
LnM'-f»’LnM«‘ﬂMxP;f-‘»M‘ggP;ikM.

Here a,, (1,6, are the analogues of a, 3,6 for M and P} and p is defined by

p(g * h) = mg(q) * mg(zh'h(h")1z7?),
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if g% h € V,,g = qzh', where h,h' € P,q € Q. Then 6, o p is the restriction @, of ¢ to V;.
The map p is a locally trivial fibration by affine spaces of dimension dim U(Q).
Let A, be the complex on *L N Q corresponding to the restriction of A to L N Q*. Then

2 (reskngs 4) = (mg)i 4. (dim *L N U(Q)).

By 9.3.2 (ii) this is a perverse sheaf.
10.1.3. Lemma. aj((7g)4;)[2dimU(P})] = Bip K.
To prove this consider the variety X = Q X ( *P N Q) and define maps

fi : X—> *LnQ , (¢9,h)— *LNQ — partof h,
f2 : XV, , (9,h) — gz %z lhz,
f +: X->MxPF; , (g,h) g ("0(9):”0(’1))-

We have mg o fi = a; 0 f and po f; = B, o f. Obviously
(2) f{A. = f3K.|- dmG + dim L]

(both sides are equal to the inverse image of A under the map X — L sending (g,k) to
my(c1g2)).

Let Y be the fibre product of *LNQ and M x P} over *L N M and Z that of V, and
M x P} over M;<.P;. Then f; and f, induce p; : X — Y and ¢; : X — Z. We have a

commutative diagram

X
/Wl \‘m
TN Q & Y zZ % v,
Lore N\ o Lo
'L n M M x P By MyxP;

with po; = fi1,v0p; = f,. Then p; and p; are locally trivial fibrations by affine spaces
of dimensions d; = dimU(Q) + dimU( *P) NU(Q), d; = dim *P NU(Q), respectively. We
have (1)1} C = C for any complex C on Y, and similarly for p;. We can write (2) as
P\ A;[2dimU(P) — 2d;] = pyv* K, [—2d;).
Since o01(¢1)1 = 1i(p2)1 we obtain
0’|M‘A,[2 dim U(P) - 2d1] = TgU‘K,[—2d2].
Since o\u* = aj(wgh, nv* = Bip;, we find

a;(ﬂ'q)|A,[2 dim U(P) —2d; + 2dz] = ,Bl'png.

Now
dimU(P) — dy + d; = dimU(P) — dimU(Q) + dim *LNU(Q).

As is well-known ( *P N Q)U( *P) is a parabolic subgroup with unipotent radical ( *L N
U(Q)U( *P). Likewise, ( P N Q)U(Q) is a parabolic subgroup with unipotent radical
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(MNU(*P))U(Q). Since both parabolic subgroups have Levi group *LNM, their unipotent
radicals have the same dimension, i.e.

dim *LNU(Q) + dimU(P) = dimM NU( *P) + dimU(Q).
It follows that
dimU(P) —dy + d; =dimM N U( *P) = dimU(P}),

and the assertion of 10.1.3 follows.
It follows from 10.1.3. that

(3) (0)i Kz = indp;((mq)14z).

To prove 10.1.2 we may assume that k is the algebraic closure of the finite field F, , that
all varieties in question are defined over F, and that A is pure of weight a, say. Then
res§ A is pure of weight a — 2dim U(P). Similarly, if A’ is a character sheaf on L which is
pure of weight a' then ind§ A’ is pure of weight a' + 2 dim U (P). These remarks imply that
(p2)1 K, is pure of weight a + 2dim U(P), which is independent of z. We can now apply
the lemma of 1.3.3, for the decomposition V =[] V,. It follows that

WIK = @(‘pz)lK:-

zED

(2) and (3) show that this is the equality of the proposition.
Example. Take Q = B,M = T. From example (b) in 7.1.1 and 10.1.2 we conclude that

GG __ L
resgCe, = D Cpe.e
vew;

(notations of 9.1.1).
The result of 10.1.2 is established in [CS, 15.2], under a more restrictive assumption. Our
proof is different from the one of [loc.cit].

10.1.4. We now have available properties of parabolic induction and restriction similar
to the ones known in the theory of finite groups of Lie type. These properties have a
number of formal consequences, to be discussed presently.

We denote by CG the subgroup of the Grothendieck group of perverse sheaves on G
spanned by the character sheaves. A semi-simple perverse sheaf on G which is a direct
sum of character sheaves is completely determined by its image in CG, we shall identify it
with this image. Likewise, a semi-simple perverse sheaf on G whose irreducible constituents
are character sheaves is identified with the element x(A) of Z[t,t~!] ® CG which it deter-
mines according to 5.1.6. We denote by (,) or (,)s the symmetric bilinear form on CG
(or on modules like Z[t,t~!] ® CG) for which the character sheaves form an orthonormal
basis. If P is a parabolic subgroup with Levi group L it follows from 9.3.1 and 9.3.2 that
we have homomorphisms res§ : CG — CL and indg : CL — CG, induced by restriction
and induction of perverse sheaves. Moreover, by 7.1.3 we have for A € CG,A' € CL

(4) (A,ind§A")¢ = (resS A, A")y,
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and in the situation of 10.1.2 we have for A € CL,A' € CM

(5) (ind§ 4, ind3A")e = 22( *(resfngsA), resyin =pA') s10m-
z€

We notice the following consequence of these formulas.

10.1.5. Lemma. Let P' be a second parabolic subgroup with Levi group L.

(i) For A € CG we have res§A = res§ A;

(ii) For B € CL we have ind§B = ind5,B.
Using induction on dim G one deduces from (5) that

(res§A — res$A, resSA — resSA) =0,

whence (i). Then (ii) follows from (4).

10.2 Duality

10.2.1. If I C S we denote by P; the parabolic subgroup defined by I (as in 9.1.1), with
Levi group L;. We have for I C J C S restriction and induction maps
i = indf’,, : C(Ly) - C(Ly)
res,l;,’nL, : C(Ly) — C(Ly).

J
I

The notation is legitimate by 10.1.5.
Let I C J C K. By 7.1.2. we have

(6) ifiy =if.

If A€ C(L,), A’ € C(L;) then by (4)

(7) (4, i'I’A') = ('}’A’ 4'),
whence

® riry =rf.

It follows from (5) that for I, J arbitrary subsets in S
(9) ri'}q = §i{=nJ °9z 0 r;n =

where z runs through the elements of maximal length in the cosets WywW; and ~, :
C(Lin =5) = C(Ly2ns) is induced by conjugation.

(notations similar to those of 10.1.4).

10.2.2. Now define ds =d : CG — CG by

d= 3 (-1)1:5,.8.
Igs( Y lirry

This is a homomorphism analogous to the duality map of class functions on a finite group
of Lie type, studied by Curtis, Alvis and Kawanaka (see for example [Ca, 8.2, p.266-278]).
Our map d has properties to be stated below, analogous to the ones of the duality map.
These properties are formal consequences of (6), (7), (8), (9) and the following identity: if
I,K C S then

st(—l)“' card {z € W | IN *J = K and z is minimal in W;zW;} =
C

(-1)I¥l,
The properties of d are :

177



JG.M. MARS, T.A. SPRINGER

(a) dt = id,

(b) dst'tg = iid[, dﬂ'}q = r?ds,

If A,A’' € CG then

(c) (d4,A") = (4,dA"),

(d) (dA,dA") = (A, A").

