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OPTICAL STRUCTURES IN RELATIVISTIC THEORIES 

BY 

Andrzej TRAUTMAN 

ABSTRACT. — In 1922 Élie CARTAN discovered the existence, in any Lorentzian and 
not conformally fiat 4-manifold, of four privileged directions which are optical in the 
sense that they belong to the light cone defined by the fundamental form. In special cases 
— as for the Schwarzschild spacetime — some of these directions may coincide. These 
observations were later rediscovered and used by physicists in the study of purely radiative 
Maxwell fields and of 'algebraically special' Einstein metrics. The present article reviews 
some of these developments and outlines the underlying 'optical geometry.' This geometry 
is defined as a Go-structure on a 4-manifold, where Go, the 'optical group', is a suitable 
9-dimensional Lie subgroup of GL(4,R). It is shown that the Go-structure is integrable if 
and only if the optical geometry is that of rays without shear and twist. By an extension 
of the Robinson theorem, optical (purely radiative) solutions to sourceless Maxwell and 
Yang-Mills equations exist in geometries of rays without shear. An isomorphism of optical 
geometries is shown to transform one such solution into another. For example, one such 
isomorphism — which is not a conformai map — transforms plane waves into spherical 
waves of a special kind. 

1. Introduction 

Relativistic theories of spacetime and of interactions between particles and 
fields are based on geometrical models which include, as an essential element, 
a metric tensor of Lorentz (normal hyperbolic) signature. As a result of the 
indefinite character of the metric, relativistic models admit directions — and 
other geometric elements — which are isotropic (null, light-like) in the sense 
of being associated with non-zero vectors of vanishing square. Such isotropic 
elements are of considerable interest from the point of view of both geometry 
and physics. Elie CARTAN has shown that totally isotropic maximal planes 
can be used to define spinors over Euclidean vector spaces of any number of 
dimensions [1]. 

For a physicist, a light-like vector in Minkowski space may be identified 
with the energy-momentum vector of a particle of zero rest-mass (photon, 
neutrino). 
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Null hypersurfaces in a Lorentz 4-manifold M with metric tensor g are 
represented by solutions u : M —• R of the eikonal equation 

(i) 9»V du du 
dxu dxu = 0 

where (a;M), = 1,2,3,4, are local coordinates on M. Let M be oriented; 
Maxwell's equations for the 2-form F of electromagnetism are 

(2) dF = 0 and d * F = 0, 

where *F is the Hodge dual of F defined in terms of g and the orientation. 
Assume now F to be of the form 

(3) F — Re(ir'o exp iu/X) 

where Fo is a (complex) 2-form representing the amplitude of an electro­
magnetic wave with phase u : M —• R. In the limit of wave optics (A —• 0), 
Maxwell's equations (2) imply 

(4) du A F0 = 0 and du A *F0 = 0 

so that (1) is a necessary and sufficient condition for the existence of a 
nowhere vanishing Fo subject to (4). The subtler question of whether there 
exists a non-vanishing Fo, solution to (2) and (4) is considered in § 5 [3]. 

The study of isotropic elements and of the associated classical fields 
— such as gravitation, electromagnetism and Yang-Mills — resulted in 
much progress in the area of finding exact solutions and establishing their 
properties. The study has been particularly fruitful in the theory of general 
relativity where it led to the notion of algebraically special spacetimes. Large 
classes of exact, explicit solutions of Einstein's equations have been found 
in this manner. Among them are plane-fronted and sphere-fronted waves 
[4], and the Kerr solution representing the exterior of a rotating black hole 
[5]. A good summary of this reserach, with many references, is given in [6]. 
Almost all explicitly known exact solutions of Einstein's equations in four 
dimensions and with Lorentz signature belong to one of three classes : 

1. algebraically special metrics, 
2. stationary metrics with axial symmetry, 
3. metrics with cylindrical symmetry. 
The consideration of isotropic elements in relativistic theories has also led 

to a number of general results, such as 
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1. The Robinson theorem on the existence of purely radiative (isotropic, 
null) solutions of Maxwell's [3] and Yang-Mills [7] equations associated with 
congruences of null, shear-free geodesies; cf. § 5. 

2. The Goldberg-Sachs [8] theorem and its generalizations [9, 10] : a 
space-time subject to a suitably weakened form of Einstein's equations is 
algebraically degenerate if and only if it contains a congruence of shear-free 
null geodesies. 

3 . The Sachs-Newman-Penrose theory of asymptotic behaviour of the cur­
vature tensor of spacetimes with isolated sources (the 'peeling-off ' theorem) 
[11-15] . 

4. The Xanthopoulos theorem [16] on space-times of the Kerr-Schild family 
[17, 33] . 

In spite of much research, the mathematics underlying purely radiative 
Maxwell fields, algebraically special metrics, and similar structures, has 
not, until recently, been formulated in the language of modern differential 
geometry. The purpose of the present paper is to outline such a formulation. 
A fuller account is being published elsewhere [18, 19, 5 8 - 6 0 ] . 

2. Élie Cartan on optical directions 

In a short note published in 1922 in Comptes Rendus Elie CARTAN wrote 
[ 2 ] : 

"Au point de vue géométrique, la propriété suivante mérite d'être signalée. 
Il existe en chaque point A quatre directions optiques (c'est-à-dire annulant 
le ds2) privilégiées... Dans le cas du ds2 d'une seule masse attirante (ds2 
de Schwarzschild), ces quatre directions optiques privilégiées se réduisent à 
deux (doubles) : les deux rayons lumineux qui leur correspondent iraient au 
centre d'attraction ou en viendraient." 

