Astérisque

J. P. FRANCOISE Monodromy and the Kowalevskaya top

Astérisque, tome 150-151 (1987), p. 87-108

http://www.numdam.org/item?id=AST_1987_150-151_87_0

© Société mathématique de France, 1987, tous droits réservés.

L'accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

MONODROMY AND THE KOWALEVSKAYA TOP.

J. P. Francoise

We consider algebraically completely integrable Hamiltonian systems which are separable [A-M], [Mo], [Moe] and [Mu]. For these systems, we prove that the symplectic form can be reduced to a simple expression involving Abelian forms. We use then Arnol'd's method [A] to define the Actions. The determination of the Actions turns out to be equivalent to a monodromy computation. The Actions are not given, in general, by simple functions of the first integrals. But we can write the corresponding Picard-Fuchs equations. We consider in detail the Kowalevskaya Top and we write down the 4-th order differential equation which is involved in this case.

It is a pleasure for me to thank V. Guillemin for stimulating discussions in the beginning of this work at M.I.T. and P. Deligne for helpful comments.

1. Algebraically Completely Integrable Hamiltonian System

We see here a <u>completely integrable Hamiltonian System</u> (\underline{H}, ω) as an algebraic mapping $\underline{H} = (\underline{H}_1, \ldots, \underline{H}_m): V^{2m} \rightarrow \mathbb{C}^m$ which is submersive on a non-empty Zariski open set $V^* = V^{2m} \setminus S$, where V^{2m} is a symplectic algebraic variety, and such that the fibers of \underline{H} are Lagrangian for the symplectic form ω .

Definition. A completely integrable Hamiltonian system is algebraically separable if

i) there is a family of hyperelliptic curves

 $\mathbf{C}_{\underline{\mathbf{C}}} = \{(\mathbf{z}, \mathbf{w}) \in \mathbf{C}^2 / \mathbf{z}^2 = \Phi_{\underline{\mathbf{C}}}(\mathbf{w}) \}$

S.M.F. Astérisque 150-151 (1987) such that the fiber $\underline{H}^{-1}(\underline{c})$ is the affine part of $Jac(\underline{c}_{\underline{c}})$ and constants $v_{,} \in \underline{c}^{m}$ such that

(1.1)
$$\sum_{k=1}^{m} \frac{w_{k}^{j-1} \{H_{i}, w_{k}\}}{\sqrt{\Phi(w_{k})}} = v_{i} \delta_{ij}$$

{ } is the Poisson bracket for $\,\omega\,$ and $\,v^{}_{i}\,\neq\,0\,$ for all $\,i$ = 1, ..., m.

Let us consider a Hamiltonian system (\underline{H}, ω) which is a complexification of a real mapping $\underline{H}: V_R^{2m} \rightarrow R$. If the fibers $\underline{H}^{-1}(\underline{c})$, $\underline{c} \in R^m$ are compact, the connected components of the general fiber are real tori (Arnol'd-Liouville).

The system is said to be algebraically completely integrable when the fibers are affine part of Abelian varieties [A-M]. Most of the interesting completely integrable Hamiltonian systems have this property. For instance, the three cases of integrability of the motion of a rigid body about a fixed point and their extensions [R], [R-M], the Toda Lattice and its extensions by Kostant [K] the examples of J. Moser [Mo] ect. Furthermore for all these examples, the Abelian varieties are Jacobians of Riemann surfaces $C_{\underline{c}}$, $Jac(C_{\underline{c}}) = H^{0}(C, \alpha_{\underline{c}}^{1})*/H_{1}(C, Z)$.

Let us recall that if $z^2 = \Phi(w)$ is an equation for a hyperelliptic curve C, Φ being a polynomial of degree 2g or 2g + 1, the Abelian forms of the first kind $\left(\frac{w^j dw}{\sqrt{\Phi(w)}}, j = 0, ..., g - 1\right)$ generate a basis of $H^0(C, \alpha_C^1)^*$

So the equation (1.1) means that the Hamiltonian flows of the functions H_i are linearized on the Jacobian and that they have a constant velocity v_i relatively to the basis of the Abelian forms of the first kind.

88

The velocities v_i are usually independent of <u>H</u> in the classical examples. The algebraic polarization of the complex tori is not given by the expected one (Projective embedding of the fibers <u>H</u>⁻¹(<u>c</u>) by homogenization) but is provided by the existence of Laurent developments for the solutions of the <u>H</u> [A.M.]. In this sense, following Torelli's theorem the smooth curves $C_{\underline{c}}$ are uniquely determined by the couple (<u>H</u>, ω). We consider now an example.