It follows from (d) that if A € G (i.e. A is a character sheaf) we have +dA € G.
10.2.3. Proposition. Let A € G.

(i) If A is cuspidal then dA = (—1)1514;

(ii) dA = (—1)ccdimeurP A 4" yhere A' is a character sheaf with the same support as A.
If A is cuspidal it is strongly cuspidal (9.3.4) so r}A = 0 for I # S, whence (i).
Otherwise, let I be minimal such that r{ A # 0 and let A' € L; be a constituent of r§ A
(see 9.3.5). Then A is a constituent of i§ A’ by (7). By property (b)

difA' =i$dA' = (-1)7if A",
It follows that
dA = (-1)14,,
where A, is a constituent of i§ A'. It follows from 7.2.2 that all such constituents have the
same support, which is a variety Y(L:E) as in 6.2.4. We have

codim supp A = dimL —dim)_ =| I | mod 2,

the congruence following from the fact that a conjugacy class in L/Z(L)° has even dimen-
sion. (ii) is proved.
We have followed here [CS, 15.3, 15.4].
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11 Further analysis of character sheaves

We keep the notations used before.

11.1 Properties of Hecke algebras

Let ¢ € X and denote by ¥} the Hecke algebra of the group W (see 3.3.7(ii)). We review
a number of results which will be needed. See also Curtis’ contribution [Cu].

11.1.1. Lemma. E(t) @zt H; is a semi-simple algebra over E(t).

As usual, E is our fixed coefficient field. The lemma is well-known for ordinary Hecke
algebras (see e.g. B, p.56]). The proof of [loc.cit] carries over.

Denote by Wé the set of irreducible characters of W;. We identity Wé with the set of
isomorphism classes of irreducible E[W¢]-modules, or the set of classes of irreducible rep-
resentations of Wy.

If A € E* we define the E-algebra ¥¢()) to be the quotient of E[t,t7Y] ® X¢ by the ideal
generated by (¢t — A). This is the algebra obtained by specializing t to A. In particular,
X{(1) = E[W}]. One knows that ¥;() is semi-simple if A? is a non-negative power of a
prime number (cf. [loc.cit]).

11.1.2. Theorem. To any M € Wé one can associate canonically an E[t,t‘1]®)(é- module
M(t) , which is free as an E[t,t~]-module, such that

(a) the E(t) ® H{-modules E(t) ® M(t) represent the isomorphism classes of absolutely
irreducible E(t) ® }i-modules.

For X € E* denote by M(}) the X¢())-modules X¢(X) @y M(t).

(b) M(1) is an srreducible E[W(|-module in the class M;

(c) If g 15 a non-negative power of a prime number then the modules M (q%) represent the
tsomorphism classes of trreducible )(é(q%)-modulea.

For the case of ordinary Hecke algebras the construction of M(t) was given by Lusztig.
See [Cu] for more details and references. The proof carries over to the case of ¥;.

Denote now by (ew)wewé (and not by (egw)) the basis of X of 3.3.7(ii). If M € Wé
we denote by M"* the class of representations of W{ dual to those of M. The character
w — (—1)4*) of the Weyl group W induces a character of W¢, denoted by e.

We denote by o (resp. C) the ring of cyclotomic integers in E (resp. its quotient field) and
by conj the automorphism of C sending each root of unity to its inverse and its extension
to C(t) fixing ¢ (E is assumed to be sufficiently large, as always.)

11.1.3. Lemma. Let M € Wé, w e Wi

(i) Tr(ew,M(t)) € oft];

(ii) Tr(egt:, M(t) = Tr(ew, M(2));

(iii) Tr(ey-1,M(t)) = Tr(ew, M*(t)) = Tr(ew, M(t))=™;

(iv) Tr(ew,e ® M(t)) = e(w)t?%™) Tr(e,, M(2)).

The bar denotes, as before, the automorphism of E[t,¢t1] sending t to t~! (and fixing the
elements of E).

To prove (i) one shows that the elements e,, can be represented on a suitable basis of M(t)
by matrices with entries in o[t]. This follows from the construction of M(t).

To prove (ii) we use the automorphism u +— @ of ¥ with &, = e;1,,# = t™! (see 3.3.2).
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The construction of M(t) gives that there exists an automorphism m — m of M(t) such
that for u € ¥{,m € M(t) we have wn = @.7. It follows that there is M € W with

Tr(ew, M(t)) = Tr (e3t:, M(t)).
The bar automorphism of ¥; induces the trivial automorphism of the specialized algebra
Xi(1) = E[W}]. Using 11.1.2(b) we can conclude that M = M, proving (ii).

A similar argument proves (iii) and (iv), using respectively the involution e, > e,-1, the
automorphism conj of C(t) and the automorphism sending t to ¢! and e,, to e(w)t?4™ezL,.

The results of 11.1.3 are also due to Lusztig. They are used in [L1, Ch.5]. There one
also finds further references.
We next recall the orthogonality relations for ¥ é

11.1.4. Lemma. For M,M' € Wé we have

> t72%0) T (e, M(t)) Tr (ew-1, M'(t) =

wewé
(1) 0 if M #M,
(dmM)Fy if M' =M.
Here Fyy € Q(t?) s such that if
P= 3y %W
weW!

¢
we have PF{' € Q[t?].
We sketch a proof of (1). There exists a linear function £ on ¥; such that

L(ese,-1) = t24Mg,

Let (f) be a basis of ¥; and (f{) the dual basis relative to £, i.e. such that £(f;f]) = &;.
If p and p' are two absolutely irreducible matrix representations of E(t) ® ¥¢ one shows
that, putting

A =zp(f)o(f1)s
we have for all u € X;

p(u)A = Ap(u).
Application of Schur’s lemma leads to orthogonality relations for matrix elements, as in
the case of finite groups. Then (1) follows.

In the case of ordinary Hecke algebras, the polynomial PFy! is a generic degree polynomial
from the theory of finite groups of Lie type. See [Cu].

11.2 The function ¢

In 5.1.6 we have defined a linear map 7 of the algebra K to Z[t,t™] ® CG. Since ¥; is a
subring of K, we obtain a map of X, also denoted by 7.
11.2.1. Proposition. There is a unique function cg = c : é(f) X Wé — E(t) such that for
u € H;
r(w)= Y. ¢(4,M) Tr (u,M(t))A.
A€G(¢)
MeWw;
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If necessary we write ¢ = cg.

A linear function on the semi-simple algebra E(t) ® ¥; with the property of 5.1.7 (ii) is
a linear combination of trace functions defined by the irreducible representations of that
algebra. The proposition now follows from 11.1.2.

Recall that, C¢,, being the semi-simple complex of 5.1.1, we have (¢, = ¢¢w as in 3.3.4)

7(cw) = ?t‘ PH(Cew)-

The following properties of ¢ are rather direct consequences of the definition.
11.2.2. Corollary. Let A € é(f),M € Wé.

