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In random environment the local time can be very big
by Pal REVESZ
1. INTRODUCTION
Let g== {...)E_,,E_;,Ey,E{,E,,...} be a sequence of

i.i.d.r.v.'s with

0 if x=o0,
P{EO< X} = F (x) if 0 <x <1,
1 if x21.

The sequence 8 is called a random environment. (The random

sequence L..,E_,,E_;,E,E,E,,...} and a realization of it will
be denoted by the same letter'g). For any fixed sample sequence

of this environment define a random walk RyrRyvseen by R0=0 and

=i-1|R =i}=E, (n=0,1,2,..., i=0,%1,+2,...).

l:E{Rn+1=i+lIRn=i}=l_P‘g{Rn+l

In this paper the following conditions will be always assumed:

(i) there exists a 0 <a <1/2 such that lP(a<E0 <1l-a)=1,
1-E
(ii) €& log ——> =0,
2 0 1-E, 2
(iii) 0< o = E(log B ) < e,
0

REMARK 1.1. In case of a simple symmetric random walk (i.e. if
2 2
P(Eo=1/2)=l) we have ¢ =0. (i) clearly implies that ¢ < ». We also

mention that if (i) and (ii) hold and ;=0 then P(E0=1/2)=1.

REMARK 1.2. Many of the following results can be proved
replacing (i) by weaker conditions. We do not intend to discuss

this question in the present paper.
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P. REVESZ

Introduce the following notations:
&x,n) = # {k: 0k =n, R, =x 1,
E(n) = max E(xln)l
X
%=0, ﬁ=min {k: k > 0, Rk=0},
5= min {k: k > q Rk=0} Feeey
%+1= min {k: k>%, Rk=0},...,
M(n) = max lel’ M (n) = max Ry, M (n) = -min R
0k sn 0k sn 0sk =n

We recall a few known results.

THEOREM A. (Deheuvels, P.-Révész, P.(1986) and Révész, P.(1987)).

For any €> there exists a r.v. no=no(s) such that

2 -2-€ 2 2+e .
(1.1) (logn) (1og2n) < M(n) £ (logn) (1og2n) a.s. if nzno,
2
(1.2) m(n) s g llogn) i.o. a.s.,
20 9937
(1.3) £(0,n) 2exp(logn (logzn)_l_ 5 a.s. if nzn_,
(1.4) £(0,n) sexp(logn (log,n) t*9 i.o. a.s.

There exists C = C(a) >0 such that

(1.5) £(0,n) éexp((l—C(log3n)-1)logn) i.0. a.s.

where logpn is the p-th iterated of log and the meaning of a.s. is:

for almost all environment 8 the stated inequality holds with

probability one.

The inequalities (1.3) and (1.4) describe how small can be

g£(0,n) . In fact they say that ¢£(0,n) can be and will be as small

as nCn where e % (logzn)_l. (1.5) says that £(0,n) will be i.o.
l-0

very big. In fact §0,n) will be for some n as big as n T where

o = C(log3n)_1. Our first result will give an upper bound of

£(0,n). In fact we prove our
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IN RANDOM ENVIRONMENT THE LOCAL TIME CAN BE VERY BIG

THEOREM 1. There exists a C >0 such that

(1.6) g(0,n) = exp((l—Qn)logn) a.s.

for all but finitely many n where

0 = exp(-C(logzn)(log?‘n)-l/2

n log4n).

REMARK 1.3. Note that Gnlogn + o but since On <<C(1og3n)_1
there is an essential gap between (1.5) and (1.6).

We are also interested to study the behaviour of £ (n).

(1.1) and (1.2) clearly imply: for any >0 we have

(1.7) lim (logn)  (log,n) " ® En) _ . L.
n >o n -
and
2
(1.8) lim sup log n . £(n) 21 a.s.

2
n > (20 log3n)

It looks obvious that much stronger lower bounds than

those of (1.7) and (1.8) should exist. I do

CONYECTURE: there exists a 0 <C=C(F)< 1 such that

lim sup n ! £(n) = C a.s.
n > o«

In fact the following much weaker result will be proved

THEOREM 2. Let

P{Ei=p} = P{Ei=1—p}=1/2 (0 <1/2).
Then
. -1
lim sup n £(n) 2 g(p) a.s.
n >
where
1/g(p) = 22 £(x)+1,
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P. REVESZ

2
£(x) = 35—:51% and x=T§—.
(1-x) P

2. PROOF OF THEOREM 1.

Introduce the following notations

1-E.
U, = —41 (3=0,+1,+2,...),
J E. ==
3
vy = log U (3=0,+1,+2,...),

T=0, T =T(n) = Vi +Vo+.. 4V , T_ =V_ +V_,+...4V_,

0 if b=a
D(a,b) = 1 if b=a+l
140,41 a1t -t 054V - Uy
D(b)=D(0,b).
Observe that
n-1
(2.1) exp( max T(k)) £D(n) = I exp(Tk)é n exp( max T(k)).
0sk sn-1 k=0 O ksn-1

The proof is based on the following three lemmas.