2. The Integration of Kowalevskaya Top.

Euler's equations governing the motion of a rigid body about a fixed point are given by the following

$$A\dot{p} + (C - B)qr = mg(y_0Y_3 - z_0Y_2)$$

$$B\dot{q} + (A - C)pr = mg(z_0Y_1 - x_0Y_1)$$

(2.1)

$$C\dot{r} + (B - A)pq = mg(x_0Y_2 - y_0Y_1)$$

$$\dot{Y}_1 = rY_2 - qY_3$$

$$\dot{Y}_2 = pY_3 - rY_1$$

$$\dot{Y}_3 = qY_1 - pY_2$$

It is natural to restrict the vector field that they define to the algebraic variety $V^4_R \subset R^6$ given by the equations

$$Y_1^2 + Y_2^2 + Y_3^2 - 1 = 0$$

 $2(pY_1 + qY_2) + rY_3 - 2\ell = 0$

 $\ell \in \mathbb{R}$ is fixed.

We get by restriction on $\ensuremath{\,V}^{\ensuremath{\mu}}$ a Hamiltonian system for the symplectic form:

(2.2)
$$\omega = \frac{2}{\gamma_3} dp \wedge d\gamma_2 - \frac{2}{\gamma_3} dp \wedge d\gamma_1 - \frac{r}{\gamma_3^2} d\gamma_1 \wedge d\gamma_2$$

and the Hamiltonian is

(2.3)
$$H = p^{2} + q^{2} + \frac{r^{2}}{2} - cY_{1}, \qquad c = \frac{mgx_{0}}{c}$$

for the Kowalevskaya Top which corresponds to the values

$$A = B = 2C$$
, $y_0 = z_0 = 0$

of the parameters.

In that case, we have an extra integral K:

(2.4)
$$K = [(p + iq)^{2} + c(\gamma_{1} + i\gamma_{2})][(p - iq)^{2} + c(\gamma_{1} - i\gamma_{2})].$$

We define by $\underline{H} = (K, H): \mathbb{V}_{\mathbb{C}}^{4} \to \mathbb{C}$ a completely integrable Hamiltonian system.

If we follow S. Kowalevskaya's computation [Ko], [Go], we choose $x_1 = p + iq$, $x_2 = p - iq$, Y_1 , Y_2 as a system of coordinates on V^4 . We introduce the polynomials

 $R(x) = -x^{4} + 2Hx^{2} + 4clx$

$$R(x_1, x_2) = -x_1^2 x_2^2 + 2Hx_1 x_2 + 2c\ell(x_1 + x_2) + c^2 - K$$

$$R_1(x_1, x_2) = -2Hx_1^2 x_2^2 - (c^2 - K)(x_1 + x_2)^2 - 4c\ell x_1 x_2(x_1 + x_2)$$

$$+ 2H(c^2 - K) - 4c^2 \ell^2.$$

We use then

$$w_{1} = \frac{R(x_{1}x_{2}) - \sqrt{R(x_{1})R(x_{2})}}{(x_{1}-x_{2})^{2}}$$

(2.5)

$$w_{2} = \frac{R(x_{1}x_{2}) + \sqrt{R(x_{1})R(x_{2})}}{(x_{1}-x_{2})^{2}}$$

and the polynomials

$$\phi(w) = (w + H)(w^{2} + c^{2} - K) - 2c^{2}k^{2}$$

(2.6)

$$\Phi(w) = -2(w^2 - K)\phi(w).$$

equivalent to

 $\dot{w}_1 = -\{H, w_1\} = \sqrt{\Phi(w_1)}/w_1 - w_2$

(2.7)

$$\dot{w}_2 = -{H, w_2} = \sqrt{\Phi(w_2)}/w_1 - w_2$$

and so, we have

$$\frac{\mathrm{dw}_1}{\sqrt{\Phi(w_1)}} + \frac{\mathrm{dw}_2}{\sqrt{\Phi(w_2)}} = 0$$

(2.8)

$$\frac{w_1^{dw_1}}{\sqrt{\Phi(w_1)}} + \frac{w_2^{dw_2}}{\sqrt{\Phi(w_2)}} = -dt.$$

