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New Invariants in the Theory of Knots 
by Louis H. Kauffman 

I. INTRODUCTION 
In these notes I will concentrate on a diagrammatic approach to invariants 

of knots. We will talk about connections with graph theory, Hecke algebras and 
other topics. In the process we shall construct the Jones polynomial and its 
associated algebra. We'll also discuss generalizations of Jones polynomial due 
to myself and others. [Jones introduced his polynomial in 1984. Almost imme­
diately, Hoste, Ocneanu, Millett, Lickorish, Freyd, Yetter, Przytycki, and Traczyk. 
had a significant generalization. Shortly, yet another invariant was crafted by 
Brandt, Lickorish, Millett and Ho. I generalized this one, and in the process 
found new approaches to the original Jones polynomial.] We'll also explain how 
proofs of some old conjectures about alternating knots emerge from this work 
(due to myself, Murasugi and Thistlethwaite). Many people have helped in this 
resurgence of the theory of knots. These notes are dedicated to all of them. 

Let's begin by thinking about how one might go about making a theory of knots 
and links in three dimensional space. The typical example of a knot is illu­
strated in Figure 1, 

A (realistic) B (schematic) 
FIGURE 1 

Research leading to this paper was partially supported by National Science 
Foundation Grant DMS-8701772, and ONR Grant No. N0014-84-K-0099 and the 
Stereochemical Topology Project at the University of Iowa, Iowa City, Iowa. 
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Actually, Figure 1 has two illustrations of a trefoil knot T, In the first (A), 
the trefoil is depicted realistically as a physical tube with thickness and shad­
ing in the three-dimensional space. This picture reminds you that the trefoil 
might be made of rope or rubber - and that such a model would exhibit thickness, 
tension, friction and other physical properties. In the second illustration (JB) , 
there is a schematic representation consisting in three continuous planar segments 
meeting at crossings. The crossings have local forms as shown in Figure 2. 

vertex 

two forms of crossing associated to a vertex  

FIGURE 2 

A schematic diagram of this type is a sufficient pattern to allow reconstruction 
of the knot or link from rope or string. It also encodes key topological pro­
perties, and allows the construction of a diagrammatic theory. 

Thus, I shall regard a knot or link as extra structure (via crossing choices) 
on a (locally) 4-valent planar graph. Each vertex of such a graph has the form 
seen in Figure 2, and we shall call such a graph a universe. Thus in Figure 3 
you see the trefoil and its universe. 
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cunkrol T (trefoil) 

U (trefoil universe) 

FIGURE 3 

As Figure 3 indicates, you may regard the universe as the shadow, under projec­
tion to the plane, of the overlying knot or link. In general a universe of n 
vertices can be the projection of 2n corresponding knots/links. Many of these 
will be unknotted or unlinked (see Figure 3 again). 

But we now need a definition of equivalence so that the words unknotted and 
unlinked make sense. This equivalence is generated by three funda­
mental types of diagram moves (the Reidemeister moves). See Figure 4. I have 
designated the Reidemeister moves as type I (add or remove a curl) type II (re­
move or add two consecutive under (over)crossings) and type III (triangle move). 
Reidemeister proved in the 1920fs that these three moves (in conjunction with 
planar topological equivalences of the underlying universes) are sufficient to 
generate spatial isotopy. In other words, Reidemeister proved that two knots 
(links) in space can be deformed into each other (ambient isotopy) if and only 
if their diagrams can be transformed into one another by planar isotopy and 
the three moves (see [R]), 
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By a planar isotopy I just mean a motion of the diagram in the plane 
preserves the graphical structure of the underlying universe. See Figure 

Reideméister Moves  
FIGURE 4 

planar isotopy 
FIGURE 5 
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ambient isotopy  
FIGURE 6 

FIGURE 7 
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In Figure 6 an ambient isotopy to an unknotted circle is shown. Fogure 7 
illustrates an ambient isotropy between the figure eight knot E and its 
mirror image E . A knot (link) is said to be an ambient isotropic (equiva­
lent) to another if there is a sequence of Reidemeister moves and planar 
equivalences between them. We write ~ for equivalence. Thus E ~ E . 
(Note that the last two steps in the Figure 7 deformation are planar equiva­
lences.) 

A word about the Reidemeister moves is in order here. Reidemeister himself 
proved that the moves were sufficient to generate combinatorial isotopy of the 
corresponding embeddings of knots and links in three-dimensional space. His 
notion of combinatorial isotopy involved deformations of piecewise linearly em­
bedded links, generated by elementary combinatorial isotopies. An elementary  
combinatorial isotopy was the result of replacing a segment on the link by the 
other two sides of a triangle linearly embedded in three-space so that its in­
terior is disjoint from the curve (or the inverse of this operation). At the 
time that Reidemeister did his work, more general notions of ambient isotopy 
had not yet been formulated. The paper [GR] was the first to prove that com­
binatorial isotopy and ambient isotopy (in the sense of a parametrized piece-
wise linear deformation through embeddings) are equivalent. For a modern 
account of the equivalence, see [Z]. We have here used the term ambient iso­
topy as synonymous with the equivalence relation generated by the Reidemeister 
moves. The sense in which the theory to follow is quite elementary is the sense 
in which knot theory is seen to be generated from the formal diagrammatic  
system of the Reidemeister moves. Nevertheless, [Z] contains a good account 
of the equivalence of the combinatorial approach with isotopy in three-
dimensional space. 
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The next thing one wants in a theory of knots are methods for distinguishing  
inequivalent knots and links. For example, we know that there is no equivalence 
between O and OO : for the number of components remains invariant 
under ~. Note that you can determine the number of components even from a com­
plicated diagram by choosing a point on some arc of the diagram and then taking 
a walk along the diagram - crossing crossings when you come to them. Each com­
ponent is a complete cycle obtained in this way. (See Figure 8). 

3 Components 

Counting Components 
FIGURE 8 

Note indeed that it is a consequence of the Reidemeister moves that the number 
of components is unchanged by equivalence. Thus the component count is our 
first invariant of knots and links. By itself it is, however not very strong. 
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In particular, OO and OO each have two components but are, in 
fact, inequivalent. The next invariant is the linking number. It gives a mea­
sure of how two curves wrap around each other. To define it we need notions 
of orientation and sign. 

A link is said to be oriented if each of its components is assigned a direc­
tion indicated by arrow(s) on its arcs. The arrows are consistently arranged 
in the form ^ J" • 1 . Oriented crossings are given signs of 

+1 as shown in Figure 9. 

e = +1 e = -1 

Crossing Signs  
FIGURE 9 

Given a link of two components a and 3, let a D 8 denote the set of 
crossings of the component a with the component $. (Thus a (1 3 does not 
include self-crossings of a or of 3.) Then the linking number of a and 
3 is defined by the formula: 

£k(a,3) - \ I e(p). 
peaHB 

In other words, the linking number is one-half of the sum of crossing signs of 
one curve with another. 
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Example _1 

a 

B 
*k(a,B) = \ (1+1) = 1 

Example 2. 

a 

B 
£k(af,ef) = \ (-1-1) = -1 . 

Once an orientation has been assigned to a link of two components, it is imme­
diate from the Reidemeister moves that the linking number is an invariant. For 
type I moves do not contribute to the linking number, while type II moves add 
or remove both a +1 and a -1 . And type III moves do not alter the summation 

Thus the two examples above suffice to prove that the simplest link 

is indeed linked. For whatever orientation we assign to it, this link has a 
non-zero linking number. 

Example 3. 
B 

a 
£k(a,$) = \ (1+1-1-1) = 0. 

This is the Whitehead link (named after the topologist J.H.C. Whitehead). Even 
though it has linking number zero, it is linked. 
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Example 4. 

Thus , keeping the endpoints fixed. 

This is a familiar phenomenon that you can illustrate with a belt (the two arcs 
forming the edges of the belt.) 

If the edges of the belt are oriented in the same direction then we can see what 
the linking number contribution will be from either of these forms. 

1 
2 (-1-1) - -1 

1 
2 (-1-1) = -1 
(self-crossings are not counted) 
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In the curl form it is worth noting that the linking contribution 

is the same as the contribution of the self-crossing 
-1 

We can use these observations to find the linking number of a more complex 
link such as a 

B 

each curl contributes +1 to the linking number 

occurs twice giving j (1+1) - 1 

S,k(a,8) = 2 + 1 = 3 . 

In fact, we can always find the linking number of a link that is built from a 
knot diagram by adding a parallel strand: 
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£k(a,3) = w(K) = 3. 

The resulting link has linking number equal to the sum of the crossing signs  
of K. We have denoted this sum by w(K). It is called the writhe of K (or 
the twist number of K). The writhe w(K) is not an invariant of 
K since it changes by +1 under the type I move. But the writhe is an invari­
ant of the associated link K obtained by drawing parallel strands as above. 

Example 5. 

£k(K) = w(K) = -1 

In the context of the associated parallel link K, it is appropriate to call 
w(K) the writhe of K and to reserve the word twist and a number T(K) for 
the twisting of the strands. Thus we shall call ^"^y^^C Z one 
full positive twist. And we'll write 
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т = +1. 

Then for links L composed of parallel twisted strands we have the formula 
£k(L) = w(L) + T(L), (See [Wh].) 

The linking number for parallel twisted strands is the sum of the writhing  
and twisting. Thus 

w(L) = +1 
T(L) = +1 

£k(L) = 1 + 1 = 2 . 

