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Representation for functionals of superprocesses 
by multiple stochastic integrals, 

with applications to self-intersection local times1 

by Eugene B. DYNKIN 

ABSTRACT. The representation of functionals of a Gaussian process by the multiple 

Wiener-Ito integrals plays an important role in stochastic calculus. We establish a similar 

representation for a certain class of non—Gaussian measure—valued Markov processes. A process X 

of this class can be associated with every Markov process £ and we call X a superprocess over £. 

The existence of local times and self—intersection local times for X depends on the behaviour of 

the transition density of £ as t->0. 

1. INTRODUCTION 

1.1. Let £ t , teA be a Markov process in a measurable space (E,#) with the transition 

function p(s,x;t,dy) and let M be a set of measures on (E,#). We say that an ^-valued Markov 

process X t is a superprocess over ^ if, for all r<t€A, y£k and BtB, 

( 1 . 1 ) E r ^X t (B)=J / ,(dx)p(r,x;t ,B). 

This implies 

(1.2) E r ) A < f , X t > = < T ^ > 

where 

T[f(x)=Jp(r,x;t,dy)f(y) 

'Partially supported by National Science Foundation Grant DMS-8505020. 
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and <f,//> means /fd/z. (The domain of integration is not indicated under the integral sign if this 

is the entire domain of the corresponding measure.) 

1.2. In this paper we deal with a special class of superprocesses introduced and studied by 

S.Watanabe [16] and D.Dawson [1], [2] (see [3] for more references). 

We start from a Markov process £ t,teA=[0,u] on (E,#) assuming that its transition 

function p(s,x;t,B) is B(A)xB*B(A)— measurable for every BeB (B(A) is the Borel a—algebra in A) . 

We define M as the space of all finite measures on (E,#). We consider a system of particles which 

move independently according to the law of the process ^ . Each particle has the mass /?. There 

are n identically distributed particles at time 0. At time a each particle dies leaving, with equal 

probabilities, 0 or 2 offspring, and the offspring develope independently in the same way. 

By passing to the limit as n-+oo,a,/H) and n/M, /?/(2a)->l, we get a superprocess X t over ^ 

for which 

(1.3) E r ) / i e < f ' X t > = e < ^ r ' ' i > . 

Here f is an arbitrary negative measurable function and <p satisfies the integral equation 

(1.4) ^ } V > s

2 ) d s +T\f 

on the interval [0,t]. 

The existence and uniqueness of the solution of (1.4) and of the corresponding superprocess 

X have been proved in [7]. [Under the assumption that p is a stationary transition function and 

that the related semi—group is Feller and continuous this has been proved first in [16], see also 

in]]-

We put 

T*=0 for r>s, T*jf=f s ' s 

and we rewrite (1.4) in the form 

(1.5) <p={p*ip+h. 

where ip=0 for s>t and 
s 

(1-6) ( V * ^ ) R = J T ^ ( ^ S ^ S ) D S 

and 
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(1.7) h r(x)=T[f(x) 

(the value of t is fixed). 

If h is a bounded function then, for all sufficiently small a, the equation 

(p=<p* ip+ah 
has a unique solution and this solution is an analytic function of a [see [2] or [7]]. 

1.3. Our investigation is based on an explicit expression of the moments of the random field 

<f,X t > in terms of the transition function p. The main step is done in the following: 

T H E O R E M 1.1. LetK M I N {tp.. . ,t n }eA. For arbitrary positive measurable Junctions fp...,fn, 

(1.8) E ^ < f p X t i > . . . < f n , X t n > 

K 

= I II / W A (r,x)/x(dx), 
A p . . . , A k i = l E 1 

the sum is taken over all partitions of {1,2, . . . ,N} into disjoint non-empty subsets Ap...,A^ 

( K = L , 2 , . . . N ) , and 

(1.9) W A = I I h 1 

ieA 
with 

(1 .10) hj (x)=T^(x) . 

The symbol fj means the sum of *—products over all orders of factors and all orders of 

operations. For instance, 

W { 1 2 } = h l * h 2 + h 2 * h 1 ' 
W { 1 2 3 } = ( h 1 * h 2 ) * h 3 + h 1 * ( h 2 * h 3 ) 

4- ten more terms obtained by permutations of 1,2,3. 

1.4. There exists an obvious 1—1 correspondence between *—monomials and directed binary 
1 2 3 

trees with marked exits. For instance, the monomial (h *h )*h corresponds to the tree 

x 
X \ 3 
1 2 
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and monomial (h**h^)*(h^*h^) corresponds to the tree 

i a 4 
3 2 

(cf. Wild (1951)). 

The right side in (1.8) can be represented as the sum of terms 

(1.11) < H r , / />. . .<H r ,n> 
7 1 J\c 

where  is the *—product of h^JeA. corresponding to a binary tree f1, marked my the elements of 

Aj. We associate with the term (1.11) a graph D whose connected components are marked trees 
1 9 0 

f 1 , . . . ,7\ . For example, the diagram i l l corresponds to the term <h ,//> <h ,//> <h ,//> and 
1 K 1 2 3 

the diagram 

i 
/ \ i 
1 3 2 1 3 2 corresponds to <h *h ,//> <h ,//>. 

1.5. In general, a diagram D is a directed graph with a set A of arrows and a set V of 

vertices (or sites). Writing a:v->v' indicates that v is the beginning and v' is the end of an arrow a. 

For every vertex v, we denote by a + ( v ) the number of arrows which end at v and by a_(v) 

the number of arrows which begin at v. We consider only diagrams whose connected components 

are binary trees that is for every veV there exist only three possibilities: i) a + ( v ) = 0 , a_(v)=l; 

(ii) a + ( v ) = l , a_(v)=0; (iii) a + ( v ) = l , a_(v)=2. We denote the coresponding subsets of V by 

V _ , V + and VQ, and we call elements of V_ entrances and elements of V + exits. Put a e A + if the 

end of a is an exit, and aeAg if this is not the case. 