(i) Pe(A, M) € C|t,t7Y], in particular ¢(A, M) € C(t);

(i) c-¢(DA, M) = c¢(A, M);

(iii) c(A,M*) = c(A, M), where conj denotes the extension to C(t) fizing t.
From the orthogonality relations of 11.1.4 we see that

5 (FpdimM)c(A, M)A = ¥ t 271 (e,) Tr(ey-1, M(t)).
wEW,

Now (i) follows from 11.1.3(i).

(ii) follows from 5.1.10 observing that W', = W; and (iii) follows from 11.1.3(iii).

The function ¢, introduced in [CS, no.12], is a crucial object for the study of character
sheaves.

We next introduce a notion to be needed below.

11.2.3. Definition. G s clean if for any Levs subgroup L of G we have that the cuspidal
character sheaves on L are clean in the sense of 6.3.4.

We come now to the first main result of this section.

11.2.4. Theorem. Assume that G i1s clean. Then the values of ¢ are constants.

By 11.2.2, the values of ¢ are cyclotomic numbers. We shall review the proof of the theorem
given in [CS, nos.13, 14]. By an argument of the kind discussed in [BBD, no.6] one sees
that it suffices to prove the theorem in the case that k is an algebraic closure of a finite
field F,.

11.3 Working over finite fields

We assume that G is defined over F,. We assume that the maximal torus T and the Borel
group B D T are also defined over F, and that T is split over F,.

11.3.1. Fix £ € f(, then F¢ = £. Replacing F, by a suitable finite extension we may assume
that for all A € G(¢) we have F*A = A.

IfAe C:'(f) there exists by 9.3.5 and 7.2.2 a Levi group L together with a subset 3 of L
as in 6.2.4 such that, putting

Y =¥ = o™

we have supp A =Y.
For each class in é'(&) we choose a representative A and an isomorphism p4 : F*A 5 A
such that (A, p,) is pure of weight zero.
Let C¢,; be as in 5.1.1 (with a suitable set of representatives (w)). We have
PH (Ceu) = D A® Vauu,
A€G(¢)
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where V4;4 = Hom(A, PH'(Cgy)) is a finite dimensional vector space, zero for all but
finitely many ¢. Then the isomorphism

F:F* pH‘(Celu‘,) = pH'.(Celu',)

corresponds to an isomorphism @w4 ® ¥4,,w, Where 4, is an invertible linear map of
V-

11.3.2. Lemma. The eigenvalues of Y4, are algebraic integers all whose complex conju-
gates have absolute value g3(dimG+L(w)+i)

C¢,w is pure of weight dim G + £(w) (5.3.1). The assertion now follows from [BBD, 5.3.4].
From 5.1.10 we see that

PH‘(C-&.,’,) = @ DA® VDA,c',u':-
AeG(e)

We take pp4 to be the contragradient p} of 4. Then (DA, ppa) is pure of weight zero.
Moreover

Vbasw = Vi iw(—dimG — £(w)),
the star denoting vector space dual, the Tate twist having the obvious meaning.
11.3.3. Theorem. Assume G to be clean. Let A€ G(¢), w € W and i € Z be such that
A is a constituent of PH(Cpy).
(i) The parity of + + £(w) s an invariant of A;
(if) There ezists an algebraic number €4 all whose complez conjugates have absolute value
one, such that the eigenvalues of Ya;4 (resp. ¥paiw) are all equal to £4q3@mG+(v)+)
(resp. &-;lq%(dim0+t(w)+i))'
Denote by xa,0, (resp. Xpa,ep,) the corresponding characteristic functions (1.3.4). We
have the following orthogonality relation, see [CS, 10.7]. A variant is discussed in [Sh].
11.3.4. Lemma. Assume G to be clean. Then for A, A' € é(f)

- 0if A# A
I G* | ! gE%FXA,'PA(g)XDA'.PDA'(g) = { g~ dimG if 4 = A",

As in 5.3.1 we denote by v, the characteristic function of C¢ 4.
11.3.5. Lemma. Let z,w € W;. The sum

() |GF ™ S vewl9)V-¢.3(9)
geEGF

equals the trace of the linear map of the specialized Hecke algebra )lé(q%) induced by the
map
u s (=) e, iye,,

of X;.
(We have written ¢, = cgu--.).
See [CS, 13.7]. Using 5.3.3 the proof is reduced to a similar statement for the sum

| GF |t ,e%" Tr (90w, Vy) Tr (903, Vp-1),

notations being as in 5.3.2. This statement is proved in a straightforward manner. We
refer to [loc.cit] for the details.
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11.3.6. Lemma. There ezists a Laurent polynomial F € Z|T,T"!] tndependent of the base
field F, such that (2) equals F(q).

This follows by using the form of the multiplication rules in ¥}, taking into account the
corollary of 3.2.6 and 5.2.5.

11.3.7. We can now prove 11.3.3. Using 11.3.4 one finds that (2) equals

(3) g 9™ 5 n(=1)" Tr (Yases Vasw) Tr (Yass VDas)-

A€b(g)ia
Let (c4n4) resp. (Bjea) be the set of eigenvalues of ¥4 resp. ¥pa,j:- Applying (3) for
the ground field Fg» we conclude from 11.3.6 that for all integers n > 1

L T (1) (ainaBieaq” ™) = F(q"),
AEG(f)':J-h-t
F being as in 11.3.6. Now use the following elementary fact: if (21,...,2y) is a set of
distinct elements of E* and (a1,...,an) a set of elements of E such that a2 +...+ay2y =
0 for infinitely many positive integers n then all a; are zero.
We conclude from 11.3.2 that

{ in,aBiea 0 if ¢+ 7+ €(w)+¢(z) is odd

= @3(w+l=)+i+i+2dimG) if it is non — zero.

Now fix A € é({) and choose j, z such that Vpu ;. # 0.
Let B be an eigenvalue of ¥p4 ;.. It follows that if V4 ;. # O for some #,w we have

i+ £(w) = j + £(z) (mod 2),

proving 11.3.3(i). In that case we also have that for all A

n = ﬂ—1q§(€+a‘+t(w)+t(z)+2 dim G),

from which 11.3.3 (ii) follows.
11.3.8. Corollary. Assume G to be clean. If M,M' € Wé then

L c(A,M)c(A,M') =
AEG(§)

0 if M*#M
1 if M*=M.
By 11.3.3(ii) we can rewrite (3) as

(4) Aeg(e)(— 1)‘+jq%(‘+j+l(w)+l(z)) dim VA'.".,',. dim VDA,J’,:':-

From the definition of the function ¢ we see, using 11.3.3(i) that there is a sign €4 = +1
such that

() ?(—l)iq%‘ dimVyo = EA(—l)‘('”)AE{C(A,M)(ﬁ) Tr (2w, M(g%)),

where ¢, denotes the image of ¢,, in ¥; (¢%). Notice that (4, M)(g?) makes sense because
of 11.2.2(i). On the other hand, using 11.3.5 and 11.1.2 we see that (5) also equals

(—g3)*142) 5 Tr (2., M(g7)) Tr (cz, M*(q%)).
MeW,
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Since the functions (w,z) — Tr (s, M(q3) Tr (24, M'(¢3)) on W} x Wi (M, M' running
through Wé) are linearly independent (as a consequence of 11.1.2) we can conclude that

T c(A,M)(q%)e(4, M')(q3) = bpge ppr-
G(¢)

(One uses that €4 = ep4, which follows from the proof of 11.3.3.)
Working over the base field F;» one obtains a similar result, with ¢3 instead of qn This
implies the asserted identity of rational functions.