Example 6. 

w(L) = +3 
T(L) - -3 
ik(L) = 3 - 3 = 0 . 
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This is another example of a link with zero linking number that is nevertheless 
linked. 

Remark: The formula [Wh] £k(L) - w(L) + T(L) can be regarded as a kind of 
"conservation law" for links of closed parallel (twisted) strands. Neither 
w(L) nor T(L) are individually topological invariants. But since the sum 
of writing and twisting is a topological invariant, this sum must remain a 
constant. You can observe this conservation by playing with a rubber band. 
And it has been used to help understand the geometry of closed double-stranded 
DNA. ([BCW],[F]) 

There is much more so say about linking numbers - many other points of view. 
See [Knots and Links by Dale Rolfsen] or my books [Formal Knot Theory; On Knots] 
for other points of view. We now pass on to 
the next problem: tô  show that the trefoil ^^^T^ is indeed 
knotted. The most elementary proof of this fact that is known to me runs as 
follows: Color the arcs of the trefoil diagram red (r), blue (b) and yellow (y). 

Say that a knot diagram is tri-colored if every arc is colored r, b or y 
and at any given crossing either all three colors appear or only one color 
appears. Of course to be tri-colored there must be arcs of each color in the 
diagram. Then prove (exercise!) that for knots (one component) tri-coloration 
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is preserved under the Reidemeister moves. 
Since the trefoil is tri-colored and the unknot is not tri-colored, this 

method articulates a topological property of the trefoil and shows that it can 
not be unknotted. In the next section we will show that the trefoil is chiral. 
That is, we will prove that it is not equivalent to its mirror image. In the 
old days (before 1984) this was something that required a lot of mathematical 
background. Now we can prove it using only diagrams and a few definitions and 
calculations. That new invariants can be both simple and powerful makes the 
subject of knots very exciting. 

In the next section we construct the bracket invariant and show how it gives 
rise to the Jones polynomial and to chirality for the trefoil. Section 3 uses 
the bracket to get at subtle facts about alternating knots and links. Section 4 
jives more discussion of the bracket and its relation to braids and the algebra 
of Jones' original representation. Section 5 discusses 2-variable generalized 
polynomials and the historical background of Alexander and Conway polynomials. 
Section 6 shows how the bracket (hence the Jones polynomial) is directly related 
to the Potts model in statistical physics. Sections 7 and 8 explain arid gener­
alize a relation with the Tutte polynomial in graph theory that was discovered by 
Thistlewaite [Tl]. Section 9 discusses the knot theory of graphs embedded in 
three-dimensional space. Section 10 has speculations and problems. 

It should be pointed out that there are knot diagrams that are equivalent to 
the unknot, but only through sequences of Reidemeister moves that increase the 
number of crossings in the diagram before (eventually) bringing the crossing 
number to zero. For example, consider the diagram in Figure 10. 

151 



L. H. KAUFFMAN 

FIGURE 10 

This diagram certianly represents (is equivalent to) the unknot. However, it ad­
mits no Reidemeister move that decreases or leaves constant the number of crossings. 
Therefore, this unknot diagram must be made more complicated before it becomes 
simpler. It is this phenomenon that makes any theory of invariance under Reidemeister 
moves non-trivial. (A challenge - prove that this phenomenon requires at least 
a diagram with ten crossings. That is, show that any unknot diagram with less 
than 10 crossings can be undone by simplifying Reidemeister moves.) 
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II. THE BRACKET POLYNOMIAL. 

I begin by defining a 3-variable polynomial on unoriented link diagrams. 
Given an unoriented link diagram K, [K] e Z[A,B,d] will denote the correspond­
ing polynomial in commuting variables A, B and d. The bracket polynomial 
satisfies the axioms: 

Bracket Axioms 

1. [X] = A[2=£] + B[ )( ] 
[X] = B[-<] + A[ ) I ] 

2. [0 K] = d[K] 
[0] = d 

Some explanation of these rules is in order. First note that an unoriented  
crossing discriminates two out of the four regions incident at its vertex. 
This can be done conventionally by rotating the over-crossing line counter­
clockwise and choosing the two regions swept out. Thus 

By using this convention, we can label the regions A and B respectively: 

в 
А А 

в 

The formula in (1) then reads 

В 
А А 

В" = А + B 
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and we see that A corresponds to a splice that "opens the A-channelu while 
B corresponds to a splice that opens the B-channel. By this convention, the 
second equation in (1) is correct, and a repetition of the first. 

The crossings in these equations stand for larger diagrams that contain 
them. Thus ^5^T > ^ * ^ ^ are assumed to be parts of 
otherwise identical diagrams. In this sense the expansion formula (1) stands 
for infinitely many particular formulas such as 

= A 
= B 

The second equation asserts that an extra disjoint circle placed anywhere in the 
diagram multiplies the value of bracket by d. In particular 

N 
[any N disjoint simple closed curves] = d . 

Thus 1̂  O J ~ d .̂ Clearly, these axioms lead to a recursive 
calculation of [K] by continued expansion to evaluations of collections of simple 
closed curves. To see that [K] is well-defined, it suffices to re-formulate 
it as a sum over states S of the universe U underlying K. 

Let U be the universe for K. A state S o£ U is a choice of splitting 
for each vertex of U. I denote such a choice by a marker at the vertex, thus 
(see Figure 11). 
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Spilt 

Marker 

Spilt 

Figure 10 

Spilt 

s 

A State of thé trefoil universe  
Figure 11 

Figure 11 shows a state of the trefoil universe and its corresponding splitting. 
Given a state S, let |s| denote the number of components in its splitting. 

Let i (S) denote the number of A-channels opened in S and jT,(S) denote the 
number of B-channels in S. For example, 

A B 
A 8 

B 
K 

i (S) = 2 , j (S) = 1. 
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iKCS) j (s) I , 
Lemma 2.1. [K] - E A B d1 1. This formula for the value of the bracket 

S 
follows directly from the axioms (by expanding using (1) and (2)). It gives a 
unique value for the bracket on diagrams (no Reidemeister moves yet) and can be 
taken as the definition of [K] for a strictly logical development. 

We now ask: Under what restrictions on A, B and d will [K] become a 
topological invariant of knots and links? 

This question is easy to answer via the next lemma. (See [K5].) 

Lemma 2.2. [ 3 d ] = A B [ ^ C ] + (ABd + A2 + B2) [ ] . 

Proof: [ ZDIH 1 = a 1 + B[ ] 

= A2[ ^JCZ 1 + AB[ ]+BA[OC]+B2[ ^<S— ] 
= AB[ D C ] + (A2 + B2 + dAB) [ p=C ]. 

Thus with AB - 1 and d • -A - B we obtain invariance under the second 
Reidemeister move. 

Lemma 2.3. If [ ̂ J$Z~ ] = [ Zl> CL ] then [ ] is also invariant under 
the type III move. 

proof: i = A c - ^ : + sc T ( " i 
- AC + B t 3 (by II) 
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So for the rest of this section we'll take B = A , d = -A -A and also 
write <K> - d""1[K] so that <0> - 1. We then have 

1. 

2. 

This special bracket is invariant under moves II and III. It behaves as follows 
under the type I move: 

Lemma 2.4. Let a - -A . Then 

We can do two things at this point. We can understand that <K> is a 
special kind of invariant and it is possible to create an ambient isotopy in­
variant from <K> for K oriented. First we call the equivalence generated 
by moves II and III regular isotopy. Thus <K> is a regular isotopy invariant. 

Recall from section 1 that the twist number w(k) for an oriented link K 
is also a regular isotopy invariant. (Recall that w(K) is the sum of all 
crossing signs). Thus if K is oriented we define fR = a W <̂K> where < > 
forgets the particular orientation. Then f̂  is_ an ambient isotopy invariant 
for oriented knots and links K. (Tnis is proved by noting that f is a regular 
isotopy invariant, and that fR is, by construction, invariant under Reidemeister 
move I. 
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For mirror images we have 

Lemma 2.5. Let K denote the mirror image of K obtained by reversing all 
the crossings. Then <K*>(A) = ^(A-1) and fv*(A) = f̂ A*"1). 

We omit the (easy) proof. 
Now it turns out that f is a version of Vaughan Jones1 original poly-

nomial. To see this we need a definition of the Jones polynomial. Later we 
will have a deeper look at this. For now it suffices to say that Jones1 poly­
nomial V__(t) is determined by the axioms: (see [J]], [J2] , [J3].) 

1) t " 1 ^ - tv^ = Q/t - jjv^ 

2) vm - 1 

3) ^( t ) *s an invariant of ambient isotopy. 

Lemma 2.6. fR-1/4(t X/*) = VR(t). 

Proof: < X > = A<:X> + A~1< X > 

< X > = A < ^ >+A<H > 
+1 -1 2 -2 /. A < s< > - A < X. > = (A - A )< 3^ > 

< X > = >a"*(>* >- A-V^ >*> xT*^ >„ (A2 - A-2)< ^ > a - C ^ ) 

Aafrf - A - V 1 ^ - (A2 - A-2)f^ ( ^ a oZW^< K > ) 

< X > = A < ^ >+A<H A-V1 
Let A - t1^4. Then 

< X > = A < ^ >+A<H A-V1^ - (A2 QED 

Having constructed the bracket, here are some sample computations: 
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1. = A + A"1 

= A(a) + A"1(a"1) 

4 -4 = -A - A . 

