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EXPOSE n° IV 

NOTES ON THE THEORY OF VARIFOLDS 

William K. ALLARD 

I. INTRODUCTION. 
The purpose of these notes is to state the basic theorems of the theory of 

varifolds which appear in [1] and to sketch their proofs in such a manner us to 
make this material immediately accessible to geometers and others who know a 
modest amount of classical analysis. In order to do this it has been necessary to 
state some theorems in somewhat less generality than one finds in [1] and to 
leave out some details and some parts of important ideas. Nonetheless, I feel a 
great deal has been included. It is worth pointing out that the short list of 
references includes some expository works. This work rests on the contributions 
of others ; see [l] for details. 

I wish to thank Jean-Pierre Bourguignon and II. Blaine Lawson for inviting me to 
participate in the Seminar on Minimal Surfaces. My visit to the Ecole Polytechnique 
and its environs was extremely pleasant. 

II. BASIC DEFINITIONS. 
Throughout these notes, k and n are integers with 0 < k < n and ft is an 

open subset of ]Rn . We let 

vk(n) 

be the set of Radon measures on ft x (E (]Rn) where (Ê (]Rn) is the Grassmann mani
fold of k-dimensional linear subsr>aces of Hn ; we call these measures k-dimensional  
varifolds in ft . We endow V (ft) with the weak topology ; thus, a sequence 
V + V in V. (ft) as v 00 if ff dV [f dV as v ~y 00 whenever f is a continuous v k J v J 

compactly supported real valued function on ft x (Ê (]Rn). For each V€V (̂ft),we let 

II V 11(A) = V(A x (Ek(]Rn)) for AcS] . 
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we let 
d(v,afr) =llvl|]B(a;r) 

a(k)r 
whenever a € ft , 0<r< 00 where we have set B(a,r) = {x£E : |x-a| < r} <= ft ; here, 
we let a(k) is the k-dimensional area of {W£ Ĥ" :|W|<1}. "d" here stands for "densi
ty" . 
We let d(V,a) = lim d(V,a,r) 

r+0 
provided the limit exists. We let 

\ ( ft) 

be the set of continuously differentiable embedded submanifolds of ]Rn which are 
subsets of ft and which have locally finite k-dimensional area in ft . For each 
M € MK (ft) we define the Radon measure IIMII on ft by setting 

IIM ||(A) = (̂ARM) for A eft ; 

here is k-dimensional Hausdorff measure on Hn . We have a map 

v : Hk (ft) -> Vk(ft) 

whose value at M € Mk (ft) is given by 

v(M)(B) = llMll({x€M : (x,T M)€B>) 

for B cz ftx(Ek(]Rn) ; here M € (Ek(]Rn) is the tangent space to M at x for 
each x € M . Thus a k-dimensional varifold in ft can be thought of as a generalized 
k-dimensional manifold in ft . In fact, it is easy to see that the closure in V̂ (iO 
of the set of finite positive linear combinations of elements of the range of v 
equals V̂ OO, although this does not seem to be terribly important. 

In what follows we frequently identify S € (Ek(]Rn) with orthogonal projection 
of ]Rn onto S . Suppose F : ft ft carries ft diffeomorphically onto the open 
subset ft of ]Rn . We define 

F̂  : ft •> ft 
# 

at V6 V̂OO by requiring that 

F V(B) = J K DF(x)oS|dV(x,S) 
{(x,S) : (F(x),DF(x)(S)) € B} 

for Bc= i?x (Ek(En) . This definition is motivated by the elementary observation that 

74 



NOTES ON THE THEORY OF VARIFOLDS 

F#v(M) = v(F(M)) whenever Mgl̂ Cft). 

One can relax the requirement that F be a diffeomorphism but we will not find 
this necessary. 

III. THE FIRST VARIATION OF GENERALIZED AREA. 
Let X(ft) be the vector space of smooth vectorfields on ft with compact support ; 

that is, X £ X(ft) if X is a smooth compactly supported Rn-valued function on ft 
We define the linear map 

6V : X(ft) + E 

at X € X(ft) by letting 

5V(X) = jDX(x).S ; 

the inner product here is the natural inner product on End(]Rn) . This definition 
is motivated as follows. Suppose e>0 and F : (~e,e) x ft ft is such that FQ(X) =x 
and £t(x) = X(Ft(x)) for (t,x) £ (-e,e) xft. Suppose (x,S) Gft x(Ek(]Rn) and 

(Uj,...,u^) is an orthonormal basis for S . Since 

|AkDFt(x)0S| = |DFt(x)(u1)A...ADFt(x)(uk)| for |t | < e , 
we have 

£ |Ak DFt(x)»Sl|t_0 = J£ DFt(x)(Ul)A...ADFt(x)(uk)| .UjA.-.Aî  

- . \ £ D V * ) ( u i > | • "i 
i=l 1t=o 
k 

= I DX(x)(u.).u. 
i=l 1 1 

= DX(x).S • 
It follows that,if || VII (ft)< oo , then 

^IIFt#V||(ft), = ± J|Ak DFt(x)0S| dV(x,S). 
t=0 1 t=o 

= 6V(X) . 