Let fl)n be the set of all diagrams with exits marked by l,2,...,n. We label each site of DeD n 

by two variables — one with values in K + and the other with values in E. Namely, (t.,z.) is the 

label of the exit marked by i, (r,x y) is the label of an entrance v, and ( s y , y v ) is the label of a site 

v e v 0 . 

We agree that p(s,x;t,B)=0 for s>t. For an arrow a:v-V we put p a=p(s,w;s',dw') where 

(s,w) is the label of v and (s\w') is the label of v \ Using this notation we can restate Theorem 1.1 
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in a new form: 

THEOREM 1.1'. For r<min {tp...,t }eA and all positive measurable fp...,fn, 

( 1 . 1 2 ) V ^ l ' V - ^ t > = ^ C D 
1 ° D ^ n 

where 

( H 3 ) c D J II Mdx v) II P a II d s y I I f f a ) -
V G V _ aeA VGVQ i=l 

1 3 2 
Example. The diagram D corresponding to <h *h ,//> <h ,//> can be labelled as follows 

( r , X l ) ( r , x 2 ) 

i i 

^ ( S i ^ i ) ( t 2 , z 2 ) 

(tpZ^) (^3'z3) 

(in contrast to the marking of the exits, the enumeration of V_ and V Q is of no importance), and 

we have 
1 3 2 f c D = < h *h ,//> <h , / i>=/ i (dx 1 ) / / (dx 2 ) f 1 (z 1 ) f 2 (z 2 ) f 3 (z 3 )ds 1 

xp ( r , x 1 ; s 1 , dy 1 )p ( s 1 , y 1 ; t 1 , dz 1 )p ( s 1 , y 1 ; t 3 , dz 3 )p ( r ,x 2 ; t 2 , dz 2 ) . 

1.6. Let )¥ be the space of all bounded measurable functions on AxE with the topology 

induced by the bounded convergence. The operation ip*ip is a continuous mapping from JV * JV to JV. 

We denote by JC the set of all functions of the form (1.7) with bounded f and we introduce the 

following assumption: 

1.6. A. If C is a closed linear subspace of TV and if CD K, then C=W. 

We show in the Appendix that condition 1.6.A is satisfied if p is the transition function of 

a right process. In particular, 1.6.A holds for all classical diffusions. 

It follows from Theorem 1.1 that 

(1.14) < f 1 , X t i > . . . < f n , X t n > 

2 
belongs to L (P ) for every yeM and all bounded f - , , . . . , f . We fix a measure fj£M and we denote 

\ii i n 
2 2 by L n the minimal closed subspace of L (P^) which contains all the products (1.14). 
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Put 

(1.15) ( ^ * ) n = J ^ h ^ p " - W ^ W i ^ + i ; " - ; W z t o ) 

7 2 n ( d t 1 , d z 1 ; . . . ; d t 2 n , d z 2 n ) 

and denote by ^ the set of functions (p for which ( |^ | , |^ | ) n <oo. Measures 7 2 n will be specified in 

such a way that (y?,y?)n>0 for all For every </?e^ we define a multiple stochastic integral 

(1.16) y ^ t ^ ; . . . ^ J , 
J 1' 1 n' n 

with the property 
(1.17) E ^ y V ' H ^ n -
Hence I Q is an isometry from the pre-Hilbert space 1̂  to L^. It has a unique continuation to an 

isometry from the completion of K̂j onto L^. One can say that every functional of degree n has 

a unique representation (1.16) with a tpe H . 

1.7. The case of n = l is of special importance. First, we define I^(y?) for (peJC by putting 

(1.18) I 1 (^ )=J^(s ,x )dZ s ? x =<f ,X t > 

for 

(1.19) y(8,x)=T°f(x). 

In other words, we set 

(1.20) JT«f(x)dZ s x =<f,X t > 

for every teA and every bounded measurable f. 

By (1.12), 

(1.21) E / i I 1 (^ 1 )I 1 (^ 2 )=J^ 1 (t 1 ,z 1) ¥J 2 (t 2 ,z 2 )d7 2 

with 

(1.22) 7 2 ( A 1 x B 1 x A 2 x B 2 ) = l A ( O ^ B j ) ^ (0)MB 2) 

+2[dsMdx)p(0,x;s,dy)lA (s)lg ( y ) l A (s)lg (y). 
J 1 1 2 2 

Put p e l ^ t ) of (pel^ and </?(s,x)=0 for all se(t,u], XGE. We call elements <p and tp of 

equivalent if (ip-ip,ip-i))^=Q. 

T H E O R E M 1.2. Classes of equivalent elements o / l j form a Hilbert space %y Under condition 
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1.6.A there exists a unique isometry Ij from 1^ onto subject to condition (1.18). 
o 

A random variable YeL^ is 7^—measurable if and only if 

(1.23) Y=[tfs ,x)dZ S ) X 

for some pe l j ( t ) . We have 

(1.24) E / i { J V ( ^ ) d Z s > x | 7 t } = JW)l s < t dZ 8 j X 

and 

(1.25) E j ^ s ^ d Z ^ ^ J l ^ Q ^ s ^ d Z g ^ J ^ O ^ M d x ) . 

For every pEl^, 

(1.26) M ^ J ^ x J l ^ d Z ^ t e A 
2 

is a martingale, and formula (1.26) describes all L^—valued martingales. 

