
Astérisque

ANTHONY J. TROMBA
A proof of Douglas’ theorem on the existence of disc like
minimal surfaces spanning Jordan contours on Rn

Astérisque, tome 154-155 (1987), p. 39-50
<http://www.numdam.org/item?id=AST_1987__154-155__39_0>

© Société mathématique de France, 1987, tous droits réservés.

L’accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/
Publications/Asterisque/) implique l’accord avec les conditions générales d’uti-
lisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou
impression systématique est constitutive d’une infraction pénale. Toute copie
ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=AST_1987__154-155__39_0
http://smf4.emath.fr/Publications/Asterisque/
http://smf4.emath.fr/Publications/Asterisque/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


EXPOSE n° II 

A PROOF OF DOUGLAS' THEOREM ON THE EXISTENCE 
OF DISC LIKE MINIMAL SURFACES SPANNING 

JORDAN CONTOURS ON R n 

Anthony J. TROMBA 

I. INTRODUCTION. 
In 1931, Jesse Douglas [1] and, simultaneously, Tibor Rado [2] solved the famous 
problem of Plateau, namely that every Jordan wire V in lRn bounds at least one disc 
type surface of least area. For this work,Douglas received the first Fields medal 
(along with Lars Ahlfors) at the International Congress of Mathematicians in 1936. 
By this time,he had shown that his methods would allow one to prove that, under 
certain conditions, there exists minimal surfaces of genus zero but of connectivity 
k spanning k Jordan contours T,...T, in IRn . Somewhat later,he announced and 
published proofs of theorems giving sufficient conditions which guarantee the 
existence of a minimal surface of non-zero genus spanning one or more wires in Eucli
dian space. The original method Douglas used in the disc case being of some histo
rical significance deserves some description,and we shall begin with an analytical 
formulation of the problem. 

For our purposes,we shall assume r to be a smooth Jordan curve in ]Rn , 
and let £) c]R^ be the closed unit disc. Further let u : £ ->- ]Rn have continuous 
second derivatives in V and map dV = onto r in a "monotonic" manner. The clas
sical problem of Plateau asks that we minimize the area integral 

(1) A(u) = J AG - F2dxdy 
V 

u . c / 1 nx , _ 2 " /3u1N2 „ 2 ^ ,8u\2 where,if u = (u , . . . ,u ), we have E = u = Z (-—) , G = u = Z (-—) x i=] 3x y 3y 

n ~ i ^ i 3u 8u F = u . u = Z -— . -— . 
x y i=1 dx 3y 

The area integral is invariant under the full C diffeomorphism group of the disc, 
an infinite dimensional Lie group. 

The Euler equations of this variational problem form a system of non-linear 
partial differential equations expressing the non-linear conditions that the surface 
have mean curvature zero ( i .e . , it is a minimal surface),and that it spans r . Let 
us assume for the moment that the least area solution of (1) is immersed (for n = 3 
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A(u) = D(u) 

this was not proved until 1970 by Osserman-Gulliver-Alt, and for n > 3 it is false). 
With this hypothesis,Riemann,Weierstrass,H.A. Schwarz and Darboux took advantage 
of the presumed existence of isothermal coordinates to simplify>and, in fact, 
linearize the Euler equations of least area. These special coordinates amount to 
composing a given u with an element f of the diffeomorphism group of V so that 
the resulting map uof , although having the same image surface as u , has its deri
vative in a simple form. Assuming u is already in isothermal coordinates,one has 
that 

E = G , F = О . 

Then,one also sees that 

where 
D(u) = 1 J (E+G)dxdy = -1 J (u2 + u2)dxdy 

1 V v x y 
is the classical Dirichlet integral. 

If u is not in isothermal coordinates ,then 

A(u) < J /EG dxdy < ^ J (E + G)dxdy = D(u) . 
V V 

It is not difficult to see that 

A(u) = D(u) 

if and only if E = G , F = 0 . If u is assumed to be in isothermal coordinates 
for the image surface S , then the Euler equations for the variational problem 
A(u) or D(u) become the linear system 

Au = 0 
or 

Au1 =0 , i = 1,...,n . 

Thus ,one is led to Plateau's definition of a minimal surface of disc type as a 
map u : V ->TRn for which we have Laplace's equation 

(2) A u = 0 , 

and the non-linear conditions 

(3) E = G , F = 0 

with u : -> r a homeomorphism If u is a solution to (2) and (3),we shall denote 
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A PROOF OF DOUGLAS' THEOREM 

by the harmonic conjugate of each u1,and by f. the holomorphic map f. = uJ+iuJ , 
- ^ n ^ 

, i = /-1 and by F , the holomorphic map of V into (C ,F(z) = (f (z) , . . . , fR(z)) , 
z = x + iy . Condition (3) may then be expressed as 

2 n 2 F'(z) = I f'.(z) = (E-G) + 2iF = 0 . 
j = l J 

A complete existence proof for the solution of (2) and (3) evaded researchers until 
the work of Douglas and Rado. 