We say V is stationary if 6V = 0 . For each open subset G of ft we let 
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II 6V 11(G) = sup(|6V(X)|: XGX(ft),|x|<l and spt XcG} ; 

thus II6VII is the total variation of 6V ; if II 6V 11(G) is finite whenever G has 
compact closure in ft,then II6VII extends to a Radon measure on ft which we denote 
by the same symbol in which case we say 6V is a measure. In case 6V is a 
measure,it follows from the Radon-Nikodym Theorem that there is a II 6VII -measurable 
$n ^-valued function n such that 

(1) 6V(X) = /X(x).n(x) dll6Vllx for X G X(ft). 

IV. EXAMPLES. 
(a) ft = lRn . Suppose M is a k-dimensional twice continuously differentiable 

submanifold of ~RU with boundary B . By advanced calculus, 

(2) 5v(M)(X) = - k Jx(x).H(x)dllM||x + /x(b).v(b)dllBllb 

whenever X G X(M), where H is the mean curvature normal field along M and v is 
the unit exterior normal to B relative to M . 

(b) Suppose a € 3Rn , F is a finite subset of $n 1 and f : F + {w : 0 < w < °°} . 
Let V = £ f(u) v((a+tu : 0 < t < °°}) G V. (En) . It follows from (2) that 

uGF 
6V(X) = - 2 f(u) X(a).u for X G X(]Rn). 

uGF 

т 
roo 

RW 

3 
ГО) 

O 
E 

4 
roí 

5 
газ 
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(c) See [ 5] for a rather subtle example of a stationary 1-dimensional vari-
fold in ]R2 . 

(d) ft = En . Suppose k < K n and T E (E£(]Rn). Since T £ ~MzC&n)9 It Til is 
defined and we have 

(3) jDX(x) (V) dllTlIx = o 

whenever X 6 X(]Rn) and v € T . Let v be a Radon measure on (&k(]Rn) such that 
spt v c (S e <Ek(lRn) : ScTl and let V = II Til x v € Vk(]Rn) . Then, by (3), 

6V(X) = jDX(x).S dV(x,S) 
= J(/DX(x).S dllTlIx) dvS 
= 0 

whenever X £ X(]Rn) ,so V is stationary. 

(e) ft = ]R2 and k = 1. Suppose 0 < r < 00 , let = { ( x,x) : 0 < x< r} € Mj (]R2) 
and let Tr = {(x,2r-x) : r< x< 2r) € M (1R2). Let 

Vr = Z v((2jr,0)+Sr) + v((2jr,0)+Tr) € VjCR2) ; 
j=-co 

Below is a picture of spt IIV II . 

У 

(0,r) 

(r,0) 
X 

Let L = {(x,0) : x£E} and let L* = { (x,± x) : x € P} . Thus 

{L,L+,L~} c <E (E2) PI 14 (1R2). Let V = —Ml L|| x (6 + <5 _) E V (]R2) , where 6 . 
L L L* 

are the point masses at L* Respectively. It is easy to see that lim V = V . 
Ho r 

Note that 6V is not a measure. 

V- THE BASIC THEOREM. 
The following theorem while easy to prove is absolutely fundamental. Keep in 

mind the varifold V in H(f). 
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THEOREM4.Suppose V G V (̂ft) and 5V is a measure. Let f : ft -* ]R be a smooth 
function such that 

sptll V|| <z {x€ ft : f (x) =0} . 

Then S c ker Df (x) _for V _almost a_l_l (x,S). 

Proof. Let be a test function on ft and let X(x) = cp(x) f (x) grad f(x) for x € ft . 
Since 6V is a measure and since X vanishes on spt II V|| , we have 6V(X) = 0 , On 
the other hand, one calculates 

DX(x).S = f(x) gradcp(x).S[grad f(x)] + tp(x) | S[grad f(x)]|2 + cp(x) f(x) D (grad f) (x) . S 

for (x,Sf)G ftx(Ek(]Rn) which implies 

Jtp(x) |s[grad f(x)]|2 dV(x,S) = 0 . • 

VI. THE MONOTONICITY FORMULA. 
This formula ((7) below) may be thought of as the analogue for minimal surfaces 

of the mean value property for harmonic functions. Its effect on varifold theory 
and minimal surface theory is profound. 

