
Astérisque

LESTER E. DUBINS

GIDEON SCHWARZ
A sharp inequality for sub-martingales and stopping-times

Astérisque, tome 157-158 (1988), p. 129-145
<http://www.numdam.org/item?id=AST_1988__157-158__129_0>

© Société mathématique de France, 1988, tous droits réservés.

L’accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/
Publications/Asterisque/) implique l’accord avec les conditions générales d’uti-
lisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou
impression systématique est constitutive d’une infraction pénale. Toute copie
ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=AST_1988__157-158__129_0
http://smf4.emath.fr/Publications/Asterisque/
http://smf4.emath.fr/Publications/Asterisque/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


Société Mathématique de France 
Astérisque 157-158 (1988) 

A sharp inequality for sub-martingales and stopping-times 

by Lester E. DUBINS and Gideon SCHWARZ 

0. Introduction. As reported by Doob CTh. 3.**, 43» the 
second moment of the supremum of a sub-martingale with a last 
term, is not larger than 4 times the second moment of its last 
term. Since the expectation of the supremum is, in turn, bounded 
by the square-root of its second moment* Doob 7s bound yields the 
upper bound 2 for the ratio between the expectation of the 
supremum and the LjH-norm of the last term. In this note, the bound 
is replaced by -J2, and this value is shown to be attained. An 
analoguous inequality for martingales is established first. Also, 
solutions to some optimal stopping problems for Brownian Motion 
and for the simple symmetric random walk are obtained* some 
as steps toward the inequality for sub-martingales, and some as a 
consequence of the inequality for martingales. 

1. The bound for Martingales and Brownian Motion. What is 
the least upper bound over all mean-zero martingales X of variance 
v of the expectation of the essential supremum X~ of X? Answer: 
The least upper bound is -Jv; it is attained by a martingale in 
continuous time that is closed on the right by a random variable 
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whose distribution is necessarily exponential* centered at 0. 
These facts are immediate consequences of two results: 

First, the distribution of X* is stochastically dominated by 
that of the Hardy-Littlewood maximal function C93 of the 
distribution of the last term X« of X CBlackwell & Dubins, 33, and 
this bound is attained CDubins & Gilat, 53. 

Second, among all distributions with mean 0 and variance 
not exceeding v, the maximum of the expectation of their 
Hardy-Li tt lewood maximal functions is -Jv, and this maximum is 
attained by, and only by, the exponential distribution, centered 
at 0, as is established as follows! Let f be the unique 
nonincreasing function on the unit interval I that has the same 
distribution as X«. Then its Hardy-Littlewood maximal function is 
the function H(f) on I, whose value at t is the average of f on 
C0,t3. By a change of the order of integration, the integral of 
H<f) over I is J f(s)log(1/s)ds, or, since the mean of f is 0, 
I f(s)(log(l/s)-l)ds, which, by the Cauchy-Schwarz Inequality is 
at most the product of the L«-norms of f and of log(l/s)-l. The 
first is bounded by Jv, and the second is 1- So, the expectation 
of H(f) is bounded by Jv; the bound is attained if, and only if, f 
has variance v, and is proportional to log(l/s)-l or, 
equivalent ly, the distribution of f (and hence of X».) , is 
exponential with parameter 1/Jv, shifted by -Jv to the left (to 
give it expectation 0). For this extremal f, the distribution of 
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H(f) is exponential with the same parameter, in its usual 
(unshifted) location. 

A martingale that attains the bound Jv can be realized as 
Brownian Motion B, stopped at a stopping-time, T, of expectation 
v, that maximizes* among all such T, the expectation of the 
maximum of B for t<T CAzema & Yor 13. It is of interest to 
describe the extremal T explicitly. Let M + ; be the maximum of B on 
CO,tD, and let be the "gap" rU~B*. An extremal T is the first t 
such that Gt>ak, where k is so chosen that the expectation of T 
will be v, as will now be shown. Since Bt^-t is a martingale, the 
variance of B T and, hence, of M T is v. Since E<B-r>=0, the 
expectation of M-r is the gap k. The distribution of M T is 
exponentialThe event CM-rim> happens if B reaches m at some time, 
say R, before G reaches k. Given that this event happened, the 
conditional probability of <M-rim+b>, for some positive b, is the 
same as the (unconditional) probability of <M~r £ b>, since the 
process Bp,+.*-m also is Brownian motion. Consequently, li-r has an 
exponential distribution of variance v. For exponential 
distributions, the square of the expectation equals the variance. 
So, (ECM-r 3 ) e = v, that is, E(M-r> attains the bound 4v. 

