
Astérisque

D. B. A. EPSTEIN
Computers, groups and hyperbolic geometry

Astérisque, tome 163-164 (1988), p. 9-29
<http://www.numdam.org/item?id=AST_1988__163-164__9_0>

© Société mathématique de France, 1988, tous droits réservés.

L’accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/
Publications/Asterisque/) implique l’accord avec les conditions générales d’uti-
lisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou
impression systématique est constitutive d’une infraction pénale. Toute copie
ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=AST_1988__163-164__9_0
http://smf4.emath.fr/Publications/Asterisque/
http://smf4.emath.fr/Publications/Asterisque/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/

Société Mathématique de France
Astérisque 163-164 (1988), p. 9-29.

Computers, Groups and Hyperbolic Geometry
D.B.A. Epstein

This paper consists of notes for a course of lectures given at Rome in the summer of 1986. As
such, many details of proofs are missing, and the paper is discursive, rather than following the usual
style of mathematical papers, where it is often assumed that the reader is familiar with all preceding
contributions to knowledge. Proofs of results have been omitted, and these are provided in [2]. The
work to be explained is a very small part of a large programme, mapped out largely by W.P. Thurston.
This programme of research is supported by the National Science Foundation, and is known as the
Geometry Supercomputer Project. The research has also received generous support from the Science
and Engineering Research Council of the United Kingdom. I thank both the N.S.F. and the S.E.R.C.
for their support, and I thank Professor Ida Gasparini-Cattaneo for the invitation to speak in Rome and
explain some of these ideas, even if only in sketched form. This paper has been improved as a result
of careful comments by the referee (though not as much improved as the referee may have hoped).

One of the our objectives is to construct a "catalogue" of 3-dimensional manifolds. Of course,
the collection of compact 3-manifolds is infinite, and we have little hope of constructing some kind of
effective list. (In contrast, group theorists are able to construct an effective infinite list of simple
groups, and a machine can list the positive integers in order.) But we can do something. For example,
given a good test of the "complexity" of a 3-manifold, corresponding somehow to our intuitive idea of
complexity, we could construct the first few, least complicated, examples. We would also like to
produce "typical" or "random" 3-manifolds. As yet the concept of randomness of a 3-manifold has
not been formalized in a satisfactory way. The problem of producing a normal definition, which

9

D. B. A. EPSTEIN

corresponds to our intuition, seems to be a really good problem for research at the current time.
We believe that the development of such a catalogue will produce many good problems

requiring solutions. In addition it should provide some good tests for Thurston's Geometrization
Conjecture (see G.P. Scott [6] or W.P. Thurston [81). It should also be useful for testing many other
conjectures in 3-manifold theory. The construction of the catalogue will depend on the use of
powerful computers and new programs developed for the purpose. One of the most important
invariants associated with a 3-manifold is the fundamental group. It is therefore important to be able to
work quickly and effectively with such groups, which will normally be given by generators and
relations.

A group G with generators {xj,...,xn} is said to have a solvable word problem, if there exists
an algorithm which can be applied to any word w in {xi,...,xn,xi-l,...,xn"l} giving either the answer
"Yes" if w = 1 in G or "No" if w + 1 in G. It is a result of Novikov and Boone that there is a group
G = {xi,...,xn/rj,...,r|c} which does not have a solvable word problem. This shows that it is not
possible to write computer programs which carry out the kind of manipulations we need on general
groups.

However general groups are too general to be interesting ! The groups which provide the
central interest in mathematics are groups which operate on some nice structure, like a geometric space.
In practice, such groups have solvable problems.

I will discuss my joint work with Jim Cannon (Brigham Young University, Provo, Utah),
Derek Holt (Warwick), Mike Paterson (Warwick), Bill Thurston (Princeton), in which we produce a
new algorithmic approach to certain questions in group theory. We are particularly interested in the
speed of the algorithms, because we want practical computer programs which will produce answers in
a reasonable time.

The theory has already had a practical effect. Figure 1 is a drawing of a tesselation of the
hyperbolic plane by triangles with angles rc/3 and n/7 . My original program to compute the
points and lines for this drawing took 14 hours. The current program, incorporating these new ideas,
takes 5 minutes, on the same computer. The reason for this is that in the original program, the only
way to check whether a line has already been drawn is to search through a list of existing edges. Apart
from being very time-consuming, this procedure is subject to terrible problems from floating point
inaccuracies. (Real numbers can not be kept on a computer. We can only keep approximations to such
numbers. When computations are carried out, the approximations become increasingly inaccurate.)
Using the ideas to be explained here, no such checking is done, because we will know, without
checking, whether a particular edge has been drawn or not. In addition to a huge time saving, there is a
huge potential saving on space. Since checking is not necessary there is no need to store the edges.