Suppose 0<R< °°, ft = {x€]Rn:|x|<R} , V€ V (ft) and 6V is a measure. Set 
j = (-°°,R). We define bounded Borel functions A,B,C,D on J at r € J as follows : 

A(r) = IIVII (x : |x| <r} , 
B(r) = / |x|~2|s(x)|2 dV(x,S), 

{(x,S): |x|<r} 
C(r) = J |xr2|s-^(x) |2 dV(x,S) , 

{(x,S): |x|<r} 

D(r) = / x.n(x) d||6V|| x , 
(x: |x|<r} 

where in the definition of D(r) we have used the notation of 3(1). 
PROPOSITION 5. We have 
(6) IIVII (0) = 0 and 
(7) D(r) + r Bf(r) = k A(r) f_or r € J 
in the sense of distributions. 

Proof. Suppose 0< p < R. We choose a test function ip on ft such that > 0, \\) = 1 
near 0 , ip(x) = 0 if |x|> p and |Dip (x) | < 2/p for x £ ft . Letting W(x) = ip(x)x 
for x€ ft we obtain k||V||{0} < k Jip(x) dV(x,S) 

= 6V(W) - jDip(x) (S(x))dV(x,S) 
< 6V(W) + 211 VII (x Eft :i|i^)^0>. 
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Since p may be made arbitrarily small, (1) holds. It is a consequence of (1) by a 
simple argument using cut off functions that 

(3) Jx(x).n(x) dl!5Vllx = jDX(x).S dV(x,S) 

whenever X is a continuous compactly supported vector f ield on ft which is smooth 
away from 0 and which satisfies 

sup{ |DX(x) I + |x(x)/|x| : 0< |x| < R> < « 

For each test function cp on J , we let X (x) = cp(|x|) x for |x| <R and infer from 
(8) that 

6V(X̂ ) = Jcpf (Ixl)lxl"1 |s(x)|2 + kcp(|x|) dV(x,S) 

so that, with i(r) = r for r£ J, we have 

Df (cp) = Bf (icpT) + k A' (cp) 

in the sense of distributions. Thus 

Df + (i Bf)1 = k Af 

in the sense of distributions which implies (7) since A,B,D vanish on {r : r < 0} .• 
What follows is the monotonicity formula. 

THEOREM 9. Suppose Va^fl) is stationary. Then 

(9) a(k) [d(V,a,s) - d(V,a,r)] = J |x-a|"k"2|s-L (x-a) |2 dV(x,S) 
{ (x,S):r< |x-a|<s} 

whenever 0<r<s , a E ft and IB (a, s) c= ft . 

Proof. Let a = 0 and let ft ,A,B,C,D be as in the previous paragraph. We have from 
(7) that, in the sense of distributions, 

4- r"k A(r) = - k r*k_1 A(r) + r"k A'(r) dr 
= - r"k B'(r) + r"k A»(r) 

= r"k C'(r) 
for 0< r<R since A = B+C. Antidifferentiate and note that A and C are continuous 
on the right. " 
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Remark. Thus d(V,a) exists whenever V is stationary and a G ft . 
Using (7) again we obtain the following extremely useful inequality. 

1I5V11 lB(a,t) 
Il V||B(a,t) dt > d(V,a,r) . 

THEOREM 10.Suppose V G V Ĉft), 6V is a measure, a £ spt|| V|| , 0 < r < s and B(a,s) c ft 
Then 

Go) s 
d(V,a,s) exp J 

r 
Proof. Again, let a = 0 and let ft, A, B, C, D be as in the previous paragraph. Since 
A-B = C is nondecreasing and (7) holds, we have 

D(t) + t A'(t) > D(t) + t Bf(t) = k A(t), 

so that 
A'(t) _ k D(t) 
A(t) t tA(t) ^U 

for 0 < t < R , all in the sense of distributions. We antidifferentiate and use the 
continuity on the right of A and D to obtain (10). • 

VII. THE ISOPERIMETRIC INEQUALITY. 
In its simplest form this inequality is as follows. Suppose V€V (̂]Rn) , 

IIVII (Kn) < - and 
PROPOSITION 11. 
(11.1) d(V,x)> 1 for IIVII almost all x€ En . 
Then 
(11.2) IIVH (]Rn) (k"1)/k< Cll6Vll(]Rn) 

where C is a constant depending only on k and n . The proof of this uses (10) 
and the Besicovitch Covering Lemma which we now state. See [6 ,2.8.14] for the 
proof. 
THE BESICOVITCH COVERING LEMMA. Suppose B is a family of closed balls in Rn with 
bounded union and A is the set of center points of the balls in B . There are 
subfamilies B.,...,B_/ N of B such that  1 B(n) 

(12.1) is disjointed for i G (l,...,B(n)} and 
B(n) 

(12.2) Ac U U B. ; 
i=l L 

here B(n) depends only on n . 
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The present work or, for that matter, the subject of geometric measure theory 
would not exist without this Lemma. 