Rado based his solution on a first approximation to a lower bound of the 
integral A(u) by means of polyhedral surfaces,and then by mapping these surfaces 
conformally onto the unit disc. Douglas, however, avoided using conformal mapping 
at all,and was able to obtain the classical Riemann mapping theorem as a consequence 
of his existence theorem. 

The relation A(u) < D(u), the fact that A(u) = D(u) for isothermal maps 
u , and the analog with geodesies between a length functional and an energy functio
nal makes it plausible that minima of D would be minima of A . This is, in fact, 
the case. 

However, in his prize winning paper Douglas did not use the Dirichlet 
functional D but another functional H which is now called the Douglas functional. 
Since any harmonic vector u : V ->TRn is determined by its boundary values, Douglas 
was able to represent the Dirichlet functional as a functional depending only on 
the boundary values of u ,and he obtained the expression 

H(u) - ¿ i ' " / " M ^ J Í » ! da d6 . 
47T 0 0 4 sin (a-3) 

The reader should be warned that the boundary conditions on u are not 
Dirichlet conditions but rather the far more complicated non-linear condition that 
u : dV -> T . Moreover, one should note that the expression H(u) transforms a 
variational problem from one that involves derivatives to one that does not. It was 
this brilliant device combined with two other important facts that led Douglas to 
his solution. The first is that once a three point condition was imposed on the 
space of admissible u's (u takes three points , , on to three fixed 
points on r ) Douglas was able to call upon a result of Frechet (published in his 
thesis) from which it follows that the space of u's with H(u) uniformly bounded 
(now thought of as boundary mappings) was a compact set in the L°° topology. Secondly, 
if (û ) is a sequence which converges in this topology to u with H(û ) ^ M for all 
n , then 

H(u) < lim inf H(u ) . 
n 
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This immediately implies that a minimum u of H (and hence of D) exists. He was 
further able to show that such a minimum u satisfied conditions (2) and (3) when 
thought of as a harmonic map of the disc. Thus, if Douglas was to use the ideas  
of Frechet, a boundary functional H was an absolute necessity. 

In 1936 Courant succeeded in what this author believes was a great sim
plification of Douglas1 original 1931 paper. He gave a simple and direct proof of 
the existence of a disc type minimal surface spanning a Jordan curve in ]Rn . Courant 
was able to use directly Dirichlet's functional instead of the Douglas functional. 
Compactness of a minimizing sequence satisfying a three point condition then follo
wed, not from Frechet, but directly from the now famous Courant-Lebesgue lemma. The 
purpose of this paper is to present a complete proof of Douglas' result. 

II. THE EXISTENCE RESULT. 
Let T = a(s ') , a : s' -> ]Rn a smoothly embedded curve and V the unit disc in 

the plane. Let N be all those continuous maps w : V + ]Rn with finite Dirichlet's 
integral with w\dV homotopic to a and let N̂ c: N be those w which map dV = S 
"monotonically" onto Y . Let E : •+ E. now denote Dirichlet's functional : if 
u:P-+]R , u = ( u , . . . , u ) 

n 
E(u) = I J Vu1.Vu1 

i=l V 

Then Douglas proved 

MAIN THEOREM .-There exists an absolute minimum u £ N for Dirichlet's functional. 
(2) 

Moreover,on the interior of the disc, u satisfies 
// \ Î / \ - ^ /̂ U^ • 9û  v 2 (4) u (z) = 0= Z ( _ - ! _ ) 

i .e. , u is a minimal surface. 

Thus,Douglas' famous 1931 result consists of two basic parts. The first 
was to show that Dirichlet's integral had an absolute minimum in the space N̂  ,and 
the second was to show that relation (4) held, and both parts were not trivial. If 
we know a priori that the minimum u is of Sobolev class H5/2(P,Rn) ,then a simple 
proof shows that (4) holds in the case r is a smoothly embedded wire. Briefly, write 
u in polar coordinates u(r,0), u(0) = u(l,0). Then, u a minimum implies that 
dE(u) = 0 and so 

2 u'(z) is not defined on S 
3 Et is not completely obvious that if u is a minimum among monotonie maps that 
dE(u) = 0. This requires additional arguments 
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A PROOF OF DOUGLAS' THEOREM 

0 = dE(u)[h] = / (Au)h + J j | ^ .h d 

for all h £ T N . Thus , Au = 0 and J . —̂ .h d0 = 0 for all h : P >1 of class u r gl 3r 
H1 on S1 and h(9) € T f .V . If we set h(0) = U-ITT , u ; S* -> 1R continuous,we 

U v 0 ) a 0 
see that 

fS1 " « » I M ? « - 0 

for all such u , where . denotes the ]Rn inner product. Consequently u .̂u^ = 
3 U 8 U ^ 1 . i -u s: 1 TT5/2 n 9u . 