Let us introduce the hyperelliptic Riemann surface C defined by $z^2 = \Phi(w)$ in $\mathbb{C}P_2 = \{(z,w)\}$. It is a compactification of a double cover of the plane minus three cuts and so it is a Hyperelliptic curve of genus 2. Let $Jac(C) = H^0(C, \Omega_C^1)^*/H_1(C, Z)$ be the Jacobian variety of C. The forms $(\frac{dw}{\sqrt{\Phi(w)}}, \frac{wdw}{\sqrt{\Phi(w)}})$ provide a basis of $H^0(C, \Omega_C^1)$. We can associate to (w_1, w_2) an element $(z_1, w_1) - (z_2, w_2)$ of the Picard group $Pic_0(C)$ where $z_1^2 = \Phi(w_1)$ and $z_2^2 = \Phi(w_2)$. So the equations (2.8) describe a linear motion on Jac(C) and the real tori given by Arnol'd-Liouville are real part of Abelian varieties on which the motion is linear.

If we introduce

$$Q(w, \underline{H}, x_1, x_2) = (x_1 - x_2)^2 w^2 - 2R(x_1, x_2) w - R_1(x_1, x_2)$$

we deduce from (2.5) that

$$\mathbb{Q}(\mathsf{w}_1, \underline{\mathsf{H}}, \mathsf{x}_1, \mathsf{x}_2) = \mathbb{Q}(\mathsf{w}_2, \underline{\mathsf{H}}, \mathsf{x}_1, \mathsf{x}_2) = 0.$$

So we have an identity

$$\frac{\partial Q}{\partial w_{i}} dw_{i} + \frac{\partial Q}{\partial x_{1}} dx_{1} + \frac{\partial Q}{\partial x_{2}} dx_{2} + \frac{\partial Q}{\partial H} dH + \frac{\partial Q}{\partial K} dK \bigg|_{w=w_{i}} = 0$$

for i = 1, 2.

We can deduce from this identity that

$$\{K, w_1\} = 2w_2 \sqrt{\Phi(w_1)} / w_1 - w_2$$

(2.9)

$$\{K, w_2\} = 2w_1 \sqrt{\Phi(w_2)} / w_2 - w_1$$

So the condition (1.1) holds for the Kowalevskaya top with $\ v_1$ = +2 and $\ v_2$ = 1.

3. Preparation of the Symplectic Form

 $\frac{\text{Proposition 3.1. If (H, \omega) is algebraically separable, then there are}}{\tilde{functions} \tilde{q}_j \frac{\text{such that the forms }}{\tilde{q}_j} \frac{\tilde{q}_j}{\frac{\mu^{-1}(\underline{c})}}$

integrals and such that

$$\omega = \sum_{j=1}^{m} \tilde{q_j} \wedge dH_j.$$

<u>Proof</u>. We start with the expression of the symplectic form ω in the coordinates $(\underline{H},\underline{w})$

$$\omega = \sum_{j,\ell} A_{j\ell} dH_{j} \wedge dH_{\ell} + B_{j\ell} dw_{j} \wedge dH_{\ell} + C_{j\ell} dw_{j} \wedge dw_{\ell}.$$

We have

$$(3.1) \qquad -dH_{i} = \sum_{j,\ell} B_{j\ell} \{H_{i}, w_{j}\} dH_{\ell} + 2C_{j\ell} \{H_{i}, w_{j}\} dw_{\ell}.$$

It is convenient at this point to introduce a matrix notation. Let F, B, W, V be the matrices whose general terms are:

$$(F)_{ij} = \{H_{i}, w_{j}\} \qquad (B)_{ij} = B_{ij}$$
$$(W)_{ij} = \frac{w_{i}^{j-1}}{\sqrt{\Phi(w_{1})}} \qquad (V)_{ij} = v_{i}\delta_{ij}.$$

Then, the equation (1.1) gives

$$F \cdot W = V$$
.

From (3.1), we deduce that

and since
$$det(V) = \Pi \quad v_i \neq 0$$
, that $i=1$

$$B = -WV^{-1}$$

or

$$(3.2) \qquad \qquad B_{j\ell} = -\frac{1}{V_{\ell}} w_j^{\ell-1} / \sqrt{\Phi(w_j)}.$$

Another consequence of (3.1) is

$$C_{jl}\{H_i, w_j\} = 0$$

and because det $F \neq 0$, we have

$$(3.3) C_{jl} = 0 for all j, l.$$

We introduce now the pre-angles \tilde{q}_{j} in the following way. The symplectic form can be written:

$$\omega = \sum_{j=1}^{m} n_j \wedge dH_j$$

Let \tilde{n} be a one-form such that ω = $d\tilde{n}$ defined on an appropriate universal cover. We have

$$\tilde{n} = \sum_{i} \alpha_{i} dH_{i} + \beta_{i} dw_{i}$$
$$\frac{\partial \beta_{i}}{\partial w_{k}} = \frac{\partial \beta_{k}}{\partial w_{i}}.$$