We next state some results complementing those of 5.3. We use the notations of that
section.

Let Endgr(V,,) be the commuting algebra of the representation of GF in V,,. We choose
an algebra homomorphism k : Endgr(V,) — E. Such a homomorphism exists, as there
are irreducible representations of GF occurring in V,, with multiplitity one. 6, and the
decomposition w = w*w,; are as in 5.3.2.

11.3.9. Lemma. There exists a choice of representatives ('b)wewg lying in G such that

the linear map ¢ : }(é(q%) — Endgr(V,,) defined by
§(8w) = g 3 U U) (@) B () 10y, (w € w})

1s an isomorphism of algebras. Moreover, q'%‘('”')h(ﬁ,;,-) s a root of unity.
Here &, denotes the image of e, in Xé(q%).
This is purely a result about finite groups of Lie type. For more details see [CS, no.13] or
By the previous lemma V,, becomes a module over the algebra ¥; (¢?) ® E[GF]. It can be
decomposed as

V= M Vo

¢ M?W' (qz) ® Yom
where V,, 5 is an irreducible E[GF]- module.
11.3.10. Lemma. To any A € G(£) one can associate a root of unity v4 such that for
geqr 1 gi 1
Tr(g, Ver) = D 929 CEavac(4, M)(q2)Xa,04(9)-

A€G(§)

Here ¢4 is as in 11.3.3 (ii). Using 11.3.9 we find

Tr(g84,V,) = z qﬁ(‘(‘") 4w )=te(w)p (G0 ) Tr (8w, M(g?)) Tr(g, Vipp),

whence by 5.3.3

’Ye,u)(g) =
(6) (—1)dimG+e(w) Z qé(l(w)—t(w'))h(o‘b_)Tr(aw, M(qé)) Tr(g, Vou)-
MeWé

On the other hand, an application of 11.3.3 gives

Yeu(9) = Y. €aXawal9) Z( 1)'q3 3(+Hw)+dimG) dimVy;4).
A€6(¢)
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By (5) there is a sign €4 = %1 such that this can be written as

Yeu(9) =
(M
(—g?)™ > €a649% ™%X a0 (9)canm(a?) Tr(Ew, M(g?)).
AeG(¢)
Mew!

¢

Since the functions w — Tr (¢4, M (qé)) are linearly independent, the assertion follows
from (6) and (7), taking into account the last point of 11.3.9.

We need some results of a general nature. In 11.3.11 and 11.3.12 the assumption that
k is an algebraic closure of a finite field is not needed.

11.3.11. Lemma. Let K = I(3, L) be an irreducible cuspidal perverse sheaf on G such
that DK is strongly cuspidal and clean. Put d = dimY . Let K' be a perverse sheaf on
G obtained by induction of a strongly cuspidal clean srreducible perverse sheaf on a Levi
group such that supp K' # . Then the local system H'K' IE has no direct summands
isomorphic to L(i € 7).

We first establish that H;(G, DK ® K') = 0. If K' is cuspidal this follows directly from the
assumptions. Otherwise there is a proper parabolic subgroup P with Levi group L, and a
perverse sheaf K on G xp P such that K' = 6, K (notations of 7.1.1). Let T C (GxpP)xG
be the graph of §. Then

H,(G,DK ® K') = H,(T, DK R K).

The projection G Xp P — G/P induces a morphism I' — G/P and it suffices to prove that
for any of its fibers F' we have

(8) H,(F,DKRK) =0.

Now F is isomorphic to P = L x U(P) and under an appropriate isomorphism DK RK |7
corresponds to
(DK) |p ®(C R E),

where C is a complex on L and E is the constant sheaf on U(P). Since DK is strongly
cuspidal we have for all £ € L
H.(LU(P), DK) =0,

and (8) follows.
To prove 11.3.11 it suffices to show that H*(L* @ K’ |5) has no direct summand isomorphic
to E(L* denoting the dual; notice that H*(K' |5>) is a local system by 8.3.1). Assume this

is not the case and take ¢ maximal such that H'(L* ® K’ |s~) has such a direct summand.
There is a spectral sequence

B} = HP(Z,H'(L' ® K' |50)) = H(Z, L' @ K' |y).

We have E3* # 0 and E}? = 0 for p > 2d and for ¢ > ¢ (by 6.3.5). It follows that
E3% = E¥ whence H*"(3,L* ® K' Is3) = HSY(G,DK ® K') # 0, contradicting the
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statement at the beginning of the proof.
11.3.12. Lemma. Assume G to be clean. Let A, A' be character sheaves. Let Y = YL x)
be as in 6.2.2 such that supp A =Y and put d = dimY. If A’ is not isomorphic to A then
no restriction H'(A') |y has an irreducible constituent isomorphic to H%(A) |y.
A is an irreducible constituent of a complex K = ind(Y, L), where T is a subset of a
Levi group L of G as in 6.2.2 and £ is an irreducible local system on - (so Y = Y(er:))‘
Let s be the semi-simple part of an element of ¥, . Put H = Zg(s)®. Likewise, A' is a
constituent of a complex K' of the same kind. We may assume that supp K' O supp K
and that these sets are distinct (otherwise the assertion is obvious).
We now apply 8.2.3. This shows that there exists an open neighbourhood U of s in H
such that

§'(K |v) ~ ®A; |,-1y [dim G — dim H]

st(Kl lU) o Q)A; |,—1U [dimG — dim H]

where s* denotes the inverse image for = — sz, the A; are cuspidal perverse sheaves on
H and A;- is induced from a cuspidal perverse sheaf on a Levi subgroup of H. The A; are
irreducible, strongly cuspidal and clean (see 8.1.3, 8.1.6), and the same holds for the DA;.
The A; are obtained as follows: choose representatives g; for the double cosets HgL of
elements g € G with g~'sg € ¥, (the set of semi-simple parts of the elements of J°), with
g1 = 1. Let C be the set of unipotent elements u in H with su € ¥, this is a conjugacy
class in H (8.1.4). Let ; = (9:C¢; ) Z(H)® and let L; the inverse image of £ for the map
¥ — X with z — g7 szg;. Then 4; = I(Y;, L:).

Put U' = {y € Treg | ¥s € 8Z(L)°}. Then U’ is an irreducible subset of H which contains
s. It suffices to show that H?(4;) |,-1wnv) and H? (4}) |,-1 v n vv) have no common
irreducible constituents (¢, j, p, ¢ arbitrary).

Now s~}(U N U') is open and dense in ;. So it suffices to prove the previous assertion,
with s7}(U N U') replaced by ;. But H?(4;) Izlz 0 unless g;Cg;! = C. So we can
assume that

supp A; = ¥;. .

We now show that supp A; # suppA; for all ¢,;. In fact, assume that supp A; = 3, =
Z(H)°C. There is a Levi group L' of G such that A’ is induced from a cuspidal perverse
sheaf on the Levi group M = L'N H of H. We then have Z(M)° C Z(H)°, whence M = H
and L' O H. Since L is the smallest Levi group containing H (see 6.2.2) we have L C L'.
It also follows that the unipotent class D contained in ¥~' coincides with C.