It is proved in [7] that, under broad assumptions, all martingales are continuous and 

have the quadratic variation 
(1.27) < M , M > , = 2 [ t < ( ^ ( s r ) 2 , X c > d s . 

1 Jo s 

(cf. [14]). In terminology of Metivier [12] and Walsh [15], Z g x is a martingale measure. 

1.8. For an arbitrary n, we put 

(1-28) 7n=X 7 D 

D6D n 

with 

(1.29) 7 D ( A 1 x B 1 x . . . x A n * B n ) 

c n 

=1 II Mdxy)Il P a I I DSvIIlA.(8v.)1B.(yv> 
VGV_ aGAg VGV0 i=l 1 1 1 1 

Here Vj is the beginning of the arrow â  leading to the exit with the mark i. 

Example. For the diagram D at the end of Subsection 1.4 (with r=0) , 

7 D ( A 1 x B 1 x A 2 x B 2 x A 3 x B 3 ) = / i (dx 1 )ds 1 p(0 ,x 1 ; s p dy 1 ) 
x l A 1 ( s l ) 1 B 1 ( y i ) 1 A 3 ( s l ) 1 B 3 ^ l ) 1 A 2 ( 0 ^ B 2 ) -

Let 
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г 2 р 

У V)=J Hv<t i ^)7 2 p(dt,dz). 
i=l 

LEHMA 1.1. For all <p.,...,tp €И, 

(1.30) 

n 

п 
i=l 

/ п 
i=l 

vfiiñ) Infi1*6*)-

Moreover (1.30) holds for unbounded ̂  */ / p ( | ̂  | )<oo for i=l,...,n and some p>n/2. 

T H E O R E M 1.3. t/nder condition 1.6.A, toere exists a unique mapping I n Jh>m ijj to L 2 such 

that 

(1-31) y^ x -^ n Hi(^) . . - i i (v n ) 
and (1.17) is true for all Jbr a// TTte ima^e I n(1^) is everywhere dense in L 2 . 

1.9. Now we assume that: 

I.9.A. There exists a measure m (a reference measure) such that p(s,x;t,.) is absolutely 

continuous with respect to m for all s,t and x. 

It is shown in [9] that the density p(s,x;t,y) can be chosen to be jointly measurable in 

s,x,t,y and to satisfy the relation 

(1.32) Jp(s,x;t,y) dy p(t,y;v,z)= p(s,x;v,z) 

for all x,zeE, s<t<veA (for sake of brevity, we write dy for m(dy)). 

Define the delta functions # z, zGE and <^n, n=2,3,... as the linear functionals 

(1.33) Jyx)f(x)dx=f(z) 

(1.34) p n ( x p . . . , x j f ( x p . . , x j d x r . . d x n = j f ( x , . . . x ) d x 

Heuristically, the local time at point z is given by the formula 

(1.35) L z ( B ) = J B < £ z , X t > d t , BeB(A) 

and the self—intersection local time of order n is given by the formula 

(1.36) L n ( B ) = [ <(^,X + x...xX, > d t v . . d t , Be#(A n ) . 
J B

 l i l

n

 1 n 

It follows from the construction of the multiple stochastic integral that, for not too bad 

functions f, 
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(1.37) F <f,X, x,„xX. > d t v . . d t 
J B h l n 1 n 

= J F ( s 1 , x 1 , . , s n , x n ) d Z S i ? X i . . . d Z s ^ X n 

where 

(1.38) F(s 1 ,x 1 ; . . . ;s n ,x n ) 

=J l B(tp...,tJf(y p . . . ,yjnP(s i 5

x

i;t i ,y i)dt idy i . 
i=l 

By extrapolating, heuristically, this expression to the delta functions, we get 

(1.39) Lz(B)=KB( s> x)d Zs,x' 
L n(B)=}K^(s 1,x 1,.,s n,x n)dZ s dZ g x  

J 1' 1 n, n 
where 

(1.40) KZ J B(S,X)=J" P(S,X;T,Z)DT, 

n 

K^(s 1 ,x 1 ; . . . ; s n ,x n ) = [ D T R . . D T F DZ I L ^ ^ z ) . 
E i=l 

The stochastic integrals in the right sides of (1.40) make sense if K z gEl^ and KgGljj. Using 

Theorem l . l 1 we give conditions for this in terms of the transition density p(s,x;t,y). 

Let 
(1.41) G ( S , Y ; Z ) = [ p(s,y;t,z)dt, 

J A 

H(z,C)=JdsdyG(s,y;z)G(s,y;C). 

T H E O R E M 1.4. Suppose that 1.6.A, 1.9.A and the following conditions 1.9.B,C are satisfied: 

I.9.B. The measure fi has a bounded density relative to m, i.e. /i(dx)<c dx for some constant 

c. 

I.9.C. There exists a C<oo such that /dy p(s,y;sf,y*)<C for a//s,s feA, y'eE. 

/ / 

(1.42) H(z,z)<oo, 

thenK « e l ? and therefore there exists local time L . 

Z,i3 1 z 
T H E O R E M 1.5. Suppose that conditions 1.6.A, 1.9.A,B are satisfied and, in addition, that: 
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I.9.D. For every 0>Q, there exists a constant C<oo such that p(s,x;t,y)<C for aU x,yEE and 

s,tGA such that t-s>/?. 

I.9.E. There exists #>0, such that Bc{ | t--t j | >/?} for aU tfj. 

/ / 

(1.43) sup fG(s,y;z)G(s,y;C)H(z,C)Ii"1dzdC<oo, 
s , y J 

then K n B ZE O n there exists the self-intersection local time L N of order n. 