2. = A + A"1 

= A(-A4 - A~*) + A'VA'V 

= -A5 - A " V A"7 

f , a^<T> = -A"y<T> = A"** A"iZ - A~lb 

Thus fT(A) ^ fT(A" ) and hence the trefoil knot is chiral. There is no ambient 
isotopy of the trefoil to its mirror image. This is the simplest known proof 
of the chirality of the trefoil knot. Note that all the machinery was developed 
from scratch, and it is all elementary. 

By Lemma 2.6 we have the Jones polynomial for the trefoil as well: 

vT(t) = t + t 3 - t \ 

3. Exercise: Calculate <W> and show 
that it is a non-trivial 
knot. 

w 
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III. ALTERNATING KNOTS AND LINKS. 
The bracket polynomial can be used to get at some subtle properties of 

alternating knots and links. This comes about because we can determine a 
specific formula for the terms of highest and lowest degree in A for such 
links. 

Recall that a link is said to be alternating if it has an alternating dia­
gram. This is a. diagram where the crossings alternate under-over-under-over- ... 
as one travels along the link (crossing at the crossings). Now view Figure 12. 

type A 

type B 

Figure 12 

It should be clear from this figure that in a checker board shading of the dia­
gram for an alternating link, the shaded regions at each crossing are all of the 
same type (A or B where this is the same discrimination that we used to define 
the bracket.). It is assumed that the underlying universe for the diagram is 
connected. 
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We will use this observation to guess the highest degree term in <K>, and 
then prove that our guess is correct. Recall that the bracket is given by a 
summation 

<K> » I 
s 

Л ( 8 \ - V s \ i s i - i 

Our guess is that the highest degree is contributed by that state S where all  
the markers open A-channels. Such a state will contribute a term of the form 
A vd^ ~ * where v is the number of vertices (crossings) in the diagram K. 
And our checker board observation shows that in the case of alternating links 
this A-channel state S has W components (| S | » W) where W is the number 
of white (unshaded) regions, and all the A-channels are colored black. View 
Figure 13. 

K 

S (split) 

S 
V - 17 
W - 7, B = 12 
R=7 + 12 = 19 = v + 2 
|S| - 7 - W 

The A-channel state. 
Figure 13 
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We see that |s| » W exactly because we have split all the shaded crossings, 
connecting the shaded part into one big shaded region, whose boundary components 
are boundaries of the white regions. 

Thus S constributes the term 

AVdW-l . AVC_A2 _ ^W-l^ 

Hence we assert 

Theorem 3.1. Let K be a reduced alternating diagram. Then the highest degree 
term in <K> has degree given by the formula 

max deg<K> = V + 2(W-1) 

where V is the number of vertices in the diagram, W is the number of unshaded 
regions (shading corresponding to type A crossings). This term has coefficient 
equal to +1 in <K>. The term of minimal degree is also monic and has degree 

min deg<K> = -V - 2(B-1) 

where B is the number of shaded regions. 

Comment. A diagram is reduced if it has no crossing that is an isthmus. A 
crossing is said to be an isthmus if any two of the four local regions at the 
crossing are parts of the same region in the whole diagram. See Figure 14. 
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лак. U - H U P W S 

Figure 14 

Proof of Theorem 3>1. Let S be the A-cliannel state. Note that any other state 
S1 can be obtained from S by flipping some subset of Sfs markers. For any 

Vs , ) jK(S>) IS'I - 1 state S', let <K|S*> » А В d' 1 denote the contribution of this 
-1 2 -2 

state to the bracket summation. (В = A , d - -A -A ). Thus <K> • Z <KlS'>. 
Now observe the following facts: 

(i) If Sf is obtained from S" by flipping an A-channel 
marker to a B-channel marker, then 
max deg<K|S*> £ max deg<K|S">. The inequality is strict 
exactly when S1 has fewer components that S". That is 
when |S' | - IS"] - 1. 

(ii) If S' is obtained from the A-channel state by one flip, 
then |Sf| = IS| - 1. 

Assertion (i) is obvious, for if <K|S"> = AXd'S"' " \ then <K|S'> - Ax~2d'S^ ~ 1. 
Since S' is obtained from S" by one flip, we know that |S' | = |S"1 + 1. If 
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|S»| = |S"| + 1, then 

<K]S»> = AX~2d]S"' 

hence max deg<K]S'> = max deg<K]S">. If | s ' | « |s" | , then 

<K|S'> = AX-2d|S'1 " 1 " 1 

2 -2 and (using d = -A - A ), 

max deg<K[ST> = max deg<K]S"> - 4. 

This verifies assertion (i). 
Assertion (ii) is a consequence of our hypothesis of no isthmus. For suppose 

that |S"| = |S| + 1. Begin tracing along one of the components of S1 at the 
changed marker. Note that due to our construction of the state S, this tracing 
(when drawn parallel to the component in the white regions) will encircle all or 
part of the original knot diagram. If ]Sf] = ]S] + 1 then the two cusps 
(> <) at the site of the changed marker will lie on separate components of S. 
Thus we will end up encircling a part of the diagram showing that this site was 
an isthmus. This is a contradiction. Hence |Sf] = ]S] - 1 and 
max deg<K|Sf> = max deg<K|S> - 4. 

It follows from (i) and (ii) that max deg<K]S"> < max deg<K|S> for all 
states S". Thus 

max deg<K> * max deg<K|S> 
= V + 2(W-1). 

This completes the proof of the theorem. 
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We are now in a position to deduce the following (see [K5], [M2], [Tl].) 

Theorem (Kauffman-Murasugi-Thistlethwaite). The number of crossings in a reduced 
alternating projection of a link L is a topological invariant of L. 

Proof; Let span(L) denote the difference between the maximal and minimal 
degrees of <L>. Since fL = a W^<L> is an ambient isotopy invariant of L, 
we conclude that span(L) is also an ambient isotopy invariant. By 3.1 

max deg<L> - V + 2(W-1) 
min deg<L> = -V - 2(B-1) 

where V is the number of crossings in the diagram, W the number of white 
regions, B the number of black regions. (In a shading where all A-type cross­
ings are shaded.) Thus 

span(L) = V + 2(W-1) - (-V - 2(B-1)) 
- 2V +2(W + B - 2). 

But W + B = R, the total number of regions in the diagram, and R * V + 2. Hence 
span(L) = 4V. This completes the proof. 

Discussion. This result is one of a number of classical conjectures about alter­
nating knots and links that go back to the original compilations of knot tables by 
Tait and Little at the end of the last century. They also conjectured that a 
reduced alternating projection is minimal in the sense that it has the least 
number of crossings of any projection of that link. This is also true, as we 
shall see. Beyond this however, is the Tait flyping conjecture. This states 
that any two reduced alternating projections of the same (up to ambient isotopy) 
link can be obtained from another by flyping. A flype is a move on a tangle (with 
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two inputs and two outputs) obtained by rotating the tangle by 180 . See 
Figure 15. Among other things, the flyping conjecture implies that the 
twist number, w(K) , of a reduced alternating projection is an ambient isotopy 
invariant of K. At this writing, the full conjecture remains open. Morwen 
Thistiethwaite has proved that w(K) is an ambient isotopy invariant for re­
duced alternating diagrams. His proof uses my extension of the Brandt-Lickorish-
Millett-Ho polynomial to two variables. (See section 5 of these notes for a 
discussion of this polynomial.) 

180° 

Flyping  
Figure 15 

The next lemma [K5] gives a quick proof of the general inequality span(K) £ 4V 
(first proved independently by Murasugi and Thistlethwaite). 
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Lemma 3.3. Let S be any state of a universe U. Then 1 Si + I Si < R where 
R is the number of regions in U and S is the dual state for S obtained 
by reversing all the markers of S. 

I omit the proof of this lemma. See Figure 16 for an illustration 

U 
R = 10 

|S| - 2 

S 

|S| - 4 

ISJ + )S| - 6 < 10 
Figure 16 

We then use Lemma 3.3 to prove 

Proposition 3.4. For any diagram reduced K, span(K) < 4V where V is the 
number of crossings in K. 
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Proof: Let S be that state for K such that every crossing is split in 
the A-direction. Then the same argument as in the proof of 3.1 shows that 

max deg<K> < V + 2(|S| - 1) 
and 

min deg<K>>-V - 2(|S| - 1). 

Therefore span(K) < 2V + 2( | S | + | S | - 2) <; 4V. 
A diagram is said to be prime if it can not be cut in two points belonging 

to different arcs of the diagram by any simple closed curve in the plane. Thus 

is the form of a typical non-prime diagram. A non-prime alternating knot can 
have a non-alternating diagrammatic representative with the same number of 
crossings. For example, here are two ambient isotopic diagrams of the six-
crossing square knot: 

non-alternat ing alternating 

Nevertheless, a refinement of Lemma 3.3 by Wu TWu] shows that span(K) < 4V 
when K is any reduced, prime, non-alternating diagram. This gives us a quick 
proof of this inequality, also due to Murasugi and Thistlethwaite. Mr. Wu's 
very nice observation is that in a state S where every crossing is split in 
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A-direction for a non-alternating diagram there must appear splits in the pattern 

spirt-

corresponding to two consecutive over or under crossings. Call this a pair 
of parallel markers. Mr. Wu notes that if S has at least one pair of 
parallel markers, then |s| + |s| < V. Repeating the argument of 3.4, we 
obtain the strong inequality span(K) < 4V when K is reduced, prime, and 
non-alternating. Thus we know that a. reduced alternating projection has a. 
minimal number of crossings among all diagrams for the link. 