Let us introduce a function \tilde{S} such that $\beta_i = \frac{\partial \tilde{S}}{\partial w_i}$ and write:

$$\tilde{n}' = n - d\tilde{S} = \sum \left(\alpha_i - \frac{\partial \tilde{S}}{\partial H_i} \right) dH_i$$
$$\tilde{q}_i = \alpha_i - \frac{\partial \tilde{S}}{\partial H_i}$$
$$\omega = d\tilde{n}' = \sum d\tilde{q}_i \wedge dH_i.$$

4. Arnol'd's Definition of the Actions

A system of Action-angles for (\underline{H}, ω) can be defined following Arnol'd [A] when $\underline{H}: \mathbb{V}_{R}^{2m} \to \mathbb{R}$ has <u>compact</u> fibers. In that case the connected components of $\underline{H}^{-1}(\underline{c})$ are tori and we define an Action-angle coordinates system, relatively to a basis $\Upsilon_{j}(\underline{c})$ of the homology of the real tori $\underline{H}^{-1}(\underline{c})$, as coordinates ($\underline{p}, \underline{q}$) so that

i) $\omega = \sum_{j=1}^{m} dq_j \wedge dp_j$

ii) H = H(p) (the first integrals do not depend on the angles)

iii)
$$\int_{\gamma_j(\underline{c})} dq_i = \delta_{ij}$$
.

Basic references for Action-angles are Arnol'd [A], Nekhoroshev [N]. A nice example of R. Cushman of non-existence of global Action-angles is analyzed in [Du]. See also [F.M.]. Action-angles are very useful, for instance, for the quantization of classical mechanical systems [G-S].

MONODROMY AND THE KOWALEVSKAYA TOP

For algebraically separable Hamiltonian systems, we have previously prepared the symplectic form

$$\omega = \sum_{j=1}^{m} \tilde{dq}_{j} \wedge dH_{j}.$$

So the Actions are determined as functions of $\ \underline{H}$ by the periods

$$\psi_{j}(\underline{H}) = -\sum_{i,k} \int_{\gamma_{j}(\underline{H})} \frac{w_{k}^{i-1} dw_{k}}{v_{k} \sqrt{\Phi(w_{k})}}.$$

The periods are given by Abelian integrals of the first kind. Thus, their computation is a problem of Algebraic Geometry once we know explicitly how the Hyperelliptic curves \mathbf{C}_{c} depend on $\underline{\mathrm{H}}$.

5. Computation of the Angles

Proposition 5.1. The angles are given by

$$q_i = \sum_{j=1}^{m} T_{ij}(\underline{H}) \tilde{q}_j$$

where the matrix $T:(T)_{ij} = T_{ij}$ is the inverse of \tilde{T} :

$$(\tilde{T})_{ij} = \int_{\gamma_j} d\tilde{q}_i.$$

In general, for a family of Hyperelliptic Riemann surfaces, it is not possible to compute explicitly the Abelian integrals as functions of the

parameters. But they are solutions of a Picard-Fuchs differential equation [D], [M].

The same situation appears for the Milnor fibration where the Gauss- \tilde{Nanin} connection provides a Regular Singular Differential System which is very useful to study the local monodromy [D], [M], [Gr]. The integrals are in that case related to the Birkhoff series of Hamiltonian Systems [F], [V].

We make more explicit the computation of these differential equations for the Kowalevskaya Top.

6. Picard-Fuchs Equations for the Kowalevskaya Top

We must, first of all, choose a system of generators for the homology of the real part of $\underline{H}^{-1}(\underline{c})$. The coordinates (w_1, w_2) represent a point on $\underline{H}^{-1}(\underline{c})$. If p, q; Y_1 , Y_2 are real, then $x_1 = \overline{x}_2$ and (cf. (2.5)) w_1 , $w_2 \in \mathbb{R}$ (in fact $w_2 \in \mathbb{R}_2$). With (w_1, w_2) we can parametrize an element $(z_1, w_1) - (z_2, w_2)$ of $\operatorname{Pic}_0(\underline{c}_2)$.