Remark. Random variables LZ(B) and L n (B) are defined only up to equivalence. The 

technique used in theory of additive functional (see, e.g., [8] and [5]) allows to choose a version of 

these random variables such that L z(.) is a measure on A and L n (.) is a measure on A (the latter 

"explodes" on diagonals Dy={t:t.=tj},#j but it is a-finite on the complement of their union). 

1.10. Consider an elliptic differential operator of the second order 
d d 

(1.44) ^ a l j ( s ,x )D I D j f+ ^ b1(s,x)D.f-c(s,x)f, seA=[0,u], XGK^. 
i , j= l i= l 

Under broad assumptions on the coefficients (see,e.g.,[4], Appendix, Theorem 0.4) the 

corresponding parabolic differential equation has a fundamental solution p(s,x;t,y), and this 

solution is the transition density (relative to the Lebesgue measure) of a continuous Markov 

process which we call a classical diffusion in AxR^. Moreover, there exist constants M and a>0 

such that 

(1.45) p(s,x;t,y)< M q^_g(cw:) for all s<teA, x,yeE 

where r= | y—x | and 
2 

(1.46) q{(r)= (27 r t ) ^ / 2 e~ r / 2 t 

(of course, q ^ g d y - x l ) is the Brownian transition density). 

Put 

(1.47) Qj(r)=[*qJ(r)dt. 

T H E O R E M 1.6. Local times L exist for the classical superdiffusion in AxR^ if d<3. z 
T H E O R E M 1.7. Self-intersection local times L N of order n exist for the classical superdiffusion 
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in [0,u]xRd : / 

(1.48) J [ Q ^ 2 ( | x | ) ] n d x = c o n s t . x j 0 0 Q ^ 2 ( r ) n r d - 1 d r < o o . 
R d 0 

COROLLARY. Self-intersection local times L n exist for the classical superdiffusion in AxRd: 

(a) for all n if d<4; 

(b) /orn<4 i / d = 5 ; 

(c) fom<2 if d=6 or 7. 

Theorem 1.6 for the super—Brownian motion has been proved, first, by Iscoe [11]. 

Perkins has proved that the pairs (d,n) listed in the Corollary are exactly those pair for 

which the super—Brownian motion in IR has, with positive probability, more than countable set of 

"n—multiple points" (z is an n—multiple point for X, if z belongs to the support of X, for n 

T TJ 

distinct times tp . . . , t n ) . Presenting this result in his talk at Cornell in fall, 1986, Perkins 

conjectured the statement on self—intersection local times formulated in the Corollary. 

1.11. Acknowledgements. The author is deeply indebted to D.Dawson, I.Iscoe and 

E.Perkins for stimulating discussions. 

2. M O M E N T F U N C T I O N S 

2.1. In this section we prove Theorem 1.1. Our starting point is formula (1.3). The first 

step is the evaluation of 

EIfi exp {a 1<f 1,X t i>+...+oQ<f n,X t n>} 

where r< t^< . . .< t n eA, fp—,fn are positive measurable functions on E and a p . . . , a n are negative 

numbers. 

LEMMA 2.1. For every measure \i and for every i=l,2,...,n, 
n 

(2.1) E R ^ exp I a j <f j ,X t > =exp J F . ( r^o>(dx) 
j=i J 

where a^={ava{+v...,an} and 
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n 

(2.2) F i(r,x;a^)=log exp £ <*j<fj,Xt > for i<tv 

' x j=i J 

=0 for r>t i . 

(Here # x (B)=lg(x) is the unit measure concentrated atx.) 

The functions Fj are connected by the following relations 

(2.3) F j f o x ; ^ ) - J* d s p ^ x ^ d y ^ s ^ ) 2 

A x E 

=1 P^x i t^dy î l^ f^y î+F^^t^y îa^ 1 ) ] 

with F n + 1 = 0 . 

P R O O F . For i=n, formulae (2.1) and (2.3) follow from (1.3). Suppose that they are true for 

i+1 and prove that they are valid for i. Indeed, for r<tj , 
n 

E a x

e x p I a j < f j ' x t > 
x j=i J 

00 
= E r > f [exp a ^ f ^ > P t v *xp J > 1 

x l i t . j = . + 1 j 

= E V x

e X P * i < f i + F i + 1 ( t i , , a ; - ^ ) , X t i > ] 

and (1.3) inplies (2.1) and (2.3). 

2.2. It follows from the remark at the end of Section 1.2 that Fj(r,x;a^) defined by (2.3) are 

analytic functions of a n in a neighborhood of the origin. The next step is to establish that 

(2.4) F.(r,x;ai)= X « A W A ( r , x ) m o d f a j 2 , . . . , ^ 2 } . 

Ac{i , . . . ,n} 

Here A runs over non-empty subsets of {i,...,n}, 

aA=n<V 
ieA 

2 2 
W^(r,x) is given by formulae (1.9),(1.10) and writing F=G mod{a. , . . . ,a n } means that each 

o 
term in the power series F-G is divisible by for some j=i,i+l,...,n. 

Let 
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d/daA=Y[d/dav 

ieA 

Since F i(r,x,0)=0, by Taylor's formula, 

(2.5) F.^a^la^'^x) m o d i ^ 2 , . . . , ^ 2 } 

where A runs over all non-empty subsets of {i,...,n}, 

(2.6) W^(r,x)=^Fi(r,x;a^)/^aA evaluated at ^ = 0 . 

To prove (2.4), it is sufficient to show that 

(2.7) W (̂r,x)=WA(r,x) for all Ac{i,...,n}. 

By (2.3),(1.10) and (2.5), 

w!(R,X)=h.(R,X) 

and 

Wi(r,x)=jp(r,x;ti,dy)wi+1(ti,y) for j>i. 