This is a remarkable application of these techniques. It is the first 
result of this kind in knot theory, and has a number of ramifications. For 
example, D.W. Sumners has used it to show that the number of knots grows at 
least exponentially as a function of minimal crossing number. See also [Ki]. 
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Mirror Images 
We now turn to the consequences of Theorem 3.1 for chirality of alternating 

links. Let K be a reduced alternating projection as in 3.1. Then 
max deg<K> = V + 2(W-1) and min deg<K> = -V - 2(B-1). Thus (using 
f = a Ŵ <K>) we have 
K. 

max deg fv = -3w(K) + V + 2(W-1) 
min deg fR - -3w(K) - V - 2(B-1). 

If K is ambient isotopic to its mirror image K*, then f„*(A) • f__(A~*) 
implies f„(A) = f_.(A *) . Hence -min deg f = max deg f , thus 

K K K. K. 
3w(K) + V + 2(B-1) = -3w(K) + V + 2(W-1). 

Therefore 
6w(K) - 2 (W-B), or 
3w(K) - W - B. 

Thus we have a necessary condition for an alternating link to be achi«ral 
(equivalent to its mirror image). You can check that it follows from this 
equation that if the absolute value of the twist number, ]w(K)], is greater  
than or equal to one third the number of crossings, then the link is chiral. 
This is a step in the direction of the 

Theorem [T2]. K reduced, alternating, w(K) 4 0 implies K is chiral. 
In fact, w(K) is a topological invariant for K reduced and alternating. 

Murasugi [M2] also proved the invariance of w(K). His method is to note 
the sum s(K) of the maximal and minimal degrees is an invariant of the ambient 
isotopy class of K. For K reduced alternating, we have (from the above) that 
s(K) = -6w(K) + 2(W-B). He then uses another technique (the signature of knots 
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and links) to show that (W-B)-w(K) is an anbient isotopy invariant for the 
reduced alternating diagram K. Hence w(K) must also be invariant. In section 
5 we'll give another proof of the invariance of w(K). 

There exist many reduced prime alternating achiral knots with twist number zero. 
I conjecture that each such not only satisfies W = B, but that the graph associated 
to the white regions is isomorphic to the graph associated to the black regions. 
See Figure 17 for the example of the knot 8^. 

8., 

Isomorphic Graph and  
Dual Graph 

FIGURE 17 
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IV. BRAIDS AND DIAGRAMS. 
Let's now consider the specialization of the bracket to the case of braids. 

The n-strand braid group B is generated by elements a_,a0,...,a . (and 
their inverses) subject to the relations 

ai°i+lai " ai+laiai+l 
Vj = ajai for l1*"̂  > 2 

The meaning of these generators and relations should become clear from Figure 18. 
A braid is a collection of unknotted strands, proceeding downward from n points 
(top row) to n points (bottom row) . The strands wind around one another through­
out the descent. Given a braid b e B , its closure b is the knot or link ob̂  

n' — 
tained by attaching the n points in the top row to their counterparts on the 
bottom row. (Again see Figure 18). By definition, the value of the bracket on 
a braid is its value on the closure of the braid: 

<b> = <b>. 

Braids b1, b2 are multiplied by attaching the n points on the bottom row of 
the first to the n points on the top row of the second. (Again see Figure 18.) 
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(braid generators for n = 3 ) 

Figure 18 

Now consider the states of a braid-universe. It should be apparent from 
Figure 19 that these can be constructed as diagrammatic products of the ele­
mentary diagrams h^,...,hn ^ with relations 

hj = dh± 

hihi+lhi = hi 
h.h. = h.h, for | i-j | > 2. 

Here we take d to represent the closed loop obtained by plugging ĥ  into 
itself. As diagrams, the states can be multiplied just as we multiply braids 
Since the result of such multiplications can produce extra closed loops, we 
need to impose a mixed topological and combinatorial equivalence relation to 
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capture the resulting structure. Since, for computing the bracket it is 
irrelevant where a closed component is (we only count them), I define two 
diagrams to be equivalent if one can be obtained from another by regular iso-
topy relative to the endpoints, with free regular isotopy for closed loops. 
Thus 

illustrates the equivalence behind the identity 1̂  = dĥ . A mixture of 
braid generators and h rs produces a more intricate structure. 

n = 3 

h1h2h1 - h 

Figure 19 
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Because the braid-states have a multiplicative structure, we see that the bracket 
expansion < y( > - A< > + A ) ( > can be construed for braids 
as a mapping PîBQ where Dn is the free additive algebra over Z[A,A~ ] 
with multiplicative generators h. and relations (*) above. That is, we define 

X X 
* t -1 

p(o±) = Aĥ  + A 

p "̂1) = A"1^ + A and take d - -A - A in D̂ . Then the formalism we have used to prove that 
<K> is an invariant of ambient isotopy also proves (via the braiding relations) 
that p is a representation of the n-strand braid group to the algebra D̂ . 
Furthermore there is a function tr:Dn Z[A,A ]̂ that we may interpret as 
the linear extension of tr(h) where h is a product of h^'s. And 
tr(h) = d l̂ ^ where |h| is the number of disjoint circles in the state 
corresponding to h. Then tr <> p(b) = <b> and this gives a diagrammatic  
interpretation to the original construction of the Jones polynomial via repre­ 
sentations. 

This approach has been generalized (see [KC] , [K7] , [L]) but the algebra 
of the h '̂s remains the most transparent structure in this context. And while 
it may seem transparent, it is in fact rather opaquet We do not yet know whether 
there is a non-trivial knot with trivial Jones polynomial. 

The Mixed Algebra 
From our context, it is very natural to consider a mixture of products of 

braid generators and the state-elements ĥ . At this writing, an abstrac­
tion of this algebra has been used by Birman and Wenzel [BW] , and one very 
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beautiful systematization of it by Yetter [Y]. For our purposes we shall 
write such diagrams up to regular isotopy. Thus we do not have relations 
ah. - h since (for example) a-h- has diagram 

and it requires a type I move to obtain the cancellation. 
And since diagram multiplication does yield an extra loop d when squaring 

ĥ , we hope to retain the relation ĥ  = dĥ . Let denote this (multipli­
cative) extension of braids via the h^'s. Obviously, we want a better formal 
definition of M , but first consider some examples: 

Io. F1 h2 h1 = D2 h1. 

This is a fundamental type of mixed relation. Note how the pairing of maxima/ 
minima to produce the ĥ  on the left-hand-side comes from different arcs than 
on the right-hand-side! 
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2°. 

CT2a3CTla2hlh3 = hlh3-
We are allowing regular isotopy of the strands relative to the endpoints 
and to the (vertical) sides of the box in which the tangle sits. 

3°. 

Vlh2 = hlh2 = hl°2al 
It may begin to look like there is a myriad of possible relations in M . 
This is true, but the kind of relation illustrated in example 1°. plus the  
usual braiding and ĥ  relations is sufficient to generate the others. 
(For details see [Y] and compare with [K6] and [K7].) 
For example: 
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Thus one can actually give generators and relations for M̂, just as for 
the classical braid group. But in order to do so a decision must be made about 
handling appearances of closed loops. We take 

bringing closed loop forms outside the rectangle, then it is natural to move 
whole knots and links in and out as in: 

Thus in this formulation, we can write ĥ ĥ â a a °2*li^3 = Â î 3 wnere ^ 
is the Hopf link. By allowing multiplication by disjoint union with knots and 
links, we go beyond a simple set of generators and relations. However the 
formalism is useful in some contents. For example, using [K] = d<K> we have 
[K U K1] = [K][Kf] so that the square bracket preserves this outer multipli­
cative structure. 

Finally, the outer form of multiplication then fits in with a generalized 
tensor formalism (see [F]) with two types of multiplication corresponding to 
ordinary tensor product and to different forms in index contraction such as 
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matrix multipilication. This if • /\e* and ^ / 
then H^l^/ Ao<, Bo</ (meaning the sum over all occurrences of 
a by the summation convention). Connection by a single connecting line corres­
ponds to ordinary matrix multiplication. Connection using multiple connecting 
lines can correspond to multiplication in a tensor product. 

We can regard and ^ J as diagrams for matrices M 
and M respectively. Then corresponds to the tensor product 
h - M 0Ma,|3\ and h2 = M ûMa'3VX6M „_„ = (M 0tf**)h = Ah. This formalism 
corresponds directly to the diagram for h with £^ corresponding to the 

ciB scalar A = M M a3 
In this way our diagram algebra can be interpreted as the underlying 

structure for specific matrix representations of the multiplicative structure 
of the h^s. See №7] for a complete exposition of this. 

In this last comment we have informally presented two points of view about 
the extended braid-like multiplicative structures that appear so naturally from 
the braid-states, By restricting to internal multiplication (matching upper 
and lower strands) one obtains significant generalizations of the Artin braid 
group. Adding outer multiplication by closed forms (knots and links) creates 
close correspondences with representations and abstract tensor products. 
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V. GENERALIZED POLYNOMIALS. 
There are, at present, two two-variable generalized polynomial invariants 

for knots and links, each a generalization of the Jones polynomial. These are 
the Homfly polynomial and the Kauffman polynomial. In these notes I will denote 
the Homfly polynomial by P (a,Z) and the Kauffman polynomial by F (a ,Z). In 
this section we will just briefly touch on the formalisms of these polynomials. 
And I shall begin by recalling the Conway polynomial, and telling a bit of the 
tale leading from Alexander to Conway to generalized polynomials. 