The set D of all pairs (x,y) in the plane, such that y is 
the expectation of X** for a mean-zero martingale X whose variance 
is bounded by x, can be described explicitly. By the answer above, 
D includes the parabolic arc (<x,y>:x*y a, y>0> and this arc 
bounds D from above. The pairs (x,0) with x>0 are not attained. 
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Since the set of distributions of all mean-zero martingales is 
convex, so is D. Therefore D«<(x,y>:0<y e<x, or x=y=0>. By the 
previous paragraph* the parabolic arc is also attained by 
(E(T>,E(Mx)> as T ranges over the constant gap stopping-times for 
Brownian Motion and* therefore, D is attained if T ranges over 
randomized stopping-times as well. 

In view of this geometric description of D, these four 
optimal stopping problems for Brownian Motion are easily solved: 
the constant-gap stopping-times maximize ECM~r3 under the 
constraint ECT3iv, maximize (ECM-r 3 > e/ECT3, maximize linear 
combinations ECM-r3-cECT3 for arbitrary positive c, and, minimize 
E(T) under the constraint E(M~r>£m. The values of the gap k for 
these four problems are 4v, arbitrary k, l/2c and m respectively. 

2. Optimal stopping of the random walk. When the class of 
mean-zero martingales is replaced by the class of nonnegative 
sub-martingales, there arises a natural counterpart to D. One 
functional of interest is again the expectation of the maximal 
term of the process. For the other functional, the variance and 
the second moment are no longer the same; choose the latter, and 
define the set D as the set of pairs (x,y) such that y is the 
expectation of the maximal term S*, for a nonnegative 
sub-martingale S whose second moment is bounded by x. One such 
sub-martingale is the absolute value of Brownian Motion, stopped 
by a stopping-time of expectation x. If T is now defined as the 

132 



A SHARP INEQUALITY FOR SUB-MARTINGALES AND STOPPING-TIMES 

first time the process is g units below its current maximum, 
rather straightforward calculations as in Section 1, show E(T) = 2g2 
and the expectation E(Mt) of the maximum of the process for t < T is 
2g. Therefore, D contains all points (2g2,2g), that is, the 
parabolic arc {(x,y): y 2 = 2x, y _> 0}. To show that D has no other 
extreme points and, hence, that D={(x,y):0 < ̂ 2 <̂  2x or x = y = 0}, we 
find it necessary to state and solve two stopping-problems for the 
simple random walk S, of interest in their own right. 

First, for some positive c, find a stopping-time T that 
maximizes the expectation of the "return" Max(Sn:n j< T) - cT. As is 
typical of optimization and gambling problems, to solve the 
problem, it is helpful to solve also a family of conditional 
problems, arising when the process has already completed a partial 
history. The optimal return, given such a partial history, of 
length n, last value S n = s and maximal term m, is denoted by 
U = U(n,s,m;c). The program is to define a function Q and then show 
that Q equals U. For a nonnegative integer k, let Q = Qk(n,s,m;c) be 
the conditional expected return, given a partial history of length 
n, last term s and maximum m, when the following stopping-time T 
is used: if m - s < k, T is the first time after n that a gap of size 
k occurs; if m-s > k, T=n. Clearly, U > Qfc holds for all k. For each 
c, a value of k will be found, such that the reverse inequality 
holds. The proof that U _< Qfc for those k will be an application of 
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Theorem 2.12 in C63, or a variant thereof as in C73 or £103» once 
the following two properties of are established: 

Condition (1), Q v is at least the return of stopping 
right at the end of the given partial history, that is, Q*>m-cn. 

Condition (2>, Qv, is "excessive", that is, its value 
at each state is no less that its expectation at the (random) 
state that is reached by the process after one more step. 

By a straightforward calculation, one finds: 
Qi< = m - cn, for m-s > k; 

QM = k+s-c(n+(k+m-s+1><k-m+s)), for m-s < k. 
For checking Condition (2) it is useful to record that both 
formulas agree when m-s=k, and that the second is of the form 
c(sl--n) + L(m,s), where L is linear in s. 