Since Y(L.E) = supp A is contained in 17(1,,,2 1y = supp A’ we have by 6.2.7 that L' is
conjugate to a subgroup of L. It follows that L = L' and supp A = supp A’, contradicting
the assumption that supp K # supp K'. We now know that supp 4; # supp A; for all
1,J. Application of 11.3.11 then proves 11.3.12.

We can now continue the proof of 11.2.4. Again assume that we are working over a finite
field F, and that G is clean.

11.3.13. Lemma. Let ¢ € X and A € é(f) There ezist natural numbers a # 0 and b such
that for infinitely many natural numbers N

aglfe(4, M)(g*")g?™

ts an algebraic integer for all A € C:’(E),M € Wé
Here £,4 is as in 11.3.3.
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By 11.3.10 there exists for A € é({) and any integer n > 1 a root of unity v, , such that
for all g € GF"

(9) 3 gindmGeny, c(A,M)(q3")xa4a(g) is an algebraic integer.
AeG(8)

We shall deduce 11.3.13 by using this for suitable g.

Fix A e G(f) There is a varlety Y =Y. 5) as in 6.2.2 such that supp A = ¥. Choose
a finite Galois covering 7 : ¥ — Y, with group T, such that for any A' € G(E) the
restrictions H*(A') |y are local systems whose pull-back to ¥ is trivial (this is possible by
8.3.1). We may assume that Y,V and all elements of T are defined over F,. The local
system H'(A') |y is associated to a class of representations of I' denoted by [H*(4')].

Let 4 € T. There exist infinitely many natural numbers N such that F¥z = 4z for some
z €Y. In fact, y~1FY is a Frobenius map for some F,~ structure on f/, which must have
fixed points for large N. Put 7z = yy,. f 1 €Z and A' € é(f) there exists ay N € E*,
independent of 4 , such that

Tr((pﬁ:,H‘(A’)an) = aqni Tr(n, [Hi(A,)])’

where ¢!, is as in 11.3.1. If A' = A then a4 N -aimy is a root of unity times q"‘}Ndi"'Y (as

a consequence of 2.3.2) and
Tr (0pas H-4(DA)n ) = o3ly,-aq™ " Tr(v7", [H™4(4))),

where d = dimY (see 11.3.1).
By 11.3.12, [H*(A')] contains no irreducible representation of ' isomorphic to [H~4mY (4)],
if A' # A. Using the orthogonality relations for the group characters of I' we conclude that

- 0 if A'#A
P17 Sara i oapyova) = { Sovamr §p 2% -

Using (9) with n = N as before and g = yn (7 € I') the assertion of 11.3.13 readily follows.
11.3.14. End of the proof of 11.2.4. Fix A € G(¢), M € W{. We first show that c(A4, M)
is a Laurent polynomial. Let a and b be as in 11.3.13 and write

tbc(A’M)(t) =f+y,

where f is a polynomial and g a rational function which is zero at infinity. From 11.3.13
we see that for infinitely many natural numbers N

aN = ‘7'6,4.‘](‘12 )

is an algebraic number with bounded denominator. As &4 is an algebraic number all whose
complex conjugates have absolute value one, the norm of £, (relative to Q) equals one.
Moreover, all complex conjugates of ag(qu ) are small if N is large. It follows that the
norm of ay is less than one if N is large. Since ay has bounded denominator it must be
zero, whence g = 0.

We can now write for all A € G(¢),M € Wé

c(A, M) = ~(A, M)t™ + lower powers of t,
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From 11.3.8 and 11.2.2(iii) we conclude that if m > 0 we have

p) '7(‘4’ M)'V(A’ Al)mnj =0,
Ae6(8)

which can only be if all 4(A, M) are zero. Hence m < 0 and a similar argument gives
m > 0. It follows that all ¢(A, M) are constant, finishing the proof of 11.2.4.

We have followed here rather faithfully the proof of 11.2.4 contained in [CS, nos.13, 14].
11.3.15. We discuss some consequences of the proof of 11.2.4, assuming G to be clean.
Now k is arbitrary.

By the definition of ¢ we have for w € W} (notations of 11.1)

7(ey) = A'Zl;wc(A, M) Tr (ew, M(t)) A.

We specialize t to 1 and indicate this in the left-hand side by a suffix 1. Using the orthog-
onality relations for the group characters of Wé we see that

(10) L ce(A,M)A=|W | > Tr(w™, M)r(egw):

A€e(g) wEWé

Introduce the symmetric bilinear form (,) of 10.1.4 on the Grothendieck group CG and
extend it to E ® CG. Write R¢(M) = R(M) for the left-hand side of (10). Then R¢M €
E®CG and

cg(4, M) = (4, Re(M)).

11.3.16. Corollary.
(i) For any A € G(€) there exists M € W/ such that (A, R¢(M)) # 0;

H ! *
(i) (Re(M), Rem) =1 3 B MM
(i) is clear and (ii) follows from 11.3.8.
11.3.17. Corollary. Let Ac G. If ¢ € X,w € W¢, i € 7 are such that A is a constituent
of PH*(C¢.) then the parity of i + £(w) depends only on A.
If (n, z, j) is another triple with the same property the assertion is true if n = £ by 11.3.3(i).
If we have n € W¢ (5.2.2) and n # £ it suffices to deal with the case that n = s¢, with
8 € S. One can then apply 5.1.8 and 5.1.9.
11.3.18. Definition. G satisfies the parity condition if for all A € G we have that if Ais
a constituent of PH(C¢,,) then

t = £(w) + codim suppA (mod 2).

11.4 Induction, restriction, duality

11.4.1. We assume G to be clean. Fix ¢ € X. We extend the function ¢ : é(f) X Wé — to
a bilinear map (A4, M) — ¢(A, M) where A € E ® CG and M is a virtual representation
of W, such that ¢(4,M) =0if A ¢ G(¢). If necessary we write ¢(4, M) = ce(4,M) =
(e} (A, M)e

Let P be a parabolic subgroup of G with Levi group L containing our maximal torus T'.
We now denote by W; the Weyl group of (L,T). Let L = Ly and put W* = Wy, as in 9.1.
We put Wé'l =W nWé. Denote by res: EQ CG — EQ®CL resp. ind: EQCL - E®CG
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the linear maps defined by restriction resp. induction. (Notice that here one needf 9.3.1
and 9.3.2). We also denote by res and ind the usual maps of virtual characters for W} and

Wi,
11.4.2. Proposition.
(@) If A€ G(€), My € Wi, then

cg(4, ind M;) = cp(res A, M,);
(i) If Ay € L(¢),M € W}, then

cg(ind A1, M) = ¢ (A, resM).
By 9.3.1 we have for w € W},

> cn(A, My)Tr(ey, My(t)) indA4, =
Ar€L(g)
M]EWAI
= > ce(A M)Tr(ew, M(t))A
A€G(€)
Mew/
whence, with obvious notations,
Z ¢z (A1, M;)(indA;, A)Tr(w, M)A = ZcG(A,M)Tr(w,M)A
AM