In the beginning [A] was Alexander and his invention/discovery of the 
Alexander polynomial A (t). Alexander probably discovered this polynomial by 
thinking about covering spaces, but his paper was strictly combinatorial, using 
linear algebra, determinants and the Reidemeister moves. He showed that if two 
oriented knots or links K, K? are ambient isotopic then A (t) = A t(t) where 
= means equal up to a multiple of + tn for some integer n. The polynomial 
was seen to be quite good at distinguishing knots and links, although it did not 
distinguish a knot or link from its mirror image. 

The Alexander polynomial has been an extraordinary and useful tool in knot 
theory since its inception. Attempts to model and reformulate it led to much 
new work and different points of view. One of the most notable of these 
approaches is R.H. Fox's [CF], discovery of the free differential calculus, a 
technique for extricating the Alexander polynomial from any presentation of 
the fundamental group of its complement. Then in 1970 John Horton Conway 
published a remarkable paper [Con] in which he showed that the Alexander polynomial 
could be sharpened to an invariant with a simple recursive definition. The 
Conway polynomial, V (z), is determined by the conditions: 
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1. V̂ * - Vv?r = zV̂ > 

2. Vfc =1 

3. V (z) - V ,(z) whenever K and Kf are ambient 
isotopic. 

Conway explained that his polynomial was related to the Alexander polynomial 
by the formula A ft) = V (/t - 1//F) . (Note = means equality up to a 
factor of (+l)tn for some integer n.) 

Eight years later, Conway became enthusiastic once again about this poly­
nomial and he lectured about it in a number of places. This time people heard 
him and their interest led to some papers about the polynomial (see e.g., [Kl] , 
[G], [Co]). The focus was primarily on how to use this recursive scheme, and 
on understanding the relation to the Alexander polynomial. Some use was made 
of the extra information in the Conway polynomial. (It can distinguish many 
links with even number of components from their mirror images.) This author 
wrote a monograph [K2] on combinatorial and diagrammatic work related to V (̂z). 
In particular, I found a states model for V (z) with a state-summation that 
is a bit more intricate than our model for the bracket. This model allowed a 
new proof of the theorems of Murasagi and Crowell ([Ml], [Cr]) on the genus of 
alternating knots, and a generalization of these results to a category I called 
alternative knots. 

But curiously, no one tried to generalize Conway's recursive scheme itself. 
No one asked what would happen if the first formula were modified to (say) 

n 
^ y£ + = zV:rJ • then in 198̂  Vaughan Jones lectured on 
his new invariant, derived from a representation of the Artin braid group into 
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a von Neumann algebra [J2]. And Vaughan proved (among other things) that his 
(Laurent) polynomial satisfied an identity 

t_1v^ (t) - tv-^ (t) - (Vt -t_1 v^ (t). 

With this formula standing in juxtaposition to the Conway formula, a number of 
people lept at once to the generalization 

-1 
a P, л 

-ap zx = zP->, 

giving a two-variable polynomial P (a,z) specializing both to the Conway 
(a = 1) and the Jones (a = t, z = /t - l//t) polynomials. This is the 
Homfly polynomial [HOMFLY]. 

Some time passed, and then Brandt, Lickorish, Millet and (independently) 
Ho found ([BLM], [H]) yet another new invariant polynomial 0R(z) satisfying 
Q>C + Q>̂  Z('Q:X + Q K ) for unoriented links. This is a one-
variable polynomial, distinct from the Homfly polynomial. It does not distin­
guish mirror images. 

I then had the good fortune to recognize how to put another variable into 
the context of the Q-polynomial ([K4], [K6]). The idea is to work in the 
regular isotopy category (as we explained for the bracket) and let a polynomial 
L be defined via: 1) L «^ + Ly~ = z(L— + L)C > 

2)L~/T* = «L 
L~/T* = OL L 

3) L O - 1 

4) LR = LR| whenever K and K1 are regularly isotopic. 
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Then L is normalized to form an invariant of ambient isotopy for oriented knots 
and links via the equation 

-w(K)T 
K = A h: 

where w(K) is the twist number of the diagram K. The polynomial FR turns 
out to be quite good at distinguishing knots and links from their mirror images. 
It appears to be a proper companion to the Homfly polynomial PR(a,z). (The 
reader should note that our names of polynomials by letter and variable choice 
may differ from those given elsewhere in the literature. The translations are 
always straightforward.) Ocneanu and Jones discovered how to put a trace on 
the Hecke algebra generated by elements ĉ  satisfying braiding relations and 
the Conway-type relation 

ci - ci t_1v^'z = z 

to produce the Homfly polynomial In a fashion analogous to the representation 
for V (̂t). Hugh Morton worked extensively with this algebra, producing very 
good programs for computing the Homfly polynomial for braids. Morton continues 
doing deep theoretical work related to these polynomials. (See [M]). 

Birman and Wenzel [BW] have given a similar treatment for the Kauffman 
polynomial by using an algebra with relations c± + = z(l + where 
ĉ  corresponds to a braid generator and Ê  shows the formal properties of 
our ĥ ?s. More will come of this. David Yetter [Y] has given a good general 
content for diagram-related algebras. See also [K5], [K6], and [K7]. 
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Both of the two-variable generalized polynomials have the Jones polynomial 
as a special case. For F this is most easily seen via adding* 

< ̂ sT > + < J><. > = (A + A ) (< > + < )C >) , 
< > = a< ^ > a = -A . 
< ~"Y5~ > = a < > 

we conclude that V (t) = F (-t~ ,t + t ). This was observed by 
Lickorish [L] by a different route. 

The two two-variable polynomials can be extablished via direct inductive 
definition. It is an open question whether there exist models for the workings 
of these polynomials that connect them directly with geometry beyond the geometry 
of diagrams. I believe that such connections will come about, and that they 
will be of great importance for topology as a whole. 

Thus <K> = (̂"A , A + A""1) and f - F̂ (-A , A + A"1) . Since V (t) - fR(t ' ) 

Remark. Thistlethwaite's simple proof [T2] of the invariance of the writhe for 
reduced alternating diagrams uses the Kauffman polynomial: He observes that for 
LR with K reduced alternating, the highest term in z has coefficient k(a + a~̂ "), 

k > 0 and power z11 ^ where n is the number of crossings in K. Thus 
= k(a + a z11 1 + (other lower degrees in z) for K reduced alternating. 

-w(K) Since F = a L is an ambient isotopy invariant, it follows at once that 
w(K) is also an ambient isotopy invariant. The proof of Morwen's observation is 
a direct structural induction: 

(i) If I>£f is reduced alternating, then and ) ^ are both 
alternating, and at least one is reduced. 

(ii) Use (i) and the recursion 
L ^ + L>c = z(L ^ + L K ). 

The separation of the a and z variables is the crucial ingredient in the proof. 
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VI. GRAPHS AND STATISTICAL PHYSICS. 
Recall that In section III, I defined a generalized bracket polynomial 

for diagrams so that [K] e Z[A,B,d] and 

1. [ ZX~ ] - A[ ] + B[ ) C ] 
2. [0 K] - d[K] 

[0] = d. 
We then created an invariant of regular isotopy via B = A ,d=-A -A 
and <K> = d ̂ "[K] (so that <0> = 1). The square bracket can be specialized 
in other ways. In particular, it is (for the right choice of A and B) the 
dichromatic (Whitney-Tutte) polynomial for a planar graph. This in turn can 
be seen to be a way of expressing the partition function for the Potts model 
(a generalization of the Ising model) in statistical physics [B]. 

To understand this connection it is important to realize the 

Theorem 6.1. Universes are in one-to-one correspondence with planar graphs. 

Proof: To each universe, shade it so that the unbounded region is unshaded 
(i.e., 2-color the regions). Associate a graph to U, T(U), so that the ver­
tices of T(U) correspond to the shaded regions of U and the edges corres­
pond to crossings shared by shaded regions. Given a graph G, associate to 
it a universe V(G) by placing a crossing of the form • • 
on each edge of G and connecting these crossings at each vertex as shown in 
Figure 20. It is easy to verify that T(V(G)) - G and V(r(U)) = U. This 
completes the proof. 
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connection at a vertex 

Figure 20 
The dichromatic polynomial ZG(q,v) e Z[q,v] is defined for graphs G by the 
recursive formulas: 

« Z • . = Z • . + vZ . 

2> Z.G = ^G 
z« = q 

The first formula asserts that the value of Z on a graph G is equal to the 
sum of the value of Z on a graph Gf obtained by deleting one edge from G 
plus v multiplied by the Z for G", the graph obtained by collapsing this 
edge to a point. The second formula asserts that the addition of an extra 
vertex to a graph G multiplies the dichromatic polynomial by q, and that 
the value of Z for an isolated vertex is q. 
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Examples : Z# # = Z# # + vZ# = q*" + vq 
Z Q = Z# + vZ# = q + vq 
Z ^ = ZA+ vZ O 

= Ẑ + vZ# # + v(Z# # + vZ Q ) 2 2 2 2 = q(q + vq) + v(q + vq) + v(q + vq) + v (q 4- vq) 
= (q + 2v)(q2 + vq) + v2(q + vq) . 