COROLLARY 13» Suppose u and v are two Radon measures on ]RU with bounded supports. Sup-
pose there are a subset A of Hn and a function p : A {r:0<r< 00 } such that 
y(Rn~A) = 0 and y IB (a, p(a))< v B(a, p(a)) for each a e A. Then 

y(Hn) < B(n) v(]Rn) . 

Proof. A simple exercise • 
We now prove the isoperimetric inequality. We may assume || 6V|| (]Rn) < 00 . 

Suppose 1 <A<°° and let S = (A|| V|| (]Rn) / a (k) ) 1/k . From (10) we obtain 

rS || 6V|| B(a,t) , _ 1 . . - _ . , 
eXp ^ ||V||B(a,t) dt > d(V,a,s) for a € A where 

A = {a £ ]Rn : d(V,a) > 1} . Thus,for each a € A there is p(a) with 0< p(a) < s 
such that 

II VII IB (a, p(a)) < (s/logA) || 6V|| B(a, p(a)). 

Now apply the Corollary to the Besicovitch Covering Lemma. • 

Let M,B,H be as in I\<a) and suppose II M|| (Rn) < «> . It follows from (7) that 

|| Mil (Hn) (k"1)/k < C(/|H|d||M|| + || B || C 3Rn)). Furthermore, it is shown in [1] and [2] 
using (7) and a clever but purely elementary analytic argument due to Federer that 

</|f| (k-1)/kdWI)k/(k_1) < C J|KradMf| + |H||f|dllMI 

whenever f is a continuously differentiable real valued function on M whose 
support is a compact subset of M . 

VIII. THE RECTIFIABILITY THEOREM. 
THEOREM 14. (The rectifiability theorem) Suppose V€ Vk(Bn) , ||V||(En)< °° , 6V 
is a measure and d(V,x) > 0 for || V|| almost all x£ ]Rn . 
then,for any e > 0 , there are a positive integer J , elements Mj , . . . ,M_. E M̂ IR11) 
and positive real numbers c^,...cj such that the total variation of the (signed) 
measure 

J 
V - Z c. v(M.) 

j = l J J 
on ]Rn x ffi (En) does not exceed e . 
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This theorem says roughly that any varifold satisfying its hypotheses can be stron
gly approximated by a finite positive real linear combination of continuously 
differentiable submanifolds. Before continuing,the reader should convince himself 
that neither the varifold V in IV(e) if £> k nor the varifold V in3V(f) satisfies 
either the hypothesis or the conclusion of the rectifiability theorem. We now 
sketch its proof. 

We shall now discuss homothetic expansions of a varifold about a fixed center 
point. Whenever 0< r< °°,we let ŷ Cx) = r x and,whenever a € ~RU, we let 
T (x) = at x for x£En . For V€ V, (En) , a€ ]Rn and 0 < r< °° ,we let a k 

v = r"k (y OT )„ ve v, (mn) . 
a,r r -a # k 

We shall show that under appropriate conditions the varifold V is cone-like for 
large r . More specifically, let us suppose V satisfies the hypotheses of the 
rectif iability theorem. We shall indicate how one obtains a II V II measurable (Ê (Hn)-
valued function T with the property that 

(15) lim V = d(V,a) v(T) for II VII almost all a . 
r+0 a'r 

Using (15) one can show by a fairly straightforward argument using the Bescicovitch 
Covering Lemma that the conclusion of the rectifiability theorem holds where the 
M. , j £{ l , . . . , J } are Lipschitzian. Now,it is a well known but by no means trivial 
theorem in geometric measure theory that a Lipschitzian function off a set a small 
measure equals a continuously differentiable function. Thus,one completes the 
proof of the rectifiability theorem. It should be noted that the distinction bet
ween Lipschitzian and continuously differentiable is not very important in the 
present context because the graphs of Lipschitzian functions have nice tangential 
properties by Rademacher's theorem. We now proceed to give the reader some idea 
of how one obtains the function T in (15). 

We begin with the following theorem 

THEOREM 16. Suppose V£ Vk(]Rn) , a £ ]Rn and 

(16) limsupll6Vll B(a,r) /11 Vll 3B(a,r) < 00 . 
r+0 

Then 
i) d(V,a) exists ; 

ii) any sequence r^,r^,r^,... of positive real numbers with limit co has a subse 
quence r ^ . j . , r\(2) 9 rA'3) *' ' ' sucn that, for some C €V̂ (]R ) , 
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lim V a,r. A(v) 
= С ; 

î -i) ^ C is as in ii) then 
(a) 5V = 0 . 
(b) d(C,0,r) = d(V,a) fo£ 0< r< ~ and 
(c) x £ S for C almost almost all (x,S) . 

Proof. Thus is a straightforward application of (9) , our definitions and elemen
tary compactness theorems for measures. • 

We now study C as above. 

THEOREM 17. Suppose C satisfies (iii) (a), (c). Then 

(17) ||C||{rx: x£ A} = rk||C||{x : xE A} 

whenever Ac l " and 0 < r < °° . 

