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Société Mathématique de France 

Astérisque 157-158 (1988) 

Inverse local times, positive sojourns, 
and maxima for Brownian motion 

by Frank B. KNIGHT 

Let B(t), B(0) = 0 , be a standard Brownian motion on , and let 

d ft 

£(t,x) = -7— I/_oo A(^( s))^ s D e * t s local time, continuous in (t,x) with ax J Q ( °°,xj 

probability 1 by Trotter's Theorem. We denote £(t,0) by £ Q(t), and for 

a > 0 let T(a) = ̂ _ 1^(2a) = inf(t : |^Q(t) > a) (the factor i is 

introduced for notational convenience later). In the present work we are 

concerned with finding the joint distribution of the three random variables 

r T ( a > 
T(a), S (a) = Ifn .(B(s))ds, and M (a) = max B(t). To indicate how 

J 0 C°* > t<T(a) 

one arrives at this problem, we recall that £(T(a),x) is a tractable process 

in parameter x which can be used to define the three variables by the 

formulae 

T(a) = F £(T(a),x)dx, S+(a) = |*(T(a) ,x)dx, and 
J_oo Jo 

M +(a) = inf{x > 0 : £(T(a),x) = 0}, P - a.s. 

Indeed, ^-£(T(a),x) defines two independent diffusions with initial value a 

d 2 1 
and infinitesimal generator y —g- , namely the processes ^ £(T(a),x), x > 0, 

dy 

and £(T(a), - x), x > 0. For reference to these facts, we can cite 

[7, Theorem 5.3.20]. Therefore, the above joint distribution easily extends to 

cover that of the 5 variables obtained by including S (a) and M (a), 

defined in the obvious way. Moreover one can hope for a reasonably simple 
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answer. Unfortunately, however, even this seemingly natural problem is by no 

means trivial, and the answer (insofar as we can give one) is not entirely 

simple. 

A second reason for giving attention to this particular problem is its 

connection with the Brownian bridge. We recall that, as shown by P. Levy, the 

process b(t) = B(t) - tB(l), 0 < t < 1, is independent of B(l), and thus can 

be expressed as B(t) conditional on B(l) = 0. Hence the name "Brownian 

bridge" (although, to be sure, the "bridge" is clearly in an extremely bad 

state of repair). Now letting s(x) denote the local time at x of b(t), 

it is well known (and easy to see) that we have the conditional equivalence in 

law 

(1) (s(x)|s(0) = 2a) = (4(T(a),x)|T(a) = 1). 

The densities of s(0) and T(a) being known from Levy's work, it follows 

that with the 5 variables introduced above one can also express the joint 

density of the 5 corresponding variables 

(s(0), s(x)dx. s(x)dx, max b(t), min b(t)). 
J 0 J-«> 0<t£l 0<t<l 

Besides, this also follows by a recent result of Biane, LeGall, and Yor [1, 

Theorem 1]. from which it is easy to deduce the following identity of Laplace 

transforms 

(2) E exp - X 1M +(a)T 
1_ 
2 a) + A S * a)T X(a) + X3ln(aT 

1 
2 

<*))) 

"J5 

Air 

E exp - X.. max b + X 0  
1 t Z A x)dx ̂  (X- - l)ln s(0)) X. > 0. 

Remark. The choice of a = 1 in the above paper was evidently only for 
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convenience, and in any case the left side of (2) does not depend on a, as 

seen by a scaling argument. We do not know whether (2) is the most expeditious 

way to transfer the results for B(t) to b(t) in the general setting. In 

the special case = 0 it is easier to proceed directly, as done below 

(Corollary 1). 

Let us now begin by giving the three marginal densities of T(a), S +(a), 

and M +(a). 

_ 3 
[2 2 2 

Theorem 1. (a) The density of T(a) is aj— x exp(-2a /x), x > 0. 
(b) The density of S +(a) is that of T(a/2). (c) The density of M +(a) is 
-2 

ax exp(-a/x), x > 0. 