For v = -1, the dichromatic polynomial specializes to the chromatic polynomial. 
That is, Z (q,-l) = K (q) is the number of ways to vertex-color the graph G 
with q colors so that no two adjacent vertices receive the same color. That 
this is so easily seen from the recursion formula since K counts all 
possibilities for these two vertices, while K____d#____ corresponds to those cases 
where the two vertices receive the same color. 

Now consider how the recursion formula (1) diagrams: 

z = Z + vZ 
Z = Z + vZ 

Z = Z + vZ 

We see that deletion and contraction in the graphs become the two ways of 
splicing the crossing in the knot diagrams (universe). And the expansion for 
Z is formally a bracket expansion. 

Some further translation is then required to actually re-write Zg as 
a bracket. First let K(G) be the alternating link diagram associated 
with V(G) so that all shaded crossings are of type A. Then 

187 



L. H. KAUFFMAN 

Theorem 6.2. ZG(q,v) » qN/2 [K(G)] where N is the number of vertices of G, 
-1/2 1/2 and the bracket is expanded with A = q v,Bs=l,d = q so that 

[ : x ] - q"1/2v[ + ) c i and [o] - q1/2. 

Example. K(« •) = 

qN/2[ O O ] = q(q"1/2v[ O ] + [ O O ]) 
, -1/2 1/2 . , 1/2.2. 

- q(q vq + (q ) ) 
. 2 

- -qv + q 1[ o O 1 - z#_ 

Thus we see that the square bracket is fundamentally related both to 
knot theory and to graph theory. This connection raises many questions. 
We would like to know whether qualitative information can be transferred between 
these two subjects. The square bracket gives a picture of a parameter space 
A,B,d and subvarieties along which [K] is topological or dichromatic. More 
work is needed here. 

Just to complete this picture I shall explain how the partition function 
for the Potts model in statistical physics is a dichromatic polynomial (see 
LB], [K7]). The partition function has the form 

Zg = a e-E(o) 

where a runs over all "states" of the lattice G (we will let G be a 
planar graph) and E(a) is the energy of the given state. In the Potts 
model the energy has the form 
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E(a) = ^ E <5(a a ) 
<i,j> 1 J 

where <i,j> denotes an edge of G with vertices i,j and oi and a_. 
are the state's assignments to these vertices. We assume that each vertex 
can be freely assigned one of q values, and that a state o is such an 
assignment. In this formula 6 is the Kronecker delta 

-v Jl if a « b 
ô(a'b) = \0 otherwise 

and T is the temperature of the system, while k is a constant (Boltzman's 
constant). 

The partition function has many uses in this subject. For example, the 
probability of being in a given energy state E is 

p(E) = e"E/ZG. 

Proposition 6.3. For E(cr) = ~r E 6(a ,a.) and q local states, let 
T <l,j> 1 3 

~kT , v = e - 1. 

Then the partition function is the dichromatic polynomial in q and v: 

Ze-E(a)=ZG(q,v). 
a G 
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Proof: E e 
a 

-E (a) = I e 
a 

kT E 6(0 a ) 
<i,j> 3 

= E n 
a <i,j> 

~ «(a±,a )) 

Z e 
a 

-E(a) = Z n (1 + v6(a ,a )). 
a <i,j> 1 3 

It is easy to see that the right hand side of this equation satisfies the 
recursion relation for the dichromatic polynomial in q and v. 

(Z = Z + vZ ) 
<Z. G = «V 

Combining 6.2 and 6.3 we see that the partition function is a bracket expansion. 
This gives a theoretical explanation for the appearance of the algebra of the 
h '̂s (see section 4) in the structure of the Potts model for the square lattice. 
(See [B].) This lattice corresponds to the plat closure (see Figure 21) of a 
particular braid. Any bracket evaluation for a braid is expressed in terms of 
this operator algebra. It remains to be seen whether the bracket formulation 
for the Potts model will shed light on its physics. The relationship between 
the Potts model and the Jones polynomial via its operator algebra was first 
observed by Vaughan Jones. Our formulation shows the direct connection through 
translating graphs and link diagrams. 
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Translating the Square Lattice  
Figure 21 
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VII. THE BRACKET AND THE TUTTE POLYNOMIAL. 
In the last section we showed how the bracket could be used to give the 

dichromatic polynomial for planar graphs. Here we shall reformulate the state 
expansion of the general bracket function, showing that it can be calculated 
solely from states with a single component. Our reformulation generalizes 
work of Morwen Thistlethwaite. He showed [Tl] how to do this for the bracket 
and the Jones polynomial. The ideas go back to a generalization of the dich­
romatic polynomial known as the Tutte polynomial. (See [Tu]). The Tutte 
polynomial is defined recursively as follows. 

To each graph G is associated a polynomial T_(x,y) e Z[x,y]. If G 
is composed solely of isthmuses and loops then T_ - x y where i is the 
number of isthmus and I is the number of loops. The polynomial satisfies 
the recursion T~ = T_, + T_M where G1 and G" are the graphs obtained 
by deleting and contracting (respectively) an edge that is neither a loop nor 
an isthmus. 

Examples; T m # = x, T ¿3 = y 

T _ J 2 . - л 

T = T + T 

= T + T + T 0 

T = x + x + y 
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The dichromatic polynomial Z (q,v) (see section 6) is related to the Tutte 
polynomial T_(x,y) by the formula Z_(q,v) • qv T (1 + qv 1 + v) where 
N is the number of vertices of G. For example, qv(l + q/v) * qv + q = Z # # 
and q(l + v) = q + qv - Z ¿2 show that the formula is correct for a 
single loop and isthmus. This formula shows that the dichromatic polynomial 
and the Tutte polynomial determine one another. Thus 

TG(x,y) = 1 
(x-1)(y-l)W Z ((x-l)(y-l),(y-l)). 

Tutte proved a remarkable theorem showing that his polynomial could be com­
puted from weightings assigned to the maximal trees of the graph G. This 
weighting is dependent upon an ordering of the edges of G, but TG(x,y) is 
independent of the particular ordering. 

Definition 7.1. Let G be a graph whose edges have been labelled 
l,2,3,...,n. Let H c G be a maximal tree in G. Let i e {l,2,...,n} 
denote an edge of H. Let denote H - (the ith edge). Since H is 
a maximal tree, H1 has two components. One says that i is internally  
active if i < j for every edge j in G-H and endpoints in both compon­
ents of Hi. Let i € G-H be an external edge. One says that i is 
externally active if i < j for all edges j on the cycle in H extending 
from one end of i to the other. 
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Example; 3 
4 

4 5 3 

1 
4 

3 
Here the edge labelled 1 is internally active. Edge number 2 is externally 
act ive. 

Theorem(Tutte). Let H denote the collection of maximal trees in a graph 
G. Let i(H) denote the number of internally active edges in G, and e(H) 
the number of externally active edges in G (with respect to a given tree H). 
Then the Tutte polynomial is given by the formula 

rn / \ v i(H) e(H) T (x,y) = Z x y . 
G HcH 

Example: 
1 2v 

3 1 
2 

3 H1 

I 
3 H2 

1 2 
^ 3 

TG = y + x + x2. 
It may seem from the definitions of internal and external activity that they 
are somewhat different. Actually there is a symmetry of definition for planar 
graphs. It is through this symmetry that I like to see the relationship of the 
Tutte weightings with universes and with knot theory. To see this symmetry 
consider the universe V(G) (sometimes called the medial graph) associated 
with a planar graph G. Each maximal tree H c G determines a state 
S = S(H) of V(G) with one component. This state is obtained by splitting 
V(G) along the edges of H • ~I^><^} \ >̂ ^ X j * and 
splitting all other crossings in the opposite fashion £ \ >̂> ^> 

Q/here • • is not in H), 
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Example; 

1 2 
з 

1 
H 

V(<6) 

N 2 

3 

S Ю 

The edge labelling of G becomes a vertex labelling of V(G). Call the 
vertices (crossings) of S(H) internal or external according as they are 
split with cusps pointing to the inside or to the outside of the Jordan 
trail S(H). Thus in the example above, 1 and 3 are internal and 2 is 
external. Given a Jordan trail S (a universe with |s| = 1) with vert­
ices (sites x) labelled l,2,.*.,n, call a site i active if i < j 
for all sites j with cusps in the two components resulting from splitting 
S at i. (Compare [K2].) 

Example: 1 
2 

3 

SplfT ccV 
1 

I 
2 

3 

Since 1 < 2, 1 is active. 
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A site on a trail is internally active if it is internal and active. A 
site is externally active if it is external and active. By replacing the 
trees in G by Jordan trails on V(G), we obtain a symmetrical definition of 
TG(x,y). 

Incidentally, it is easy to see from this reformulation that T_(x,y) = 
T_(y,x) where G is the planar dual graph to the planar graph G. Each 
G Jordan trail gives a pair of maximal trees, one for G and one for G. 