LEMMA 1. For all but finitely many n and for any € with

probability one at most one of the following two inequalities

can hold

/2 /2

max T(k) 2 e(nlogzn)1

T(n) £ -(20on logzn)1
Osk sn

PROOF. It is a trivial consequence of the Strassen's law

of iterated logarithm.

LEMMA 2. Let

pla,b,c) = ﬁg{min {j: j>m, Rj=a} < min §: j>m, Rj=c}lsm=b}
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IN RANDOM ENVIRONMENT THE LOCAL TIME CAN BE VERY BIG

(a £sbsc¢) i.e. pla,b,c) = pla,b,c, ) is the probability that

a particle starting from b hits a before c given the environment 8.

Then

D(a,b)

pla,b,c) = 1- b(a,c)"

PROOF. This lemma was proved by Deheuvels-Révész(1986) in
the case a=0, b=1. The proof of the general case is going on the

same line.
LEMMA 3. (Erd®ds, P.-Révész, P.(1987)). Let

/24,

¥(N) = max{n: 0% nsN, T(n)s- o2nlog,n)’

Then there exists a C>0 such that

1/

Y(N) zexp((l-C(log3N)(log2N)‘ 2)log N) a.s.

for all but finitely many N.

PROOF OF THEOREM 1. Introduce the following notations

a_ = {£(0,nzn'’?) (n=1,2,...),

N=N(n) = [(1ogn)2(log3n)_lj,

+ .
M (pjlpj+1) = ma (j=0,1,2,...),

¥x,n)=#{j: 153 s€(0,n) -1, M (o _;.0.)2 %},
J J
B my= (N=N(n)),

= < - T
B, = (g, s Eq((0,m)-1) m5rrtmyy -

Note that by Lemma 1 for any &>

max T(k) s ¢ (\p(N)logzq;(N))l/2 a.s.
0 sk SYN)

for all but finitely many N(i.e. n). Hence by Lemma 2 and (2.1)

i N) =N h
(since ¢ (N) sN) we have 325



P. REVESZ

E E

e (o) 2 w(N)} = 0 2 9 exp (-max T(k)) 2
1 D(¢(N)) v (N) 0 < ksy (N) -1
Eo 1/2, . Eo 1/2
giRﬁT exp(—e(w(N)logzw(N)) ) 2 N exp(-e(NlogzN) ) =
log,n _
= o(___§.__7 n e)
(logn)

and by an elementary calculation one gets

P(B_[£(0,n) 5 exp(-L(E(0,m)-1)r 0 ) =
n ! a 8 ! D(v (N)) B
log,n _
< exp(-&(0,n) O(;2 n~ 9)
(logn)
Consequently
nil P(Bnl An)< ’
Hence
1/2 1
(2.2) £(0,n) £n or gnz EO(E(O,n)—l) 2D (M) a.s.

for all but finitely many n. Applying Lemma 2 again we have

D( (N)-1)

(2.3) PO, 4 -1, ww)=1-BELL) < exp (- o(29 () Log,, viw) ) /2

).

In case if En satisfies the second inequality of (2.2) then by

(2.3) and Lemma 3 we obtain

n 2 g y(N),n) 2

11 R N £(0,n)
2500, 9 -1, » (M) ° DW () -D (¥ (M -1
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/2) 2

=0(1) €(0,n)exp (=T (¥ (N)-1)) 20(1) £(0,n) exp (0(2 ¥(N) log, W(N))1

1 /2) >

20 (1) £(0,n) exp ( o(2exp ( (1-Clog ;N (1og,N) ~1/2) logN) log,N) !

/ 1/2))

20(1) £(0,n) exp ( 02/ 21ogn exp(—2c(logN)(log3N)(logzN)-

for all but finitely many n. Hence we have Theorem 1.

3. A LEMMA ON SIMPLE SYMMETRIC RANDOM WALK.

In order to formulate our lemma we introduce the following

definitions.

Let ... X_,/X_1/Xs%Xy/... be a sequence of i.i.d.r.v.'s

with

P (X =+1) = P(X;=-1) =1/2,

S,=0, S_=X
n

0 +X,+...+X S__=X .+X

1 2 n’ -n %21 +...+X (n=1,2,...).