Proof. (a) It follows by L E V Y ' s equivalence (B(t) - M(t), M(t)) = 

(|B(t)|. € 0(t)). where M( t) = max B(s), that T(a) = M^"1^(2a) 
s<t 

[7, Theorem 2.5]. (b) As noted above, T(a) = S +(a) + S (a) is a sum of 

independent, identically distributed random variables. Consequently, 

S +(a) = T(a/2) as asserted, (c) Again as observed above, the diffusion i -

£(T(a),x), x > 0, has M +(a) as passage time to 0, i.e. M +(a) = 

inf{x > 0 : ~ £(T(a),x) = 0 } . Its initial value being a, we can refer for 

example to [7, Theorem 4.3.6] for the distribution of the passage time (the 

present process is equivalent to twice the process treated there). 

Remark. This last result is not to be confused with the density of max 
x>0 

£(T(a),x), which is elementary. Indeed, since £(T(a),x), is a diffusion in 

natural scale, P{max £(T(a),x) < y} = (y - 2a)y~1, y > 2a. Therefore, its 
x>0 

_2 

density is simply 2ay , y > 2a. 

The corresponding results for the Brownian bridge b(t) are due to 

P. L E V Y , with the possible exception of that for max b(t). Of course T(a) 

corresponds simply to 1, by definition of b(t). On the other hand, the 
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density of s(0) is the same as that of M(l) given that M(l) = B(l), by 

Levy's equivalence cited above (because |B(t)| conditioned by |B(1) | = 0 is 
2 

equivalent to |b(t)|). This density is x exp(—^-), according to [9, §42, 

(10)]. The fact that J 00j(b(t))dt has a uniform distribution on (0,1) 

(constant density 1) is known as P. Levy's Law [5, 2.6, Problem 1]. Finally, 
the density of max b(t) can be expressed by convoluting the passage time 

0*t£l 
density of B(t) to x with the return time density to 0, and dividing by 

_ 1_ 
2 

the density of B(l) at 0, which is just (2ir) . In this way we obtain 

the probability that the maximum exceeds x. The derivative then expresses the 

density, but in the form of an untractable integral. Actually, however, it can 

be simplified, since we know from Doob's paper [4, §6] that the distribution of 
2 

the maximum is just 1 - exp(-2x ), 0 < x. 

We also easily obtain a joint density for b(t). Stated in conditional 

form, it is 

Corollary 1. The conditional density of J 1^ 00j(b(t))dt given that 

s(0) = 2a is 

_ 3 2 2 

(2 ySFT̂ CtCl " t)) 2 exp[~a
2ffi I 1 ^ ] . 0 < t < 1. 

Proof. In view of the equivalence (1), the required density is also that of 

(S+|T(a) = 1), where T(a) = S + + S~ as before. By Theorem 1 this is the 

convolution of two densities as for T(a/2), divided by a 2 
J TT 

exp(-2a2), 

which reduces easily to the expression stated. 

A worthwhile check of this result is to derive from it P. Levy's Law for 

i: 
I(0 c o ) ( b ( t ) ) d t * W e m ultiply by the density of I - ( 0 ) . which in terms of 

a is 2(2a exp(-2 a )) by Levy's result quoted before, and integrate. The 
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INVERSE LOCAL TIMES, POSITIVE SOJOURNS, AND MAXIMA FOR B.M. 

_ i_ 
2 

change of variables /3 = a(t(l - t)) reduces the integral to 

J? J" 0 2e 2 ^ d/3 = 1 for all t € (0,1), i.e. the uniform density. 

Returning now to our original problem of (T(a), S +, M +) (we drop a in 

S +, M + since it is fixed throughout) it is clear that the foregoing proof 

contains also the joint density of (T(a),S+), or more precisely that of 

(S+|T(a)). We will not pause to write the exact expression, but go on to 

consider densities involving M +. Since S and M + are conditionally 

independent given S +, it suffices to consider the joint density of S + and 

M +, from which that of the triple follows immediately by adding S . The 

approach which seems most workable here is to derive the conditional density of 

S + given M + = m > 0, and this will be done by first deriving its Laplace 

transform E(exp - XS +|M + = m). 