= — . — = 0 on S . Since u is assumed to be of class H , 0 ->• — . — is 
Br 80 | Br B0 

continuous on S , and therefore 
z u (z) = (ur - IU ) = X ( - - i — ) 

1 = 1 

• < V r - V V " 2i(ur,ue) 

is a holomorphic function on the open disc which is continuous up to the boundary. 
Moreover,the minimality of u implies that the imaginary part of z -> z u1(z) 
vanishes on the boundary of the disc implying that this function is constant (use 
the Schwarz reflection principle). However,z •+ z u'(z) has a zero at 0 which implies2 
that u (z) = 0,and thus u is a minimal surface. 

Douglas and Courant could not employ such an easy proof since for them 
T~ , T~~ were not defined up to the boundary of the disc, complicating the situa-

tion considerably. Due to the important breakthrough on regularity in 1968 by S . 
Hildebrandt,we now know that minimal surfaces are as smooth as the boundary wire. 
However,his method needed the conformality relation u'(z) E 0 in the interior of 
the disc. Thus,we cannot assume that a minimum is smooth up to the boundary without 
proving that the conformality relation (3) holds on the interior. 

We shall now give our own proof of (3). 

THEOREM A.-Let u G N be a minimum for Dirichlet's functional E : N -> 1R . Then u 
2 _ 

satisfies u'(z) E 0 on the interior of the disc. 
Proof. Our goal will be to show that the holomorphic (a minimum u must be harmonic) 
quadratic differential uf(z) dz defined on the interior of the disc reflects across 
the boundary to a C holomorphic quadratic differential on the sphere. So let 
ẑ  € dV,and consider a neighborhood U of z conformally equivalent to the upper 
half D+ of the unit disc via w ->'0(w) = z, w E V+ , 0(0) = z and with U D dV 
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being taken diffeomorphically onto (-1,1) x {0}. 
Now,by the invariance of Dirichlet's integral under conformal transforma

tions ,we have 
n n n . 

2E(v) = X J Vv-'.W3 = I J Vv̂ Vv11 + I J Vv̂ Vv-1 
j = l P j = l P-U j = l U 

n n . 
= I J VvJ.VvJ + I / VvJ.VvJ 

j = l P-u j = l P+ 
Ôl 1 

where v (w) = v (0(w)), w = x + iy . For e small define a one parameter curve 
u(e) : D -> IRn , u(e)* •> T monotonic, and u(0) = u by taking new coordinates 

x = xf + ep(x' ,yf) 
y = y' 

where p is an arbitrary C2 function on P+ with the restriction that p vanishes out 
side P^^,the upper disc of radius 3/4 . Denote this correspondence by 
(x',y') H- s^x' ,y') = (x,y) or w' H- s£(wf) = w . Set 

u(e) = u outside U 

and 

Then 

u(e)(w') = u(w) 
for w,w' E V 
So fu(z) if z e P-u 

u(e)(z) = { 
U ( s (w')), w' e v 

n . n ' ~k 
2E(u(£)) = 21 f Vu3 . VuJdxdy +1 J VuJ(e). Vu (e)dx'dy' 

j = lJP~U j = l p+ 

= I / VuJ.VuJdxdy +1 / ^[(uJT(e))Z + (uJf(e)) Idx'dy' . 
j = l P-U j = l P X y 

By the chain rule and the change of variables formula,we find that this is equal to 

X / VuJ.Vu~Jdx dy + I / ruJU){l + eo f}]2 . x̂dy 
j = l P-U j = l P+ x 1 +£PX' 

x = xf + ep(x' ,yf)U(s (w')), w' e v 
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A PROOF OF DOUGLAS' THEOREM 

Using the fact that uJ(e) = uJ and uJ(e) = uJ , the above is seen to equal 

E J VuJ.VuJdxdy + E J (uJ) (1 + £p ,)dxdy 
j = l V-\J j = l P 

2 
+ E 

5 +p2bV 
л+ У X 

dxdy 
dxdy + V y dxdy 

1 • ePx, 

• • P 
+ 2 e J uJuJ -r—-1 dxdy 

Expanding ^ / we get that this is equal to 
1 + £ P i 

n . n . 
E / VuJ.VuJdxdy + E J VuJ.VuJdxdy 

j=l P-U j=l P 

+ £ E f [(u3)2 p f - (uJ)2p Jdxdy 
j = l V x x y x 

n 
+ 2 e E J ^"uJuJp dxdy + ê Q 

j = l V x y y 
with Q remaining bounded as e 0 . 