10

COMPUTERS, GROUPS AND HYPERBOLIC GEOMETRY

One can compute them and then draw them immediately.
Of course, as research workers, we are not interested in such well-understood tesselations

(though they do have an aesthetic interest). But there are many drawings which are invariant under a
group and which are of interest for research. Our methods should allow these drawings to be made
more quickly.

Figure 1.
Tesselation of the hyperbolic plane by the (2,3,7)-group.

14 hours -> 5 minutes on a Vax 750.

11

D. B. A. EPSTEIN

§1. The Cayley Diagram of a group.

Let G be a group with generators {xi,...,xn}. We form a graph Y - YQ with vertices the
elements of G and with edges of the form (g,x|,h) with g,h e G and gxj = h. T is called the Cayley
graph or Cayley diagram of the group and its generators. Clearly Y is connected. We metrize Y by
assigning each edge the length 1. A geodesic in Y is a shortest path between two points. If g e G,
then the length of g, written 1(g), is the smallest value of k such that we can write

ei ek g = x. ...x. with l<i .<n,e. = ± 1 . h \ J J

The length of g is equal to the length of a geodesic in Y from the identity element to g.
Cannon has proved some beautiful results about a discrete group G of isometries acting on

hyperbolic space Wn, with compact quotient. His results continue to be valid for any group F of

isometries acting properly discontinuously on a complete Riemannian manifold M of strictly negative
curvature with compact quotient

We choose a point * € M with trivial stabilizer in G. We have a canonical map (p:T M which
sends g, a vertex of Y, to q>(g) = g(*) and which sends the edge (g,xi,gxi) to the geodesic segment

from g(*) to gxj(*). A basic principle is that Y (with its left G-action) approximates M (in the sense
of Gromov). However nothing of the general theory needs to be known. We use this principle merely
to guide us in the formulation and the proofs. Y gives us an essentially finite combinatorial model for

M. (The combinatorial structure of Figure 1 is extraordinarily similar to the structure of IĤ , even
when one pays no attention to angles and lengths of sides.) W.J. Floyd [4] has in fact proved that Y is
a combinatorial model for by constructing the sphere at infinity in terms of the Cayley graph.

The following is a folk-lore result, possibly due to G.D. Mostow. I first learned it from one of
Jim Cannon's papers.

Theorem 1.1. In the above situation, there is a number L > 0, such that, for any geodesic w in the

Cayley graph T, (p(w) is contained in the L-neighbourhood of the geodesic segment in M from the
initial point to the endpoint of (p(w).

Note. All paths in T will be assumed to be maps w:[0,oo) -> Y which are eventually constant, and
which are parametrised by arc length on the non-constant part. Thus the path

12

COMPUTERS, GROUPS AND HYPERBOLIC GEOMETRY

g2

g1 g3
has length 2, w(0) = gi,w(l) = g2,w(2) = g3 and w(t) = g3 for t>2.

The distance between two paths is their uniform distance. Because the paths are eventually constant,
any two paths are a finite distance apart A word in {xi,...,xn,xi"l»—»xn-l defines a path in T which
starts at the identity element

9 (geodesic w in T)

w(0)
geodesic in M

JL - neigh bourhood
of geodesic segment

Figure 2.

It is easy to deduce from this:

Corollary 1.2. There is a number > 0 such that any two geodesies (shortest words) wi,w2, in T
from the identity to the same point g e G satisfy dp(wj,w2) < lA

This important property will be basic for our algorithmic study.

Other important ideas introduced by Cannon are the cone-type and the N-type of a vertex in
r. The cone from a vertex x (denoted [x,oo)) consists of all points y of T such that there is a geodesic
from y to the identity passing through x. We say x and y have the same cone-type if the left
multiplication by yx~l takes [x,oo) to [y,oo). For example in Z with generator 1

(2) (0) (1)
there are three cone types. The cone type (0) of 0 is equal to T. The cone type (1) of 1 is isomorphic
to all points to the right of 0 and the cone type (2) of -1 is isomorphic to all points to the left of 0.

In Z x Z, with the obvious generators

13

D. B. A. EPSTEIN

о

Figure 3.
there are 9 cone types. Two of these are shaded in Figure 3, namely the cone types of (2,0) and of
(-2,-2).

In order to define the N-type of a vertex x of T, we take a neighbourhood of T of radius N
around x, and label each vertex in the neighbourhood with its distance from the identity. We subtract
from each of these labels the integer dp(id,x), so that now each element of the neighbourhood has a
label between -N and N. Finally we translate the neighbourhood to Bjvj, the ball around the identity
with radius N. Each point p of is thus labelled with an integer i(p)(-N < i(p) < N). The N-type
of x is this function i: B^ -> t-N,N].

Theorem 1.3. With M, G and T as described above, there exists an N > 0 such that if x and y have
the same N-type, then they have the same cone type.