By now we are very close to the knot theory, and I can explain how to cal­
culate the square bracket, [K] for link diagrams by using Tutte weightings. 
Recall that [K] has variables A,B,d and that 

[ Z>C 1 - A[ ^ ] + B[ ) { ] 
[0 K] = d[K] 

[ ~гг~ i = (M + в)[ -—. ] 
[ — б-—] = (А + Bd) [ ] 

Let a = Ad + B and 3 = A + Bd. Now let K be a given diagram, and S 
be a state for K with one component (|s| - 1). Let S denote the collec­
tion of all states S with one component. Let the crossings of K be 
labelled l,2,...,n. Each crossing of K will determine a local contribution 
at the corresponding site of S. If the site is inactive we retain the usual 
bracket contribution: 

[ - х Г / ] = А 

>C 1 - A[ ^ ] + B[ ) { ] 
inactive site. 

If the site is active then we take 
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[ zxr I -yC J - e 

[ -x. / > < ] - a 
active site. 

Then [K|S] is the product of all these local contributions, and we assert that 
[K] is given by the formula [K] « I [K|S]. 

Example 1̂  
L 

1 

2 
S1 

1 

2 S2*. 
[L] - I [L|S] - BB + aA (1 active in S-, 1 also active in S0). Doing this 
the long way we have, 

[(C^ ] - A[ ] + B[ ] 
= A (Ad + B) + B(A + Bd) 
= Act + B3. 

Example _2. I 
2 

3 
1 a 

tJ S1 

1 
• 

s s2 

I 

3 
s3 

[K] - Z [K|S] = 3BA + aA2 + $2B, (Circled sites are active.) Q 3 3 - 1 Note that for <K>, a - -A , 8 = -A , B = A so that 
-3 5 -7 <K> - -A - A + A , 

our familiar value for the bracket of the trefoil. (See section 2.) 
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Exercise. Contemplate this example, and give a direct proof of the expansion 
of the bracket via connected states. (Hint: Show that each connected state 
gives rise to a collection of possibly disconnected states by re-splicing at 
some or all of the active sites.) This exercise can be expanded into a new 
approach to the theory of the Tutte polynomial. See [K9], [K10]. 

1 
2 

tJ 

1 

2 

t 

я 
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Example 3: [ O O ] = [ O O | C Q ] = 3 

[ & ] = [ CS) 1 CH> ] = a 
These correspond graphically to basic contributions for isthmus and loop. 

Note however, that if we switch the crossing then the contributions flip (since 
we are cataloging the type of curl in the knot diagram). 

WaAyu,ng; It should be clear to both author and the reader by now that the 
square bracket function we are now using is normalized to 1 on the circle: 
[0] 88 1. Let this cause no difficulty with regard to our earlier convention. 

Example 4_: This is really a reformulation. Note that diagrams of knots and 
links are in 1-1 correspondence with signed planar graphs where the signs 
are placed on the edges of the graph so that + corresponds to an A-channel, 
- corresponds to a B-channel. 

Our Tutte-reformulation of the generalized bracket then gives a generalized  
Tutte polynomial for signed graphs satisfying 

1) If G has i+ positive isthmus, i-negative isthmus, 
I positive loops, -̂negative loops,; then 

i + I i + I 
TG = X " Y " 
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2) If the edge indicated below is not an isthmus or loop, then 

T # + ^ = BT # # + AT % 

T % ~ % = AT # # + BT # 

Thus T_(A,B,x,y) is a graph theoretic version of the square bracket. G 
(X = A + Bd, Y = Ad + B recovers previous notation). It has a Tutte expansion 
in terms of spanning trees, and should be explored for its own sake. (N.B. 

AX + B = A + BY, and this condition is equivalent to stating that X has the 
form A + Bd, while Y has the form Ad + B. The polynomial is well-defined 
for A, B, X, Y satisfying this relation.) 
Example _5: If K is an alternating diagram then all crossings have the same 
internal type. Thus the contributions take the form 

] = A 

] = В 
inactive site 

] = e 

] = <* 
active site 

From this it is easy to see some specifics about the topological bracket where 
B = A"1, a = -A3, 3 = -A3. Note that a = -A4(A*1), a = -A~4(A). Thus for K 
alternating, we have 

<K>=AI-ETG(K)(-A-4, -A4) 
where T is the (standard) Tutte polynomial and I denotes the number of in­
ternal sites on a trail, E the number of external sites on a trail. We note 
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that I- E is a constant independent of the given choice of trail. 
Now recall that the ambient isotopy invariant f is given by the 

formula 

fK = a -w(K) <K> = (-A J) -3,w(K) <K> 

and that the Jones polynomial V(t) is given by the formula 

vK(t) = fK(t"1/4). 

Thus for K alternating we have: 

Theorem (Thistlethwaite). Let K be an alternating projection, G(K) the 
corresponding planar graph. Then the Jones polynomial V (t) is equal to 
the Tutte polynomial Tn/v*{-t9 -t ) up to a sign and factor a power of t. 
This is a remarkable observation from which it is now easy to deduce such facts 
as: the coefficients of the Jones polynomial of an alternating link alternate 
in sign (according to parity of degree). That is, the Jones polynomial of an 
alternating link is an alternating polynomial. The reader is referred to 
Thistlethwaite's paper for more details ([Tl]). 

VIII. FROM GRAPH THEORY TO KNOT THEORY. 

It is interesting to speculate about alternate realities. How could the 
bracket polynomial, and hence the Jones polynomial have emerged from graph 
theory ?! One possible reconstruction is to suppose that graph theory had 
had in its possession our generalized Tutte polynomial for signed graphs. 
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Since knots and links can be encoded into signed graphs, it would then have been 
possible to look for a specialization of this Tutte polynomial that gives an in­
variant . 

To taste the flavor of this reconstruction we must first examine the graph 
theoretic versions of the Reidemeister moves. View Figure 22 for this. Be­
cause of the translation to graphs via shaded regions, there are two versions 
of the type II move, and two versions of the type III move. Note that the two 
versions of the type II move are signed forms of deletion and contraction, while 
the type I move involves addition or removal of a branch or loop. These re­
lationships could have been taken as a hint to try a Tutte polynomial for an 
invariant. 

In any case, let's do this. We begin with the generalized Tutte polynomial 
for signed graphs, as explained in example 4 of the last section. This assigns 
a polynomial T (A,B,x,y) to any signed graph G. 

Reidemeister Move Graphical Move 

I 

II 

III. 

Figure 22 

202 



NEW INVARIANTS IN THE THEORY OF KNOTS 

It is characterized by the rules: (x = Ad + B, y - A + Bd). 

i + Z_ i_ + 
1) If G has only isthmus and loops, then T = x i 

where i+ is the number of positive isthmus, i is the number 
of negative isthmus, 9. is the number of positive loops, I 
is the number of ngative loops. 

2) T 9 + 9 = AT # + BT # # 

T m - 9 = BT_-#__ + AT # _̂ 
(the + edge is not an isthmus.) 

Let's investigate the behaviour of this polynomial under type II moves. 

Proposition 8.1. In order for T (A,B,x,y) be invariant under type II moves 
it is necessary and sufficient that 

B = A 
x = -A"3 
x = -A3 

Proof: T 
- + 

= AT + BT_ 
= A(BT + AT ) + ByT 

= ABT + (A + By)T 

T + 

-
= AT + BT 
= AxT + B(BT + AT 

= ABT + (Ax +B )T 
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The rest of the proof follows from these identities. 
The rest of the story now proceeds just as for the bracket. With B - A~\ 

x - -A , y - -A the polynomial T_ becomes an invariant of moves II and III 
for arbitrary graphs. 

Definition 8.2. For any connected graph G, let ft e ZlAjÂ1] be the Laurent 
-1 -3 3 polynomial defined by ft_ = T_(A,A ,-A ,-A ). By Proposition 8.1, ft- is 

an invariant of graphical move II. Type III invariance is free: 

Proposition 8.2. ft - ft , if G and G* are related by a type III move. 
Proof : ft « Aft + Bft 

(type II) = Aft + Bft 

(type II) = Aft + Bft 

= ft 
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Remark: We want to be able to perform the type II move even when It disconnects 
the graph. Hence we need a formula for Tn n, where u denotes disjoint 
union. Note that T <Z> = Ax + By.G U G Define T_ , f = (Ax + By)T T .. 
It is then easy to see that ft has the right invariance properties for this 

-1 -3 3 -2 2 move. Note that for B = A , x = -A , y = -A we have Ax + By = -A -A = d, 
the corresponding bracket factor. 

This section is just intended as a sketch of the graph-theoretical formula­
tion. Note that ft^ is an invariant of type II and type III moves for 
arbitrary (not necessarily planar) signed graphs. This is likely to be a 
useful extension of knot theory to arbitrary neyworks involving those trans­
formations. 

What about the type I move? ftG multiplies by x or y under a type I 
move. In the abstract graph theoretic setting we do not have a direct analog 
of the twist number. Thus it remains to be seen whether ftG can be normalized 
to form an invariant of all three move types. 

To finish the translation we state the now obvious 

Theorem 8.3. Let G be a planar signed graph. Let K(G) be the knot/link 
diagram corresponding to G. Then <K(G)> - ftg. The bracket polynomial for 
knots and links is a specialization of the generalized Tutte polynomial for 
signed graphs. 

; • 

Finally, we return to the generalized Tutte polynomial TG(A,B,x,y) for 
signed graphs G, and note that It has a spanning tree expansion. Given an 
ordering of the edges of G and a maximal tree H c G, define contributions 
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from the edges of G as follows: 

internally active, + : x 
externally active, - i x 
internally active, - : y 
externally active, + : y 
internally inactive, + : A 
externally inactive, - : A 
internally inactive, - : B 
externally inactive, + : B 

Let G(H) denote the product of the contributions of the edges of G rela­
tive to activities for H. Then 

G £ G(H) 
H 

where this summation extends over all maximal trees in G. 