The mapping $h_{w_2}: C_{\underline{c}} \rightarrow Jac(C_{\underline{c}})$ defined by

$$h_{w_2}:(z_1,w_1) \rightarrow (z_1,w_1) - (z_2,w_2),$$

where \mathbf{w}_{2} is fixed, is a quasi-isomorphism.

So a system of generators for the Homology of $\underline{H}^{-1}(\underline{c})$ can be prescribed by paths in the w₁-plane.

For our case, the polynomial Φ (2.6) is of degree 5 and we know that $+\sqrt{K}$ and $-\sqrt{K}$ are two roots of Φ . So we can explicitly compute the three other roots. They will be denoted (e_1, e_2, e_3) . The equation of the Discriminant locus of C_c is

98

$$(6.1) \qquad \qquad \delta \delta' = 0$$

where

(6.2)
$$\delta = -K + (H - 2k^2)^2$$

$$\delta' = 4p^3 + 27q^2$$

with
$$p = (c^2 - K - H^2/3)$$
 and $q = \frac{2H}{3}(c^2 - K) - 2c^2k^2 + \frac{2H^2}{27}$.

Thus the Discriminant locus is the union of a Parabola and of a singular sextic (with four singular points in its affine part).

We need a quick analysis of the respective localization of each roots of ϕ . For instance if l = 0 then (cf. (2.6))

(6.3)
$$\phi(w) = (w + H)(w^2 + c^2 - K).$$

If K is small enough, there is only one real root -H. If -H << $-\sqrt{K}$, let e be the real root of ϕ which equals -H for $\ell = 0$; for datas which are small perturbations of this situation, we get sign of ϕ

Hence, we can choose the segments $[-\infty,e]$ and $[\sqrt{K},-\sqrt{K}]$ to have a basis of the real homology of Jac(C). We are concerned with the four integrals

$$P_1 = \int_{-\infty}^{e} \frac{dw}{\sqrt{\phi(w)}}, \qquad P_2 = \int_{-\infty}^{e} \frac{wdw}{\sqrt{\phi(w)}},$$

(6.4)

$$Q_1 = \int_{-\sqrt{K}}^{\sqrt{K}} \frac{dw}{\sqrt{\Phi(w)}}, \qquad Q_2 = \int_{-\sqrt{K}}^{\sqrt{K}} \frac{wdw}{\sqrt{\Phi(w)}}$$

and their analytic extensions to any values of H = (K, H).

The Picard-Fuchs equation does not depend on the generator of the homology so we can restrict ourselves to the path Y defined by going from $-\infty$ to e on the first sheet of $C_{\underline{c}}$ then back from e to $-\infty$ on the second sheet of $C_{\underline{c}}$. We have to deal with

$$P_{i} = \int_{\gamma} \frac{w^{i-1} dw}{\sqrt{\Phi(w)}} \quad \text{for} \quad i = 1, \dots, 4.$$

For the Kowalevskaya top there is a nice simplification of the monodromy computation because there is a vector field X_0 :

(6.5)
$$X_{0} = \frac{1}{2} \frac{\partial}{\partial H} - w \frac{\partial}{\partial K} - \frac{1}{2} \frac{\partial}{\partial w}$$

such that $X_0 \cdot \Phi(w) = 0$.

From this and the relation

(6.6)
$$\int_{\gamma} \frac{w^{4} dw}{\sqrt{\phi}} = \int_{\gamma} \frac{w^{4} dw}{\sqrt{\phi}} - \frac{1}{5} \int_{\gamma} \frac{\phi'}{\sqrt{\phi}} dw$$
$$\int_{\gamma} \frac{w^{4} dw}{\sqrt{\phi(w)}} = -\frac{4}{5} HP_{4} - \frac{3}{5} (c^{2} - 2\kappa)P_{3} - \frac{2}{5} [(c^{2} - 2\kappa)H - 2c^{2} \ell^{2}]P_{2}$$
$$+ \frac{1}{5} K (c^{2} - \kappa)P_{1}.$$

We get

(6.7)
$$\frac{\partial P_{1}}{\partial H} = 2 \frac{\partial P_{2}}{\partial K}$$

$$\frac{\partial P_{i}}{\partial H} = 2 \frac{\partial P_{i+1}}{\partial K} - i P_{i-1} \quad \text{for} \quad i = 1, 2, 3$$

$$\frac{\partial P_{4}}{\partial H} = \frac{8}{5} H \frac{\partial P_{4}}{\partial K} - \frac{6}{5} (c^{2} - 2K) \frac{\partial P_{3}}{\partial K} - \frac{4}{5} ((c^{2} - 2K)H - 2c^{2}k^{2}) \frac{\partial P_{3}}{\partial K} - \frac{2}{5} K(c^{2} - K) \frac{\partial P_{3}}{\partial K} - \frac{8}{5} P_{3} + \frac{8H}{5} P_{2} + \frac{1}{5} [2c^{2} - 4K] P_{1}.$$

This allows to separate simply the Picard-Fuchs equations into two parts involving respectively only the partial derivatives relatively to H or K.