The hypotheses of this theorem do not apply to Z x Z (because the plane is not negatively
curved), but the conclusions do apply. Some typical 1 -types are shown in Figure 4.

1

It
0

1

1
for (0,0)

1

-1 0
1

1
for (n,0), n > 0

1

-1
0

1

-1
for (n,m)(n > 0,m > 0)

Figure 4.

14

COMPUTERS, GROUPS AND HYPERBOLIC GEOMETRY

Corollary 1.4. With M, G, T as above, there are only a finite number of cone types.

To construct a geodesic starting at the identity in T, we proceed step by step. Suppose a
geodesic has been constructed from the identity to x. In order to continue the geodesic, it is necessary
and sufficient to know the cone type of x. If the geodesic is continued by the single generator g to y,

X

id
Figure 5.

then the cone type of y consists of all geodesies y such that gy is in the cone type of x. Thus we arrive
at an important idea

1.5 A geodesic in T from the identity (i.e. a sequence of shortest words in G)
is constructed from a finite set (the finite set of cone types) by applying

a finite set of rules (for each cone type, of x say, determine all y within

the cone at a distance 1 from x and determine the cone type of each such y).

The essential element of this statement can be expressed in the language of Computer Science. "The

set of shortest words of G over the alphabet {xi,...,xn,x11,...,xn1} forms a regular language". We

emphasize that this statement is only true for special groups. These groups include groups of
symmetries of hyperbolic tesselations, where the tiles are compact

The next step is to explain what a regular language is.

15

D. B. A. EPSTEIN

§2. Regular language and finite state automata.
This section is standard material in a beginning Computer Science course.

Let I be any finite set of symbols. (I is assumed not to contain the six symbols (,), I, *, $, e.) I
will be called an alphabet A language over I is any subset of I*, the free non-abelian semigroup
with identity, generated by I. We denote by e the identitv element The elements of I* are words over I
and e is the empty word.

Let h\9 L2, L be languages over I. We have the following operations on languages:
union h\ u L2
concatenation Ll^2 = ̂ w: ^wl e L ,̂ W2 e L2 with w = wjW2)

We define L^ = {e}, a language with exactly one element. We define L* = L, and, inductively,
Lk = Lk-1L (k > o). The Kleene closure of L is defined to be L* = Uteo1^.

We now define the concept of a regular expression over the alphabet I, and, at the same time,
we will say how a regular expression defines a language. Such a language is called regular. The
regular language defined by a regular expression will be defined recursively (see below). The set of
regular languages is the smallest subset of the set of all languages defined over I, containing the
following languages:

the empty set,
the language {e} which has exactly one element,
the languages {x} (x e I), each with exactly one element,

and such that the subset of languages is closed under union, concatenation and Kleene closure.
Let I contain n symbols. We form the set J, consisting of n+4 symbols, namely the symbols of

I and, in addition, (,), I, *. The symbol I is pronounced "or". The symbol * is pronounced "star".
Every regular expression (except for the nullset) is an element of J*, but not every element of J* is a
regular expression.

1) The empty word of J* is a regular expression, defining the empty language.
2) e e J* is a regular expression, defining the language {e} with exacdy one element.
3) Let x e I. Then x is a regular expression, defining the language {x} c I* with exactly

one element
4) If r and s are regular expressions, defining languages R and S, then

(rls) defines RuS
(rs) defines RS
(r*) defines R* .

16

COMPUTERS, GROUPS AND HYPERBOLIC GEOMETRY

Brackets are, by convention, often suppressed, just as in arithmetic. This is possible because
union is associative, concatenation is associative, and we regard * as having higher precedence than I
and juxtaposition, and juxtaposition as having higher precedence than I. Thus we can write ab* I a,
instead of the more precise form: ((a(b*)) I a).

Lemma 2.1. Given a regular language R, there is a regular expression r defining R, such that
r = r1lr2l...lrk

where, for 1 £ i < k, T{ does not contain I.

Proof. We use induction on the length of r as a word in J*.

If r = (s\\ S2), we are done. If r = (s^) , with s\ = r\ I... I % and s2 = t\ I... I tn, then
sls2 = rlll I rl*2« (k*1 terms).

(We are writing an equality between words of J*. Technically this is incorrect. What we mean is that
the languages defined are equal.) If r = s* and s = r\ I... I %, then

r= ((ri*)(r2*)...(rfc*))* .

Regular expressions are used in compilers and in any good quality word processor. One
reason for this is that associated algorithms are extremely fast. An example of their use is the
substitute command in the Unix program ED. In ED, the command s/r/w/ substitutes the element
w e I* for each occurrence of a word in R, the regular language defined by r. Thus, if we want to
replace each occurrence in a file of more than one consecutive blank (denoted Jb) by a single blank, we
give the command

s/№JWJb/.
The regular expression bhb* defines the language {№, J!>№, M>№,...}. ED does this job surprisingly
quickly, and the speed is achieved by building a finite state automaton.