To this end, we can apply the representation of D. Ray [13] for the 

reversed (conditional) process i - i(T(a)t m - x), 0 < x < m. Letting T(y) be 

a diffusion equivalent to |B^| (y), where |B^| is a 4-dimensional Bessel 

process, the representation of Ray shows that £(T(a),x), 0 < x < m, 
+ 2 - 1 conditional on M = m is equivalent in law to (1 + x) T((1 + x) -

(1 + m)" 1), conditional on T(0) = 0 a n d T(1 - (1 + m)" 1) = 2a. This 

argument is given in [7, Corollary 5.1.8], where the process involved there 

need only be conditioned by the requirement of 2a as inital value at x = 0. 

Let us remark, before going on, that the transform we derive will be checked 

later by the entirely different methods of excursion theory, but the present 

method has interesting biproducts. Accordingly, we have the representation 

(4) (S +|M + = m) = |(1 + x)2r((l + x ) " 1 - (1 + m) _ 1)dx 
J 0 

f1 -4 -1 
_1 u T ( U - (1 + m) )du 

J(l+m) 1 
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. rm( 1+m) A A _i 
= (1 + my ((1 + m) v + 1) T(v)dv, 

J 0 

4 
by elementary changes of variables. Now let us represent T ( V ) = ^ lX^(v), 

k=l 
where B^,...,B^ are independent Brownian motions. The condition 

-1 2 -1 T(m(l + m) ) = 2a can be divided arbitrarily among B^(m(l + m) ), 

1 < k < 4, since (B^mfl + m)" 1), 1 < k < 4) is uniformly distributed over 

the sphere of radius /2a under the conditioning. It will be convenient to 

assume that Bk(m(l + m) ^ = J| , 1 < k < 4. so that our 4 terms in the 

integral (4) are both independent and identically distributed. Next, we apply 

a scaling argument to change the upper limit m(l + m) * to 1. Namely, 

letting W k(t) = ^ m * *j B k ^ m
 m

 x tj , the integral (4) can be written in the 

form 

4 ! 
(5) J (m + l) 2m 2 J (m 4s 4 + l)" 1 W2(s)ds |s = 2L_Ll vj 

k=l 0 

in which W^(s) are independent Brownian motions starting at 0 and 
1_ 

conditioned by W k(l) = [^^f-^] 2. 1 < k < 4. 

Now we are ready to introduce the Laplace transform of the distribution of 

expression (5). At first thought this appears to depend on the three 

parameters (X.a.m). However, it is plausible that the scaling property of B^ 

should introduce an invariance in the transform under an appropriate scaling 

relation among these parameters. Routine scaling argument (which we shall 

omit) indeed shows that the transform actually depends only on the pair of 

parameters m/X and am ^. 

Granting this invar iance, we can now derive the transform by appeal to some 

of the oldest known Wiener integrals. 

2 3 8 
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Theorem 2. E exp(-Xs+|M+ = m) = 2m2X(sinh m /2X ) 2exp(a m 1(1 - m/2X cotanh m 

/2X)). 

Proof. Set m ^ = \i, and let m > 0+ with ]± fixed and am 1 = r fixed. 

The condition W k(l) = (fo ^ ] 2 i n (5) b e c < > m e s w
k(!) = [§]2> ««id t h e 

transform of (5) becomes (E exp(-jx W?(s)ds))4. Evidently there is no 

difficulty with this limit procedure since the law of depends continuously 

on the given value of ^ k(l) i n view of Levy's representation W(t) = b(t) + 
— 2 

tW(l). Now this transform is well-known to be (2ji) (sinh /2JI ) exp r(l -

/2JLI cotanh /2JI), as required. 

The history of this last result is tied to P. Levy in an interesting way. 