AA M,

and
> (A1, My)(ind Ay, A) = > cc(A, M)(res M, M;).
A, M

By Frobenius duality we have (indA4;, A) = (A;,resA), (res M, M;) = (M,indM;) and the
formula of (i) follows.
To prove (ii) we observe that 9.2.2 (ii) gives for
> ce(A, M) Tr(ew, M(t)) resA
A€G(¢)
MeWw;

a formula involving the function tr; on the algebra K of loc.cit. We specialize ¢ to 1. From
the definition of tr; given in 9.1 one finds (the suffix 1 denoting specialization)

trl(ef,w)l = Z (ezf,zwz")l'
zeW*

zwz~lew,
Using the formula of 9.2.2(ii) we obtain for 4; € L(¢),w € w;

> ca(A,M) Tr(w,M)(resA, 4;) =
Ae6(e)
MeWw,

189



J.G.M. MARS, T.A. SPRINGER

= Y k > cn(A, Mi)ae Tr(zw:c'l,Ml)).

zEW* M1€W:¢'l
zwz~lEW,
From 5.2.2 we see that ¢z (A1, M;)z¢ = 0 unless z€ € W;€. Suppose this is so and choose
y € W, with £ = y£. We have a decomposition Wy = W; W, as in 3.2. Writingy = y*y;
accordingly, we have z¢ = y*§. Now observe that if M; € W;e,l we have ¢ (A1, My),¢ =
cr (A1, My)¢, where M, € Wél corresponds to M, via the isomorphism W}, = W, ; defined
by conjugation with y*. It follows that the sum in brackets equals

Y cr(A1, My) Tr(y tzwz ™y, My).
MIEWLI

Hence the right-hand side of the equality equals

Y cr(Ar, My)(M,indM,;) Tr(w, M),
M|EWé,!

whence for M € Wé

L ce(A,M)(resA,A) = T cp(A1, M)(M, indM,).

A€G(8) MW}

The formula of (ii) follows by using Frobenius duality.

We shall need a result which is somewhat more general than 11.4.2 (ii). We skip the
proof.

11.4.3. Corollary.

(i) If A1 € L(n),M € W} and n = vé € W¢ then

. W
cG(mdAl,M)f = cL(Al, resW;'nW,', ”M),

where M € W,’, corresponds to M € Wé via the isomorphism W; — W, induced by
conjugation by v;

(i) If A1 € L(n),M € W} and n g W¢ then cg(ind4;, M)¢ = 0.

In 10.2 we have defined the duality map d of character sheaves. It extends to a linear map
d of E ® CG to itself.

As before, we denote by € : W; — {1} the restriction of the sign character of W (so
e(w) = (-1)1).

11.4.4. Theorem. If A€ G(¢),M € Vi’é then c¢(dA, M) = c(A,e ® M).

With the notations of 10.2 we have

ce(dA,M)¢ = ,Es(—l)mcc(iffffi, M)e.
C
Now

ca(ifriA, M) = L (rf A, Ar)ee(i5 Ay, M)g.
1 I

Using 11.4.3 this can be rewritten as

W'
z T S A, Arer, (Az,resy, 't (M) =
- Alei,(uc)(ﬁ ver, (A syt (°M))
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w
= Z,cr, (rfA,resW;rﬂW:(( *M)).

Using 11.4.2 (i) this is seen to be equal to
. W w!
E”CG(A’ lndu'(lwlunW£ (resv"clw,unWéM))‘

Putting

We

. ! w'
dM = EICS("l)mEvEWI\W/Wélndv-IW,unWé (fesu—‘lw,mng )

we conclude that
c(dA, M) = ¢(A,dM).
Hence it suffices to show that dM = ¢® M. Now it is an easy consequence of the definitions

that
dM =d1@M

(1 denoting the trivial character), so we are reduced to proving d1 = €.
Let w € W;{. The definition of d1 shows that

(dl)(w) = E]cs(‘—l)m | WI l_l EvGWI\W/Wé card{z (S W]‘UWé I w e Z_IW]Z} =

=Zres(-D) | Wy | ! card{z € W |w € 27 W2} =
= Zres (1) (ind}y, 1) (w) = e(w).

For the last equality see for example [Ca, p.188]. This proves that d1 = ¢ and the theorem
follows.

11.4.5. Corollary. If A € G(¢) then £dA € G(¢).

This is a consequence of 10.2.3.

Most of the results of 11.4 are contained in [CS, no.15], in a somewhat different formulation.

11.5 Cells in W€,

We shall need some facts about cells in groups W;. For Weyl groups most of them have
been established by Lusztig. (See [Cu] for a review). The extension to W; presents no
problem.

11.5.1. Consider the Hecke algebra ); of W} (see 11.1) and let c.(z € W}) be the Kazhdan-
Lusztig basis (so ¢; = ¢,,¢ as in 3.3.4). If z,y € W} write

€y = Eeré hgysCs.

The hgy, are Laurent polynomials with non-negative integral coefficients (4.2.6).

We write £ <, y (resp. £ <g y) if hyy, # O (resp. hy,, # 0) for some z € W;. Then <,
and <p are preorder relations on Wé The corresponding equivalence relations are denoted
by ~r and ~pg . The preorder relation generated by <; and <g is denoted by <;r and
the corresponding equivalence relation by ~.p .

z and y are in the same left (resp. right, resp. two-sided) cell if z ~ y (resp. z ~g ¥,
resp. T ~Lr Y).

Notice that z <y y if and only if 27! <g y™'. Also, if z = z*z1,y = z’y; (as in 3.2.6)
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then z <y y if and only if z; <z y1 (by 3.3.4). This reduces questions about cells in Wé to
similar questions in W.
Ifze Wé define

a(z) = max deg hy,.

Let P,,(t?) denote the Kazhdan-Lusztig polynomials for ¥} (see 3.3.4) and put for z =
z*z) € Wi

26(z) = deg P, . (t?).
The 6(z) = 6(z;). We collect a number of properties. (Compare with [Cu, Ch.II].)
11.5.2. Theorem.
(i) Let z € Wi. Then a(z) < £(z) — 26(z). If z € W¢ and equality holds, then z is an
tnvolution, called Duflo snvolution;
(ii) Any left cell of W contains a unique Duflo involution;
(iii) If y € W} and = <p y (resp. z <g y) then a(y) < a(z);
(iv) If y € W then z ~ y if and only if z < y and a(z) = a(y). Similarly for ~g and
~LR -
We denote by D the set of Duflo involutions of W and we put D' = (W* n W;) D. This
is the set of elements for which we have equality in the inequality of (ii).
Let 7.y, be the coefficient of t*(*) in h,y,.(z,y,z € W}). Define an E-algebra J with basis
(0,),,ew£ by the multiplication rules

03011 = Exewz”fzyzoz-

11.5.3. Theorem.
(i) J is an associative algebra, isomorphic to E[W¢];
(ii) E(t) ® X¢ is isomorphic to E(t) ® J, an isomorphism p being given by

(p(cz) = E hzdsat-
deD, a(d)=a(2)

!
JGW(

(See for example [Cu, Ch.III].)

11.6 Cells in Wé

The material of this section is discussed in [L1, Ch. 5| for the case of Weyl groups.
11.6.1. If z € W; the elements ¢, (= 1 ® ¢,) of E(t) ® ¥g with y <y = span a two-sided
ideal I} of E(t) ® ¥;. Similarly, z € W, defines a two-sided ideal I, of E(t)® H. If z = z*z,
(as usual) then I; = E[W;NW*]| ® I, (recall that E[W;| = E[W; N W*] ® E[W]).