Let us see now, for instance, the system for the partial derivatives relatively to H. We follow here the usual way [D].

We start with

(6.8)
$$\frac{\partial P_{i}}{\partial H} = -\frac{1}{2} \int_{\gamma} \frac{w^{i-1}}{\sqrt{\phi(w)}} \frac{\Phi'_{i}}{\Phi} dw = -\frac{1}{2} \int \frac{w^{i-1}}{\sqrt{\phi}} \frac{\Phi'_{i}}{\Phi} dw$$

we denote by χ , $\chi = w^2 - K$, then $\Phi = 2\chi \cdot \phi$

(6.9)
$$\phi'_{\rm H} = w^2 - K + c^2 = \chi + c^2.$$

We can check that

$$(6.10) 1 = \lambda \phi + \mu \chi$$

with

(6.11)
$$\lambda = -\frac{w - (H - 2k^2)}{c^2 \delta}, \quad \mu = \frac{w^2 + 2k^2 (w + H) - H^2 + 2k^2 H + c^2}{c^2 \delta}$$

so

(6.12)
$$\int_{\gamma} \frac{w^{i-1}}{\sqrt{\phi(w)}} \frac{\phi'_{H}}{\phi} dw = \int_{\gamma} \frac{w^{i-1}}{\sqrt{\phi(w)}} c^{2} \lambda dw + \int_{\gamma} \frac{w^{i-1}}{\sqrt{\phi}} (1 + c^{2} \mu) \frac{\chi}{\phi} dw.$$

Let us consider the first integral

(6.13)
$$-\int_{\gamma} \frac{w^{i} dw}{\delta \sqrt{\phi}} + \frac{(H-2\ell^{2})}{\delta} \int_{\gamma} \frac{w^{i-1} dw}{\sqrt{\phi(w)}}$$

and so for i = 1, 2, 3 we find it is

$$(6.14) \qquad -\frac{1}{\delta}P_{i+1} + \frac{H-2l^2}{\delta}P_i.$$

For i = 4, with (6.6), we have

(6.15)
$$\frac{H-2\ell^2}{\delta}P_{\mu} - \frac{1}{\delta}\int_{\gamma} \frac{w^4 dw}{\sqrt{\phi}} = \frac{\frac{9}{5}H-2\ell^2}{\delta}P_{\mu} + \frac{\frac{3}{5}(c^2-2K)}{\delta}P_3 + \frac{\frac{2}{5}((c^2-2K)H-2c^2\ell^2)}{\delta}P_2 - \frac{\frac{1}{5}K(c^2-K)}{\delta}P_1.$$

The second integral in (6.12) is slightly harder to compute. First of all, we have:

$$(6.16) 1 + c^{2}\mu = \frac{1}{\delta} \left[w^{2} + 2\ell^{2}w + 4\ell^{4} - 2\ell^{2}H + c^{2} - K\right] = \frac{R}{\delta}.$$

With the notations of (6.3) and $z = w + \frac{H}{3}$

(6.17)
$$\phi(z) = z^3 + Pz + q.$$

We write now

(6.18)
$$R = z^2 + uz + v$$

with

(6.19)
$$u = -\frac{2H}{3} + 2\ell^{2}$$
$$v = \frac{H^{2}}{9} - \frac{8\ell^{2}H}{3} + 4\ell^{4} + c^{2} - K.$$