A deterministic finite state automaton (DFA) is a machine which has a finite number of
possible states. The machine reads in letters one at a time from a certain input word, and changes state
according to its current state and the letter read. At the end of the input the machine either accepts the
input or rejects it, according to its state.

More formally, a DFA consists of an alphabet I, a finite set S of states, an "initial" state so, a
subset AgSof "accepting" states, and a "transition function" S x I -> S.

An example is given in Figure 6 :

17

D. B. A. EPSTEIN

s0 a sl b

b

S2

a

s3

which recognizes the language
aalabb*

Figure 6.

Here I = {a,b,c} and A consists of the two states {s2,S3h It is conventional to denote accepting states
by squares. Note that certain arrows have not been marked in the figure. This is because "dead-end
states" have been omitted, as is conventional. A dead-end state is a state from which it is impossible
to get to an accepting state, no matter what the input. The initial state is indicated by an unlabelled
arrow.

The full state set in Figure 6 requires another state S4, which is a dead-end state. The diagram
is completed to

s0 a sl b

b

S2

a

b
c

c 2
b a
0 c

S4

a
b c

Figure 7.

Given a DFA M, we define L(M) to be the language defined by M. That is, L(M) is the set of
words accepted by M. (A word is accepted by M if, starting from SQ, and reading from left to right,
the state at the end-of-input is an accepting state.)

18

COMPUTERS, GROUPS AND HYPERBOLIC GEOMETRY

There is a generalization of the idea of a DFA, namely a non-deterministic finite state
automaton NFA. Figure 8 is a drawing of an NFA. Recall that e denotes the identity in I*. The
notation here is supposed to remind one of this, although, formally, e is just another symbol, not

Figure 8.

already in I. The NFA of Figure 8 accepts the language a I abb*. Formally an NFA consists of a finite
set S of states, a non-empty set B of initial states B c s, a possibly empty set A of accepting states and
a transition function.

6:Sx(Iu{e})42s
where 2s is the set of all subsets of S. The connection with Figure 8 is that, given a state s e S and
given x e I or x = e, the subset 8(s,x) of S is the collection of all states t e S such that there is an
arrow labelled x from s to t.

By a path of arrows in the NFA we mean a finite sequence
si(0> xi(l)> si(l> •••» xi(r), si(r),

where, for 1 < j < r, x{Q) e I or x|(j) = e and SJQ e 0(si(j_i),xi(j)). The path is said to start at si(0)
and end at sj(r). We say the path factorizes w e I* if w = xi(l)—*i(r) when each XJQ labelled e is
interpreted as the identity element in I*. A word w e I* is accepted by the NFA if there is a path of
arrows factorizing w, which starts at some initial state and ends at some accepting state. Note that,
since I* is a free semigroup, if we are given w, then xi(l),...,*i(r) are determined, except for those XJQ
which are equal to e.

Once again given an NFA M, we define L(M) to be the set of words accepted by M.

A fundamental result of computer science is the following theorem.

Theorem 2.2

a) Let R be a regular language. Then there is an NFA, Mi, such that L(Mi) = R.
b) Given an NFA M^ there exists a DFA M2, such that L(M2> = L(Mi).
c) Given a DFA, M2, the language L(M2) is regular.

Proof, a) is proved by induction on the length of a regular expression. The induction starts with R
equal to the empty set, or to {x}, with x e I or x = e. The construction of a corresponding NFA is left
to the reader.

19

' D. B. A. EPSTEIN

Suppose we have regular expressions r and s corresponding to Mr and Ms. i) Then r I s
corresponds to the disjoint union of the two NFA's. We take the union of their state sets, the union of
their initial states, then union of their accepting states and the obvious transition function.

Mr

Ms

Figure 9.

ii) rs corresponds to Mr followed by Ms

Mr

e e

e e
M

s
Figure 10.

The new set of initial states is equal to the set of initial states for Mr. The new set of accepting states is
equal to the set of accepting states for Ms.

ili) r* corresponds to the NFA

e

Mr e
e

e

e

e

Figure 11.

There is now one initial state and one final state.

b) Let S be the state set for M\. We define the state set for M2 to be 2s, the set of all subsets of
S. If B Q S is the set of initial states for M\, then B is the single initial state of M2. If A is the set of
accepting states for M ,̂ then any subset of S containing an element of A is an accepting state for M2.

20

COMPUTERS, GROUPS AND HYPERBOLIC GEOMETRY

We now give the definition of the transition function 02 for M2. Given x e I and a subset
T c S (i.e. a state of M2), we must define 62(T,x) as a subset of S. For each t e T and for each x e I,
find all t' e S such that there is a path of arrows from t to t' factorizing x. (Any factorization of x
consists of a finite number of e's followed by x followed by a finite number of e's.) Let 02(T,x) be the
set of all such t\ (Note that 02(T,x) can be found algorithmically. Since cycles of e's can be omitted,
we may assume that the lengths of the sub-paths of e-arrows are less than the number of states of S.
Thus 02 can be found by a finite process.)

