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aw. CURTIS 

introduction. 
The Hecke algebra H(G,B) of a finite Chevalley group G with 

respect to a Borel subgroup B was first investigated by Iwahori 
[18], and applied by him and others to decompose the permutation 
representation of G on the cosets of B. The algebra H(G,B) is a 
specialization of the generic Hecke algebra H of the Weyl group W 
of G, over the commutative ring Q[u], where u is an 
indeterminate. The representations of H(G,B), and their connections 
with the representations of H and W play a crucial role in the 
solution of the decomposition problem. The representation theory of 
H has also turned out to be useful for the study of the zeta 
functions of the Deligne-Lusztig varieties of reductive algebraic 
groups over finite fields and other geometric problems associated with 
them. 

In their paper [22], Kazhdan and Lusztig introduced a new basis of 
H, whose construction involves the Kazhdan-Lusztig polynomials. 
Using intersection homology theory and the theory of perverse sheaves, 
some deep positivity properties of the coefficients of the Kazhdan-
Lusztig polynomials and the structure constants of H for the 
Kazhdan-Lusztig basis, have been established (see Kazhdan-Lusztig [23] 
and Springer [32]) . 

The main purpose of these notes is to examine the consequences of 
these positivity properties for the structure and representation 
theory of H, following Lusztig [28], [29], [30]. These include 
properties of cells and certain distinguished involutions in W 
called the Duflo involutions, left cell modules of H, Lusztig's 
isomorphism theorem [24], and the fact that Q(u1//2) is a splitting 
field for H. The leading terms of the irreducible character values 
of H are essential for Lusztig's work [26] on the decomposition of 
the virtual characters (RT(9)}. Using asymptotic methods based on the 
positivity results, Lusztig introduced an algebra J, which is a kind 
of asymptotic form of H, and whose irreducible character values are 
precisely the leading terms of the character values of H. These 
results are all proved in Chapters II and III, following to a great 
extent a reworking of Lusztig's results in some informal lecture notes 
by T.A. Springer, who kindly communicated them to me to use in 

14 



REPRESENTATIONS OF HECKE ALGEBRAS 

preparing these lectures. An introductory Chapter I contains a 
survey, not always with proofs, of some of the earlier work on Hecke 
algebras and their representations, referring the reader to surveys 
such as [4], [5], or [8] for a fuller discussion. 

No attempt has been made to give an account of the historical 
development of the ideas in Chapter II. There are important 
connections between these ideas and the classification of primitive 
ideals in enveloping algebras, especially through the work of Joseph, 
Barbasch and Vogan, and the solution of the Kazhdan-Lusztig 
conjectures by Beilinson-Bernstein and Brylinski-Kashiwara. 
References and fuller discussion of these matters are given in [22] 
and [2 6], and in Joseph's article in this volume. 

These notes are based on a course given by the author, during the 
Special Period on Unipotent Orbits, Representations of Finite, 
Reductive, and p-adic Groups, and Representations of Hecke Algebras, 
at Paris and Marseille, in June and July, 1987. The author's 
contribution was supported in part, by Université Paris VII and the 
NSF . 
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CHAPTER I. Generic Hecke algebras and their specializations. 

l. Applications gf the specialized algebras H(qi/2) to- the 
representation theory of reductive groups over finite fields. 

Throughout these notes, (W,S) denotes a finite Coxeter system. 
We let R = Q[t,t-1] denote the commutative ring of Laurent 
polynomials with rational coefficients, with t an indeterminate. 
The generic Hecke algebra H associated with (W,S) is the R-
algebra with a free R-basis {ew}wew indexed by the elements of W, 
and multiplication defined by 

(1.1) e s e w — 
(ue if l(sw) > l(w) 
(uesw + (u - l)ew if l(sw) < l(w) ' 

for all s e S, w € W, where u = t2 and 1 (w) is the length 
function on W with respect to the set of generators S. (For a 
proof that these relations define an R-algebra, see [3, Ch. 4, Ex. 
23] .) 

We first state some consequences of the definition. 

(1.2) The structure constants of H with respect to the basis {ew}wGw 
belong to Q[u]: 

WfW«,w» = cW/W»,w» for w, w', w"e W, 

where cWfW«,w» = cW/W»,w»(u) is a polynomial in u with integer 
coefficients. The polynomials cW/W»/W" are known explicitly (see 
[19], and [6] for a geometric interpretation.) (We have introduced R 
instead of Q[u] as the ring of coefficients for H because the 
structure constants for the Kazhdan-Lusztig basis (see §4) are in R 
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REPRESENTATIONS OF HECKE ALGEBRAS 

but not in Q[u], and it will turn out, as a consequence of Lusztig's 

isomorphism theorem (see §8) that Q(t), the quotient field of R, is a 

splitting field for H.) 

Let S = {si, . . . , sn} r and, for i j, let nij be the order of 

SiSñ in W. Then W has the presentation 

W = <si, . . . , sn:s\ = (siSj)ni3 = 1, for 1 < i, j < n). 

The R-algebra H has an analogous presentation, as follows. 

(1.3) H has a presentation as R-algebra with identity 1 = ei, 

generators {es-}s-GSA and defining relations 
2 
qd = uei + (u - l)eSi, for sie S, 

and for 1 < i, j < n, 

(eSieSj) = (eSieSi)k^ if nij=2kj_j, and 

(esiesj)ki3esi = (esjesi)kiJesj if nij = 2kij + 1. 

Let f:R—> F be a homomorphism from R into a field F. Then, 

using the map f, we may view F as an (F,R)-bimodule, and obtain 

an F-algebra F®RH, called a specialized algebra of H, and denoted 

by H(a)/- where a = f (t) . A basis of the specialized algebra is 

given by {l®ew} wGw, and the structure constants by: 

(l®ew) (l®ew.) = Xw"f (cw, w« w«) (l®ew») , w, w' , w"e W. 

It is the representation theory of the specialized algebras, and its 

connection with the representation theory of H, which has been 

important for applications of Hecke algebras. We shall illustrate 

this point in the rest of the chapter with some examples. A first 

observation is that 

(1.4) H(i) = FW, 

so we expect the representation theory of H to be somehow related to 

the representation theory of the Coxeter group W. 
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An important family of specializations, related to the situation 
investigated by Iwahori [ 1 8 ] , can be described as follows. Let G 
denote a connected reductive algebraic group, defined and split over 
the finite field FQ, whose rational structure is defined by a 
Frobenius endomorphism F:G—• G such that the group of fixed points 
GF = {g€G:F(g) = g} is finite. We assume that the given Coxeter group 
W occurs as the Weyl group of G, with respect to an F-stable 
maximal torus T contained in an F-stable Borel subgroup B, so 
that W = NG(T)/T. The finite groups GF defined in this way will be 
called finite groups of Lie type. Each finite group of Lie type GF 
has a BN-pair (or Tits system) defined by the subgroups BF and NF, 
with Weyl group W, where N = N Q ( T ) . 

Let H(GF,BF) denote the subalgebra of the complex group algebra 
CGF consisting of the functions f: GF—»C which are constant on the 
double cosets BF\GF/BF. By the Bruhat decomposition in GF with 
respect to the Borel subgroup BF, there is a bijection from 
W—•BF\GF/BF, given by w—>BFwBF, where weNF is a coset 
representative corresponding to weW. Then the algebra H(GF,BF) has 
a standard basis consisting of the normalized characteristic functions 
{aw}w6w^ where 

(1.5) aw = |BF|"i 
x€BFwBF 

x, wew. 

Letting (1BF)QF denote the CGF-module afforded by the induced 
permutation representation of GF on the cosets of BF, we have: 

(1.6) PROPOSITION. There exists an isomorphism of C-algebras 

H (GF, BF) =EndCQF( (1BF)GF) , 

15iE»6»13SiiBH»nfl3iM 
H(GF,BF) SH(qi/2), 

gjven by aw —* l<8>ew, where H(qi/2) is the specialized algebra 

associated with the homomorphism f:R >C such that f(t) = q1/2. 

The first isomorphism holds for all finite groups with BN-pairs 
(see [8, Chapter 8 ] ) . The second isomorphism also follows from the 
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theory of finite groups with BN-pairs [8] and the fact that since GF 
is of split type over FQ, we have ind aSi = q for each sieS. 
( [4] ) . 

Specializations of generic Hecke algebras of Coxeter groups also 
occur in more general cases of the problem of decomposing induced 
modules of finite groups of Lie type. Let G, B, T, F:G—>G, etc. be 
as in the previous discussion, and assume that the center Z(G) of G 
is connected. Let P be an arbitrary F-stable parabolic subgroup of 
G, with the Levi decomposition P = MU, with U = RU(P) (the 
unipotent radical of P ) , and M an F-stable Levi subgroup. 