In [8, 10° (1940)], after introducing the "stochastic area" of a plane Brownian 

motion given its value at t = 1, Levy showed that this area is Gaussian with 
mean 0 and variance a 2 = ~ J (W2(s) + W^(s))ds, where ( W ^ . V Y denote the 

two Brownian components. At this point, he did not succeed in obtaining the 

exact Laplace transform. However, by 1951 in [10, (1.3.4)] he had succeeded in 

obtaining the Fourier transform of the area by an entirely different method (by 

Fourier series expansion of the path functions). In view of his earlier 
2 2 

observation, this is just the Laplace transform of o with X in place of 

X and a factor i- in the exponent. However, at least in [10] Levy does not 

mention this fact. Meanwhile, building in part on the work of Cameron and Martin, who had by 

f1 2 
1944 obtained the Laplace transform of B (s)ds when B(l) is not given in 

J 0 
advance, E. W. Montroll in 1952 published explicit expressions including that 

for E exp(-X 
r l 2 B I 
0 

s)ds), conditional on arbitrary B(0) and B(l) [12, 

(3.41)]. This of course contains the case we need, as does also previous work 

of Levy. One can argue that our case is even implicit in the papers of Cameron 

and Martin, but we were not able to extract it from their general formulas. 
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The present application has an interesting biproduct, as follows. 

Corollary 2. For the one-dimensional Brownian motion starting at 0, we have 

E(exp - X f1B2(t)dt|B2(l) = c) = E(exp - X f (1 + t 4 ) " ^ t)dt |B2(1) = 2c). 

Proof. Instead of letting m > 0 as in the above proof, we just set m = 1 

in 5) and use the invariance of the transform. 

Remark. The result of Theorem 2 can also be obtained by suitably 

differentiating the transform from Theorem 2.1 of [6, (1969)]. Indeed, this 

result is easily equivalent to it, and we first obtained it by this method 

(which in turn was based on a random walk approximation). Thus the present 

result apparently dates from 1969. However, the present method, based on Ray's 

representation, seems to give a new insight as well as yielding Corollary 2. 

Below we treat a third method which leads, besides, to an inversion of the 

transform. 

There is also a second consequence which seems quite surprising, so we 

state it as 

Theorem 3. ( N B) For all a > 0, E exp(-XS+M~2) = 2/2X (sinh 2 /2X)""1. In other 

words. S +M 2 has the same distribution as 4 J (W2(s) + W^(s))ds given that 

W^(l) + W^(l) = 0, i.e. 4 times the integral of a squared Bessel bridge of  

dimension 2. 

(NB) A probabilistic explanation for this identity, together with various 
related developments obtained by P. Biane and M. Yor during the Colloque, is 
to appear subsequently. 

240 
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Proof. By Theorem 1, (c) and Theorem 2 we need only calculate 

E exp(-A S +M" 2) = J°E exp[- S+Ja m"2exp |Jdm 

= 2X(sinh /2X ) ~ 2 Ĵ exp̂ - | /2X cotanh /2xj^- dm 

= 2X(sinh /2X ) ~ 2 j/2X cotanh /2xj 

= 2/2A (sinh 2/2X ) _ 1 . 

We now consider the meaning and inversion of the transform of Theorem 2. 

The factor 2m2X(sinh m /2X ) 2 is the transform of where the 

distribution of X depends neither on m nor on a, and has transform 
—2 

2X(sinh /2A) . This transform is familiar from "excursion theory." It is the 

square of the transform of 1st passage time to 0 of a 3- dimensional Bessel 

process, starting at 1. According to D. Williams' well-known characterization 

of the Brownian excursion law (see for example [14, p. 233]) this is the 

transform of the duration of a Brownian excursion of maximum 1. Then it is 

apparent what meaning is to be ascribed to the factor under consideration. It 

is the transform of the duration of the unique excursion by time T(a) which 

reaches the maximum m. 

The inversion of this transform is therefore a convolution of two 

identically distributed first-passage-time distributions. These distributions 

also go back to P. Levy. The detailed inversion is found in [3] which noted 

the simplification which occurs in the present (3-dimensional) case. 