-2 -n

Let N be a positive integer and define

v;\'] = min {k: k >0, S,_=N},

k
v; = max {k: k >0, Sk=N},
L. = -min {Sk: \);] <k év;},
oy = max {k: v&é kév;, S ==hyt
T; = max {k: v;§ kéaN, Sk+uN=N},
T; = min {k: ay S kgv;, Sk+uN=N},
LyG)=#{k: © skstf, S =-w+i}  (3=0,1,2,..., N-1),
Uy = max {Sj-Si: T; $i<j sa g},
Vg = max {Si-Sj: oy S$i<j §r;},

p = min {k: k>0, Sk=0}.
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LEMMA 4. Assume that X1=1. Let

x(j)=#{k: 0 <k<p, S, =N-3j}

K (3=0,1,2,...,N-1)

and

aj = a;m = P{x(j)245 +4| N}.

Then there exists an absolute constant 0<06<1 such that

N-1
I qJ(N)§9 (N=2r3r-o-).

3=0

PROOF. A simple combinatorial argument gives

k-1
1 No-1 1
P (x(0)=k, N=N_) = o (=5 ’ e (N=N_) = ﬁ;Tﬁ;ITT
o
and
k-1
_ _ N+1 N-1
(3.1) e(x(0)=k|N) = 3= Gg) -
Consequently
- = (N=1,° 1
(3.2) q, = P(x(0)24|N) = (557) < 3-
Let

v =v(No) = min { k: Sk=No}
and

Mm) = #{k: O<k<v, S =N°-m}

k (m=1,2,..., No-l).

Then again by a simple combinatorial argument we have

N k-1

_ [e]
®{A(m)=k, N2N_ |NzN°-m} = EERE;TET) .

1
m (-
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Consequently
N, N, k-1
P {) (m) =k |N=N°} = P{Mm)=k | N 2N} = (N, (1- 2m(N°-m)) ,
2 N, 2m+l
P{X (m) 22m +2|N=No} = (1- E’ﬁ\"(‘N:—‘m‘)" .
Observe that 2
N -1 2m +1
o No
(3.3) Z_ (1- m‘) < 1/4 (No=2,3,.--)
m=1 o

Because of symmetry we have
2
P {x(m) 24m +4|x(0)=1, N} s2p{} (m) = 2m +2 | N}

and by (3.1)
Pix(m)24m +4|N} = P {x(m) 2 4m +4|N,x(0)=1} B{x(0)=1|N} +

+ P{x(mz4m +4|N, x(0)>1 } ®(x(0)>1 |N) =

2 N+1 1
s 2p(Mm)z2m +2|N} . ST 4+ 5.
Similarly by (3.3)
N-1
(3.4) Bl U {x(m24m +4}[N} s 3+ BL .2
m=1

Lemma 4 follows from (3.2) and (3.4).

LEMMA 5. There exists an absolute constant 0 (0 < 0 < 1)

such that

. .2 . N N
P{LN(j)§4] +4, j=0,1,2,...,N-1; Uys<3, ngf} 20 (N=2,3,...).

PROOF. Lemma 4 implies that
2
(3.5) ﬂLN(j)é 4y +4, j=0,1,2,..., N-21}
is larger than an absolute positive constant independent from N.
It is easy to see that
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N

IA
Nz
-

N

is also larger than an absolute positive constant independent from
N and the events involved in (3.5) and (3.6) are asymptotically

independent as N + », Hence we have Lemma 5.

4. A FEW LEMMAS

Observe that replacing the sequence ...,X_2,X_1,X1,X2,...
by the sequence ..., U_,,U_,,U;,U,,... and the definition of

LN(j) by the following definition

. e + .
Ly(3) = #{k: 7y skstg, Tk=sk=-uN+j|1og TI_EE|}

(3=0,1,2, ..., (-1) (J1og 125 ) ™H)

then Lemma 5 remains true as it is.

For sake of simplicity from now on we assume that aN>0

and introduce the following notations:
let N=Nk(8) be a sequence of positive integers for
which

L. (3) <43 +4(3=0,1,2 N-1), U.<N and V&
NJ = J ] ’ ’ r ey r N= N=2.

2

(by Lemma 5 for almost all 8 there exists such an infinite

sequence) ,

FN = min {k: k >0, Rk = aN},

Gy = min {k: kx>0, R = v;},

H. = min {k: k >F R, = T or'r+}-F
N ° N’ k N N N°

LEMMA 6. Let 8 be fixed. Then

e2/3N 3/4N

IA

(4.1)  &0,Fy) , G2E(0,Gy) 2 e

and
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(4'2) HN > g ((! r H _+F )g e3/4N, e2/3N

<
NN F. =

N

(N=Nk) a.s. for all but finitely many k. Consequently

(4.3) FN=0(GN) a.s.