Hence (2.7) holds if | A | = 1 . If | A | > 1 , then by (2.3) 

(2.8)
 wl( r> xH f d s p(r,x;s,dy)W^ (s,y)Ŵ  (s,y) 

R + xE 1 2 

with the sum running over all (ordered) partitions of A into disjoint nonempty subsets A^ and 

A 2 . Thus (2.7) holds for A if it holds for all A with | A | < | A |. 

2.3. Formula (1.8) follows from (2.4) since the left side is equal to the coefficient at Û ^ . - . Û ^ 

in 
n 

E r / x e x p 1 a j < ( / ? j ' X t . > = e x P { I a A J W A ( r ' x ^ d x ) + R J 
j = l j A 

2 2 where R =0 mod {a, }. a 1 1 ' ' n J 

3. STOCHASTIC INTEGRALS 

3.1. For n = l , the inner product (1.15) with 7 2 defined by (1.22) can be rewritten in the 

following form 

(3.1) M ) x = J ^ ( t 1 , z 1 ) ^ ( t 2 , z 2 ) d 7 2 

= ta(0,z)//(dz) U(0,z)//(dz)4- L ( s , y ) V(s,y)A(ds,dy) 
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where A is a measure on A*E given by the formula 

(3.2) A(C)=2jdsMdx)p(0,x;s,dy)lc(s,y). 
A function ip belongs to 1^ if and only if <pe L 2(A) and </?(0,x) is /¿-integrable. The space of 

/¿—integrable functions f on E with the inner product (f,g)=<f,/¿><g,/¿> becomes a 

one-dimensional Euclidean space if we identify functions f,g such that /fd//=/gd/x. Note that 

( / ? , ^ G ^ are equivalent if and only if ip=ip A-a.e. and /y?(0,x)/¿(dx)=/̂ (0,x)//(dx). Therefore classes 

of equivalent elements of ̂  form a Hubert space %y 

LEMMA 3.1. K is everywhere dense in 1̂ . 

P R O O F . Let C be a closed subspace of and let CJK. Since the bounded convergence 

implies the convergence in 1.6.A implies that CDW. Since 7f is everywhere dense in 1̂, C=lJ. 

3.2. P R O O F of Theorem 1.2. The first statement of the theorem has been already proved. 

The second statement follows immediately from Lemma 3.1 and the fact that I^(£) contains all 

functionals <f ,X t >. 

Note that T?T¿=1 < < Ts and, by (1.20), 
1 s < t < v T v f d Z s , x = T t T v f d Z s , x : 

:Tjf ,X t 

On the other hand, 

j T v f d Z s ,x=< f ' X v>-
Let t<veA. By Markov property and (1.2), 

V < f ' X v > l : r t H E t , X < f ' X v > = < T v f ' X t > -

Hence (1.24) holds for functions ipeK. By Lemma 3.1 it holds for all <^Xj. This implies that (1.23 

2 2 describes all ̂ —measurable functions in L^ and also the statement on L^—valued martingales. 

By setting t=0 in (1.18) and (1.19), we get /1 Qf(x)dZ x = < f , X Q > =<f,/*>. Therefore 

(3.6) J l s = 0 ^ ( s , x ) d Z S 5 X = J ^ ( 0 , x ) / i ( d x ) . 

Formula (1.25) follows from (1.24) and (3.6) since E Y=E {Y| J n } . 

3.3. P R O O F of Lemma 1.1. By Theorem 1.1' formula (1.30) holds for (peJC. This implies, in 

particular, that E L ( < / ? ) ^ < o o for all ipeK and every positive integer p. Lemma 3.1 implies that 

(1.30) holds for all tp^JH. 
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To prove the second part of Lemma 1.1, we start from a function tp such that ^ ( | <p|)<oo 

and we consider a sequence of elements of K 

(3.7) P M ( S , X ) = P ( S , X ) if |v?(s,x)|<m, 

=0 otherwise. 
By the dominated convergence theorem, 

E ^ I l ( % ) - I l ( n c ) ] 2 P = % [ I l ( « ) 2 P ] = ^ p ( « ) - 0 3 5 m>k-°-
Hence I i ( ^ m ) - * Y i n l 2 p ( p ^ ) - W e conclude that Ii(^m)-»Y in L 2 (P^) and therefore <pm converges 

in ^ to a such that l^((p)=Y. Thus l^(<p)eL^(P^). By the dominated convergence theorem, 

(3.8) E//I1(VJ)2P=LIM E ^ J ^ L I M y ?m)=y 0. 
By Holder's inequality we get that 

(3.9) 
n 

E ^ I I l W I ^ 
i=l 

if E I ^ ) z p = / p ( ^ ) < / p ( I Ч\ I )<« for i=l , . . ,n and some p>n/2. 
By applying (3.8) to ^=^1^1+---+ а 2р^2р m ^ comparing the coefficients at ^ • • • ^ p 

we obtain 

(3.10) E, 

2p 

п 
1=1 

2P 
M)=f П 

i=l 
We get (1.30) from (3.10) by setting ^ n + i = — = = ^ 2 р : = л

 WNERE ^(S?X)=1Q(s) a n d taking into 

account that L( л)=<!,/*> and 

7 k ( A 1 x B 1 x . . . * A k x B k ) = < l , / i > 7 k _ 1 ( A 1 x B 1 x . . . x A k _ 1 x B k _ 1 ) 

for AK={0}, B k = E . 
3.4. P R O O F OF T H E O R E M 1.3. Denote by Jr the set of all monomials <Plx-*<Pn 

with 

<p-,,...,<p It follows from Lemma 1.1 that (1.17) holds for functions ^ipe)^ if we define I ((f) for 

V ^ y 1 by formula (1.31). Since I {fr) contains functions 
< f p x > . . . < f n , x t > which generate 4 

Theorem 1.3 will be proved if we show that the closure 
С э{ У 1 in ^ coincides with V Since if1 is 

closed under multiplication, C contains all bounded measurable functions on (A*E) . It remains to 

note that, if then 
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<t>m=<l>if l<M<m, 
=0 otherwi se 

tends to (|) in ^ as m->oo. 