Proof. For any smooth non negative function f on $n * we infer from iii)(a),(c) 
that Cf is stationary where 

C (B) = J f ( |x| ""1x) dC(x,S) for BcEnx(E (En) . 
B k 

Now apply (9) to С . 

Here now is a condition that implies C is planar. 

THEOREM 18. Suppose C satisfies (iii) (a), (c) and 
(18.1) d(C ,x) > d(C,0) for II CII almost all x . 

Then.for some T£(E (]Rn) ,we have 

(18.2) C = d(C,0)v(T) 

Proof. We use (17) and (9) repeatidly. Suppose r> 0 , A > 0, a € ~RU and 
s > A(|a|+r). Then, 

d(C,a,r) = d(C,Xa,Ar) 
< d(C,Xa, s-A|a|) 

< (S ^al) k d(C,0,s) 

= (s"Xlal)"k d(C,0). 
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It follows from (18.1) that, for almost all a £ ]Rn , 

(19) d(C,a,r) < d(C,a) for 0 <r < » . 

Now,(19)in conjunction with (9) implies 

x - a £ S for || q| x C almost all (a,x,S). 

We choose (x,S) such that 
x - a G S for || q| almost all a 

and use iii) of Theorem 16 to complete the proof. 
Now,suppose V6V (̂]Rn) , 

(20) ||6V|| <M || V|| for some M < 00 and 

(21) d(V,x) > 1 for || V|| almost all xC Hn . 

As a consequence of (10) we have 

(22) eMs d(V,a,s)> eMr d(V,a,r) 

whenever a G ]Rn and 0 < r < s < «° . 

Using the theory of symmetrical derivation, which is based on the Besicovitch 
Covering Lemma, we see that || V|| (]Rn ~ A) = 0 where A is the set of points a€ Hn 
such that, for each e > 0 , 

lim IIVlKxG B(a,r) : 1 d (V,x)-d (V,a) \>e)_ 
r+0 ||V||B(a,r) 

Suppose a EA . Let r , r^, r̂  ,. . . , A and C be as in 1 6 ). Let x € sptll Cll and suppose 
0 < r < s < 00 . Using (16), we may choose a sequence a^,a^,a^,.,. in ]Rn with limit 
a such that lim d(V,& ) = d(V,a) and lim rw x ^ (a -a) = x . Since r< s and (22) 
holds we find 

d(C,x,s) > lim sup d(V,a ,r ^ r) 
v̂ 00 . -1 V V Mr r 

> lim e V d(V,a ) 
= d(V,a) 
= d(C,0) 

so that (18.2) holds for some T€ (Ek(]Rn) . We would like to know that the limit 
C = d(V,0)v(T) does not depend on the sequence r ^ , ^ , ^ , . . . or the subsequence 
rA(l) ' rA(2)' rA(3),"," although it may not be obvious, there is no hope of 
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obtaining a rectifiability theorem unless we can do this ; see [7] and the Topologi
cal Disk Theorem of that paper. So,let B be the set of those a€A such that 
lim V"a = d(V,a) v(T) for some T € (Ek(En) . Consider V as a || V|| measurable 
r̂ O a,r 
function on ~R with values in probability measures on Ck (R) If a € A and this 
function is weakly symmetrically differentiable at a with respect to ||V||, one 
infers by a straightforward measure-theoretic argument that a £ B . But the theory 
of symmetrical derivation says that || V|| (A~B) = 0 . Thus,one shows that if V 
satisfies(20) and (21) above then it satisfies the conclusion of the rectifiability 
theorem . In order to relax (20) and (21) to get the rectifiability theorem, one em
ploys a tricky but purely measure-theoretic argument which uses the Besicovitch 
Covering Lemma. 
IX. THE REGULARITY THEOREM. 

This may be stated as follows. 

THEOREM 23. For each e with 0<e-< 1 there are 6 > 0 and C>0 with the following pro 
perty : 
Suppose 
(i) a€lRn, 0<r< oo and V is a k-dimensional varifold which is stationary in 
{ xG En : |x-a| < r}; 

(ii) a € spt|| Vl| and d(V,x) > 1 for_ || V|| almost all x ; 

(iii)d(V,a,r) < 1+6 . 

Then, 
(a) M = sptllVIln Ue Kn : |x-a| < (l-e)r} € Mk(lRn) ; 
(b) |T M - T M| < C(r |x-y |) 1_G 

x y 
whenever x, y£ M . 

More is proved in [1] but the above statement goes to the heart of the 
matter. Consideration of catenoids and complex varieties show that the statement 
becomes false if hypothesis (jii) is omitted. We now proceed to give a nearly complete 
proof. 

We give four preparatory Lemmas. Let fl = {xE ]Rn : |x| < 1}. 