Subsequently it occurred in many papers and contexts, of which we will cite 

only [2, (3.17)] and [11]. In terms of Chung's distribution F^x) = 
00 

^ (-l)nexp(-n2x), 0 < x < °°, the passage time distribution is |^5rj• 
n = - o o 

2 4 1 
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Louchard [11] gives the representation F^(x) = 20 j~j - 0 ĵj in terms of the 

3rd Jacobi 0-function, as well as the relationship to the Kolmogorov-Smirnov 

distribution, and other applications. The convolution of two terms with 
00 

2 
distribution F 1(x) has distribution F 2(x) = 1 + 2 ^ e" n X(l - 2n 2x) [2, 

n=l 
(4.9)], and consequently we have the 

First Inversion. The factor 2m2X(sinh m/X ) 2 is the transform of ^ F ^ J ^ -

"2 1 m x . 

Remarks. By contrast, the maximum of a Brownian excursion of duration i has 

distribution F 2|jx 2j, 0 < x < «>, [2, Theorem 7]. Why the same F 2(x) is 

involved in both of these apparently reverse situations would seem to us to 

deserve a probabilistic explanation of some sort. 

Turning now to the second factor 

(6) exp am *(1 - W2X cotanh m/2X ), 

we need only recall a little of the Ito excursion theory to understand its 

signification. With local time as time parameter, the excursions of B(t) 

above 0 form a Poisson point process, and the expected frequency of excursion 

-2 -1 C -2 maxima has density x dx. Therefore, m = x dx is the expected number 
-'m 

of excursions by T(l) whose maxima are at least m, and exp(-am ) is the 

probability of no such excursions by T(a). Now it is easy to guess the 

meaning of (6), which is the transform of the total duration of positive 

excursions by time T(a) conditional on the assumption that all have maxima 

less than m. But then the factor exp(-a/2X cotanh m/2X ) must be the 

transform of the duration of positive excursions by time T(a) for the process 

B(t), killed (or absorbed) upon reaching [m,0 0). 
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This last can be represented in the form exp^-a ĵ íl - e ̂ yjn+(dy)j, 

where n+(dy) is the Levy measure of T(a) for the above killed process 

(actually, n+(dy) also has a point mass m * at -h» to allow for the case 

T(a) = <», which must be included in our representation). Now to calculate 

n (dy) we can use the Levy formula [5, 6.2] n (dy) = lim e *P £(T n € dy), 

where T Q denotes the passage time to 0 of the process absorbed at m. For 

e > 0, P 6 ( T Q € dy) is the probability of absorption at 0 for the process 

with two absorbing barriers at 0 and m. It is a quantity whose density has 

a well-known trigonometric series expansion [7, Theorem 4.1.1], and we obtain 

easily 

00 

(7) n+(dy) = lim [e"1 \ \ (-l)n n cos nir sin ^ exp[- i{nZ)2y)]]dy 

e-0+ m n_-^ 

00 

2 -3 V 2 f 1 ,roi\2 1 , 
= ir m 2 n e x P [ - 2 ^ yJdy* 

n=l 

To apply this to T(a), however, we have to remember that the local time of 

[5] is i- of our ^ ( t ) , so that actually we are using the appropriate 

definition of T(a). Therefore, it follows that 

(8) exp (-a/2X cotanh m /2X) 

f 00 -

= exp - a nT1

 + £ (1 - e - X V n T 3 J n2exp[- |(^) 2y]dy 

n=l 

f oo 

= exp - a nT1 + Xm""1 J J* exp[-Xy - i { ^ ) 2

y ] d y 

n=l 0 

r 00 ~ 

= exp - a m" 1 + 2Xm~1 \ [x + ^ - f j , 

n=l 

2 4 3 
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where we integrated by parts for the second equality (after checking that 
CO 