Condition (1) holds trivially where m-s>k, since there, 
and the return of stopping agree. For m-s<k, the condition is 
0 < Q^-(m-cn) » <k-m+s)(1-c(k+m-s+1)), which holds whenever 1/c > 
k+m-s+1 for all s such that m-s<k, or equivalently, for the 
smallest such s, that is, for s=m-k+l. Condition (1) is therefore 
fulfilled if and only if 1/c > Sk, or equivalently, k < 1/2c. 
Condition (S> can be checked to hold for all c and k, except when 
m-s=k. Beginning at such a state, after a step up, CU, will be 
m+l-c(n+l+2k>, and after a step down, it will be m-c(n+l). The 
excessivity condition, that is, that the average of these two 
values is at most m-cn, is equivalent to c(2k+2) > 1, that is, k > 
l/2c - 1. 
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Combining Conditions <1> and (2), yields l/2c - 1 < k < l/2c. 
If l/2c is an integer, both it and its predecessor may be used for 
k. For all other c, there is a unique k such that the 
stopping-time T*<, the first time the gap is k, is optimal. 

As T ranges over all T M» the points (ECT3 ,ECM-r3 ) that are 
attained are (0,0), (2,1), (6,2),..., (k(k+1) , k ) , . . . , and the 
slope of the segment connecting the point with y-coordinate k-1 to 
the next point is l/2k. The interior points of this segment 
are attained by randomizing between T h - t and T k. Each of these 
randomized stopping-times maximizes the return ECM-r-T/2k3. The 
infinite polygon consisting of all the segments is the upper 
boundary of the attainable set, which is the convex hull of the 
polygon. As in the Brownian Motion case, the solutions to various 
optimal stopping-problems are easily described in terms of this 
boundary: for maximizing M-r under the constraint ECT3 < v, if 
v=k(k+l), T* is optimal; for v strictly between successive values 
of k(k+l>, the optimal T is a mixture, with appropriate weights* 
of the two corresponding T*s. Similarly, for minimizing EET3 for a 
given lower bound m on the expected maximum, T m is optimal if m is 
an integer and, for all other m, a mixture of the two constant-gap 
stopping—times with integer gaps closest to m attains the 
minimum. 

3. The maximal absolute value of the random walk. The second 
problem for random walks arises from the first when the maximum of 
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S in the return is replaced by the maximum of its absolute value. 
The stopping times that are analoguous to the T^ of the former 
problem are the times wV when the maximum of the absolute value 
first exceeds the absolute value of the current value by k. As 
will be seen, these stopping-times attain extreme points of the 
set 

{(ECT3,ECmaxSSn•:n<T) : T is a stopping-time> 
but they turn out not to be the only ones. Indeed, besides the w\r, 
the other stopping-times that attain extreme points of the set are 
W k

+ , defined as follows: stop the first time that the current 
absolute value is not 0, and is k units lower than the maximum of 
the absolute values till this time. 

Consider first the performance of the stopping-times W,.,: . 
One can express \Au as the sum of two time-periods. The first is 
the time until Sr, reaches either k or -k. The expectation of the 
number N of steps in this period is k e. The second consists of the 
additional steps until the process !S Nfn' reaches for the first 
time a value k units less than its maximum. For the second period, 
the expected number of steps and the expected increase of the 
maximum, beyond the value k reached at the end od the first period 
are, in view of Section 2, k(k+l) and k, respectively. The values 
reached by W* are thus seen to be Sk for the expectation of the 
maximal absolute value, and k(2k+l) for the expected number of 
steps. 
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The calculation of the function for , is again rather 
straightforward; when the decomposition of into the two periods 
is used, and the observation that for the second period, the 
calculations for T* are valid. From here on, let s denote the 
absolute value of the current position of the random walk, and m, 
the maximum of the absolute value. For , different formulas 
describe in three different regions of the (s,m)-plane: 

a. for m I s+k, * m-cn; 
b. for k < m < s+k, = k+s-c (n+<m+k-s+1 ) (s-m+k) ) ; 
c. for s < m < k-1, QK= Sk-c(n+k(2k+l>-s«). 