LEMMA 24. For all e > 0,there is 5 > 0 with the following property : 
Suppose 

(i) V is stationary in ft ; 
(ii) 0 6 sptll V|| and d(V,x)>l for_ || V|| almost all x ; 
(iii)d(V,0,l) < 1+ 5 . 
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Then there is TG^CR11) such that 

(24) I || VII B(a,r) -|| T|| 3B(a,r) | < e 

whenever c < r , a G ]Rn and B(a,r) cz B(0, 1- e ). 

Proof• Suppose the Lemma were false. There would be e > 0 and sequences 6 ; V̂  ; 
a ; r , v = 1,2,3,..., such that ô ^ 0 as v 00 and such that, for each v=l,2,3,. 

V̂  is stationary in ft ; 

OG spt||V || and d(V ,x)> 1 for || V || almost all x ; 
V V V 

d(V ,0,1) < 1+ 6 ; 
V V 

e < r , a G Hn and B(a ,r ) c B(0,l-e) but such that, for all T G Œ, (]Rn) , 
k 

(25) III V|| B(a ,r ) -|| T|| B(a ,r ) | > e . 
V V V V 

Passing to a subsequence if necessary we could obtain V,a,r such that 

limV = V , lim a = a , lim r = r V V v Y)->-oo \)^~°° V~*"°° 
and such that 

V is stationary in ft ; 

e < r , a G ]Rn and B(a,r)c B(0,l-e). 

Keeping in mind (10), we infer that 

0 G sptHVll and d(V,x) > 1 for || V|| almost all x . 

Since it is clear that d(V,0,l) < 1 , it follows from (18.2) that V = v(T fl ft) for 
some TG Œk(K ). This impl ies that for any b £ E with |b| < 1 and any s with 
0<s< 1 - |b | we have lim ||V||B(b,s) =|| T|| B (b, s). This quickly leads to a contradic
tion of (25). ^ m 

Remark. Consider again Reifenbergs topological Disk Theorem in [7]. 

LEMMA 26. For each c > 0 ,there is 5 > 0 such that if (i), ( i i ) , (iii) of Lemma 25 
hold, TG (Ek(]Rn) and 
(26.1) J!s-T|2 dV(x,S) < 5 
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then 
(26.2) dist(x,T) < e whenever x £ spt|| V|| 0 B(0,l-e) . 

Proof. Argue as in the proof of Lemma 24 and use . B 

LEMMA 27.(The Lipschitz Approximation.) For each e > 0 there are 6 > 0 and C > 0 such  
that if (i) , (ii) , (iii)hold, if T£(Ek(]Rn) and if (26. 1 )holds then there is a func 
tion f : T T1 with Lipschitz constant not exceeding 1 such that 

(27) || V||(B(0,l-c )~range F) +||T||({wET : F(w) € B(0,1-e ) ~ sptll V|| }) 

< C /|S—T|2 dV(x,S) 

where F : T + ~RU is such that F (w) = w + f (w) for w € T . 

Proof. L et e > 0 . Suppose r\ > 0 . Call a point a € spt II V|| good if 

/ |S-T| 2 dV(x,S) < K II VII B (a,r) 
B(a,r)x (Ek(En) 

for every r such that B(a,r) < B(0,1), where £ is as 6 in Lemma 26 with e there 
equal n ; otherwise call it bad. Suppose a is good and a E B(0,l-e) ; by making 6 
sufficiently small and making use of Lemma 24 and (10) we may apply Lemma 26 to 
the varifolds V ,|a|+r< 1, to infer that a,r 1 ! 

(28) dist(x,T) < n whenever x € sptll V || fl B(0,1-n). 
a, r 

By making 6 small it also follows from Lemma 26 that 

(29) dist(x,T) < n whenever x € sptllVll DB(0,l-n ). 

Combining (28) and (29) and choosing n appropriately we see that the set of good 
points in B(0,l-£) lies on the range of F where F is as in the statement of 
the Lemma. To estimate the || V||-measure of the set of bad points B we use the 
Corollary to the Besicovitch Covering Lemma to infer that 

(30) II VII (B) < B(nH-1 / I S-T | 2 dV(x,T). 

Now,suppose c G W = (w € T : F(w) € B(0,1 -e ) ~ sptll V II) . 
Let r = dist (c, sptll Vll ) . Using Lemmas 24 and 2 6# we see that by making 6 and n suffi
ciently small we can ensure that B(F(c),2r)c B DB(0,1). By (10) , 
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I T\\ B(c,2r) = а (к) (2r)k < 2̂ 1 Ц\ (В П B(F(c) ,2r)). 

From the Besicovitch Covering Lemma we infer that 

|| I]| (W) < 2k B(n) II V || (B) . • 

Remark. The above argument is some what different from the one used to prove a simi
lar statement in [1] . See also [4] for a different approach to this problem. 