A two-sided ideal in the semi-simple algebra E(t) ® }¢ is a direct sum of simple ideals,
each of which is defined by an absolutely irreducible representation of E(t) ® ¥¢, hence by
an element M € Wé (11.1.2). Let Ij, be the two-sided ideal in E(t) ® ¥; defined by M.
We use similar notations, without a prime, for E(t) ® X;.

IfMe Wé and z € Wé we write M <yp zif I}, C I]. We write M ~ gz if M < p z and
M gy for ally € Wg with y <pp z.

If M,M' € Wé we write M ~pr M' if there exists z € W} with M ~pp z,M' ~1p z. It
follows from the definitions that for any M € Wé there exists z with M ~pp z. We then
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write a(M) = a(z). This is independent of the choice of z (by 11.5.2(iii)).

11.6.2. Lemma. Let z = z*z; € W} (where 2, € Wy and z* € W*). If M € W} then
M <ip z (resp. M <pp z, resp. M ~pp z) if and only if there is M; € We with
(res M, M;) # O such that My <pg z; (resp. My <pr Z1, resp. My ~Lp ;).

Here res and (,) have the obvious meanings. The proof uses the fact that I} is the ideal
induced by I, and Frobenius duality.

11.6.2 shows that our definition of the relations M <jp.,... is equivalent to the one given
in [CS, 16.2].

To M € VAVé we associate a class of representations of the algebra J of 11.5, also denoted
by M, such that
(11) Tr (e, M(t)) = > hzas Tr (6., M)
deD, a(d)=a(z)

EW,
(compare with 11.5.3(ii)). We put Tr (6,, M) = 0(z, M).
11.6.3. Proposition. Let z € W;; M, M' € Wg.
(i) 0(z,M) # O implies M ~ g z;
(ii) Tr (cz, M(t)) = 8(z, M)t*M)+ lower powers, Tr (e, M(t)) = 8(z, M)t*M)+e(2) ¢t lower
powers ;
(iii) The rational function Fpr of 11.1.4 has a development at infinity

FM(tz) = aefMtz"(m + lower powers,
where far ts strictly positive;
(iv)
0 if M#M

! -1 ! =
Zzewyb(z, M)8(z™", M) {aefMdimM if M'=M"

where ag =| W* nWé |.
Moreover 8(z~*, M) = §(z,M*) = (z, M)=™,

For (i) and (ii) see [Cu, no.10]. (iii) and (iv) then follow from the orthogonality relations
of 11.1.4.

We record an auxiliary result.

11.6.4. Lemma. Let z € Wy, M € Wé.

(i) If M ~Lp z then M ~pp 71, in particular z ~pp z7%;
(ii) Let wo be the longest element of W If M ~pg = then e @ M ~Lp woz.

As before, € is induced by the sign character of W. The assertion of (i) follows from
11.6.3(iv). For (ii) see [BV, p.358-359).

11.7 The cell associated to a character sheaf

Using (11), the definition of the function ¢ (11.2.1) shows that

(12) ot pHi(C€,w) = Z huwaz(z, A) A,
deD, a(d)=a(z)
zeW/,A€6(¢)

193



J.G.M. MARS, T.A. SPRINGER

where

(z,4) = EMEWéc(A, M)o(z, M)

Then 4(z, A) is a cyclotomic number.
11.7.1. Lemma. If z,y € W; and z *Lp y then

T 4e6(e1(2s A)7(y, A)°™ = 0.

This follows from 11.3.8 and 11.6.3 (iv).

The second main result of this section is the following.

11.7.2. Theorem. Assume that G is clean and satisfies the parity condition 11.3.18.

(i) fzeWg,Ae€ G (&) then 4(z, A) is a non-negative integer;

(ii) Let A € G(£) and M,M' € W} be such that c(A,M) # 0,c(A,M") # 0. Then M ~p¢
M'.

The proof of the theorem uses an elementary result, to be described now.

Let V be a finite dimensional vector space over E, with a distinguished basis (¢;)i<i<n and a
hermitian form <, > relative to an automorphism of order 2 of E such that < e;,e; >= §;.
Denote by P the set of non-negative integral linear combinations of the e;.

Assume given a finite set I with a preorder relation < . Denote by ~ the corresponding
equivalence relation.

Assume given two families (vi)ier, (¥;)jer of elements of V such that

(a) < vi,v; >=0 whenever ¢ » j,

(b) when ¢ runs through a fixed equivalence class the v; and 9; span the same subspace of
V;

(c) for any ¢ € I there exists a linear combination v; + ¥;<idijv; which lies in P(d‘j €E);
(d) for any ¢ € I there exists a linear combination #; + ¥;5; di;¥; which lies in P(d;; € E).
11.7.3. Lemma. In this situation v; and v; lie in P, for allt € I.

A very similar result is proved in [L1, p.197-199]. The proof (which is elementary and
self-contained) carries over to the present situation.

To prove part (i) of 11.7.2. we shall apply the lemma to the following situation: V is
the subspace of E ® CG spanned by the A € G (&€). They define the distinguished basis.
Furthermore, o is an automorphism of E extending the automorphism conj of the field of
cyclotomic numbers. I is the set W} with preorder relation the opposite of <pr . For the
v; we take the elements

>z, A)A.
A
It follows from (12) that (c) holds. By 11.7.1 we have (a). From z € Wi, A € G(¢) we put

H(z, A) = (—1)4wotalwoz) 5™ o( A4, M)8(woz,e ® M).
Mew}

We take for the 9; the elements 34, 4(z, A) A.
Denote by d the duality map of 10.2. Using 10.2.3 (ii) the parity condition implies that
(with obvious notations)

Z(_I)Ht(w)ti pHi (dcf,w)
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has the form fa(t)A, where f; is a Laurent polynomial with positive integral coeffi-
A€G(€)
cients. Using 11.4.3 and 11.6.4 (ii) we deduce (d). That (b) holds follows from 11.3.8. So

we can apply 11.7.3 to conclude that assertion (i) of 11.7.2 holds.
To prove (ii) we observe that by 11.6.3

Z 1(z,A)8(z~*, M) = ac(4, M),

1}
z€EW;

with a > 0. So if ¢(A, M) # O there is z € W; with 27! ~,p M and «(z, A) # 0. Similarly,
if ¢(A, M") # 0 there is y € W} with y~! ~Lr M' and 6(y, A) # 0. Using 11.7.1 we see that
z ~rr Y, whence 27! ~pp y~! (11.6.4(i)) and M ~p M'. This proves (ii).

11.7.4. Corollary. There ts a surjective map I of é(f) onto the set of two-sided cells of
W{ such that c(A, M) # 0 if and only if M € T(A)(A € G(€),M € W}).

This follows from (ii). We shall view I'(A) also as a cell in W;.

11.7.5. Corollary. Let T be as above. If A € G(£) there is = € T(A) such that A is a
constituent of PH3)(C¢ ).

We saw in the proof of 11.7.2 that there is z € T'(A) with ~(z, A) # 0. Using the fact that
hz4; has degree a(z), where d € D lies in the left cell of z, we see that the right-hand side
of (12) with w = z contains a term t*(*)y(z, A) A, whence 11.7.5.