The fact that L(Mj) = L(M2) is clear.

To prove c), let S be the set of states of M2. Let K be a subset of S and let s,te S. Consider
the set of paths of arrows in M2 of the form

s. xi(l> si(i),..., Xi(r), t
with Si(i),... , Si(r) e K. For each such path, we have a word *[(\) ... *{(T) g I*. We prove by
induction on the number of elements IKI in K that the language Ls tj£ *s regular.

If IKI = 0, then LS)t>K is a finite subset of I, and this is a regular language. If IKI > 0, let
K = J u {u}. Then

Ls,t,K = Ls,t,J u Ls,u,J (Lu.u.J^Lu.a-
By the induction hypothesis, the right hand side is regular. This proves the induction.

c) now follows by setting s equal to the initial state of M2, and taking the union of Ls t § as t
runs over elements of A.

§3. First Order Predicate Calculus.

Given a proposition p, whose truth depends on some parameter w e I*, we define the language
L(p) to be the set of w such that p(w) is true. A typical example arises in practical computing. When
the user enters a word in I = {0,1,...,9,.} (I has eleven elements, the last element in the list of elements
being a dot), does the word represent a real number? Here we take p(w) to mean

"w is a floating point number, given by the conventional English representation".
Thus p(.1.1.2..45) is false, while p(l 1.245) is true. In this particular example L(p) is regular.

Exercise. Construct the corresponding DFA.

Any finite state automaton over I can be regarded as a proposition over I. M(w) denotes the
statement that M accepts w. We call a proposition p depending on a parameter w e I* regular if L(p)
is a regular language, i.e. if there is a DFA M such that L(M) = L(p).

We claim that regular propositions satisfy first order predicate calculus. In order to make sense

21

D. B. A. EPSTEIN

of this we need to clarify a few points. First we consider DFA's with 1 = 0 . Then there are no
arrows, and so, without changing the language accepted, we may assume that consists of exactly one
state, the initial state SQ. We obtain two possible DFA's, depending on whether the set of accepting
states is empty or not.

SO

TRUE

SO

FALSE
The only possible input word is e, which the DFA either rejects or accepts.

If l\ and I2 are two alphabets, then we wish to consider propositions depending on two
variables (wi,w2) with wj e Ij* and W2 e I2*. From the point of view of finite state automata, we
wish to consider automata which accept or reject pairs of words. One's first inclination is to consider
automata over l\ x I2. But (l\ x I2)* can be identified with the subset of l* x I2* consisiting of pairs
of words of equal length, so this would mean that one could only consider words WJ and W2 of the
same length. This is not good enough for the applications we have in mind.

Instead we consider the alphabet (l\ u {$}) x (I2 u {$}). The symbol $ is conventionally used
to denote end-of-input (i.e. end-of-word). In this new alphabet the automaton can read words like
(abb,ccdde). If one presents the automaton with this pair of words, it will read in successively
(a,c),(b,c),(b,d),($,d),($,e), and then stop.

We have to make sure that the automaton can only read in letters like(a,$) or ($,d) at the end.
For this reason we define a finite state automaton over a pair of alphabets (Ij, I2) to be an automaton
with alphabet (Ii u {$}) x (I2 u {$}) and with state set S = S' u Si u S2 (disjoint union). Each
arrow of the form (a,$) must end in Sj and each arrow starting in Ŝ has the form (a,$) for some
a e Similarly for arrows of the form (b,$) with b G I2. There is no arrow labelled ($,$). This
description only makes sense by virtue of omitting certain dead-end states (we are busy constructing a
DFA).

Note that if l\ = 0 then a finite state automaton over (Ij, I2) is virtually the same thing as a
finite state automaton over I2. (There is a slight difference formally but the languages accepted will be
the same.)

Theorem 3.1. (see [3]).
a) Let p be a regular proposition over I (so that p(w) is TRUE or FALSE for each w e I*). Then
~p is also a regular proposition.
b) If pi and p2 are regular propositions, then so are

PI &P2(=pi Ap2) and Pi IP2 (=P1 v P2).
c) If p is a regular proposition over (Ij, I2) (so that p(wj,W2) is TRUE or FALSE for each

22

COMPUTERS, GROUPS AND HYPERBOLIC GEOMETRY

wj e Ij* and W2 G I2*) then
(Vwi)(p(wi,w2)) and (3wi)(p(wi,w2»

are regular propositions over I2.