PROOF. Since

E E
+ 0 0
P{M (p,)20 .} =E_ (1-p(0,1 )) = 2 — exp(-max
1N 0 N D (o) %y 0%k <o -1
E E
0 0 N
2 — exp(-U,) 2 — exp(-3)
aN N N 2
and
P{M_(pl) = -v§}=(1—E0) p(v.,-1,0) $ (1-E;j) exp (-max T(k))
v; <ks0
= (1-Ey) e N,

Hence by Borel-Cantelli lemma one can easily obtain (4.1)
and (4.3). Similarly one can obtain the first inequality of
(4.2). In order to prove the second inequality of (4.2) obs

that (by (4.3))

N ke k

what proves Lemma 6 completely.

Introduce the following notations:

1. - - 1-D(n=1)
D*(n) = p(0,n-1,n) 1 D(n)
i.e.
D*(n) = e0+exp(-(Tn_1-Tn_2))+exp(—(Tn_l—Tn_3))+...+exp(-(Tn

=D (n) exp(—Tn_l),
331

T(k)) 2

erve

F, = Bk, Fy) = 3 gk Fy) S (ay=1-vy) exp((1+e)3)
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2

m = Eg E(k,pp), oy = B Qe op)-m) ",

do = i) = B exp (2 (ko)) -

Then we have

LEMMA 7. (Csbrgd, M.-Horvath, L.-Révész, P. (1987)). We

have
E * E
= 0 . D (k) _ 0 - —
(4.4) m = I-E, ~ D(K) = I-E, exp (=T _;) (k=1,2,...),
2 B o'an’ 17 Eo
(4.5) g, = (2 - ) (k=1,2,...),
k (1-Ek)2 D (k) D*(k) D (k)
E E,(1-E,) A
(4.6) (,g(x) = 157y * 0k e
D(k)D (k) 1—eA(1- ; k )
D (k)
1-Ek
for any k=1,2,... and A <-log (l-— ). Especially
D (k)
1-E E A
k 0 2\ e
(4.7) ( ) = 1+ ( -1).
(‘Pzn*(k) D(k) 71 _ X (1-22)
Observe that
l—Ek
(4.8) 0<A=)k = — < 1/2
2D (k)
and
A
(4.9) Jes —22 <o if 0<A<1/2.
1-e” (1-22)
LEMMA 8. For any C1 z4a_l we have
D" (k)
n = M =
ﬁg{s(k,pn); Cln D (k) } s exp(-BTET) (k=1,2,...; n=1,2,...).

PROOF. By (4.7), (4.8) and (4.9)
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*
D (k), _
P&{Ek,pn) zCqn D (k) } =

*
= ngexp(xak,pn)) 2 exp(ACyn B(éf)ﬂ <

s exp(-ACyn g(é))) E%}exp AE(k,p )) =

D (k
= [exp(-ic, D(]i)’) g (exp 26 (K, o] =
E A n

_ - D (k) 0 2)\e _
= [exp(-AcC; s ) (I 519 (1-e*(1—2x) 1))]

1—Ek
where M=—p3—— . Hence we have Lemma 8.

2D (k)

exp(—ﬁ%iy)

In case when k can be very big it is worth while to

formulate

LEMMA 9. For any K >0 there exists a C=C(K)>0 such

that

IA
=]

*

Pg{i(k,pn) = 2nmk + C D (k)logn}
(k=1,2,...; n=1,2,...).

PROOF. By (4.7), (4.8) and (4.9) we have

Pg{dk,pn) z22nm + C D*(k)logn} =

= Pg bxp(xak,pn)) 2 exp(zmmk + ACD*(k)lognH

n

*
ﬁﬂg exp (A&(k,0,))) exp(-2im - 1 CD (k)logn)
- * -
¢ expln E, . 1-E Ey b (k) -1Ek
= * - *
D (k) 0™ (k) B DK opTix
1-Ek
= exp(-—E—— Clogn)
1-Ek
where A=—p5—— . Hence we Have Lemma 9.
2D (k)

333
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Introduce the following further notations

ﬁ=p1(N) = min fi: n >0, RFN+n = aN},
6,=6,(N) = min fi: n %ﬁ, RFN+n = aN},
1= pm+1(N) = min {n: n > ﬁm’ RFN+n = aN},...