Then we have

$$(6.20) R = L\phi + M\phi'$$

with

(6.21)
$$L = \frac{1}{\delta'} [-3rz - 3s]$$
$$M = \frac{1}{\delta'} [rz^{2} + sz + t]$$

and

(6.22)
$$\begin{vmatrix} r \\ s \\ t \end{vmatrix} = \begin{vmatrix} 2p^2 & -9q & -6p \\ -3qp & -2p^2 & 9q \\ -9q^2 & -6pq & -4p^2 \end{vmatrix} \begin{vmatrix} 1 \\ -u \\ v \end{vmatrix}$$

and were δ' = $-4p^3$ - $27q^2$ is the notation of (6.2). So we can write

$$(6.23) \int_{\gamma} \frac{w^{i-1}}{\sqrt{\phi(w)}} (1 + c^{2}\mu) \frac{\chi}{\phi} dw = \frac{1}{\delta} \int_{\gamma} \frac{w^{i-1}}{\sqrt{\phi(w)}} (L\phi + M\phi') \frac{\chi}{\phi} dw$$
$$= \frac{1}{\delta} \int_{\gamma} \frac{w^{i-1}}{\sqrt{\phi}} L\chi dw + \frac{1}{\delta} \int_{\gamma} \frac{w^{i-1} M\sqrt{\chi}}{\phi^{3/2}} \phi' dw.$$

The first integral gives

$$(6.24) \qquad \frac{1}{\delta\delta^{*}} \int_{\gamma} \frac{w^{i-1}(-3rw-rH-3s)(w^{2}-K+c^{2})}{\sqrt{\phi}} dw$$
$$= \frac{1}{\delta\delta^{*}} [-3r \int_{\gamma} \frac{w^{i+2}}{\sqrt{\phi}} dw - (rH + 3s) \int_{\gamma} \frac{w^{i+1}}{\sqrt{\phi}} dw$$
$$- 3r (-K + c^{2}) \int_{\gamma} \frac{w^{i}}{\sqrt{\phi}} dw - (rH + 3s) (c^{2} - K) \int_{\gamma} \frac{w^{i-1}}{\sqrt{\phi}} dw].$$

The second integral of (6.23) gives

$$\frac{1}{\delta} \int_{\gamma} \frac{2\left[(\underline{i-1}) w^{\underline{i-2}} M + w^{\underline{i-1}} M' \right] \chi + w^{\underline{i-1}} M \chi'}{\sqrt{\Phi}} dw$$

and then

$$(6.25) \quad \frac{1}{\delta\delta^{*}} [2(i+2)r \int_{\gamma} \frac{w^{i+2}}{\sqrt{\phi}} dw + 2(i+1)(\frac{2Hr}{3} + s) \int_{\gamma} \frac{w^{i+1}}{\sqrt{\phi}} dw + [2i(r\frac{H^{2}}{9} + \frac{sH}{3} + t) + 2(i+1)r(-K - c^{2})] \int_{\gamma} \frac{w^{i}dw}{\sqrt{\phi(w)}} + 2i(\frac{2Hr}{3} + s)(-K + c^{2}) \int_{\gamma} \frac{w^{i-1}}{\sqrt{\phi}} dw + 2(i-1)[\frac{rH^{2}}{9} + s\frac{H}{3} + t][-K + c^{2}] \int_{\gamma} \frac{w^{i-2}}{\sqrt{\phi}} dw].$$

Now we have to express the integrals

$$\int_{\gamma} \frac{w^4 dw}{\sqrt{\Phi}}, \quad \int_{\gamma} \frac{w^5 dw}{\sqrt{\Phi}}, \quad \int_{\gamma} \frac{w^6 dw}{\sqrt{\Phi}}$$

as a combination of the Abelian integrals of the first and the second kinds. This is a classical computation.

For the first one, we have the formula (6.6). For the others, we use the formula

(6.26)
$$\frac{b_0 w^{m+b_1} w^{m-1} + \dots + bm}{\sqrt{\Phi}} - \frac{b_0}{k + \frac{5}{2}} \frac{d}{dw} [w^k \sqrt{\Phi}] \frac{S}{\sqrt{\Phi}}$$

where S is of degree lower than m, choosing a k in such a way, that m = k + 4.

So if we denote

$$\Phi(w) = w^{5} + \sigma_{1}w^{4} + \sigma_{2}w^{3} + \sigma_{3}w^{2} + \sigma_{4}w + \sigma_{5},$$

we find

$$(6.27) \qquad \int_{\gamma} \frac{w^{6} dw}{\sqrt{\phi}} = -\frac{2}{9} \left[4\sigma_{1} \int_{\gamma} \frac{w^{5} dw}{\sqrt{\phi}} + \frac{7}{2}\sigma_{2} \int_{\gamma} \frac{w^{4} dw}{\sqrt{\phi}} + 3\sigma_{3}P_{4} + \frac{5}{2}\sigma_{4}P_{3} + 2\sigma_{5}P_{2} \right]$$

and

$$(6.28) \int_{\gamma} \frac{w^5 dw}{\sqrt{\phi}} = -\frac{2}{7} [3\sigma_1 \int_{\gamma} \frac{w^4 dw}{\sqrt{\phi}} + \frac{5}{2} \sigma_2 P_4 + 2\sigma_3 P_3 + \frac{3}{4} \sigma_4 P_2 + \sigma_5 P_1].$$