Proof, a) Let M be a DFA over I representing p. Then ~p is represented by the DFA with the same
set S of states and the same initial state, but with the set of accepting states equal to S\A, where A is
the set of accepting states for M.
b) Let Mj be a DFA representing pi (i = 1,2). Let Sj be the state set for Mi with initial state ŝ , and
set of accepting states A{. The alphabet in each case is I. We form a new DFA with state set Si x S2
and initial state (si,S2) and alphabet I. The DFA representing P1&P2 is obtained by taking A\ x A2 as
the set of accepting states. The DFA representing pi I p2 is obtained by taking A} x S2 u S\ x A2 as
the set of accepting states.
c) We have seen in a) that ~p is regular if and only if p is regular. We need only show that if p is
regular, then (3wi)(p(wi,w2)) is regular. This is because

(Vwi)(p(wi,w2)) is equivalent to ~(3wi)(~p(wi,w2)).
Let M correspond to p. The NFA M' corresponding to (3wj)(p(wi,W2)) is constructed as

follows. We take the same set of states for M' as for M, the same (set of) initial state(s) and the same
set of accepting states. The set of arrows for M' is also equal to the set of arrows for M, but the labels
are different. A label of the form (xi,x2) in M with x\ e Ij u {$} and X2 e I2 is changed to the label
X2 in M'. A label of the form (x ,̂$) in M with x\ e is changed to the label e in M'.

It is easy to see that M' corresponds to the existence statement.

It is an extremely important aspect of our theory that various types of mathematical structure
can be defined using first order predicate calculus, by listing axioms. Using the preceding theorem,
one can then construct a machine which will test automatically whether or not the axioms are satisfied.

My current programming work consists of producing programs which will perform the
manipulations on finite state automata which correspond to the theoretical results described above. In
some cases, corresponding to the writing of compilers, a very great deal is known about how to do this
efficiently. In other cases some research is needed to find better algorithms than the obvious ones.
The emphasis is on the speed of the manipulations. The description I have given already shows that
there are algorithms which work. A particular problem to avoid is the exponential blow up (S H 2s) in
the passage from an NFA to a DFA (Theorem 2.2b)). There are examples where exponential blow up
is unavoidable, but this can often be avoided in practice, using tricks from compiler writing.

23

D. B. A. EPSTEIN

§4. Automatic groups.

At last we are ready to explain the main point of these lectures, let G be a group with
generators {xj,...,xn} (typically a group of hyperbolic isometries), and let I be the alphabet
{xi,...,xn,xi~l,...,xn~l}. Let 7c:I* -+ G be the obvious surjective homomorphism. We say that G is an
automatic group (with respect to the particular choice of generators) if there are (n+2) DFA's W,
MQ,Mi,...,Mn with the following properties:
4.1.1) W has input alphabet I and

(w:W(w)} = {w:w is accepted by W} Q I*
is mapped onto G by II.

4.1.2 Mo,Mi,...,Mn are defined over (I, I).
4.1.3 MQ (WJ,W2) <=> (W(wj) & W(w2) & rcwi = ftW2). We say "MQ recognises equality".
4.1.4 Mi(w^,w2) <=> (W(w)̂ & W(w2) & 7CW2 = 7U(WIXJ)) We say "Mj recognises
multiplication by XJ" for 1 < i < n .

Clearly MQ is the same kind of DFA as Mj, and it is often convenient to discuss MQ under the
same heading as M{ by writing XQ = e . In practice MQ, MJ, Mn have the same state set and the
same initial state, differing only in the set of accepting states. But this is not part of the definition.

The data above, (G, {xi„..,xn}, W, MQ, Mn), is called an automatic structure on G.

The first result is the following.
Theorem 4.2. If G is automatic with respect to one set of generators, it is automatic with respect to
any other (finite) set of generators.

Examples 4.3
1) Let G be the fundamental group of a compact hyperbolic manifold (or orbifold). The DFA W
can be constructed using 1.5. The DFA's MQ, M\9Mn are constructed using Theorem 1.1. The
language corresponding to W consists of all words in the generators which are shortest words
(geodesies in the Cayley graph T from the identity).

2) A finite group is automatic. The state set for W is G itself. The state set for MQ, MN is G x
G. The transition functions are given by right multiplication. Details are left to the reader.

3) The infinite cyclic group with generator x. The regular language corresponding to W is x* I x*.

(We write x for x~l.) The equality recognizer is (x,x)*l(x,x)* (equality of words in I*, in this

particular case). Mi = Mx is given by (x,x)* ($,x) I (x,x)*(x,$).

24

COMPUTERS, GROUPS AND HYPERBOLIC GEOMETRY

4) The free abelian group on 2-generators {x,y}.

W : (x* I x*)(y* I y*) so that xyx is forbidden
Mo: equality of words as members of I*.

Mx : ((x,x).($,x) I (x,x).(x,$)) ((y,y))* I (y,P).)
My : similar to Mx.