4. L O C A L T I M E S A N D S E L F - I N T E R S E C T I O N L O C A L T I M E S 

4.1. P R O O F OF THEOREM 1.4. By (1.39),(3.1) and (3.2), K z B e ^ if and only if 

(4.1) a 1 = J / i ( d x ) K Z 5 B ( 0 , x ) < o o 

and 

(4.2) a 2 =J / * (dx )ds p(0,x;s,y)dy K Z 5 B ( s , y ) 2 < o o . 

By (1.40) and (1.41), 

(4-3) K z ? B(s,y)<G(s,y;z) 

and, by 1.9.B,C, 

(4.4) a^cu , a2<cH(z,z) 

which implies Theorem 1.4. 

4.2. P R O O F OF THEOREM 1.5. By (1.15),(1.28) and (1.29), K ^ e ^ if and only if, for every 

DED 2 n , 

(4.5) c(D)= J dt 1 . . .dt 2 nJq D(t 1 ,z;.. .;t n ,z;t n_ |_ 1 ,C;---;t 2 n ,C)dzdC 
BxB 

is finite. Here 

(4.6) ( l D ( t l ' z l ; - ; t 2 n ' z 2 n ) 

=J II Mdxy) II d s v d y y II P aIL(s v.,y v.;t i,z i) 

veV_ veV0 aeAQ i=l 1 1 

and p a=p(s,w;s',w') for an arrow a with the beginning labelled by (s,w) and the end labelled by 

(s',w'). (In contrast to (1.29), p a is a transition densitu, not a transition function.) The exits 

marked by l,...,n are called the z—exits and those marked by n+l,...,2n are called the (—exits. Our 

goal is to show that, under conditions of Theorem 1.5, q ^ < o o for all DElD2n. 

Fix a diagram D ^ ^ n and denote by D)° the set of all diagrams obtained from D° by 

cutting some arrows. (Possibly, no arrow is cut, so D°Gfi)0.) We say that a vertex veD is accessible 
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from V'GD if there exists a path 7r:i-̂ —̂ î—*—~̂ r̂xi w ^ v e r t * c e s *l>*2'"*'*m S U C ^ * l = v ' ' * m = v a n c * 

the arrows i,->i0,...,i ,-»i are not cut. A vertex v is accessible from V if it is accessible frome 1 r ' m—1 m — 

some V'GV_. Denote by ID* the set of all DGB)° with the property: at least one z—exit and at least 

one Ç-exit are accessible from V _ . put VGVQ if v GVQ and if all three arrows to which v belongs 

are cut. For every DGID* we define c(D) by (4.5)-(4.6) with P a=p(s,w;s',w') replaced by l g < g , for 

all cut arrows and with d y a dropped for all VGVQ. 

Example. Let 

D°: ( O ^ j M s p y ^ ^ S g . y g M t ^ ) (0 ,x 2 ) 
i i i 

(t^,z^) ^ ^ 2 ) (tpZ-^) 
and let D be obtained from D° by cutting three arrows touching label ^ d ^ ) - Then DGID* and 

c ( D ) = J dt 1 . . .dt 4 J / / (dx 1 ) / i (dx 2 )p(0,x 1 ;s 1 ,dy 1 )ds 1 ds 2 p(s 1 ,y 1 ; t 3 ,C) 
BxB 

x 1 s 1 < s 2 < t 4 , s 2 < t 2 P ( ° ' x 2 ' t l ' z ) -

We say that a family BVcID* dominates a diagram DGID* if every Defl)' is obtained from D by 

cutting a non-empty set of arrows and if 

c(D)< const.x X c(D) . 
DGD)' 

A diagram D of D* is called maximal if it is not dominated by any family ID'cID*. Theorem 1.5 will 

be proved if we demonstrate that c ( D ) < o o for all maximal D. 

Fix a maximal element D of D*. 

P R O P O S I T I O N 4.1. // veVQ belongs to two cut arrows, then VGVQ. 

P R O O F . Let a be the third arrow which contains v and let (s,y) be its label. Suppose that a 

is not cut. Its cutting produces from D another diagram D'GID*. We claim that D' dominates D. 

Indeed, the variable y enters only one factor in (4.6). By integrating with respect to dy and by 

using condition 1.9.C and the inequality /p(s\y';s,y)dy<l, we note that c(D)<const.c(D') 

P R O P O S I T I O N 4.2. Only one z-exit and only one (-exit are accessible from V . 

P R O O F . Suppose that two z-exits v and vf are accessible from V_, that ^i -*—~*im

 a n d 

7r':i|-^...->ir^, are the corresponding paths and ap. . . ,a^ are all arrows in these paths enumerated in 
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an arbitrary order. We shall arrive at a contradiction by proving that D is dominated by the 

family Dp. . . ,D^ where is obtained from D by cutting a^. 

Let s^ and s^ be the time variables in the labels of i^ and i .̂ Note that s^=sj=0 and s

m

= t j > 

s ^ ^ t j , where are the marks of the exits v,v\ Therefore 

(4.7) t r t j - ( s 2 ^ i ) + . . . + ( S m ^ m _ i H s ^ i ) _ . . . _ ( S i i i , _ s ^ , _ i ) . 

The differences in parentheses are in a 1—1 correspondence with arrows a^. 