MONODROMY AND THE KOWALEVSKAYA TOP

Finally, if we put together (6.14), (6.15), (6.24), (6.25) and (6.6), (6.26), (6.27), we find explicitly the Picard-Fuchs equation in the form

(6.29)
$$\frac{\partial P_{i}}{\partial H} = \sum_{j=1}^{4} = \left[\frac{\alpha_{ij}}{\delta} + \frac{\beta_{ij}}{\delta\delta^{\dagger}}\right] P_{j}$$

where α_{ij} are given by (6.14) and (6.15) and β_{ij} are derived from (6.24), (6.25). The α_{ij} and β_{ij} are simple polynomial expressions of H = (K,H).

References

- [A] V. I. Arnol'd, "Mathematical methods of classical mechanics". Springer 1978.
- [A-M] M. Adler, P. van Moeberke, "Completely integrable systems. Kac-Moody Lie algebras and curves". Adv. in Math. 38(3) (1980) pp. 267-317. "Linearization of Hamiltonian systems, Jacobi varieties and representation theory". Adv. in Math. 38(3) (1980) pp. 318-379.
- [D] P. Deligne, "Equations differentielles a points singulier reguliers". Lecture Notes in Mathematics, No. 163, Springer 1970.
- [Du] J. J. Duistermaat, "On global action-angle coordinates". Comm. on Pure and Applied Math. 32 (1980) pp. 687-706.
- [F] J.-P. Francoise, "Modele local simultane d'une fonction et d'une forme de volume", Asterisque S.M.F. (59-60) (1978) pp. 119-130.
- [F-M] A. G. Fomenko, A. S. Mishenko, "Generalized Louiville method of integration of Hamiltonian systems". Funct. Anal and Its Appl. 12 (1978) pp. 113-121.
- [G] V. V. Golubev, "Lectures on the integration of the equations of motion of a heavy rigid body around a fixed point". Gostekhizdat, Moscow 1953.
- [Gr] P. Griffiths, "Periods of integrals on algebraic manifolds". 76(2) (1970) pp. 228-296.
- [G-S] V. Guillemin, S. Sternberg, "The Gelfand-Cetlin system and quantization of the complex flag manifold". Journal of Funct. Anal. 52(1) (1983) pp. 106-128.
- [K] B. Kostant, "The solution to a generalized Toda lattice and representation theory". Adv. in Math. 34, No. 3 (1979) pp. 195-338.

- [Ko] S. Kowalevskaya, "Sur le probleme de la rotation d'un corps solide aoutour d'un point fixe" Acta Mat. 14 (1980) pp. 81-93.
- [M] B. Malgrange, "Integrales asymptotiques et monodromie". Annales de l'E.N.S. t. 7 Fasc. 3 (1974) pp. 405-430.
- [Mo] J. Moser, "Geometry of quadrics and spectral theory". Berkeley 1979, Springer-Verlag (1980) pp. 147-188. "Various aspects of integrable Hamiltonian systems". C.I.M.E., Bressanone, Italy, July 1978 in Progress in Math. No. 8 Birkhauser (1980).
- [Moe] P. van Moerbeke, "Algebraic complete integrability of Hamiltonian systems and Kac-Moody Lie algebras". Conference at the International Congress of Mathematicians 1982, Warszaw, Poland, August 1983.
- [Mu] D. Mumford, "Tata Lectures on theta II". Progress in Mathematics 43, Birkhauser (1984).
- [N] N. N. Nekhoroshev, "Action-angle variables and their generalization". Trans. of Moscow Math Soc. 26 (1972) pp. 181-198.
- [R] T. Ratiu, "Euler-Poisson equations on Lie algebras and the Ndimensional heavy rigid body". Am. Journal of Math. 104 No. 2 (1980) pp. 409-448.
- [R.M.] T. Ratiu, P. van Moerbeke, "The Lagrange rigid body problem". Ann. Inst. Fourier, Grenoble 23(9) (1982) pp. 211-234.
- [V] J. Vey, "Sur le lemme de Morse". Inv. Math. 40 (1977) pp. 1-9.

University of Arizona at Tucson, AZ 85721 U.S.A.

Permanent Address:

Université de Paris-Sud, Bat. 425 91405 - Orsay. France