Examples 3) and 4) indicate that an automatic structure has a close relationship with the
problem of giving each element g e G a normal form with respect to the generators. In Z the normal
form is xn. In Z x Z, the normal form is xnym.

4.4 In a general automatic group, there are many words w, accepted by W, in the inverse image of a
fixed g e G. There may even be infinitely many. However, we can construct a normal form as
follows.

Let Pi(wi>W2) be the proposition "length (w)̂ < length (w2)". Let P2(wi,W2) be the
proposition "length(wi) = length (w2) and v/\ occurs before W2 in lexicographic ordering (dictionary
ordering)". In order that P2 make sense, we have to fix a linear ordering (which is arbitrary) on I. It is
easy to see that both pi and P2 are regular. The proposition "wj = W2 (in I*)" is also regular. It
follows from Theorem 3.1 that the proposition with parameter w e I*

W(w) & (Vw')(~Mo(w,w') I pi(w,w') I P2(w,w') I w = w')
is regular. Let W be the corresponding automaton. In words, w is recognised by W, if and only if,
for each word w' of I* which is recognised by W and represents the same element of G, we have that
w is shorter than w', or that w has the same length and occurs before w' in dictionary order, or that w
is identical with w'. We can now change M̂ to Mj,(i=0,l,...,n) giving a new automatic structure on G,
and now each element ofG corresponds to a unique word of I* recognized byW.

This gives a normal form for elements of G in terms of the generators of G. In practice the
normal forms derived by the computer are often not of a form which would seem natural to a human
being.

Theorem 4.5. Let G = {x^,...,xn/ri,...,rm} be a finitely presented automatic group. Then an
automatic structure
(W, MQ, Mn) can be found algorithmically from the generators and relations.

Theorem 4.6. There is no algorithm which can determine for all presentations
G = {xi,...,xn/ri,...,rm}, whether or not G is automatic.

25

D. B. A. EPSTEIN

Thus, if one is given a group G by generators and relations, and one sets to work the algorithm
of Theorem 4.5, then either the algorithm terminates giving an automatic structure for G, or else the
algorithm does not terminate, and, at any finite time, we do not know, in general, if it will terminate in
the future, or continue indefinitely. Of course, if the group happens to be hyperbolic, we know that the
algorithm will terminate.

It is unfortunate that, given a group which we know is automatic, the only general algorithm to
produce W is enormously long, impossibly long. The algorithm is as follows. The DFA's are
effectively enumerable. That is, they can be listed. We just look at one example after another on the
list, until we finally arrive at the correct answer. In practice, we try to construct W by looking for an
automatic structure of a particular form, and this makes the job manageable in many cases. Sometimes
we have special knowledge of the properties of the group (for example, we might know that it is the
fundamental group of the complement of a knot in the 3-sphere), and this extra knowledge directs our
search for an automatic structure.

The construction of MQ, MI, MN also imposes considerable problems in practice. For
many examples extremely large amounts of storage may be necessary. We will have to learn by
experience.

In special cases, like the one of particular interest to us, where shortest words define the regular
language recognised by W, the structure can often be determined extremely quickly, in practice. For
example it took only a few minutes for a VAX 750 to generate the DFA below for the (2,3,7) group,
whose tesselation is shown in Figure 1. This is the group of isometries of the hyperbolic plane,
generated by reflections in the sides of a hyperbolic triangle with angles rc/2, TC/3 and rc/7. The DFA
tabulated is the word acceptor. We do not yet have programs producing the other DFA's in the
definition of an automatic structure.

Word acceptor DFA for (2,3,7)-group.
9 generators.
The entry in row i and column j shows the image under the transition function of the jm state and the
im generator,
initial state: 1
accepting states: all states except 0.
states: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 2 0 0 0 0 12 0 0 10 0 0 0 0 0
0 3 0 0 0 0 0 0 0 0 0 0 0 0 0
0 2 0 0 0 0 2 12 0 2 0 10 0 0 12
0 3 0 0 0 0 13 3 0 12 0 3 0 0 13
0 4 0 0 0 0 4 4 0 4 0 4 0 0 4
0 5 0 0 0 0 5 5 0 5 0 5 0 0 5
0 6 9 10 10 8 0 0 0 0 0 0 14 0 0
0 7 0 7 11 0 0 0 0 0 0 0 0 14 0
0 8 8 0 0 0 8 0 0 0 8 0 8 0 0

26

COMPUTERS, GROUPS AND HYPERBOLIC GEOMETRY

(The reader may be puzzled by the fact that there are 9 generators. The reason is that the element x of
order 7 has been replaced by generators x, x2, x4. It is often more efficient, given a generator x of
high order, to replace it with x, x2, x4, x ,̂..., thus enabling us to express xn as a product of log n
generators instead of as a product of n generators.)