By 1.9.E, j tj—tj, | >/? for all t=(tp. . . , t n )GB. Therefore, for every teB, at least one of the 

differences in (4.7) is larger than or equal to a=/?/N. Put teB^ if this is true for the difference 

corresponding to a^. Since {BjJ cover B, we get an upper bound for c(D) by replacing the 

integrand q^ in (4.5) by ^ l ^ g Qrj- ^ remains to note that, by 1.9.D, q^<const.q^ for teB^. 

k k k 

P R O P O S I T I O N 4.3. For every veV there exists at most one z-exit and at most one (-exit 

accessible from v. 

P R O O F is analogous to that of Proposition 4.2. 

For every vertex veD there exists a unique maximal path ^ -^" ' • • • "^m s u c c h that lm=v 

and all arrows i a r e not cut. Denote by ir^ the maximal path to the exit marked by k and by 

v^ its initial vertex. It follows from Propositions 4.1,2,3 that: 
(a) Every non—cut arrow belongs to one of paths ^ , . . . , 7 ^ ; 

(b) v p- - -> v

n (corresponding to the z--exits) are distinct and only one of them v^ belongs to 

v_; 
(c) v

n _ | _ p " - > V 2 n (corresponding to the z-exits) are distinct and only one of them v ,̂ 

belongs to V_; 

(d) For every k=l,... ,n except k=£, there exists one and only one k'ejn-f l,...,2n} such that 

v k = V 
Therefore we have the following picture: 
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w.t ]£' v k = v k ' ( k ^ ) 

(4.8) \*t j x f y \ '^V 

z ( z-^ 

\{vjtvp (exits are labelled by z and Q or 

V T v f v k = V ( k*') 
\ p / \ 

(4.9) / \ / ' k \ V 

* / V Z / \ C 

if v^v^,. Here p is the common part of the paths and 71^,; V is the end of /?, and <J,0-' are the 

parts of 7r̂  and TT^ starting from v. 

We associate with a path 7r:i=i^i2->...-^im=j a function 

m m-1 

Q J s ^ s ^ W IT P(Sj ,yj ;sj ,y. )Y[dy[ ds. . 
a=2 OL-L 

Clearly, 

(4.10) c(D)<Jdzd<F(z,0 n Q ^ ^ t ^ Q ^ s ^ y ^ , . O d s ^ d y ^ d t ^ , 

k^^ 

where 

P(z,C)=J/i(dw)Q (0,w;t^)|i(dw)Q ( 0 ^ ,C)dtydtr 

in the case (4.8), or 

F(z,C)=Udw)Q (0,w;sv,yv)Q(r(sv)yv;t^z)Q(T,(sv,yv;tf , 0 d s v d y v d t ^ 

in the case (4.9). By (1.32), 

9 , 
Si'Vi ; s j ' y j 

PÍSi.yjíSj.yj) i < < ds. ...ds. : 
m-2 

m—2; 
s i ' y i ; s j ' y j 

By (4.10), 

(4.11) C(D)<CONST.x F(z,C)H(z,C)n *dzd<. 
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Note that 

(4.12) F(z,C)<const.xJ/i(dw)G(0,w;z)^(dw)G(0,w;C) 

or 

(4.12") F(z,C)<const.xJ^(dw)p(0,w;s,y)G(s,y;z)G(s,y;C)dsdy. 

By (4.11),(4.12) and (4.12'), condition (1.43) implies that c ( D )<oo . 

4.3. P R O O F of Theorems 1.6 and 1.7. The Chapman-Kolmogorov equation for the Brownian 

transition density implies 

(4.13) JQJ( Iy-zI )Qj( I c-yI ) d y < j \ d ( I c-zI )dt= \fif_2{ I z-C| ). 

Since 

RU i ru—S i 

(4.14) Is

qu-sd8=I0
 q s d s ^ Q d ' 

we have from (1.41) and (1.45) 

(4-15) G d ( s ) y ; z )<Q^(a | y^ | ) . 

By (1.41) and (4.13), 

(4-16) Hd(z,C)<const.Q^2(a|z-C|). 

Therefore 

H d ( z , z ) < c o n s t . Q ^ 2 ( 0 ) = c o n s t . J 2 U t ~ ( d ~ 2 ) / 2 d t<oo for d<3, 

and Theorem 1.6 follows from Theorem 1.4. 

By (4.15) and (4.16), 

(4.17) jG d (s,y;z) Gd(s,y;C) H ^ C ) 1 1 " 1 dz dC 

^ c o n s t . J Q ^ a l y ^ n Q ^ a l y - C n Q ^ a l z - C l ^ d z d(. 

Changing variables by the formulae z '=( -z , C,=C~y» w e establish that the integral in the right 

side is equal to 

(4.18) jQ^(a|z-C|)Q^(a|C|)Q^ 2(a| Z |) n- 1dzdC. 

By applying (4.13) to the integral relative to d(, we get that (4.18) is dominated by 

(4.19) cons t .JQ^ 2 (a |x | ) n d x = c o n s t . j Q ^ 2 ( |x | ) n dx. 

Thus Theorem 1.7 follows from Theorem 1.5. 
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4.4. P R O O F of Corollary to Theorem 1.7. For k<l, 
2 

(4.20) Q 2 u (r)<const.e~ r / 4 u . 

Therefore condition (1.48) holds for d<3 and all n. 
2 

Change of variables s=r /2t in (1.47) yields 

(4.21) Q 2 u ( r )=cons t . r 2 ~ d S d ( r 2 /4u) 

where 

(4.22) S ^ t J ^ S ^ ^ D S . 

For d>3, S d ( t ) < S d ( 0 ) <oo . By (4.21), Q ^ r ^ c o n s t . r 4 ^ 1 if d>5, and we see (1.48) holds for n<4 if 

d=5 and for n<2 if d=6 or 7. 