Let L denote a simple cuspidal CMF-module. Then the Harish-
Chandra induction functor assigns to L the CGF-module indpF £* 

where if is the CPF-module pulled back from L, with UF in its 
kernel. The decomposition of the induced modules indpF L is a basic 

problem in the representation theory of GF. We have: 

(1.7) THEOREM. (Howlett-Lehrer [17], Lusztig [26]. Assume that G 
has a connected center. There exists an isomorphism of C-alaebras 

EndCQF(inc LPF L) =H(qi/2) , 

where H is the generic Hecke algebra of a certain finite Coxeter  
group W (which depends on the triple (PF, MF, L) and is related to 
the stabilizer Of L in the normalizer of M in N ) . The structure 
Of the R-algebra H is defined by 

{ew}wew 
esiw if 1 (s*iw) > 1 (w) , wew, 
lu^eff.ft + (uCl - l)e* if l ( S i W ) < l ( w ) 

where u = t2 ajid {si} is a set of distinguished generators of the 
Coxeter group w. The {ci} are positive integers, also depending on  
the triple (PF,MF,L). 

Note that (1.6) is, in a sense, the extreme case of (1.7), 
involving the full Weyl group, corresponding to the triple 
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(BF, TF,1tF) t since the trivial representation of TF is a cuspidal 
irreducible representation. 

By (1.6) and (1.7), the basic theory of Hecke algebras ([7], 
§11D) shows that the decomposition of these induced modules and the 
calculation of the degrees and other character values of their simple 
components, can be obtained from a knowledge of the representation 
theory of the specialized algebras H(qi/2) or H(qi/2), respectively. 

2. Applications to the geometry of reductive groups over finite 
fields• 

We shall sketch a second application of the representation theory 
of the specialized algebras H(qi/2), this time to the zeta functions 
of the Deligne-Lusztig varieties. Let G,B,T,W, F:G—>G be as in 
(1.6). The quotient G/B is a smooth projective variety on which G 
acts by translation, called the flag variety of G. Since B is its 
own normalizer, the points of G/B can be identified with the set X 
consisting of all Borel subgroups of G, using the bijection G/B—>X 
given by gB = gBg-1. We shall carry over the variety structure 
from G/B to X, and identify X with the flag variety, on which G 
acts by conjugation. 

The diagonal action of G on the cartesian product G/BxG/B 
defines the set of G-orbits G\(G/BXG/B), which are in bijective 
correspondence with the double cosets B\G/B. Combining the Bruhat 
decomposition in G relative to B with the identification G/B^X, 
it follows that there exist bijections 

given by 
W<->B\G/B*-*G\ (G\BXG/B) <->G\ (XXX) , 

w—> BwB —* G-orbit of (B,wB) in 
G/BXG/B —> G-orbit of (B,"B) in XXX. 

(2.1) DEFINITION. (Deligne-Lusztig [9].) Let weW, and let 0 (w) 
denote the G-orbit in XXX corresponding to weW. A pair (B',B") 
of Borel subgroups are said to be in relative position w whenever 
(B ' , B" ) e(3 (w) ; in this case we write 

B' w B" . 
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We have B' w B " if and only if 

(B1,B") = S(B,^B) , 

for some geG. 

The Frobenius endomorphism F:G—»G acts on G/B, and on the 
variety X. Letting XF denote the set of fixed points in X 
relative to F, we have: 

(2.2) PROPOSITION. (i) XF is a finite set, on which the finite 
group GF acts transitively by conjugation. The resulting CGF-moduie 
is isomorphic to the induced module (1bF)gF. 

(ii) Let v denote the CGF-module with a C-basis identified 
with the elements of xF, with the transitive GF-action as in part 
(i) . The commuting algebra EndCGp (V) has a basis consisting of the 
endomorphisms {Tw}wGW, where 

TW(B') = 
{ew}wew 

B", 

for B ' , B " G X F . 
(iii) Letting aw denote the standard basis element of the Hecke 

algebra H(GF,BF) corresponding to w (see (1.5)), the map Tw^aw 
defines an isomorphism of C-algebras H(GF,BF) = EndCGpV. 

Proof. (i) We apply Lang's Theorem, which asserts that if F:H—>H 
is an endomorphism of a connected algebraic group H such that the 
fixed-point subgroup HF is finite, then the morphism h—>h~1F(h) 
from H—»H is surjective. Since all the Borel subgroups in G are 
conjugates of B, it suffices to prove that if F(gBg_1) = gBg-1, 
then gBg-1 is conjugate to B by an element of GF. The condition 
implies that g_1F (g) GNQ (B) = B. Applying Lang's Theorem to the 
connected group B, there exists an element beB such that b-1F(b) 
= g-1F(g). Then gb_1eGF, and gBg"1 = (gb-1) B(gb-1)~1 as required. 

(ii) It is easily checked that the endomorphisms {Tw}wGw are 
linearly independent, and belong to the GF-endomorphism algebra of V. 
Since V = (1bF)gF\ the dimension of the endomorphism algebra is 
I BF\GF/BF| = |W|, and (ii) follows. 
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(iii) Using the definition of the standard basis elements 
{^wlwGWf a computation of their convolution product shows that the 
structure constant c W f W i f W « (q) is given by 

I (BFwBFnw"BF(w,)~1BF|/|BF| 

This is equal to the number of Borel subgroups B'eXF such that 

B' w ' B w W"B ' , 

which is also the structure constant for the basis {Tw}wGw of the 
endomorphism algebra. 

The varieties to which we shall apply the representation theory 
of Hecke algebras are defined as follows. 

(2.3) DEFINITION. Let weW. The Deligne-Lusztig variety Xw is the 
subvariety of the flag variety X defined by 

Xw = {B'GX:B'^F(B') }, 

where F is the Frobenius endomorphism (see [9]). 

For each w, the variety Xw is a smooth, locally closed 
subvariety of X on which the finite group GF acts by conjugation. 
It is easily checked that Xw is isomorphic to the subvariety of G/B 
given by 

{gBeG/B :g_1F(g)eBwB}. 

The virtual representations of GF defined by HQ(Xw) = £ ( - 1 ) ( X w ) , 

where H^(Xw) denotes 1-adic cohomology with compact supports provide 

the starting point for the Deligne-Lusztig approach to the 
representation theory of the groups GF. In case w = 1, the higher 
cohomology groups on Xi vanish, and the GF-module Hc(Xi) is 

isomorphic to the GF-module (1bF)gF discussed previously. 
The zeta function Z(Xw,z) of the variety Xw is the formal 

series in the indeterminate z defined by 
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d 
dt log Z(Xw,z) = 

oo 

m=l 
IX pin 

w 
, zm-l 

pm 

where for each m > l , Xw is the fixed point subset under the action 
of Fm, and~ coincides with the set of Fqm-rational points on the 
varieties Xw. 

The starting point of the investigation of these zeta functions 
is an identity proved below, which relates the number of fixed points 

pm 

I Xw I to the trace of an element of the commuting algebra of the 

GFm-module afforded by X^ . For explicit computations and 

applications to the decomposition of the virtual representations 
H*(XW) , see [2], [12], [13], [14], [15], [26]. 

We first require some facts about Shintani descent. The 
F-conjugacy classes in the finite group GFm, for m > 1, are the 
equivalence classes for the equivalence relation 

X ~ py if X = gyF(g)-1, for X, yeGFm. 

Shintani [31] proved in the case of GLn, and Kawanaka and Digne-
Michel proved in general ([20], [21], [12], [13], [15]) that there 
exists a bijection from the set of F-conjugacy classes of GFm to the 
set of GF-conjugacy classes in GF. This bijection is defined as 
follows. The F-conjugacy class containing geGFm corresponds to the 
conjugacy class in GF containing g, where if g is represented by 
Lang's Theorem as h-1F(h) for some heG, the element g is given by 
hFm(h-l) t 

We now prove the following identity, due to Asai [2], Digne-
Michel [15], and Lusztig [26], independently. 

(2.4) PROPOSITION. L_e_L W G W , and let m be a fixed positive 
integer. Let g<=GFm, and let geGF correspond to g by the Shintani 
map, 

g = h ^ F (h) • q = hFm(h-1) 

23 
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Then 

IX gFm, w 
= Trace (T !m) -1 yr t V<m> ) 

where V<m> is the CGFm-module afforded by the GFm-action on •pin 
w ' 

and IT (m! w } wGw is the C-basis of the GFia-endomorphism algebra of 
V<m> defined in (2.3) 

Proof. For geGFm, B'eXFm, we shall sometimes write gB' for ' . 
Then 

T (m) -1 M * (B ' ) = Y. B' 
B"€XFUl gFB 1 w-1 B" 

It follows that 

Trace (T (mi {ew}wew V<m> ) = card{B'eXFm:qFB' —* B ' } w -1 = card{B'eX:FmB1 = B' and gFB' 
w-1 

1B' } . 