The sum of the first two terms is just 2E(u) = E J Vu3.Vu3dx dy which is constant 

(in e )• Assuming u is a minimum 

^ 2E(u(e))| = 0 . 
j £=0 

Since x' -> x as e -> 0, this clearly implies that 

(6) E / , [ (uV - (uV]p dxdy + 2 E / uJuJP dxdy = 0 
j=i v x y x j=i V x y y 

for all p whose support is in D3/4 • We can rewrite equation (6) in the more con
venient form 

(7) (Re / {|S u'(z)^}dxdy = 0 , 

where (Re stands for real part, and here -A- = i TT~ » "i==- = + i TT-
Bz By Bx 3z By 3x 
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Thus,(7) is our local variational condition, a condition which is expres-
sed in a coordinate neighborhood. In order to conclude that u1(z) is C "up to 
the boundary",we need a more general version of the Schwarz reflection principle, 
and this author is indebted to F. Tomi for helpful suggestions on this point. 

LEMMA (General Schwarz Reflection Principle), Let V+ be the upper half of the 
disc of radius r in the complex plane. Suppose that f is an L , complex valued  
holomorphic function on the interior of V* satisfying 

(8) fce f | | f dxdy = 0 
r 

for all C p . Then, f reflects to a holomorphic function in the interior of the whole 
disc and thus is C up to the boundary section (-r,r) x {0} JD£ . 

Proof. Since f is holomorphic,(4) can be rewritten as 

(Re J . ^ (pf) dxdy = 0 
v dz 
r 

for all p . Thus 
(Re {J ^- (pf)dxdy + i J ~ (pf) dxdy} = 0 . 

V 9x V 3y 
r r 

If we take p to have compact support disjoint from the boundary x + y = r in V+ ,the first term must vanish. Thus, r 

(9) (Re i f ^-(pf)dxdy = 0 = lim Re i ( -f- (pf)dxdy . 
V 8y e+o y>o 8y 

r J 
Moreover,(9) implies that 
(10) lim JmJ (pf)dx = 0 

€+0 y=e 
for all p with support chosen as above. Define a reflected function F on the 
entire disc V by 

f(x,y) if (x,y) e vr 
F(x,y) 

f(x,-y) if (x,y) € Vr 
the bar over f denoting complex conjugation, and V is the bottom half of V 
Thus, F is well defined a.e.,and is in L on . We claim that F is a.e. equal 
to a holomorphic function on V . I n order to establish this by Weyl's lemma, we, 
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need only show that F is weakly holomorphic, that is 

J f | £ = 0 
v 3z 
r 

for all real valued C functions p with compact support in V . 

J F |& dxdy = J ^r(Fp) dxdy 
r r 

= J -̂(pF)dxdy + i J -̂ -(pF)dxdy . 
V 3x P 3y 
r r 

Since p has compact support in V the first integral vanishes, and our expression 
is equal to 

i J -̂ -(pF)dxdy = lim i J ^- (pF)dxdy 
Pr dy e+0 \y\>e 8y 

= - lim i J p(x,e)f(x,ejdx + lim i j p(x,-e)f(x,e)dx 
e -K) y=e ê O y=-£ 

= - lim ij p(x,c)[f-f]dx + lim i j[p(x,-e)-p(x,e)]f(x,e)dx 
e'-K) y=€ E -K) 

= - 2 lim ImJ pf + lim iJ[p(x,-e)-p(x,e)]f(x,e)dx . 
e'-K) y = e e-K) 

By (7) the first limit is zero. Since f is L^,it follows that there is a 
sequence -> 0 such that 

lim e í IfJdx = О . n У= е -Ю п 
п 

This implies that the second limit is zero. Thus 

h t F • 0 
r 

and F is holomorphic on the interior of the disc V . This concludes the proof 
of the reflection principle." 