Finally, S 2 (t)<e~ t for t > l and, by Lemma 2.1 in [6], S 2(t)<const.(|log t | + l ) for all t. 

Therefore (1.48) is satisfied for d=4 and all n. 

5. CONCLUDING REMARKS 

5.1. Time s=0 plays a special role in the definition of the martingale measure Z g x .On the 

contrary all points of the interval A are in the same position for the martingale measure 7? 
/ s ,x 

defined by the formula 

(5.1) V<S^)DZ; = J ^ S , X ) D Z S ^ s ' x ) d Z s , x : ?(s,x)dZ g^- <¿<0,x)/¿(dx) 

(cf.(1.25)). In [7] (written after the first draft of the present paper had been already finished) we 

introduce the stochastic integral with respect to Z? „ directly, starting from the formula 

(5.2) f T t f W d Z s , x = < f ' X t > - < T ! f ' X r > 

instead of (1.18)—(1.19) (this is closer to the original approach of Walsh and Metivier). The 

construction in Sections 1.6 and 1.8 can be used to define multiple stochastic integrals relative to 

K • 
s,x 

The only change is that the set ID in (1.28) must be replaced by its subset 6 specified by 

the condition: Defl)n if every connected component of D contains more than one arrow. In 

particular, the first term in (1.22) must be dropped. 

5.2. Suppose that an integrand tp depends on a parameter a with values in a measurable 
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space (A,A). Assuming that <^(s,x) is jointly measurable in a,s,x and that f ° r every aeA, 

we can choose an ^—measurable version of the integral I j ( ^ a ) - Moreover, if v is a measure on A 

such that </?=J^z / (da)6^, then I j (y)=Jlj (^ a )K^ a ) - Multiple integrals I f l have an analogous 

property. 

5.3. Let K z g be defined by (1.40). For every bounded measurable function /?, 

F = | , ( z ) K z B d z = | B T t

s , d t 

is bounded and therefore belongs to If K z g ^ for all z, then 

(5.3) J/>(z)L z(B)dz=J B<p,X t>dt. 

Indeed, I 1 ( F ) = J l 1 ( T ^ ) d t is equal to the right side in (5.3) by (1.18)—(1.19). 

5.4. Note that 

(5.4) L n (B)= l i m [ < P k X x...xX > d t r - . d t 
k->oo 1 n 

in LJj if P ^ S n in the following sense. Put 
n 

R z l v . . , z n ( s l ' x l ; - ; s n ' x n ) = l B

d t l - d t n | E IIp(Si,xi;ti,Zi). 

It is sufficient that 

K ( z l - - ' z n ) R z 1 , . . . , z n

d z l - d v | R z , . . . , z d z 

in This follows immediately from (1.37) through (1.40). 

5.5. Measures 7 n on (A*E) n defined by (1.28) are symmetric, that is 

W = k d 7 n 

where ip is obtained from tp by a permutation a of pairs ( t p z l ) r . . , ( t n , z n ) . Therefore 

^ a , ^ n = ^ ( j , ^ n = ^ , ^ n a n d ( ^ V ^ A = 0 - W e c o n c l u d e t h a t d o e s n o t c h a n S e i f w e 

replace u> bv its svmmetrization. 
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APPENDIX 

0.1. We say that a Markov process ^,tGA=[0,u] in a measurable space (E,#), with a 

transition function p(s,x;t,B) is right if: 

0.1.A. For every r<t€A and every finite measure //, p(s,£_;t,B) is right continuous on [r,t) 
s 

A - S - P R , , 

O.l.B. The a-algebra B(A)*B is generated by functions tp(s,x) such that <¿?(s,£g) is 

right—continuous for all paths. 

Obviously, both conditions are satisfied for every classical diffusion. 

0.2. As in subsection 1.6, )i/ means the space of all bounded measurable functions on AxE. 

Put <¿£#Q if <¿£?Pand if TjVt-></?s (pointwise) as t|sE[0,u). If fG ,̂ (peTH^ and if,for every se[0,u), 

(0.1) (T^f t-f )/(t-s)-»y> boundedly as t | s , 

then we put ieV^ and A^=-(f^. 

We note that: 

O.2.A. If <p£jH0, then 

(0.2) f 8 (x )=J A Tj^ t d t 

belongs to and A gf g=v? g. 

O.2.B. If f€^ A , then 

(0.3) T ^ d + T ^ / d t 

and 

(o.4) l A

T t A t f t d t = ¡ ; - T t f t - f s -

O.2.C. Let C be a closed subspace of # (relative to the bounded convergence) and let F^eC 

for every teA. If F t(s,x) is uniformly bounded and right continuous in t for all s,x, then 

(0.5) (|)(s,x)= | F f(s,x)dt 
J A 1 

belongs to C. 

Proof of 0.2.A,B,C is similar to the proof of analogous statements in the 

time-homogeneous case (see [4], section 1.6). 

0.3. T H E O R E M 0.1. Condition 1.6.A is satisfied »/p is the transition Junction of a right 
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process. 

P R O O F . Suppose that C is a closed subspace of # which contains K. Let <^Q . By 0.2.A,B, 

(0.6) f T V t d t = l i m T ^ f - f 

where f is given by (0.2). Obviously, F t ( s , x ) = T ^ t ( x ) is right continuous in t and, by 0.2.C, the 

right side in (0.4) is an element of C. Since T ^ e C , f belongs to C as well. 

For a fixed t, C contains T^ft and therefore it contains the function in the left side of (0.1). 

Consequently, C contains (p. 

Functions (p described in 0.1.B belong to ^ and therefore they belong to C. Since C 

contains a multiplicative system which generates B(A) *#, it contains Ji. 
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