Put g = h_1F(h) for heG, and § = hFm(h~1) . Then, setting 
h-1B" = Bf. the formula for the trace becomes 

card{h 1B"eX:Fm(h 1B") = h B " and h-lF(h)Fh_1B' 
w--L 

h~1B" } 
= card{h 1B"GX:Fm(h -̂B") = h"lB" and F(B") w-i B"} 

The condition Fm(h 1B") = h -'"B" is équivalent to gFmB" = B", since 
g = hFm(h_1) . Thus the trace is equal to 

card {BnGX: 9FmB" = B" and B' w-1 F(B") } = I X df 
w f 

as required. 

3. Connections between representations of H and specialized 
algebras. generic degrees. 
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The representations of the specialized Hecke algebras H ( A ) , 

whose applications to the geometry and representation theory of 

reductive groups over finite fields was sketched in §§1 and 2, are 

closely related to the representations of the generic algebra H in a 

suitable splitting field. These connections have all been discussed 

thoroughly elsewhere ([5], [8]), and are reviewed here only to the 

extent they are needed later. 

We keep the notation from §1. Let K = Q(t) be the quotient 

field of R = Q[t,t-1], let K* be an algebraic closure of K, and 

R* the integral closure of R in K*. We let H K * denote the K*-

algebra K*<S>H obtained by extension of coefficients from R to K*, 

and let {ew>wGw denote the K*-basis (l®ew}wGw of HK* . 

o . i : PROPOSITION. (i) HK* is a split semisimple K*-algebra 

(ii) We have LL(e ) eR* for each irreducible K -character 
' w 

of HK*. 

(iii) Let f:R—»F be a homomorphism from R to a field F, 

such that the specialized algebra H(A>, for a = f(t), is  

semisimple. Let F* denote an algebraic closure of F, and let 

f*:R*—>F* be an extension of the homomorphism f. For each  

irreducible character |l of_ HK*, define an F*-linear map 

H(a) : (H(a) )F ~>F* by 

11(a) <l<8>ew) = f * (|¿(€ v ) ) , weW. 

Then |l(a) is an irreducible character of (H(a))F*, and the map 

JLL—*M-(a) defines a bijection of irreducible characters (depending on 

the choice of the extension f* of_ f.) 

For a proof, see [8], §68. As an application, we have: 

(3.2) COROLLARY. Let GF be a finite group of Lie type, as in (1.6). 

Then there exists an isomorphism of C-algebras 

CW = H(GF,BF) . 
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This result asserts that H(i) = H ( ^ I / 2 ) , and follows from part 

(iii) of (3.1) since both specialized algebras H ( u = C W and H( 1/2) = 

H(GF,BF) are semisimple, and consequently have the same sets of 

numerical invariants, by ( 3 . 1 ) . 

(3.3) COROLLARY. Keep the notation Qf (1.6). Then there exist  

bijections 

E ~ ^ E ~ * h > q l / 2 — CE,ql/2 

from the set of irreducible representations {E} o_£ C W , HK*, 

H(G f , bf) respectively, and the set of irreducible c-representations 

£E^ql/2 cJL Gf which occur with positive multiplicity in the 

permutation representation (lßF)GF. 

The existence of the bi jections E—*}lE—*H«E 1/2 follows from 

part (iii) of (3.1) . The bijection from the set of irreducible 

representations (M-E,qi/2 } of H(GF,BF) and the irreducible 

components CE,qi/2 of (lßF)GF is a standard result about Hecke 

algebras of permutation representations ( [ 7 ] , § 1 1 D ) . 

In Chapter II, we shall require the fact that the degrees of the 
representations {CE,ql/2> can be expressed as polynomials in q. 

This can be explained as follows. Let E be a simple CW-module, and 

set 

(3.4, dE <""• E'P<"> 

(w)^E(ew)^iE(eTi_1) 

weW 

where u = t2, and P (u) = EwgWU1(w) is the Poincare polynomial of 

the Coxeter group W . 

(3.5) THEOREM. For each simple CW-module E, there exists a  

polynomial DEeQ[u] with the following properties: 

(i) D e ( u) = dE, where dE is given by ( 3 . 4 ) . 

(ii) D E ( 1 ) = degE. 

(iii) DE(q) = deg£E,qi/2. 
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For a proof, see [ 8 ] , § 6 8 . The polynomials {DE> in Q[u] are 
called the generic degrees (or formal degrees) associated with the 
Coxeter system (W,S). It can be proved that for each simple CW-
module E, DE devides u1(wo)P(u) in Q [ u ] , where WQ is the 
element of W of maximal length. The polynomials {DE) have been 
computed for each type of indecomposable Coxeter system (see [4] for 
tables for the indecomposable Weyl groups, and [1] for the sporadic 
Coxeter groups H 3 and H 4 ) . We remark that in the case of H 3 and 
H 4 , their significance remains a mystery, as these groups do not 
occur as Weyl groups of reductive groups over finite fields. 
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CHAPTER II. Cells. 

In this chapter, we examine some basic equivalence relations on a 
finite Coxeter group W which are defined using the Kazhdan-Lusztig 
polynomials. The equivalence classes, called left cells, define an 
important family of modules for H and W, the left cell modules. 
These concepts were introduced by Kazhdan and Lusztig [22], and are 
important in Lusztig's work [26] on the decomposition of the virtual 
characters {RT(©)> associated with a reductive group over a finite 
field. Here we present a new approach to these results (Lusztig [28], 
[29], [30]), which is based on some deep positivity results concerning 
the coefficients of the Kazhdan-Lusztig polynomials and the structure 
constants of the generic Hecke algebra H with respect to a suitable 
basis. 

4. The Kazhdan-Lusztig basis { 
bx)x£w« The—polynomials {Rx,y} and {Px,y}• 

As in §1, (W,S) denotes a finite Coxeter system, R = Q[t,t_1] 
and H the generic R-algebra associated with (W,S), with the basis 
{ex)xew- For x, y€W we let x < y denote the Bruhat order (see 
[10]) . In this section we introduce an R-basis of H, called the 
Kazhdan-Lusztig basis {bx} xew, whose transition matrix from the basis 
{ex) involves the Kazhdan-Lusztig polynomials {PXfy(u)eZ[u]} for 
x < y in W, where u = t2. 

(4.1) LEMMA. (i) The involution i:R—>R defined by i (u1/2) = u"1/2 
extends to an R-semilinear ring automorphism i : H — » H of order 2, 
given by 
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i ( 
xew 

rxex-
xew 

i (rx)e -l K--L' (where rxeR) . 

(ii) For each pair x, yeW, there exists a polynomial 
RXfyeZ[u], with Rx, y = 0 unless x < y, Ry,y = I f and deg Rx,y 
= l(y) - l(x) , with the property that r for each yew, we have 

e -i y-1 = u-Ky) 
x<y 

Rx,y(u)ex. 

(iii) The polynomials {Rx,y> are characterized by the 
conditions 

Rx, sy — 
Rsx, y if sx < x, sy > y 
u^sx, y - (u - 1) Rx, v if sx > x, sy > y 
.0 if x^sy 

Proof. The map i : H — > H clearly has order 2 and preserves the 
defining relations (1.3) of H, from which (i) follows. 

For the proof of (ii), use induction on l(y). Since 

e -l s = u 1es - (1 - u-1) , if seS, 

the result follows if 1(y) = 1. Assume 1(y) > 1 and choose seS 
such that sy > y. Then y_1s > y-1 and we have, by the induction 
hypothesis, 

e 
_i 
(sy)-i = € - 1 

y-J-s d ( e - i e s ) d-l d d 
-1 
S d 

- 1 
7"1 

= (u-ieg - (1 - u"1) ) u"1 (y) 
x<y 

^x, yex 

= u-Ky)-l[ 
x<y 

,^x. yesex (u - 1) 
x<y 

Rx,yex] 

= u-Ky)-l[ 
x<y sx>x 

,Rx,yesx 
x<\ sx<rx 

Rx,y(uesx + (u-l)ex) - (u-1) 
x<y 

{ew}wew 

= u-l(y)-l[ 

sx<x 
,^sx,vex + 

sx>x 
(u^sx, y (u - l)Rx,y)ex] 
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Statements (ii) and (iii) follow directly from this calculation. 

Since the involution i is R-semilinear, it is possible to have 
a basis of H consisting of elements fixed by i. Using this idea, 
we have: 

(4.2) THEOREM. For each element weW, there exists a unique nonzero  
element bweH such that i (bw) = bw and 

b w = u-l(w)/2 
x<w 
/x,w(u) ex 

where the polynomials pXfWeZ[u], and satisfy the conditions Pw,w = l 
ajacL deg Px,w(u) < j(l(w) - l(x) - 1) for all x < w in W. T_he_ 
elements {bw}weW fprm an R-basis of H. 

Proof. We first prove uniqueness of the elements {bw}. Let {bw} be 

another set of elements fixed by the involution i and given by 

b w = u-l(w) 12 x<w 
,Qx,w(u) ex 

with polynomials QXfWeZ[u] and deg Qx,w ^ j(l(w) - 1 (x) - 1) . Then, 

for each weW, 

b 
w 

= i (b ) w {ew}wew 
y<w 

Qv/w(u-1) € -1 Y"1 

= ul(w)/2 
y<w 
{ew}wew{ew}wew 

x<y 
^Rx,y(u) ex, 

by Lemma 4.1 Comparing the coefficients of ex in bw and i(bw) we 

obtain 

u-1(W)/2Q (U) = ul(w)/2-l(x) }wew vvv + 
x<y<w 

ul(w)/2-l(y) Rx,y(u)QyfW(u-1) . 