The above results are established in [CS, no.16).
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12 Résumé of the classification of character sheaves

So far, we have reviewed the contents of parts 1-16 of [CS]. The subsequent parts of
[CS] have a rather different flavour. The results of these parts are proved by a case
by case analysis. They rely on detailed explicit information about, for example, cells of
representations of Weyl groups.

We shall not go into details here, and we content ourselves with stating the main results.

12.1 General results

G will have the usual meaning. For simplicity we assume that the characteristic p of k is
good for G, i.e.. that p does not divide a highest root coefficient of any of the irreducible
pieces of the root system of G (in [CS] the assumption is slightly less restrictive).

12.1.1. Theorem. G ts clean and satisfies the parity condition

See 11.2.3 and 11.3.18 for the notions involved in the statement of the theorem. The the-
orem implies that the main results of no.11 (11.2.4 and 11.7.2) hold unconditionally. It is
not hard to see that it suffices to establish the theorem in the case that G is semi-simple
and simply connected (see [CS, 17.10, 17.11, 17.16.4]).

12.1.2. Theorem. Any srreducible cuspidal perverse sheaf on G is a character sheaf.

To deal with this theorem the explicit classification of irreducible cuspidal perverse sheaves
given in [L2] is used.

12.1.3. Corollary. Any trreducible admissible perverse sheaf is a character sheaf.

12.1.4. Example. G = SL,, and p t n. The classification results of [L2] show that in this
case the only irreducible cuspidal perverse sheaves on G are the ones of 5.4.11 [loc.cit,
p.247]. We see that 12.1.2 is true in the present case. The assertions of 12.1.1 follow from
the properties of 5.4.11. In fact, cleanness has been established there. Using 11.3.3(i) (and
induction on n) the parity condition readily follows.

If G = SL, and p | n there are no cuspidal perverse sheaves on G by [loc.cit].

It follws that 12.1.1 and 12.1.2 hold whenever the simple constituents of G are all of type A.

We mention another general result, proved in [CS, 24.11], using properties of general-
ized Green functions (these are discussed in [Sh. no.iv]).

12.1.5. Theorem. A character sheaf is even.

Recall that this means that H*A =0 if ¢ # dim supp A(mod 2).

12.2 Classification results

Lusztig’s main classification result gives a description of the function ¢ of no.11. We begin
with an auxiliary construction.
12.2.1. Let ® be a finite group. Denote by S the set

§ ={(z,y) € 2 x & | zy = yz},

® acts on it by z(y,z) = (zyz~!,z2z7!)(z,y,2 € ®). Let C® be the vector space of ®-
invariant functions on S, with values in the field C of cyclotomic numbers.
If z € ® and if x is an irreducible character of the centralizer Zg(z) we define e(;) € C®
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by

_Jo if y is not conjugate to z,
Then M® = (e(s,y) is a basis of C®.
We define a hermitian form {,} on C® by

{frg}=lA|? XE:S f(=z,y)g(y, z) .

(It is easy to see that this induces the pairing on M® described in [CS, 17.8].)

12.2.2. Let £ € X and let Wé be as usual. In [CS, no.17] Lusztig associates to any two-
sided cell ¥ in Wé a finite group QE.

In the case that W} is an irreducible Weyl group this is done in [L1, Ch.4] in a case by case
manner. The finite groups occurring there are elementary abelian 2-groups, or symmetric
groups Ss, S4, Ss.

Moreover, an imbedding ) — M(QE) is defined, from which one obtains an imbedding

o: Wé — HM(‘I’}:)
z

The main classification result now is as follows ([CS, 17.8.3]).
12.2.3. Theorem. There is a bijection p : G(§) — s~ M((PE) such that for A €
G(€),M e W
o(A, M) = (~1)% *P4{p(4),0(M)}
There is a more refined version, given in [CS, 23.1(c)].
The theorem shows that the character sheaves in G(¢) are described by combinatorial

data, determined by the two-sided cells in We'
With the statement of this theorem we conclude these notes.

197



J G.M. MARS, T A. SPRINGER

References

[BBD] A.A. Beilinson, J. Bernstein, P. Deligne, Faisceauz pervers, Astérisque vol. 100,

[Bo]
[BS]

(BV]
(Ca]
[Cu]
[CS]

(D]
[G]
[HK]

(HS]

[KL]
[L1]
(L2]
MV]

(sh
1

[Sp1]
[Sp2]

[St1]

[St2]

Soc. Math. de France, 1982.

N. Bourbaki, Groupes et algébres de Lie, Chap. 4, 5, 6, Hermann , Paris, 1968.

A. Borel and J. de Siebenthal, Les sous-groupes fermés de rang mazimum des
groupes de Lie clos, Comm. Math. Helv. 23 (1949), 200-221.

D. Barbasch and D. Vogan, Primitive sdeals and orbstal sntegrals sn complez excep-
tional groups, J. Alg. 80 (1983), 350-382.

R.W. Carter, Finite groups of Lie type; conjugacy classes and complezx characters,
Wiley, 1985.

C.W. Curtis, Representations of Hecke algebras, this volume.

G. Lusztig, Characters sheaves I, Adv. in Math. 56 (1985), 193-237; II, ibid. 57
(1985), 226-265; 111, ibid. 57 (1985), 266- 315; IV, ibid. 59 (1986), 1-63; V, ibid. 61
(1986), 103-155.

P. Deligne, La conjecture de Weil II, Publ. Math. IHES 52 (1980), 137-252.

V. Ginzburg, Admissible modules on a symmetric space, preprint.

R.B. Howlett and R.W. Kilmoyer, Principal series representations of finite groups
with split BN-pairs, Comm. Alg. 8 (1980), 543-583.

D.F. Holt and N. Spaltenstein, Nilpotent orbits of exzceptional Lie algebras over
algebraically closed fields of bad characteristic, J. Austral. Math. Soc. (Series A) 38
(1985), 330-350.

D. Kazhdan and G. Lusztig, Representations of Cozeter groups and Hecke algebras,
Inv. Math. 53 (1979), 165-184.

G. Lusztig, Characters of reductive groups over a finste field, Ann. of Math. Studies
n0.107, Princeton University Press, 1984.

G. Lusztig, Intersection cohomology complezes on a reductive group, Inv. Math. 75
(1984), 205-272.

I. Mirkovi¢ and K. Vilonen, Characteristic varieties of character sheaves, Inv. Math.
93 (1988), 405-418.

T. Shoji, Geometry of orbits and Springer correspondence, this volume.

P. Slodowy, Stmple singularities and simple algebrasc groups, Lect. Notes in Math.
no. 815, Springer, 1980.

T.A. Springer, Linear algebraic groups, (2™ edition) Birkhiuser, 1981.

T.A. Springer, Quelques applications de la cohomologie d’intersection, Sém. Bour-
baki 589 (1982).

R. Steinberg, Regular elements of semi-simple algebraic groups, Publ. Math. IHES
25 (1965), 49-80.

R. Steinberg, Endomorphisms of linear algebraic groups, Mem. Am. Math. Soc.
10.80 (1968).

J.G.M. MARS and T.A.SPRINGER
Rijksuniversiteit Utrecht
Subfaculteit Wiskunde,Postbus 80 010
3508 TA Utrecht, Netherlands

198