LEMMA 31 .Suppose V£ Vfc(ft) is stationary in ft , tp is a test function on ft , T£ (Ek(]Rn) 
and A is a k-dimensional affine subspace of ]Rn parallel to T . Then 

Jcp(x)2|S-T|2 dV(x,S) < 2 / JDcpCx) | 2 dist(x,A)2 dll VII x . 

2 -
Proof. We may assume A = T . Let X(x) = cp(x) T (x) for x 6 ft . Since 

-L r i DX(x).S = 2(p(x)gradcp(x).S[T (x)] + tp(x) T .S 

and since |S(T~(x))|< (T~.S)1/2|T~ (x) for (x,S)(Eftx (Ek(Hn) 
we obtain 

Jip(x)2T\s dV(x,S) = - 2 |cp(x)gradcp(x).S[T"(x)] dV(x,S) 

< 2(Jcp(x)2T".S dV(x,S))1/2 (J|gradcp(x)|2|T"(x)|2 d||V||x)1/2 . 

— 2 
Since 2 T .S = |S—T| , we are done. • 

Now,we are ready to prove the Basic Regularity Lemma from the iteration of 
which the Regularity Theorem follows by a long but straightforward elementary 
geometric argument which we omit. We let Ak(]Rn) be the set of k-dimensional affine 
subspaces of Rn . Whenever A£ Ak(Rn) , a £ En , 0< r< 00 and V is a varifold in 
an open subset of ]Rn containing {x£ ]Rn : |x-a| < r} we let 

-k-2 2 1/2 y(V,A,a,r) = (r K ^ dist(x,A) d|| V|| x) 
{x:|x-a|<r} 

THE BASIC REGULARITY LEMMA-32. There exist 6,0,A,C such that 0< 6 < A< 1 and with 
the following property : 
Suppose 
(i) a £ ]Rn , 0 < r < oo and V is a stationary varifold in {x: |x-a | < r} ; 
(ii) d(V,x) > 1 for || V|| almost all x ; 
(iii)d(V,a,r)< 1+ 6 ; 
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(iv) A6Ak(E") and y(V,A,a,r)<6 . 

Then, there is A€ A^CRU) such that 

(3Zl)the angle between A and A does not exceed Cu(V,A,a,r) ; 

(32.2) y(V,A,a,9r) < A y(V,A,a,r) . 

Proof. We assume n = k+1 ; The generalization to higher codimensions is easy. C will 
denote any constant depending only on n . We may assume a = 0 , r = 2 and 
A = T E <Ek(;Rn) • Set 

B = {xe Kn : |T(x) I < 1 and JT^x) | < 1} and let D = {w£ T : |w| < 1} . 

Suppose 6>0 and V satisfies (16)-(19). S et y = y(V,T,0,2). Using Lemmas 
27 and 31 we infer that if 6 is sufficiently small,then 

(33) J |S-T j 2 dV(x,S) < C y2 
B 

and there is a function f : D -> T with Lipschitz constant not exceeding 1 such 
that if F(w) = w + f(w) for w£D then 

(34) HVIKB-X) + || T|| (D~W) < Cy2 

where we have set X = sptll V|| D range F and W = T(X). 

We will now estimate the Laplacian of f in a certain sense. 
For each test function cp : D -> T we let 

U(cp) = y"1 / Df.Dcp d||T|| 
D 

and we let 

U, (ip) = y"1 | Df .Dtp d||T|| ; 
D-W 

U (cp) = y"1 J Df .Dip - (D(cp0T).S)J d||T|| 
W 

where we have put S (w) = range DF(w) and J(w) = |A DF(w)| for || T|| almost all 
wE W ; 

U (tp) = y"1 J (D(cp0T).S) (l-d(V,F(.)))J d||T|| ; 
W 

U,(ip) = \Tl (f D(cp0T).S d(V,F(.)) J d||T|| - 6V(cp0T)) , 
w 
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where 6V(tp0T) makes sense because, if 6 is sufficiently small, the closure of 
T (B n spt|| V|| ) is a compact subset of {y£T : |y|< 1). Since V is stationary, we 
have 

4 
(35) U = I U. . 

j-1 J 
We shall now estimate |u\(cp)| , je {1,2,3,4} . By (34) 

|Uj (cp)| <C\TX sup{|Dcp(w)|: w€D} y2 . 