We may now continue with our proof. Our assumption that the minimum 
u £ li\p,TRn) clearly implies that u'(z)2 is in of the disc. Therefore, an imme
diate application of the previous lemma shows that the holomorphic quadratic diffe-

rential u (z) dz may be reflected across the boundary of V to a holomorphic quadra-
tic differential on the sphere. Since there are none (except 0), u'(z) = 0 which 
finishes theorem A . • 
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It s t i l l remains to establish the existence of a minimum for E . In this 
case we need the famous 

LEMMA (Courant-Lebesgue).-In a domain G of the plane,we consider a sequence of  
mappings : G -> IRn with piecewise continuous first derivatives so that their  
Dirichlet integrals are bounded by a constant A , 

E(u ) < A . 
m 

About a fixed point Q , we draw a circle of radius B .Denote by C an arc •• • • ~—- p •— 
contained in G , and let s denote arc length on CQ . Then,there exists 

, , : ¡¡3 •• 
for each positive B < 1 a value p with 

B < p < /3" 

so that 
J ( И)2 ds<_e_(ßl 

with 
7 A 

E<*> = wTTfiT * 0 
as B -+ 0 . 

Consequently,for the length L of the image Ĉ  of C in 3Rn we have 
P P P 

L2 < 2Tre(B) . P 
The proof of this lemma can be found in Courant's book "Dirichlet's Principle." 

THEOREM Dirichlet's functional E : N ^ -> 1R has an absolute minimum. 

Proof. Let (u )be a minimizing sequence for E. Thus E(u ) inf (E), the infimum of  m m 
E on N we may assume that each u is harmonic. Let A15A0,A0 be three distinct r m 1 I 3 
points on r and Q} , Q ,̂ three distinct points on . Since Dirichlet's functio
nal is invariant under the three dimensional^ conformal group of the disc we may, 
without loss of generality farther assume that um(Q̂ ) = f°r aH m an<̂  i • 

For the next step we will show that the sequence {u } is equicontinuous 
in C(D,R ), and it is here that we use the Courant-Lebesgue lemma. We start by 
showing that the u are equicontinuous on s' . m 

^ Each element of this group is given by z ^ c -̂%z' wnere jcj = ^ anc* |a| < 1 • 
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It is well known that any Jordan curve r has the following property. 

"There exists for each T > 0 , a a (T) with a(T) -> 0 as T •+ 0 so that 
(11) for any points Q, R on r whose distance is not yet greater than T 

one of the two curves QR on V has a diameter not exceeding a(T).M 

We know that u m : S -> T monotonically. 

Pick two close points P and on S . Let R be a point between P and Q so 
that a circular arc of small radius 3 joins P and Q in V . By the Courant-
Lebesgue lemma we can draw a circulas arc C of radius p > 3 around R joining 
two points Pj and P̂  on S so that the shorter arc joining Pj and P̂  (i) is 
contained in the shorter arc joing Pj and P̂  , (ii) contains only one of the 
distinguished points Q_. and (iii) the length of the image of the circular arc 
under u m is small. This implies that the distance between u (P.') and u (P') is 
small. By (11) this implies that the shorter arc joining u (P.1) ml and u (P')m I on r 
is small. If 3 is small enough the shorter arc on T must be the one which contains 
only one of the three points . Therefore by monotonicity the image of the smaller 
PjP^ arc must be the small arc on V . This implies that the distance between 
u (P.) and u (P0) is also small. Thus u Is1 is an equicontinuous family and since m 1 m 2 m 
u is harmonic it is an equicontinuous family in (CD,It ) . 

We may therefore extract a convergent subsequence (u ] which converges 
j i 

to u6C (D,E )AH (D,]R ) , i .e. , u is continuous and has finite Dirichlet inte-
gral. It is clear that u will be harmonic. 

Our last step is to argue that DirichletTs functional is lower semi-
continuous with respect to uniform convergence as long as DirichletTs integral 
remains bounded. For this, we use the following basic lemma. 

LEMMA. Let Q' and be open sets in the plane with fif c , and let u be a real 
valued harmonic function on Q . Then if y = dist(ftf,3ft) 

(12) sup I Vco (x) |< 
xGT 

const sup I o)(x) I . 
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Lower semi-continuity is now a consequence of (12) as follows : 
Let V c P be the disc of radius r < 1 . Then r 

n n . 
I f Vu1oVu1 < Z f Vu1.Vu1 i=l V m m i=l V m m r 

Thus 
n i i n 

lim inf i f Vu .Vu < lim inf X f Vu1.Vu1 
^ i_i o m m m̂> i=1 Jp m m 

r 
n ^ ^ 

and by the lemma the left-hand side of this inequality is equal to I / Vu .Vu 
i=l V 

Since this is true for each r < 1,we obtain 
n n 
I J Vu1.Vu1 < lim inf I J Vu1.Vu1 

i=l V m-*» i=l V m m 
which establishes lower semi-continuity and also concludes the proof of theorem B 
and thus also the main theorem. • 
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