If we assume that the polynomials Qy,w with x < y < w are known, 
then this relation determines Qx w uniquely. This follows since 

30 



REPRESENTATIONS OF HECKE ALGEBRAS 

there is no power of u appearing with nonzero coefficient in both 
u-i (w)/2Qx^ w (u) and u-l (w)/2-1 (X)Qx^w (u-l) because of the restriction 
on deg Qx,w. 

We next prove existence. We have bs = u-1/2(es + 1 ) . Assume bx 
is defined for every x with 1 (x) < 1 (w) . Let |l(x,y) denote the 
coefficient of ui/2 (l (y)-1 <x)-l) j_n Px,y(u) for x < y < w. Choose 
seS such that l(sw) < 1 (w) , and define 

(4.3) k>w = bsbsw -
x<sw 

\i (x, sw) bx. 

It is easily checked, using the induction hypothesis, that bw has the 
required properties. 

Since the equations defining the basis elements {bw} can be 
solved for the basis elements {ex}xew as R-linear combinations of 
the elements {bw}, it follows that the elements {bw}wew form an R-
basis of H, completing the proof. 

We shall call the basis {bx}xGW the Kazhdan-Lusztig basis of 
i 

H. (In [22], two bases of H were defined, {cx}xew and {cx}x(=w; 
i 

the basis {bx} corresponds to the second basis {cx}.) 

Both sets of polynomials {Rx,y} and {PX/y} are useful in 
various applications. The following result implies a simple 
connection between the polynomials {Rx,y} and the structure constants 
for the standard basis {ex} . 

(4.4) PROPOSITION. For all wew, we have 

e w e W Q — 
x<w 

(_!) l(x)+l(w)ul (x) p ^ 
N X , W ^ X W Q r 

where wo is the element of w of maximal length. 

The proof is an easy exercise, using induction on 1(w) and 
Lemma 4.1. 

It follows from (4.4) that for all x < w, 

Rx, w — (-1) 1 (x) +1 (w)u-l(x) C W , W Q , X W Q r 
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and hence are given explicitly by Kawanaka's formulas for the cXfYfZ 

(see (1.2), [19], and [11] for a geometric interpretation.) 

5. Cells in w. Left cell modules for H and w. 

We first calculate some structure constants in R = Q[t,t 1] , 

(where t2 = u) for the Kazhdan-Lusztig basis elements {bx}xew of 

H . 

(5.1) PROPOSITION. Lejt weW and seS. Then 

bsbw = 

{ew}wew 
x<w 
sx^x 

Ll(x,w)bx if sw > w 

(t + t - M b w if sw < w 

where |i(x,w) is the coefficient of t1(w) 1(x) 1 In. Px#w, for 

x < w. 

The result follows from (4.3) using induction on 1(w), and the 

fact that 

t 
2 
's = (t + t-1)bs 

since 

bs = t - M e s + 1) 

We next define three preorders <L, <R and <LR, on W. We 

shall use the notations, for weW: 

£(w) = { S G S : S W < w} a n d (R (w) = {seS:ws < w} . 

It will also be convenient to define 

'fl(x,y) = li(y,x) if either x < y or y < x 

lu(x,y) = 0 otherwise 

where M-(x,y) is the coefficient of ui/2 (l (y)-l (x)-l) in pXfY(u) . 

Note, in particular, that if |l(x,y) ^ 0, then l(y) - l(x) - 1 is 

even. 
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(5.2) Definition. The preorder <L on W is defined by the 
elementary relations 

x <L w if (a) x < w or w < x and |l(x,w) ^ 0; 
(b) £<x) * £ ( w ) . 

In other words, x <Ly if and only if there exists a sequence 
xo, . . . ,xk in W with xo = x, xk = y, and for each i, an 
elementary relation xi <L xi+i holds. The preorder x <R w is 
defined by: 

x <R w provided that x 1 <L w 1, 

and x <LR w is defined by the combination of the preorders x <L y 
and x <R y (in the obvious way). The equivalence classes in W 
defined by the preorders <L, and <LR are called left cellsr 
right cells, and two sided cells, respectively. The corresponding 
equivalence relations are denoted by x ~ L y, etc. 

Some basic properties of the preorders <L and <R are summarized 
in : 

(5.3) LEMMA. (i) Le_L seS, y < w, sw < w, sy > y and Jl(w,y) 
* 0. Then y = sw and JLl(w,y) = 1. 

(ii) An elementary relation x <L w holds if and only if 
x * w and bx appears with a nonzero coefficient in bsbw, for some 
seS. 

(iii) Xf x <L y , then ( R ( y ) C (R (x) . if x ~ L y then (R (x) = 
R ( y ) . 

Proof. (i) By comparing the coefficients of ey, sy > y in (5.1), we 
obtain 

Py,w — Psy,WA y < w, sw < w, sy > y. 

If sy * w, it follows that (taking degrees in u) 

deg Py,w = deg Psy,w ^ 1_ 2 :i(w) - i (y) - 2) < 
i 
2 (l(w) - l(y) - 1) 
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contrary to the assumption that |l(y,w) * 0. If sy = w, then Py,w = 

psy,sy = 1, and we obtain |I(w,y) = 1, completing the proof. 

(ii) If an elementary relation x <L w holds, then sx < x and 

sw > w for some seS, and |i(x,w) * 0. If x < w then bx appears 

with nonzero coefficient in bsbw by (5.1). If, on the other hand, x 

> w, then x = sw by part (i), so bx appears with nonzero 

coefficient in bsbw also in this case, by (5.1) The converse is 

easily proved using (5.1) . 

(iii) We first observe that if seS, 

and 

ys > y => £ (ys) 3 £ (y) 

S X > X => R (sx) 3 R ( x) . 

Now let x <L y be an elementary relation, with x < y. Then 

£(x)<££(y), and M-(x,y) * 0. We next obtain x_1y^S by the first 

implication above, and the assumption that £ (x) <f £(y) . Thus 

R (x) => R (y) , otherwise 

x < y, xs > X , ys < y, |l(x,y) * 0, 

and by a version of part (i), we obtain y = xs, contrary to what has 

been shown. 

On the other hand, if x > y, £ (x) <£ £ (y) , and |I(x,y) * 0, 

then sx < x, sy > y for some element seS, and we have y = sx by 

part (i) . Then sy > y implies R(sy)=>R(y), and R (x) 3 R (y) 

completing the proof. 

From the preceding Lemma, we obtain at once : 

(5.4) PROPOSITION. Le_L xeW. TJieji: 

(i) Hbxe 

y<Rx 
Rbv; 

(ii) bXHÇ= 
y<Rx 

Rby; and 

(iii) HbvHÇ 

y—LRX 

Rby 

(5.5) COROLLARY. L a L T be a left cell in W, and define 
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Ir = 
{ew} 

Xfcl 

Rby and 
i 

* r -
ŷ T.X 
{ew} 

xei 

;Rby. 

Then i r and ir. are left ideals in H. 

It follows from (5.5) that Ir/^r ^ S A LEFT H-module, with a 

free R-basis consisting of the elements {bx + I r : x e r } . We shall call 

the left H-modules obtained in this way left cell modules for H, 
and denote them by 

Mr = Ir/Ir/ 

for each left cell T in W. 
The matrices of left multiplication by the generators {es}ses of 

H have entries in R, and satisfy the defining relations (1.3) of 
H. The matrices obtained by setting t = 1, for seS, clearly 
satisfy the Coxeter relations, and hence define the structure of a 
QW-module on Mr, which we shall denote by (Mr) i. The resulting 
QW-modules {(Mr)i), for the various left cells of W, are called the 
left cell modules for W. 

Lusztig has made a deep study of the left cell modules in his 
book [26], in connection with the problems of classifying the 
unipotent representations, and decomposing the virtual representations 
{ R T ( 0 ) > , for reductive groups over finite fields. 

The rest of this section contains some remarks, without proofs, 
concerning the interpretation of left cell modules in terms of W-
graphs, and some other connections with the representation theory of 
W. 