Given a group G = {xi,...,xn/ri,...,rm}, one starts to search for the automatic structure
(W,MQ,...,Mn). How does one know when to stop? How does one recognise success? Basically the
answer is given by Theorem 3.1, and the fact that axioms for a group can be written in first order
predicate calculus. First we need the following:

Proposition 4.7. . If G is an automatic group, there is an automatic structure such that W satisfies

the prefix property i.e. if W(W.XJ) or W(w.xp with w e I*, then W(w).

Proof. We first eliminate from W all dead-end states. Then we change every state of W to an
accepting state. We also modify the M{ in a corresponding manner.

While searching for W, MQ, ...,Mn (using techniques which I am unable to explain here due to
lack of space and time) we periodically stop and ask the computer to verify the following axioms
(which are all in regular propositions, and can therefore be verified automatically).

Proposition 4.8.
(1) (Vx e I,w e I*)(W(w.x) * W(w)) (Proposition 4.7).
(2) (VW)(MQ(W,W) W(w)) each element is equal in G to itself.
(3) (VWI,W2,W3)(MQ(WI,W2) & MQ(W2,W3) MQ(WI,W3)) transitivity of equality in G.
(4) (Vwi,W2)(Mo(wi,W2) = MQ(W2,WI)).

For simplicity we omit the quantifiers in the axioms which follow.
(5) (MQ(WI,W2) & Mi(wj,W3)) Mj(w2,W3)

(Mi(wi,W3) & Mi(w2,W3)) =» MQ(WI,W2) .
(Multiplication by a generator is well-defined.)

(6) (W(w.xi) and W(w)) * Mi(w,w.xi).
(7) Recall that G = {xi,...,xn/ri,..,rm} . For simplicity we suppose that the inverse X of

any generator x is also a generator, and that amongst the relators appear relators of the form xX, which
express this relationship. Each relator rj can be written in the form rj = x ,̂...,xjk . Then we have a
condition for each j (1< j < m). The condition is :

(Vwo,wi,...,wk)(Ni(wo,wi) and N2(wj,W2)... and N^w^.^w^) =» Mo(wQ,wk)),
where Nr = M .̂ In words : the relation r; is satisfied.

27

D. B. A. EPSTEIN

The idea is, that if these conditions are satisfied, then the search for the automatic structure is
successful, and the program can report the results and exit. (This statement requires a formal proof
which is given in [2]). Unfortunately, things are a little bit more complicated than this. There are more
conditions to be fulfilled, of a similar nature to those already listed, but with more complicated
statements. Readers who would like more detail are referred to [2], available in preprint form by
writing to the author.

§5. Other results.
A number of theorems have been proved about regular groups. But the reader should be

warned that even very nice groups, with a well-known solvable word problem, even nice fundamental
groups of nice compact 3-manifolds, are not always regular.

Theorem. Let G be a torsion free, regular, nilpotent group. Then G is abelian.

The proof is too complicated to be given here, but it starts with the fact that nilpotent groups
have polynomial growth, thus restricting the kind of regular expressions which can be used.

Another important result, in view of our basic aim of understanding and cataloguing 3-
manifolds, is that the fundamental group of a link complement with a hyperbolic structure is automatic.
This is useful, since most links do have hyperbolic complement (though, as already stated, we do not
yet know how to define the word most).

One of the most important consequences of our theory is the following theorem.
Theorem. Given an automatic structure on a group, one can produce an algorithm which will reduce a
word of length n to normal form in time O(n)̂. In particular, the word problem is soluble for an
automatic group.

Note that the algorithm is fast, and this will be important in applications.

28

COMPUTERS, GROUPS AND HYPERBOLIC GEOMETRY

Bibliography.

[1] J.W. Cannon, The Combinatorial Structure of Cocompact Discrete Hyperbolic Groups, Geometriae
Dedicata 16 (1984) pp.123-148.

[2] J.W. Cannon, D.F. Holt, D.B.A.Epstein, M.S. Paterson & W.P. Thurston, Word processing and
group theory, (to appear, preprint available from D.B.A.Epstein).

[3] A. Church, Logic, arithmetic and automata, Proceedings of the International Congress of
Mathematicians (1962).

[4] W.J. Floyd, Group completion and limit sets of Kleinian groups, Invent. Math, 57 (1980),
pp.205-218.

[5] J.E. Hopcroft & J.D. Ullman, Introduction to Automata Theory, Languages and Computation,
Addison-Wesley 1979.

[6] G.P. Scott, Bull, of London Math. Soc. 15 (1983), pp.401-487.
[7] V.J. Rayward-Smith, A first course in formal language theory, Blackwells, 1983.
[8] W.P. Thurston, B.A.M.S. 6 (1982), pp.357-381.

Mathematics Institute
University of Warwick

Coventry CV4 7AL, U.K.

29