For checking excessivity below, note that the formulas in a and b 
agree on the boundary m*s+k, and that in region b and c, the 
difference Qn-c<se!-n) is linear in s. 

Condition (1) holds trivially in region a. In region b, the 
condition is the same as in this region for the problem without 
absolute values. So, Condition (1) holds in region b whenever 
cll/Sk. In region c, the condition becomes 2k-m > c<k(2k+l)-s m), 
which holds, if it holds for the largest m and the smallest s in 
the region, that is, for m=k-l and s=0. This yields 
k+1 > ck(Sk+l>, or equivalently, c < (k+1)/(k(2k+l>). This bound 
for c is at least l/2k, the bound that has already been found for 
region b. Therefore, Condition (1) holds everywhere if and only if 
c i l/2k. 
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For Condition (2), three cases are examined first: 
I. If s=m=k=0, the only possible step is to s=*m=l, which changes 
Qo from -cn to l-c(n+l). Q 0 is excessive there if and only if 
c > 1. 
II. If s=0 and m*k>0, the only possible step is to s«l, m«k, which 
changes Q* from k-nc to k+l-c<n+l+Sk). This yields the inequality 
c > l/(2k+l) as equivalent to Condition (2) at this point. Case I 
is covered by this inequality. 
III. At the remaining points of the common boundary of regions a 
and b, where s * m-k > 0, Q k = m-cn. In one step up, s changes to 
m-k+l» and region b is entered, leading to » m+l-c (n+l+2k) , 
while a step down to s = m-k-1 leads into region a, and to Q* = 
m-c(n+l>. The expected change in is therefore 1/2 - c(k+l), and 
Condition (2) will hold if and only if c > l/(2k+2>. 

At all other states, Q* is excessive for all k. To verify 
this five cases have to be checked, which is a somewhat lengthy, 
but straightforward calculation, that is omitted here. In summary, 
the necessary and sufficient condition for excessivity of is 
the more stringent one of the two inequalities obtained in II and 
III, for k>0, and in I and III, for k=0, that is, Q k is excessive 
if and only if c > l/(2k+l>. 

The two inequalities obtained for Conditions (1) and (2) 
show that the range of c for which w\, maximizes the linear 
combination ECmax(SSn.:n<T)3 -cECT3, is the closed interval 
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[l/(2k+l), l/2k]. Equivalently, for each c in this interval, a 
support line of slope c to the attainable set passes through the 
point Pfc=(k(2k+1),2k); all these points lie, therefore, on the 
boundary of the attainable set, In particular, for each k, the two 
lines through whose slopes are the endpoints of the interval 
bound the set. Therefore, the intersection of the lower 
half-planes defined by the lines as k ranges over the positive 
integers, and by the line of slope 1 through the origin, is a 
closed convex set, that includes all attainable points. The points 
(j(J+l)/2,j), j=0,l,*** are its extreme points: the point 
corresponding to j = 2k is the one attained by W^; for j = 2k+l, the 
point is the intersection of one of the two lines through the 
point attained by Wj( with one of the two lines through the point 
attained by W^-i. The "new" points, those for odd j, are also 
attained: the point for j = 2k+l is attained by Wk+. This is easily 
checked by expressing Wk+ as the sum of two periods: the first one 
is the time till the random walk reaches either k+1 or -(k+1), and 
the second one is the additional time till a gap of size k occurs, 
that is, till IS I reaches a value k units lower than its current 
maximum. All points ((j(j+l)/2,j) are therefore in the attainable 
set. Since their convex hull was seen to include the set, it is 
the set itself. The stopping times Wj<+ are therefore optimal 
exactly for the values of c in the gaps between the intervals for 
which the Wfc are optimal. That is, for each k, Wfc+ is optimal for 
the slopes in the closed interval [l/(2k+2), l/(2k+l)]. For the 
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endpoints, that is for the reciprocals of integers, this yields 
two optimal stopping times; for all other values of the slope c, 
just one. 

Now that the attainable set has been determined, it is easy 
to find stopping-times T that maximize ECmax ( ! S,-,! : nlT ) 3 under the 
constraint ECT35v: if v=k(2k+l), T-U* and ECmax IS! 33=2k; if 
v*(k+l>(2k + l>, T=w\,"* and ECmaxIS!3 =2k+l; in all other cases, v is 
between two such values, and the appropriate mixture can be taken 
as T. Similarly, to minimize ECT3 under the constraint 
ECmax(IS^i:n<T)3>m, T=W* if m=2k, T=W k* if m=2k+l, and if m is not 
an integer, a mixture is optimal. 