In estimating | U ̂  Ccp) | what we will be doing is to compare a first variation of the 
area integral of f with the first variation of the Dirichlet integral of f . One 
calculates that 

(36) D(cp0T)(W). S(W) = Dcp(W).Df(W) J(W)~2 

so that 

Df(W).IXp(W) - D(tpoT) (W).S(W) J(W) 

= Df (W).Dcp(W)cp(l-l/J(W)) 

= Df (W).Dcp(W) |Df (W) |2 J(W)"1 (1+J(W))_1 
for || T|| almost all W € D . It follows that 

|U (cp) j < y"1 sup{ |lXp(W) | : WED} J |Df|2 d|| T|| . 
D 

Inasmuch as |s(W)-T|2 = 2J (W)~2 | Df (W) |2 for || T|| almost all WED we see that 

(37) J |Df|2 dHTIK^7 |s(w)-T|2 J(W) d||T||W + || T|| (D-W) 
D W 

< ^ J | S-T |2 dV(x,S) + || T|| (D~W) 
B 

< C y2 

by (33) and (34). Using (36) and (37) we estimate 

|U (cp)|< p"1 J (d(V,F(w)-l) | Df | |D(p| d||T|| 
D 

<C sup{ (d(V,F(w))-l) |Dcp(w) | : w€D} ; 

Using (34) we estimate 
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|M<P>I = y X\i Op(x).S dV(x,S)| 
{ (x,S):x€ B~X> 

< C y sup{ | IXp(w) | : we D} . 

We leave to the reader to use (34) to verify that 

(38) J |f |2 d|| T|| <C y2 . 
D 

Now suppose for each v = 1,2,3,... that 6 > 0 , V satisfies (32 i) - iv)) and 
lim 6 = 0 . S and y = y(V ,T ,0,2) and let f , F , X , W be as above for 
^ v V v v v v v v 

v = 1,2,3,... . Setting g = y"1 f we infer from (37) and (38) that 
V V V 

/ |g I2 + |Dg |2 d||T|| < C for v = 1,2,3,... 
p V V 

so that by Rellich's Lemma there is a || T|| square summable function h : D T such 
that, after passing to a subsequence, 

,2 
n = / I g -h I dl! T|| -> O as V -> 00 . 

D 
It follows from our estimates above that, for any test function cp : D T , we have 

f h. Acpd||T|| = - lim y"1 f Df . Dtp d|| T|| =0 
D v->- " D v 

since, by Lemma 24 and (10), 

(39) £ = sup{d(V ,x)-l : x£ B n spt|| V |j } -> 0 as v + 00 
V V V 

Thus h is harmonic. Since J |h| d||T||<C we have 
D 

(40) |h(0)| <C , |Dh(0)|<C and 

S"k"2 / |h(w)-h(0)-Dh(0)(w) |2 dw < C S2 , 0< s < 1/2 , 
{w:|w|<s} 

by standard estimates for harmonic functions. Now,let a (w) = y (h(0)+Dh(0)(W)) 
for w e T and let X = {w+a (w) : wET} £ A, (E ) for each v = 1,2,3,... It is 

V V K 
evident that 
(41) s"k"2J |f -a |2 < 2 S"k"2n y2 + C S2 y2 , 0<s< 1/2 . 

{w:|w|<s} v v 
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Now 
S k 2 J dist(x,A )2 dHVll x 

X flB(0,s) 

and 

< ^ { w H w K 8}°+ev) dist(V">>V2 VW> -BUI W 

<s-k-2/2/ o . y l fv-«v!2 dIITII 
iw: w \<sl 

S k 2 J dist(x,A )2 dllV II x < S k 2 C2Cy2 
B(0,S)~X v v v v 

where r = sup{dist(x,A ) : xE Bfl sptil V II). Since C 0 as v ">co,.by Lemma 1 we see 
v _2 ' ' v v 2 2 

that lim sup y S f dist(x,A ) d HV II x < C S for 0 <S< 1/2. This 
B(0,S) 

proves the Lemma. • 

REFERENCES. 
[1] W.K. ALLARD, On the first variation of a varifold, Ann. Math. 95 (1972), 

417-491. 

[2] W.K. ALLARD, On the first variation of area and generalized mean curvature, 
C.I.M.E. notes, Edizioni Cremonese, Roma, 1973. 

[3] W.K. ALLARD, An a priori estimate for the oscillation of the normal to a 
hypersurface whose first and second variation with respect to a parametric 
elliptic integrand is controlled, Inventiones Math. 73 (1983), 287-321. 

[4] W.A. ALLARD, An integrality theorem and a regularity theorem for surfaces 
whose first variation with respect to a parametric elliptic integrand is 
controlled, Proc. Symp. Pure Mathematics, Volume 44, Amer. Math. Soc. 
Providence (l 986) 1-28. 

[5] W.K. ALLARD and F.J. ALMGREN Jr., On the structure of one-dimensional vari-
folds with positive density, Inventiones Math. 34 (1976), 83-97. 

[6] H. FEDERER, Geometric measure theory, Springer-Verlag, New-York, 1969. 

92 



NOTES ON THE THEORY OF VARIFOLDS 

[7] E.R. REIFENBERG, Solution of the Plateau problem for m-dimensional surfaces 
of varying topological type, Acta Math. 104 (1960), 1-92. 

William K. ALLARD 
Department of Mathematics 
Duke University 
DURHAM, N.C. 27706 
(U.S.A.) 

93 