V - 2 

lim y ) e n y = 0). 
y^o+ \ 

Remarks. One can also calculate the Levy formula E exp(-XT(a)) = 

exp(-aG~1(0,0)) where G^(0,0) is the Green density of B(t) with absorbing 

barriers at both ± m. This gives the result exp(-2a/2X cotanh m/2X ) for 

the transform of T(a) for the process with two barriers, as expected, but it 

requires using an interesting identity from complex variables, namely 

2 _ I 
(9) a" 1 J (x + | [ ( 2 n

2 " ^ ] = (2X) 2tanh m /2X. 
n=l 

Another curious observation is that we can express the density n+(dy)(dy) * 

from (7) by using the same as in the first inversion: 

(10) n+(dy)(dy)"1 = •§? y" 3 / 2F 2(2mV 1). 

_ 1_ 
2 -1 

where we applied the identity 9(x) = x 9(x ) as in [2, (4.10)]. 

Returning to (8), we observe that it has a form which can be inverted as an 

infinite convolution of distributions with transforms 

(11) exptW^Kff]" 1 ] . 

provided that these inversions can be identified and that the convolution 

series converges. It is clear from (8) that these are the transforms of 

compound Poisson random variables with intensity parameter 

X^ = air2m 3 n 2 Ĵ expĵ - yjdy = 2am not depending on n. Letting 

2 4 4 
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have the density ^{jjjj exp£- g'Jjjj yJ » t n e n*** compounding random variable is 

equivalent to n ^C^* Since the convolution corresponds to a sum of 
-2 -3 

independent random variables, with expectations \i = n (4annr ) and 
2 -4 -3 -5 

variances = n (16am ir ), it follows that the series converges with 
f N 2 -ll 

probability 1. Hence the inversions of exp -2aAm * ^ jx + jĵĴJ j 
n=l ^ 

converge in law as N — » «>. Also, since the summands are positive, and have a 

density apart from the probability mass at 0, it follows that the limit law 

(which has no point mass at 0) has a density. To see this, one need only 

remark that, conditional on any of the first N terms being non-zero, the sum 

has a density, and as N — • 0 0 this given event tends to probability 1. 

Turning to the inversion of the terms (11), we observe that this is related 

1 d 2 

once more to the process ~- € (T(a),t), t > 0, with generator y —=• . For 
2 dy 2 

convenience here we let t denote the parameter (instead of x) and let 0 

be introduced as an absorbing boundary. Then the semigroup T^f(x) satisfies 

T t(e _ A x) = exp(-Ax(l + At)" 1), in accordance with [7, (4.3.12)] (which is for 

|- the present process, i.e. i £(T(a),t)). It is easy to see that, for each 
_2 

n, the present transform (11) is the special case with X r = 4om(mr) , t = 
2 -2 

2m (mr) . The inversion is therefore the transition density of this process 

with x n as starting point and t as time parameter. Referring to [7, 

(4.3.13)], it is (in terms of variable y) 
(12) t"1 

n X n y I 5Xp 

where 1̂  is the modified Bessel function, and we also have the point mass 

exp(-2am *) at 0 corresponding to absorption by time t . 

Unfortunately, in spite of the convolution properties of the semigroup, we 

do not see any easy way to convolute these distributions explicitly, nor do we 

2 4 5 
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,2 
know why the ubiquitous generator y — ^ is again implicated. Let us simply 

dy^ 
state, in conclusion, the 

Second Inversion. The factor (6) has as inversion the limit as N » <» of 

the convolution from n = 1 to N of the probability distributions (12). 

Final Remark. Noting that = — does not depend on n, it is easy to t m n 
see that the distributions (12) are all derived from a single distribution by 

changes of scale. Indeed, for n = 1 the density (12) reduces to 

_ 3 1 2 - 3 1 
(13) im [exp- [^+ JL_ylll f27rm ^ a y ) ^ , 

and if denotes a random variable with this density on (0,a>), and P{X^ = 

0} = exp(-2can ^ ) , then for every n the random variable = n has the 

c istribution (12). 
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