We first introduce a second basis {cx}xew of H which is 
related to the basis {bx}xGW by the relation cx = (-1)1 <x) j (bx) , 
where j : H — » H is the involution defined by 

j (Sawew) = S i (aw ( _ 1 ) i ( w ) t - 2 i ( w ) e w f 
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using the involution i of R defined previously. A simple 
calculation, using Lemma 5.3 and the fact that 1(w) - 1(y) - 1 is 
even if |!(y, w) * 0, shows that we have 

6 s c w — 

cw if SG £ (w) 

t 2 C w + t 
y — w 

se£ (y) 

#M.(y,w) cy if s$£( w) 

where y—w means that y < w or w < y and }l(y,w) ^ 0. 
A W-graph (see [22]) is a combinatorial object which defines a 

representation of H. It consists of a graph with a set of vertices 
X, and a subset of XXX consisting of edges. To each edge, with 
vertices {x,y}, there is assigned an integer f4.(x,y) ^ 0, and to 
each vertex x, there is associated a subset IX£S. Let E (X) 
denote the free R-module with a basis identified with the elements of 
X. For each seS, let TS be the R-endomorphism of E (X) defined b^ 

(5.6) Xsx = 

-x if selx 
t2x + t 

vex 
x—-y 

Ll(x,y)y if s£Ix r 

where x—y means that {x,y} is an edge in the graph. The preceding 
data defines a W-graph provided that the map s—>TS extends to an 
R-representation of H on E(X). 

Now let r be a left cell in W, and let Mp denote the left 
cell module for H associated with T. Then it is easily checked 
that Mp is the H-module associated with the w-graph consistina of 
the set of vertices T, the set of edges { (x, y) eTxT:}l (x, y) ^ 0}, 
the integers |l(x,y) defined as above for each edge, and the subsets 
of S defined by Ix = £ ( x ) , for xeT. The basis of E ( D 
satisfying the condition (5.6) is given by {cx:xer}. 

Gyoja has proved [16] that every simple HK*-module is isomorphic 
to E(X)K* = K*®RE(X) for some W-graph X. In case W is of type 
An, the left cell modules themselves (or the W-graphs associated with 
them) provide a full set of simple H K -modules ([22]) . 

K* 

In general, the left cell modules {Mp } are not simple modules. 

The CW-composition factors of the associated left cell modules 
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{ (Mp )i}, however, have been determined by Lusztig [27] . This 

information is derived from the following inductive description of the 
CW-modules {(Mr)i>. In what follows, W denotes a Weyl group 

(associated with the root system of a semisimple Lie algebra over C.) 
For each simple CW-module E, let DEeQ[u] be the generic 

degree associated with it (see (3.5)), and let 

(5.7) DE = OCEuaE + . - + ß E u X 

with ccE, PE nonzero rational numbers, and aEuaE and aEu E the 
terms of lowest, and highest, degree, respectively. 

(5.8) Definition. Let Wj, for I C S , be a parabolic subgroup of 
w 

W. The operation of truncated induction jw assigns to each simple 
w 

CWj-module E ' the CW-module JWJ (E1 ) , which is the direct sum of 

simple modules for W defined by 

EelrrW 
aE=aE' 

(E,ind m 
w 
{ew}wew 

w 
where (E,indWlE') is the multiplicity of the simple W-module E in 

w 
the induced module indW].E ' , and aE, aE« are the exponents of u in 
the terms of lowest degree in the generic degrees DE and DE», 

w 

respectively. The operation jw is extended to arbitrary 

CWj-modules by taking direct sums. 
Using these operations, the constructible representations of W 

are defined recursively as follows. If W = {1}, only the trivial 
representation is constructible. If W * {1}, the set of 
constructible representations of W consists of all representations 

d . w W ! (E») and sgn w 
{ew} {ew}wew 
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where sgn is the sign representation of W, and E ' is a 
constructible representation of Wj, for some proper parabolic 
subgroup Wi of W. 

We now state : 

(5.9) THEOREM. (Lusztig) Le_t M be a CW-module, for a Weyl group 
W. Then M affords a constructible representation of W if and only 
if. M = (Mr)i, for some left cell module Mr of H. 

The proof, which involves a case by case analysis, is givefi in 
[27] . 

6. Asymptotic methods. The a-function, left cells, and Duflo 
involutions. 

Throughout this section, W denotes a Weyl group (associated 
with the root system of a semisimple Lie algebra over C ) . We first 
recall some elementary facts. Let T:H—>R be the R-linear map 
defined by 

x(ex) = 
1 if x = 1 
0 if x * 1 

where {ex}xew is the R-basis satisfying (1.1) The resulting R-
bilinear form (called the T-form), 

(a, b) = X (ab) , a, beH, 

is associative, symmetric, and nondegenerate. The bases 

{ex}XGw and {u-l<*>ex-i}xew 

are dual with respect to the T-form, and can be used to obtain the 
primitive central idempotents and orthogonality relations for the 
irreducible characters of the split semisimple algebra HK* (see [8, 
§68]) . 
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(6.1) LEMMA. Le_L x, yeW and let bx, by be the Kazhdan-Lusztig  
basis elements corresponding to them. Then 

X(bxby) = o -i + 
i>l 

ait"1. with aieQ, 

where 5v _i is the Kronecker 5. 

The proof is readily obtained, using induction on l(x) and 
(5.1) . 

We now introduce the structure constants {hX/y.fZ} for the 
Kazhdan-Lusztig basis {bx}xewf which will be a main focus of 
attention in what follows. We set: 

(6.2) bxby = 
zew 

nx, y, zbz r for x, yeW. 

Then the structure constants hx,yfZeZ[t,t 1] £R, and are symmetric in 
t : 

hx,y, z(t) h x ^ z i t " 1 ) , 

by ( 5 . 1 ) . 
In order to proceed, we require the following nonelementary 

positivity properties of the polynomials px,y anc* hXfyfZ, all viewed 
from now on as Laurent polynomials in t. 

(6.3) THEOREM. (i) The coefficients of Px>y are nonnegative  
integers. for all x,y in W, with x < y. 

(ii) The coefficients of hX/YfZ are nonnegative integers for 
all x, y, zeW. 

Part (i) is due to Kazhdan and Lusztig [23] ; both parts are 
proved in Springer's Bourbaki Seminar article [ 3 2 ] , using intersection 
cohomology theory and the theory of perverse sheaves. 

(6.4) DEFINITIONS. Let zeW, and define 

a(z) = max 
x, yew 

deg hx,y,z 
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where the degree is taken with respect to t. For x, y,zeW, put 

Yx,y,z — coefficient of ta(z) in hXry/Z. 

(6.5) LEMMA. (i) a(z) is the least nonnegative integer with the 
property that 

ta(z)hX,Y,2(EQ[t] for all x, yew. 

(ii) h - l , x - l , z - l = hx,y,z for all x, y, ZEW. 

(iii) a(z) = a(z"1) . 

Part (i) is clear from the definition, and the fact that hXfYfZ 

is symmetric in t and t-1. For the proof of part (ii), we make use 
of the R-algebra antiautomorphism of H which takes ex—»ex_i, for 
xeW. It is easily checked that bx—*bx-i under this map, and (ii) 
follows by applying it to the structure equations (6.2). Part (iii) 
follows from part (ii). 

(6.6) COROLLARY. Yx,y,z Yy-l,x-l,z-l for all x,y,zeW. 

Another basic property of the a-function is that 

(6.7) a(z) = 0 if and only if z = 1. 

This fact can be proved without making use of the positivity 
results (6.2) (see [28], Prop. 2.3) . It also follows directly from the 
results to follow (see (6.8)). 

(6.8) THEOREM. (i) Let 5(z) be the degree of Pi,z in u. Then 
we have 

a (z) < 1 (z) - 2ô(z) for all zew. 

(ii) Let 2) = {zeW:a(z) = l(z) - 28(z) . Let de3), and assume 
that Yx,y , c i * 0 for some x,yew. Then 

x = y 1, Yx,x-i,d = 1 and d2 = 1. 
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Moreover, we have 

Pl,d = uö<d> + terms of lower degree. 
(iii) For each xew, there is a unique element de®, such that 

{ew}wew{ew}wew 

Proof. Let ZEW. Throughout the proof, the abbreviation deg means 
the degree taken with respect to t. By (5.1) and the definition of 
X, we have 

x(bz) = t - K ^ P ^ z . 

Then, by (6.2), 

X ( b x b y ) = <ZhXfy, zt-1(z)PifZ. 

Since deg x(bxby) < 0 by (6.1) and all the coefficients of hx,yfZ 
and Pi z are nonnegative by (6.3), it follows that 

deg hx „ z t - K ^ P i ^ < 0, for all x,yeW. 

Consequently, 

deg hX/y, z < 1 (z) - 28(z) 

and (i) follows. 
Now let de2), so a (d) = 1 (d) - 20(d), and assume Yx,y,d * 0. 

Consider the equation 

X(bxby) = I z V y ^ t - K ^ P l , ; , . 

From our assumption, it follows that the degree of the right side is 
0. By (6.1), the left side has degree 0 only if xy = 1, and in 
that case the coefficient of the term in degree zero is 1. It 
follows that there is a unique z contributing to the degree zero 
term on the right side (since the coefficients of hXfYfZ are 
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integers) , and this element z must equal the given dG®, so 
y = x 1. and 

{ew}wew{ew}wew 

It then follows that the leading coefficient in u in Pi,z is also 
equal to 1. This proves all the statements in (ii) except the fact 
that d2 = 1, whose proof we postpone until after (iii) is 
established. 