4. From random walks to Brownian Motion. Since Brownian 
Motion can be approximated by a random walk on the integer 
multiples of a small number, it is not surprising that solutions 
to analoguous stopping-problems for Brownian Motion are now 
accessible. Consider Brownian Motion B restricted to the (random) 
times t(j,n), n=*0,l,... when it completes n consecutive changes of 
size 1/j. The expected time for each such change is The 
maxima of the restricted and the unrestricted process in any 
interval C0,t3 are always less than 1/j apart. The restricted 
process is a rescaled version of the simple random walk. Now let T 
be a stopping-time for B, for which the expectation of the 
maximum, M, of the absolute value of B till T is at least 1. Let 
TJ be the smallest among the times t(j,n) that are at least T. 
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Then T J > T, so the maximum M of IB! till T-* is at least M, and 
the maximal absolute value M r of the restricted process till T* 
falls short of M by 1/j at most. Therefore ECM* 3 is at least 1 -
1/j. For the embedded random walk, rescaled to its usual steps of 
size 1, the expected maximum is at least j(1-(1/j)>=j-1. Clearly, 
JA is a stopping-time for B. For the restricted process, it is a 
stopping-time with respect to the filtration of B. It is therefore 
a mixture of stopping-times for the restricted process. By the 
result in the previous section, the lower bound j-1 on the 
expectation of the maximal absolute value of the embedded random 
walk implies that the expected number of steps of T̂ >, when 
regarded as a randomized stopping-time on the random walk, is at 
least (j-1)((j-1>+l)/2 * j(j-l)/2. Return to regard T* as a 
stopping-time for the Brownian Motion, so each step is replaced by 
a time-interval of expectation j-*2; then E(T«») > j~ a(j-l)j/2 = 1/2 
- 1/2j. Since T* exceeds T by at most the time needed to complete 
one more change of size 1/j, E(T> > 1/2 - l/2j - l/j s. Therefore, 
E(T) > 1/2. Furthermore, this bound is attained: For T the first 
time the gap is 1/2, a caculation analoguous to the evaluation of 
W* for the random walk yields ECT3=l/2 and ECmax(!Bti:t<T)3=1. By 
the usual rescaling of Brownian Motion, this yields the minimum 
m e s/2 for the expectation of a stopping-time such that 
EC(max\BtI:t<T)3 > m, and this minimum is attained by the first 
time the gap is m. 
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The set of pairs (ECT3,ECmax < • Bt!:t<T)3 ) for all 
stopping-times T is thereby determined to be 
B={ (x ,y > :0<yes<Sx or x=y=0>. In terms of this set it is again easy 
to give solutions to related problems: The maximum of the expected 
maximal absolute value till stopping at time T, among all T such 
that ECTliv, is *J2v, and it is attained by the first time the gap 
is -J2v/2. For the linear problem, max(!Bt!st<T)-cT attains its 
maximal expectation when T is the first time the gap is l/2c, and 
the maximum attained is also l/2c. 

As in the definition of the functions Q>, above, it is 
possible to answer also the question how to stop optimally, given 
that the process has been running for some initial period, reached 
a maximum of m, and a latest value of s. For maximizing the 
expected maximum of Brownian Motion, for example, when allowed 
additional expected time x, the optimal T is described as follows: 
continue until a gap of g= ( (m-s) e+x) 1 / l s is first reached. The 
expected return for this T, in terms of g, is s + g. For 
maximizing the expected maximum of the absolute value, given a 
partial history, not every additional expected time x can be 
attained by a constant-gap stopping-time: when the gap g 
approaches m from above, x can be shown to approach 2 m s — s 3 , but 
when g reaches m, x jumps down to s(2m-s). The set of points 
attainable by all constant-gap stopping times is therefore 
disconnected. It consists of two parabolic arcs. The first arc is 
finite and closed, and is given by y = s + g, with g as above, for 

142 



A SHARP INEQUALITY FOR SUB-MARTINGALES AND STOPPING-TIMES 

O < x < s(2m-s); the second one is open and infinite, and is the 
graph of y = ( 2 ( s s + x ) ) 1 y e , for x > 2m e-s. The slope of the first 
arc at x=s(2m-s), and of the second arc at x=2m a-s e are both l/2m. 
The expected maxima attainable for s(2m-s) < x < 2 m e - s e are 
bounded from above by the segment connecting the two arcs. The 
end-point <2m a-e et 2m) of the second arc, however, is not attained 
by a constant-gap stopping time; it is attained by T defined as 
follows: stop the first time the gap is m, after m or -m have been 
reached by the process. Mixtures between this T and the T that 
stops when the gap is first m will attain the interior points of 
the segment. 