. . -1 DQsay)
PO = (el gl ) " = 5T 7753, o D)

= 1-exp(—(T(aN—1)—T(aN-Z)))+...+exp(-(T(uN-l)-T(j)))
and
B" (.M = (1-p(3,3+1,09)) "1 = D(3, g).

Observe that

A* 3 -

. p(i, a =1, o)

(4.100 RN TN = p(j,a) - D3, 9-1) =
D(le) 1‘P(jrj+1: “N)

U341 Uge2 ot Ugmrr

In the same way as Lemmas 8 and 9 were proved one can prove

LEMMA 10. For any j < o We have

N*x
(4.11) epf3,p) 2 con 20Ny ¢ oy B
¢ n 17 83,8 B(j,m

where C; z4p-1 and
N . . .
E(]r ﬁn) = E(JI FN+ 6],1)-5(]' Fn)

further for any K >0 there exists a C=C(K)>0 such that
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. B, A
(4.12) pg{s(j, )z 2n —2 - D (i.N)
j D(j,N)

5. PROOF OF THEOREM 2.

+ B (5,8 1ognis n~K.

K

In order to simplify the notations from now on we assume

that T; >0. (The case T;é 0 can be treated similarly).

Let 2/3 < v < % < 3/4 and introduce the following notations

n=exp(w2N) (where N=Nk=Nk(g))
and
) = min k: Tg <k < g, Tk=-uN+j|lOg T§5|}.
Consider any integer keff(wlN), aN). Then

A
D(k,n) = exp ( max (T.-T _,)) = o exp (¢, N)
0’N 'f(lblN)<j <°’N J oy 1 N 1

and by (4.11)

N*x

D (k,N)

C.,n ———1—1} < exp(-exp(Y,=-9,)N) .
" Bx,N) 21

w

A
eyt (k,5.)

Consequently by (4.10)

uN—l cxN—l

A
(5.1) z gk,6 ) £Cin

2" xw _
k=7 (v,N) no

I
k=t (vy0)  Be,m

IA

%-l

= C z
k=#(y |N)

n

A

1 exp (T (oy=1)-T(k))

C,n I (4j2+4) exp(-j |log =£= )
1 5=0 1-p

IA

2
2X X 1
+ +—_‘) = 4C
(1-x) > (1-x) 1%

4C1n (
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if N is big enough where x=exp(-|log I§E|).

Let ke('r;], *[(wlN)). Then by (4.12)

1-Ea Ax ~
P{{ak,ﬁn) 22— 2N 5% (,N) 1ogn} = n7K.
x Bk,
Consequently
ywlmA PN
(5.2) : Bk,p) s 201-B )n z D _(k,N)
k=1 N K=ty E,D (k,n)
P N)
*
+ C logn I ﬁ (k,N) =
k=r§
< %_—_a_) n o exp(-wlN) + C(logn) e N exp(%) = o(n)
(5.1) and (5.2) combined imply
(h_l
(5.3) r Bwk,p) s dcn £(x) a.s.
k=1;
where
2% -x+1
£(x) = X X2
(1-x)
and
= - Py = B
x = exp(-|log 1_pl) T-p°
Similarly one can see that
+
TN
L Bk, 8) = 4cn £(x) a.s.
k=(h+1
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Hence

IA

(4C1 f(x)+1)n.
Let (4C1 f(x)+1)n=m then for any € > 0 we have

o m
E((149m) 2 E(Fytm) 2z &F 46 ) 2 E(OIN, FN+5n)—n = m

what proves the Theorem.

REMARK 5.1. In fact we have proved a stronger result than

Theorem 2. It can be formulated as follows:
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*
THEOREM 2 . For almost all environment E>there exists

a sequence of positive integers n1=n1(E) < n2=n2(2) < ...

such that

g

E(nk) 2 (1-¢) ZEI_?TET:T a.s.

for any € > 0 and for all but finitely many k.
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Section 3 essentially investigates the properties of the Sinai-
valleys and says that sometimes the Sinai-valley is very deep,
while Theorem 1 is based on the fact that the point 0 cannot be
very close to the deepest point of a deep Sinai-valley. The
essential difference between the mentioned papers of Golosov
and Sinai and the present paper is in the fact that they study
the behaviour of the location of the random walk instead of the
local time and Sinai proves a weak law of large numbers and
Golosov proves a limit distribution theorem while the above
results can be considered as a law of iterated logarithm. However
the result of Golosov strongly suggests that the conjecture of

our Introduction must be true.
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