For each xeW, we have deg T (bxb _i) = 0, and it follows that 

d e g < ^ h x , x " l , zt-1(z)Pl,z) = 0. 

Therefore, by the positivity results again. 

deg _l f ^ ^ P i z = 0 
X, x x, z 

for a unique element z; then ze2) and yx x_i z = 1, proving (iii) . 
Finally, let deSD, and choose x such that Yx x_i d ^ 0. By 

Corollary ( 6 . 6 ) , we have 

^x,x_1,d ^x,x_1fd"1' 

so the uniqueness statement in (iii) implies that d = d 1. Thus d2 = 
1 for each de2), and the theorem is proved. 

The elements of 3) will be called the Duflo involutions in W; 
it will turn out that there is a unique one in each left cell, (see 
[29] ) . 

(6.9) LEMMA. (i) Le_L z, weW, seS, and assume that sw < w, sz > 
z, |i(w,z) * 0. Lei x,yew be such that Yx,y,z * 0. Then there 
exists vGW such that deg hv,y,w ^ a(z) . In particular a(z) < a (w) . 

(ii) U£ x <LRy then a(y) < a(x). If x ~ L R Y then a(x) = 
a(y) . 

Proof. Since Yx,y, z ^ 0, we have hx,y,z ^ 0 , so z <Rx by (5.4), 
and hence £ (x) c £ ( z ) by (5.3) (iii) . It follows that sx > x. Upon 
writing out the associativity formula 
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(bsbx)by = bs (bxby) , 

we obtain for the coefficient of bw on the left side (using (5.1)) : 

nsx,y,w + 
v<x 

H.(v,x)hVfyfW 

while the right side is 

S Z ' < Z ' 
(t + t - ^ h x ^ z . + 

sz'>z' 
^x,y,z' (bsz»+ . 

u<z * 
su<u 

^l(u,z')bu) . 

if Yx,yfz 0 and |l(w,z) * 0 as in the hypothesis, then the 
coefficient of w on the right side has degree > a(z), since 
w = sz if w > z by (5.3i). It follows that deg hv,yfW > a(z) for 
some v, which proves the first statement. Since the hypothesis of 
part (i) holds whenever an elementary relation w <L z occurs, part 
(ii) follows easily, using (6.5 iii). 

(6.10) THEOREM. (i) For all x,y,z, we have 

Yx, y,z - Y -i -l = 
'y,z -L,x x 

Y -i - i . 

(ii) If Yx,y,z * 0, then x ~L y 1, y -L z, x ~R z and a(x) = 
a (y) = a (z) . 

(iii) if x <L y and a(x) = a(y) then x ~L y. 
(iv) if x <L y and x LR y then x ~L y. 

Proof. Suppose x,y,zGW, and Yx,y,z * 0. Then, for some de2), 
TZ/Z-lfd = 1, by (6.8 iii). Then hZfZ-lrd*0, so d <R z, by (5.4), 
and hence a(z) < a(d), by Lemma 6.9. 

Assume first that a(z) = a(d) = a, and Yx,y, z * 0- Tne 
associativity formula for the basis {bx} implies that 

,uhx,y,uhu^ z-l d vhy#z-l vhx,v,d-

If hU/Z-l d ^ 0 then d -Rur so a(u) < a. Similarly hx,v,d * 0 
implies d <L v so a(v) < a. Then both sides are summed over 
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elements u,v such that a(u) < a and a(v) < a. We now calculate 
the leading terms on both sides. On the left, h _i , has leading J u,z i,d 13 
coefficient 1 if u = z, and 0 if u * z. Since we are assuming 
a(z) = a, the left side has the leading term 

Yx, y, zYZf z-if d1 f 2a — v -f-2a u fx,y,zL 

The coefficient of t2a on the right side occurs when v = x-1 and is 

{ew}wew{ew}wew{ew}wew 

since a(v) < a for all v. Upon comparing these terms, we obtain 
Yx,x-i,d * °' {ew}wew{ew}wew and 

YY,z-l,x-l {ew}wew 

proving the first statement in part (i). 
Now assume that a(z) < a(d), and define a sequence of elements 

of 2), di = d, d2, d3, . . . with Ydi,di,dj_+i * 0 for each i, using 
(6.8iii). Then we have 

a(di) < a(d2) < 

If a(di) = a(d2), then 

{ew}wew{ew}wew {ew}wew{ew}wew 

by what has been proved, hence a(d) < a(z_1) = a(z) and we are in the 
first case. If a(di) = a(di+i), a similar argument shows that a(di) 
= a(di_i), so we must have a(z) = a(d), and part (i) is proved, in 
case Yx,y,z * 0. If any one of the elements in part (i) is * 0, then 
we have equality, by what has been proved, and this establishes part 
(i) • 

if Yx,y,z * 0, then z <R x and z <L y. From Yy,z-lfX-l * 0 
we obtain x_1 <L Z-1 and hence x ~ R Z. Similar arguments prove the 
rest of part (ii). 

For the proof of part (iii), first assume x <L y is an 
elementary relation. Then there exists seS such that sx < x, 
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sy > y, and |l(x,y) * 0. Choose u, v such that Yu,v,y * 0. Then, 
by Lemma 6.9, there exists weW such that 

deg hw,VfX > a (y) . 

Since deg hw,v.x < a(x) and a(x) = a(y), we obtain 

deg hw,VfX = a (x) 

and hence 

Yw,v,x * 0. 

By part (ii) , Yu,v,y * 0 and Yw,v,x * 0 imply v ~L x and v ~L y, 
so that x -~L y. By applying this argument to a sequence of elementary 
relations, we obtain part (iii) . 

Now let x <L y, and x ~ L R Y- Then a(x) = a(y) by part (ii) 
of Lemma 6.9. Then x ~L y by part (iii) . This completes the proof 
of the Theorem. 

Part (iv) of the Theorem is a powerful result, as we shall see in 
Chapter III. It was proved first by Lusztig [24], using the theory of 
enveloping algebras, and the fact that the Kazhdan-Lusztig conjectures 
hold 

(6.11) THEOREM. Each left Cell T contains a unique Duflo 
involution. 

Proof. Let x,yer. Choose d,d'e2) such that 

^x_1,x,d - Vl,y,d- = 1-

By the previous Theorem, we have x ~L d and y ~ T . d', so d, d'ef 
Moreover, 

Yx,d,x — Yy,d',y — !• 

Now assume x <L y is an elementary relation. Then we can apply Lemma 
6.9 to obtain veW such that Yv,d',x * 0- Then yx_i v * 0 by the 
Theorem, and it follows that v = x and d = d', completing the 
proof. 
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CHAPTER III. Representation theory of H in the field Q(t). 

Throughout this chapter, H denotes the generic Hecke algebra 
over the commutative ring R = Q[t,t-1] of a finite Weyl group (W,S) 
(a finite Coxeter group satisfying the crystallographic condition as 
in Chapter II). The main topic will be the irreducible 
representations and characters of the algebra HQ(FC), where Q(t) is 
the quotient field of R. A particularly interesting feature is 
Lusztig's construction of a Z-algebra J, which is a kind of 
asymptotic form of H, and whose irreducible character values give 
the leading terms of the irreducible character values of JlQit) • 

§7. An a s s o c i a t i v i t y formula. 

We first recall some properties of the R-basis {bx} of H 
from §§4 and 5. We have, for x,yeW, 

bxby = 
zew 

n x , V, Z^z t with hXfyfZeZ[tf t"1] , 

where the polynomials hx<ryfZ are symmetric in t, and have 
coefficients > 0. The a-function is defined by 

a(z) = max 
x, yew 

deg hx,y,z, 

where the degree is taken with respect to t. 
For each x,y,zeW, we put 

Yx,y, z - coefficient of ta(z) in hx,y,z. 

We recall from §6 that 
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Z <T.R Z ' a(z') < a(z), 

so the a-function is constant on two sided cells. We also require 
the results from Theorem 6.10 that: 

(7.1) x <L y and a(x) = a (y) => x ~L y, and 

(7.2) x <L y and x LR Y => X ~ L y. 

Now let H1 be a copy of H over the ring R' = Qtt^t'"1], 
where t' is a second indeterminate over Q, and let {t>x}xew denote 
the Kazhdan-Lusztig basis of H', with structure constants 
hx,y,z(t')GZ[t', (t')"1] . We now introduce a free module Bt,t' over 
the ring Q [t, t-1, t 1 , (t ' ) _1 ] with a basis {px)xeWf such that H 
acts on Bt?ti from the left and H1 from the right. These actions 
are defined in such a way that 

bxßy corresponds to bxby in H 

and 

ßybz corresponds to bybz in H'. 

These actions do not necessarily commute. 

(7.3) ASSOCIATIVITY LEMMA. For all xew, and s,s'es, the element 

(bsßxibs'. - b s ( ß x b s O 

is a linear combination of basis elements py for which a(y) > a(x). 