5. The bound for sub-martingales. By a theorem of Gilat £83 
(see also Barlow £23, where further references to Protter & 
Sharpe, Barlow & Yor and Maisonneuve are found), every nonnegative 
sub-martingale is the absolute value of a mean-zero martingale. 
Therefore, D as defined in Section 2, is also the set of all 
(x,y), such that y is the expectation of IX!1*, the maximum of the 
absolute values, for a mean-zero martingale X whose variance is 
bounded by x. But, D cannot include more than the set B defined 
above, as is seen with the help of Skorokhod-type embeddings. 

We are happy to acknowledge our debt to David Gilat, Isaac Meilijson, 
Jim Pitman, Ya'akov Ritov and Benjamin Weiss for many helpful conversations. 

Contemporaneously with our work, and without any knowledge of it, 
S. D. Jacka had undertaken a parallel, and in some ways more general, 
investigation. Without leaving the realm of the continuous time-parameter, he 
obtained the L 2-bound JZ. Moreover, though he doesn't study the discrete 
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random walk, he manages to obtain best L p bounds for continuous-time 
submartingales. Thus, his methods as well as his results nicely supplement 
those of this paper. We thank him for having sent us an early handwritten 
manuscript. To Marc Yor, too, we express our thanks. It was his insights at 
the Colloque Paul Levy sur les Processus Stochastiques that enabled us to 
understand how our work overlapped with the interesting contributions of 
Jacka. 

References 
[1] Azema, J., and Yor, M. A: Une solution simple au probleme de 
Skorokhod; B: Le probleme de Skorohod: complement a l'expose 
precedent., Seminaire Probabilite XIII, Springer Lecture Notes in 
Mathematics 781, (1977-78) 

[2] Barlow, M. T., Construction of a martingales with given 
absolute values, Ann. Prob. 9/5, 314-320 (1981) 

[3] Blackwell, D., and Dubins, L. E., A converse to Lebesgue's 
dominated convergence theorem, Ill .-J. Math. 7/3, 508-51 4 ( 1 963 ). 

[4] Doob, J. L., Stochastic Processes, Wiley & sons, New York 
1953, page 317 

[5] Dubins, L. E., and Gilat, D. On the distribution of maxima of 
martingales, Proc. A.M.S. 68, 337-338, (1978) 

[6] Dubins, L.E., and Savage, J.L., How to Gamble if you Must, 
McGraw-Hill 1965, repreinted as Inequalities for Stochastic  
Processes, Dover, 1975. 

[7] Dubins, L. E.,and Sudderth, W. D. On stationary strategies for 
absolutely continuous houses, Ann. Prob.7, 461-467, (1979) 
[8] Gilat, D., Every nonnegative submartingale is the absolute 
value of a martingale, Ann. Prob.5, 475-481, (1977) 

[9] Hardy, G. H., and Littlewood, J. E., A maximal theorem with 
function-theoretic applications, Acta Mathematica 54, 81-116, 
(1930) 

144 



A SHARP INEQUALITY FOR SUB-MARTINGALES AND STOPPING-TIMES 

[10J Sudderth. W. O., A gambling theorem and optimal stopping 
theory, Ann. Math. Statist. 42/5.1697-1705 (1971). 

[11] Dubins L. E., and Sudderth, W. D., Countably additive 
gambling and optional stopping, Z. Wahrscheinlichkeitstheorie 41, 

59-72 (1977). 

Lester E. Dubins 
Department of Mathematics 
University of California 
Berkeley, CA 94720 
U. S. A. 

145 

Gideon Schwarz 
Department of Statistics 
Hebrew University 
IL-95101 Jerusalem 
Israel 