Technical Caveat: It is necessary and sufficient for Tn to be well-

defined that Ax + B = A + By. (Note that we are in the category of signed 
graphs.) This certainly holds for the topological case. In the general case 
we can rephrase this condition, as we did for the square bracket, by intro­
ducing a variable d and writing x = A + Bd, y = Ad + B. This shows that 
square bracket is directly generalized to arbitrary signed graphs by 
TG(A,B,x,y) = TG(A,B,d). 
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The sufficiency is seen in proving that this polynomial has a spanning 
tree expansion. (See [K9] and compare [Tl].) For necessity expand a triangle 
graph y V in two different ways. You will find that AX + B2 = A2 + BY 

is needed for agreement. 
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IX. THE KNOT THEORY OF IMBEDDED GRAPHS. 
It will not do to mention graphs without pointing out the now active exten­

sion of knot theory considering embeddings of arbitrary graphs in Euclidean 
three space. Here one would like to answer the usual ambient isotopy questions 
of knot theory in this larger context. In particular, we want polynomial (or 
other simple) invariants of graphs in space. The most general notion of ambient 
isotopy for graphs in space allows topological vertices. Strands coming into 
a topological vertex behave independently. In diagrams, this means that 
moves are allowed (see Figure 23) that create arbitrary braiding at a vertex. 
At the vertex, any two adjacent strands can be given a twist. In general this 
notion of ambient isotopy is both fundamental and difficult. Nevertheless, 
progress is being made (see [S] and [W]) on the general classification. 

One may also consider a rigid vertex. Here the vertex is thought of as 
a rigid object with topological strands attached at specific sites. Then I 
note [K8] that it is possible to define some useful invariants in this case. 
A similar approach was seen independently by Ken Millett. Here is a sketch 
of my viewpoint about the rigid vertices. We shall restrict ourselves to 4-
valent vertices as shown in Figure 24. 

A topological vertex move  
Figure 23 
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III 

IV. 

Rigid Vertex Moves  
Figure 24 

Figure 24 indicates the extra move-types that must be added to the list of 
Reidemeister moves in order to have a theory of rigid vertex equivalence. 
Note that the rigidity of the vertex forces double braiding when it is 
turned by 180°. I have denoted by III' the analog of the type III move. 
The second move under IV (with a three strand twist) can be accomplished 
up to ambient isotopy by the first type IV. (We will not consider regular 
isotopy of graphs here.) My method for obtaining invariants of RV4-graphs 
(4-valent rigid vertex graphs) is to associate to such a graph G a collec­
tion of knots and links L(G) obtained as described below. This can be done 
for both oriented and non-oriented graphs. Here we consider only non-oriented 
graphs. 
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Definition 9.1. Let G be an RV4-graph. Let L(G) be the collection of 
knots and links obtained from G by choosing one replacement of each of the 
following types at each vertex of G: 

Example: G = (J. Simon's graph.) 

L(G) = 

K±. K2 
o 

In general, if G has n rigid vertices, then L(G) will contain 4n 
diagrams, some trivial, some ambient isotopie. 
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Definition 9.2. Let X be a collection of knots and links. Two such collec­
tions will be said to be ambient isotopic (X ~ X1) if every member of the 
first collection is ambient isotopic to some member of the second collection 
and vice versa. 

The notation ~ will be used both for RV4-equivalence of graphs and for 
ambient isotopy of knots and links. 

Theorem 9*3. Let G and G1 be equivalent RV4-graphs in three dimensional 
space. Then their associated link collections are ambient isotopic -
L(G) ~ L(G'). 

Proof: Observe that the extra moves III' and IV (Figure 24) preserve the ele­
ments of L(G) up to ambient isotopy. For example; 

This completes the proof. 
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This is a very useful theorem for studying RV4-graphs. For example, we 
can immediately conclude that the graph G in the example above is not equi­
valent to its mirror image. For if this were so then the individual knots and 
links in L(G) (being distinct) would have to each be achiral. We can then 
chekc that this is not the case by using our results about the Jones polynomial 
for alternating knots. Recall that we have shown that if K is achiral then 
3w(K) = W - B (after Theorem 3.1) where w(K) is the twist number of K and 
W and B are the numbers of white and black regions in a shading where the 
A-channels are shaded. Choosing K- e L(G) we find 

w(K ) = 2 - 4 = -2 
3w(K-) = -6 

W = 3 
В = 5 

W - В = -2 

Since -6 4 -2 we conclude the Simon's graph G is not equivalent (RV4) 
to its mirror image. (Wylbur Whitten has verified by other techniques that 
this graph is not topologically equivalent to its mirror image.) Note that 
we could have used the invariance of the writhe for reduced, prime alternating 
diagrams (sections 3 and 5) for a shorter verification. This one uses only 
facts completely developed in the present paper. 
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Example: 
O' 

Examination will reveal that this graph is obtained from the graph G of 
the previous example by reversing two crossings. 

L(G) = 

We see that to prove G not equivalent to G* it suffices to show that K2 
K2 is not ambient isotopic to K̂ . But we also know from section 3 that 
spanOĈ) < 4 V where V is the number of crossings in this diagram, since 

is a non-alternating diagram. On the other hand, span(K2) = 4V (V = 7) 
since K2 is an alternating diagram. Therefore, without further calculation 
we know that K2 and K2' are different and hence that G and G* are not 
RV4-equivalent graphs. 

To further verify that G' is chiral requires a calculation of <K2>. 
We omit this and asser that the calculation indeed shows that K2 is chiral, 
and hence that G* is RV4-chiral. 
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These examples and our theorem relating equivalences of graphs with ambient 
isotopy for collections of knots and links show how there can be a good collabo­
ration between problems of graph-embedding and new invariants of knots and links 
such as the Jones polynomial. Since graphs can be used to model the configura­
tions of molecules and other naturally-occuring networks, it is to be expected 
that there will be many fruitful applications of these ideas. 

It is interesting to note that in the case of RV4-graphs there is a mixed -
mechanical/topological model that is nevertheless susceptible to a topological 
analysis. This, in itself, is a good sign for applications where there will 
always be a mixture of topology and other structures. 

X. PATTERNS AND SPECULATIONS. 
I always thought that the Conway identity 

bore a striking resemblance to the exchange identities of quantum physics such 
as the Heisenberg form of the uncertainty principle PQ - QP = ili. And that 
the crossing an<* its reverse ^^^^ were something like a complex 
number and its conjugate. 

From the present vantage these speculations are not nonsense at all. They 
appear like hints about the remarkable connections that have subsequently 
appeared. The operator algebras that produced the Jones polynomial and gener­
alizations were traditionally studied with quantum physics as the technical 
and inspirational source. The writing of the Conway identity into a Hecke 
algebra related to braids via o\ - a = z is a direct algebraic version of 
this sort of identity. 
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Another view of complex numbers lets us think of ordered pairs of real 
numbers [A,B] and [B,A] as conjugates. If W - a + ib let A • ~ (a+b), 
B - y (a-b).) Then 1 corresponds to [1,1] and /̂T corresponds to [1,-1] 
so that a + ib, = a[l,l] + b[l,-l] - [a+b, a-b], and 
[A,B] - [B,A] = (A-B)[1,-1] = (A-B)/-T. This has a formal resemblance to both 
Conway identity and Heisenberg formula. And in the bracket expansion 

[ "XL ] = A[ !̂=C ] + B[ H ] 
[ - B[ JSC. ] + A[ )( ] 

the reversal of a crossing appears as this form of conjugation. 
Simple aspects of formalism lie at the root of these similarities. Be­

yond all the conceptual apparatus, the fundamental point is that an unoriented 
crossing 

discriminates two regions our of four. All the rest, whether in braids or in 
diagram form builds on this distinction. Formulas like PQ - QP = tii rely 
on the left-right distinct along a line. And a formula such as 
[ ] = A[ yiT. ] + B[ )Q ] relies on the discrimination of characters 
along a line that are identical after a rotation. 

Thus we are initially mapping one simple order into another. These are 
designer's comments: for the possibility of distinguishing handedness of 
topological objects in three-dimensional space goes back through diagrams, 
symbols and distinctions to the possibility of finding handedness in the plane. 

And the simplest forms of left and right in the plane are • 1 ^ 
and Q . Thus the detection and discrimination of '""J) and 
(or J)*̂ *" and*""*(5̂  ) in a formalism may be fundamental to its sensi-
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tivity to handedness. This is my personal explanation for favoring regular 
isotopy and detecting the curls in the diagrams. 

There are more questions that you can shake a stick at. What deeper 
insight will unlock the really hidden secrets of these diagrams. Does the 
Jones polynomial, or its generalization detect knottedness? Is there a 
further relationship to physics based on these diagrams (a la Feynman diagrams 
or Penrose spin nets)? (See [Kll] and [K12] for an unfolding of this remark.) 
How can one understand the mirror image problem for knots and links completely? 
What is the relationship between these new techniques and the classical methods 
using homotopy theory, covering spaces algebraic topology? What information 
about slice knits and knot concordance is in the new invariants? What is the 
next simple idea that will turn the subject upside down? How do you follow 
the hints? 
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