Proof. Case 1. sx < x, xs1 < x. Then 

(bsßx)bs\ = bsißxbs'.) = (t + t-1) (t 1 + t ' - ^ ß x , 

by (5.1) . 

Case 2 . sx < x, xs' > x. In this case. 

47 



CW. CURTIS 

( bsp x ) b s ' . = ( t + t - i ) (pxs. + 
y<x 

y s '<y 

Jl(y,X)Py. 

while 

b s ( P x b s O = b s ( p x s . + 
v<x 

y s '<y 

^l(y,x)Py) . 

The two expressions are equal, since the elements xs' and y with 
|l(y,x) * 0 and ys ' < y are all <R X, and hence seJ3 (x) czj^ C x s 1 ) , 
£(y) for these elements, by Lemma 5.3iii. 

Case 3. sx > x, xs1 < x. Set t = t', H' = H. The resulting R-
module Btft affords the two sided regular representation of H. The 
further specialization t—>1 yields a Q-module Bi,i with the 
structure of a QW, QW-bimodule. It follows that the specialized form 
of (bspx)bs« - bs(pxbs'») is zero, and that we have for the original 
expression 

(bspx)bs. - b s ( p x b s O = (t + t"1 - 2) 
ys 1 <y 
s y ^ y 

^(y,x)py 

- (f + (t')-1 " 2) X ll<y,x)py. 
ys -<.y sy<y 
ySRx 

Consider a nonzero term in the first sum. Since y <L X, we have 
a(y) > a(x). If a(y) = a(x), then y ~L x by (7.1), and hence 
(R(x) = (R(y) by 5.3iii), which is impossible. Therefore a(y) > a(x) 
for all terms in the first expression. A similar argument applies to 
the second expression, starting from the condition y <R x. This 
completes the proof. 

8. Lusztig's isomorphism theorem. 

Let B be the R-module with the basis (PxJxGWr as in §7 • 
Then B admits a left action by H and a right action by RW. The 
right action by W is defined for a generator s by setting t' = 1 
in the matrix of the right multiplication by the standard basis 
element eg of H1 with respect to the basis {px)xew- Since B is 
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a right H'-module, it follows that the right action by the generators 
seS satisfy the defining relations of W, so that B becomes a 
right W-module, and hence a right RW-module. The left action by H 
and the right action by W do not commute, but we shall obtain 
commuting actions by H and RW on a suitable graded version of B. 

For each two sided cell c , put 

{ew}w 
y^LRz 

zee 

Rßy and Bc = 
Y—LR2 

zee {ew}w 

{ew} 

The submodules {Bc} define a kind of filtration of B using the 
preorder relation y <LR z . The associated graded module grB is 
defined by 

gr B = ecBc/Bc, 

where the sum is taken over the two sided cells. Clearly grB 
inherits a left H-action and a right RW-action. The left action by 
H also defines a left action by RW on B, by specialization, and it 
is clear that B, and hence grB, become (RW,RW)-bimodules. 

(8.1) LEMMA. The graded R-module grB is an (H,RW)-bimodule. 

The proof is immediate from the associativity Lemma 7.3, since 
the a-function is constant on two sided cells by Lemma 6.9. 

We can now state the main result of this section. 

(8.2) THEOREM. (Lusztig [24]). (i) There exists a unique  
homomorphism T|. H—* RW such that, for each weW and heH, we have 

hßw - Tl(h)ßw = 
Z-^LR* 

r 2 P z 

for some coefficients rzeR. 
(ii) The extended map 10T|:Q (t) ®RH —* Q (t) W is an isomorphism of 

O it ) — T\ 1 riphra q _ 
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Proof. Let Endw(grB)w denote the algebra of R-endomorphisms of 
grB which commute with the right action by W. By Lemma 8.1, there 
exists a homomorphism of R-algebras OC:H—>Endw(gr B) w. 

On the other hand, the commuting two sided action of RW on 
gr B defines a homomorphism of R-algebras (3:RW—>Endw(grB)w. We 
assert that p is an isomorphism. For this, it is sufficient to prove 
that gr B is isomorphic to RW as a two sided RW-module. This 
results from the fact that gr B, viewed as a QW-bimodule, affords 
the two sided regular representation of QW, because QW is a 
semisimple Q-algebra 

The first statement of Lusztig's theorem follows by taking 
n - p - i . « . 

The second statement is proved by showing that if h belongs to 
the kernel of 1®T|, for hel^t), then the left multiplication by h 
is zero on gr B, and hence h acts as a nilpotent endomorphism of 
B. It follows that 1 ® T| is injective, since H0-^) is a semisimple 
algebra over Q(t), by the discussion in §3. The algebras ^<f) 
and Q(t)W have the same dimension over Q(t), and it follows that 
1 <S> T\ is an isomorphism, completing the proof. 

We remark that Lusztig1s proof that grB is an (H,RW)-bimodule 
uses the theory of primitive ideals in enveloping algebras ([24], 
Lemma 4.1). The proof given here (using the Associativity Lemma) is 
based instead on the positivity theorem (6.3). 

(8.3) Corollary. The algebra sPiv is split semisimple, in other 
words, Q(t) is a splitting field for H. 

This follows from part (ii) of the preceding theorem, and the 
fact that Q is a splitting field for each finite Weyl group W. 

Following Lusztig [25], we shall describe an explicit connection 
between simple modules for HQ(fc) and Q(t)W, and their characters. 

Let E be a simple Q(t)W-module. There exists a unique two 
sided cell c such that E occurs as a composition factor of the 
direct summand 

(8.4) Mc = Q(t)<S>R(Bc/Bc) 
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of Q(t)<S>R grB, since Q(t)<8>R grB affords the two sided regular 
representation of Q(t)W, by the proof of Theorem 8.2. 

Since Mc is a two sided W-module, the inner tensor product 
MC®E is a W-module, and the set of W-fixed points 

(8.5) E(t) = invw(Mc®E) 

is a left H& (t) -module, by the proof of Theorem 8.2. 
The following result follows readily from the preceding 

discussion. For a proof, and other facts connected with it, we refer 
the reader to [25]. 

(8.6) PROPOSITION. LeJL E be a simple Q (t ) W-module, and let E(t) 
be the left HQ(t>-module defined bv (8.5). The following Statements 
hold. 

(i) E(t) is an absolutely simple J&{t}-module, and E—>E(t) 
defines a bisection of isomorphism classes of simple modules, for the 
algebras Q(t)w and i#<t), respectively. 

(ii) For each xew, Tr (ex,E(t))ez[t], and we have 

Tr (ex,E(t))t=i = Tr(x,E) 

9. The algebra J. 

We shall define a Z-algebra J, with a basis whose structure 
constants are the leading terms Yx,y,z of the structure constants 
{bx,y,z) of H with respect to the Kazhdan-Lusztig basis. It will 
turn out that Q(t)<8>zJ = H ^ ^ ) , so that J can be viewed as an 
asymptotic form of H. These results, all due to Lusztig, first 
appeared in [28]-[30]. 

For the definition of J, let (jx)xew be a basis for a free 
Z-module, and define a bilinear multiplication on J by setting 

DxDy = 
zew 

Yxyz D z r for x, yeW, 

where Yx,y,z is the coefficient of ta(z) in h(x,y,z) (see (6.4)). 
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(9.1) THEOREM. The_ z-algebra J is associative, with identity 
element 

de 2) 
Jdr where 2) is the set of Duflo involutions in W (see 

(6.8) ) . 

Proof. To check associativity, we have to prove that, for all x,y,z, 
V G W , 

uew 
Yx, y, uYu, Z, V — 

ueW 
Yx, u, v Yy, z, u • 

For the nonzero terms in this expression we have a(x) = a(y) = a(z) = 
a(u) = a (v) = a by Theorem 6.10. From the associativity of H, we 
have 

-u hx y uhu z,v ~~ u hx, u, v h y , Z, u • 

For each nonzero term we obtain from (5.4), 

v <R u <R x, 

and hence a (x) < a(u) S a(v) by Lemma 6.9. Therefore the sums above 
are taken over elements ueW for which a(u) = a. The desired 
associativity result follows by comparing the coefficients of t2a on 
both sides of the equation. 

In order to check that Xde® Jd is the identity element, we have 
to show, for example, that 

Jx( 
de 2) 

Jd) = Jx for XGW. 

This amounts to showing that 

de 3) 
Yx,d,y ~~ 

1 if y = X 

0 if y ^ X 

By Theorem 6.10, we have 
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Yx, d, y {ew}wew{ew}w 

and this is 0 or 1 according as y ^ x or y = x by Theorem 6.8. 

A similar argument shows that ( X j d )Jx = j x , completing the proof. 

The connection between J and H is described in the following 

result . 

(9.2) THEOREM. The R— linear map \|/:H —• R®zJ, defined by 

{ew}wew 
zew 

a(d)=a(z) 
de 2) 

h x , d , z J z , x e W 

is a homomorphism of R-algebras, and becomes an isomorphism when  

tensored with Q(t). 

Proof. We first prove that y(bxby) = \\f (bx) \\f (by) , for x,yeW. This 

comes down to proving that 

(9.3) 
uew a(d) =a(z) 

hx,y,uhu,df z = 
d,ee2> a(d)=a(u) 

a(e)=a(v) 
u, vew 

hx,d,uny,e,vYu, v, z . 

In order to prove this identity, we begin with the fact that the 
R-module qrB defined in §8 is an (H, H1 ) -bimodule, so that we have 

uew 
a(u)=a(d) 

h x h u (t)hu.v , ( t ' ) = 
uew 

a (u )=a(d ) 

L1X, u, z (t)hd (t ' ) , 

for a fixed de2), and x,v,zew. The degree in t' of the polynomial 
on the right side is <a(d), and since the structure constants have 
positive coefficients, the same is true for the left side. 
Multiplying both sides by (t')"a*d) and setting t' = 0, we obtain 
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UGW 
a (u) =a (a, 

nx, d,uYu, vfz " 
UGW 

a (u) =a (d, 

nx,u,zYd, v, u • 

Since Yd,v,u = Yv -l d bY ( 6 . 1 0 ) , and is zero except when u = v 
when it is 1, by (6.8), the whole expression becomes hX/VfZ, and 
(9.3) follows from the associativity formula in H. 

We prove next that \|/(bi) is the identity element in jQ(t). We 
have 

V(bi) = 
ZGW 

a(d)=a (z) 
de2> 

hi,drzJz, 

and the desired result follows from the fact that 

hl,d,z = 
1 if z = d 
0 if z ^ d 

Finally, we check that the extended map \\f: Hv (t > —* JQ (t) is an 
isomorphism. The algebra jQ(fc) has the basis {t~a <x) (1® jx) , xeW} . 
We have 

\fr(l®bx) = 
zew 

^x,zt"a<z) ( l ® j z ) , 

where the matrix (^x,z) has entries in Q[t]. Using the properties 
of the elements Yx,d,z from §6, it follows that ^x, z _ $x<tZetQ[t] 
for all x,ZGW, and hence the matrix (^x,z) is invertible over the 
ring of formal power series in t. Therefore (^x,z) is invertible 
over Q(t), and we conclude that the map \j/ is an isomorphism 
completing the proof of the Theorem. 

(9.4) COROLLARY. There exists an isomorphism of Q-algebr&S =QW. 

This is proved using the preceding theorem by setting t = 1. We 
have H(i) = QW. In order to prove that the specialized homomorphism 
1 (8) \\f : H(i) —> jQ is an isomorphism, it is sufficient to prove that the 
kernel of 1®\J/ is annihilated by all the irreducible characters of 
H(i). This follows from the correspondence between the irreducible 
characters of H^t) and jQ(fc) given by the isomorphism \\f, and the 
relation between these irreducible characters and those of the 
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specialized algebras H ( D and JUr respectively (see ( 8 . 6 ) , and a 
version of (3.1) for jQ<t> , proved in § 6 8 of [ 8 ] ) . 

The partition of W into left cells is related to the 
multiplication of the basis elements (jx)xew by the next result. 

(9. 5 ) PROPOSITION. (i) Let T be a left cell containing the  
element de2) (see ( 6 . 1 1 ) ) . Then we have 

Jxid = 
jx if x e r 

0 if x ^ r 

(ii) jxjy * 0 <=> x ~ L y 1-
(iii) jxjzjy * 0 fQC some z < = > x ~ L R y 

The proof follows easily from the connections between the cell 
relations and the elements Yx,y,z established in § 6 , and is left as 
an exercise for the reader. 

(9.6) COROLLARY. (i) The elements {jd>de2) are Orthogonal 
idempotents in J, and give a decomposition of J as a direct sum of 
1 (=> -F+- t H p s 1 q 

J = 
T=left cell 

jr 

where Jr is the left ideal generated by the idempotent jd, for 
de2>nr, and has the z-ba^La { j x : x e n . 

(ii) Let r , T ' be left cells in w. Then there is an isomorphism 
cJL z-modules • 

Homj (Jr.Jr) = JdJJd. r where de2) Pi T, d'e^OT', and JdJJd' has a 
Z-basis consisting of the elements { jx:x e r - 1 C\ T*}. 

We also obtain a decomposition of J as a direct sum of two 
sided ideals with bases indexed by the elements in the two sided 
cells. The submodules (JdJJd1) behave like matrix units within these 
ideals . 

Finally, we note that the Z-linear map X:J—>Z defined by: 
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X(jZ> = 
d if ze2) 
0 if z£2) 

defines a nondegenerate symmetric associative bilinear map from 
JxJ — * Z . The elements 

{ Jx)xew and { D x - 1)XGW 

form a pair of dual bases with respect to the form. These remarks 
provide a basis for the usual connections between irreducible 
characters, orthogonality relations, and primitive central idempotents 
in the split semisimple Q(t)-algebra jQ(t), as in ([7], §9). 

10. Leading terms of irreducible character values. 

Let E be a simple Q(t)W-module. Then E is associated to a 
unique two sided cell c of W, by the discussion in §8 (see (8.4)). 
By (8.5), E corresponds to an absolutely simple H ^ ^ ) -module E(t), 
and to an absolutely simple jQ^)-module E , by (9.4) . 

(10.1) T H E O R E M . L_e_L a(c) denote the common value of the a-
function on the elements of the two sided cell c corresponding to 
E . Let ex be the standard basis element of H corresponding to 
xew. Then the leading term of the character value on E(t) o_£ ex is. 
given by 

(i) Tr(ex,E(t)) = cX/Et1(x,+a(c) + terms involving lower powers 
of t, where CV.E is an integer/ for each xew. 

(ii) We have. cx,E * 0 for some xec. Moreover, for all xew, 
CX,E is itself a character value on the algebra jQl*-) , namely 

cx,E = Tr (jx,E) , 

where jx is the basis element of J corresponding to x. 

Proof. By (8.6ii), we have Tr (ex,E(t))eZ[t] . The characters of the 
r-J 

simple modules E(t) and E are related by the isomorphism 
y:KQ(t) —• jQ(t) (See (9.2)). We obtain 
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(10.2) Tr(bx,E(t)) = Tr(\|/(bx) ,E) = 
zew 

a(z)=aid) 
de 2) 

hX/d,ZTr ( jz,E) , 

after identifying bx with l®bx, and j2 with l®jz. Using the 

results in § 9 , it follows that Tr(jz,E) = 0 if z£c. Furthermore 

Tr(jz,E)eZ for all z, by ( 9 . 4 ) . The term of highest degree in t 

on the right side of (10.2) has degree a (c), and the coefficient of 

ta(c) is 

a(d)=a(c) 
{ew}wew 

YY.H.7Tr(i7,E) = Tr(ix,E)€Z, 

since Yx,d, z = Yz-1 x &r anc* is 1 or 0 according as z = x or 

z * x, by § 6 . 

By the definition of the Kazhdan-Lusztig basis and the properties 

of the polynomials PXfy, it follows that the transition matrix from 

the Kazhdan-Lusztig basis to the standard basis is triangular (using 

an ordering based on the Bruhat order), with diagonal elements t_1(x), 

for xeW. Therefore, Tr(ex,E(t)) = cx, Et1 (x) +a (c) + terms involving 

lower powers of t, for some integer CX,E- Combining these 

observations, we obtain a proof of the Theorem. 

As an application, we show that the value of the a-function on 

the two sided cell c can be calculated from the generic degree Dg 

of the simple Q(t)W-module E associated to c. 

(10.3) COROLLARY. Keep the preceding notation. Then 

a (c) = N - deg DE, 

where N and deg DE denote the degrees in u = t2 of the Poincaré  

polynomial P(u) of W, and the generic degree DE of E, 

respectively (see § 3 ) . 

Proof. The orthogonality relations for the characters of the modules 

E(t) are 

57 



aw. CURTIS 

XGW 

t-2Kx)Tr (e E(t) ) Tr(ey-i,E' (t) ) = 

0 

iimE-P(u) 

DE<u) 

if ESÉE' 

if E = E' 

By the preceding Theorem, the left side is 

t2a (c 
xew 
-Cx,Ecx-i/E + lower terms. 

and the coefficient of t2a<c) is different from zero by the 

orthogonality relations for the irreducible characters of jQ(f), by 

§9, using the fact that CX,E = Tr(jx,E) . 

Remark. In ([28], (6.4)), Lusztig proved, using an a-function 

defined in terms of another basis of H, that the value of the a-

function on the elements of the two sided cell c attached to E is 

aE, the exponent of u in the lowest term of the generic degree. By 

the palindromic property of the generic degrees (see [8], (71.17)), 

the formula in Corollary 10.3 becomes 

a(c) = N - deg DE = asgn<g)E, 

thus reconciling (10.3) with Lusztig's formula, since sgn®E is 

associated with the two sided cell WQC, where WQ is the element of 

W of maximal length. 
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