The four optical (isotropic) directions referred to by CARTAN are defined 
by the tensor of conformai curvature. Possible coincidences among the four 
directions constitute the basis of an algebraic classification of conformai 
curvature tensors. A space-time is said to be algebraically special if its 
conformai curvature tensor has at least a double preferred optical direction. 
This classification was elaborated only in the 1950's, without reference to 
CARTAN'S remarks on the subject, which seem to have gone unnoticed for 
almost 50 years. The algebraic classification of conformai curvature tensors 
has been developed by A.Z. PETROV [20] and later refined, related to physics, 
and used by F.A.E. PIRANI [21], R. DEBEVER [22], A. LICHNEROWICZ [23], L. 

BEL [24], R . K . SACHS [11], R. PENROSE [25], and many other mathematicians 
and physicists [6, 2 8 - 3 7 ] . 
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Following a suggestion by R. DEBEVER made at Journées Relativistes 1983 
at Turin, I propose to go back to CARTAN'S terminology of 1922 and use the 
adjective optical instead of the somewhat confusing 'isotropic' or 'null'. 

H. BATEMAN [26] may also be considered as an avatar of optical geome­
try. Recently, R.A. d'lNVERNO and J . STACHEL [27] recognized the role of 
conformai, two-dimensional geometry in four-dimensional spacetimes for the 
description of the degrees of freedom of gravitation. 

Optical geometry is closely related to the picture of spacetime and rela-
tivistic physics which is being developed by Roger PENROSE [13, 25 , 47 , 54] ; 
in a sense, this geometry is a step-child of his twistor programme [41, 42 , 55]. 

3. Vector spaces with optical structure 

Consider once more the algebraic properties of the 2-form given by (3) 
and subject to conditions (4) . Let F and /c denote, respectively, the values of 
this 2-form and of the 1-form du at x G M. Assume that the tangent vector 
space TXM, over which these forms are defined, is oriented and endowed 
with a scalar product of Lorentz signature. There then exist 1-forms a and 
(3 which are of equal length, orthogonal to each other and to AC, and such 
that 

F — K A a and * F = K A (3. 

Only the direction of K is well-defined by F. The forms a and /3 are defined 
up to a common factor and addition of multiples of /c. By duality, similar 
structures can be identified in the tangent space itself : there is a direction 
K C TXM such that, for any k G K, 

kJF = 0 and fcJ*F = 0, 

and L = ker/c contains K. 
Considerations such as these lead to the following 

Definition, — An optical structure in a real 4-dimensional vector space V 
consists of 

(A) an optical flag, i.e. a pair [K,L) of vector subspaces of V, of dimen­
sion 1 and 3 , respectively, and such that 

K C L C V ; 

(B) an orientation and a conformai scalar product in the 2-dimensional 
vector space L/K. 

Note that V itself is not assumed to have a preferred scalar product. 
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Clearly, condition (B) is equivalent to giving 
(B;) a complex structure in L/K, i.e. a linear map 

J : L/K -> L/K such that J2 = - id . 

An optical structure in V defines, in a natural manner, a similar structure 
in the dual space V*. Its flag is (L°,if°), where, for any vector subspace 
W CV, W° C V* is the space of all forms vanishing on W. Since the space 
K°IL° is isomorphic, in a natural manner, to (L/K)*, the transpose of J 
defines a complex structure in K°/L°. If k G V and /c G V* are non-zero 
and (fc, /c) = 0, then these elements define a flag by K == Rfc and L = ker/c. 

If (V, if, L, J) and (V, if', J') are two vector spaces with optical struc­
ture, then / : V —•> V is an optical isomorphism if it is an isomorphism of 
vector spaces such that 

f{K)=K', f(L)=L' and Jf oj = J o J 

where 

/ : L/K -+ L'/if' is given by J (I mod K) = /(/) mod If' 

for any I £ L. 
The standard optical structure in Vo = R-4 is defined by 

ifo = {z £ R4 ' xi = ^2 = x4 = 0 }, 
L0 = {x G R4 : x4 = 0} , 

and 
Jo [(zi ,S2,0,0)] = [{-x2,zu0,0)] 

where x = = 1,2,3,4, and square brackets denote an equivalence 
class modulo K0. 

The optical group Go C GL(4,R) is defined as the group of all optical 
automorphisms of the standard optical structure. It is a 9-dimensional Lie 
group consisting of all matrices of the form 

pcos(p —psiiKp 0 p\ 
ps'mtp pcostp 0 q 

a b a r ' 
0 0 0 TJ 

where 0 < <p < 27r, p > 0, cr, r / 0 and a, 6, p, g, r G R. 
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Let (e°) be the canonical frame in R4 : is the vector whose a-th. 
component is 1 and all other components are zero. An optical frame e = (eM) 
in a vector space V with optical structure is the image of (e°) by an optical 
isomorphism of the standard structure onto V. In other words, a frame e in 
V is optical if, and only if, 

L is spanned by ei, e2 and e3 G K ; 
J(ei mod K) — e2 mod K. 

If (eM) is the frame dual to an optical frame (eM), (e^e^) = <5MI/, then 
K° is spanned by el5 e2 and e4 G L°. The group Go acts, in a free and 
transitive manner, in the set Opt(V) of all optical frames of a vector space 
V with optical structure; ea denotes the result of the action of a G Go on 
eGOpt(V). 

An optical structure does not define a scalar product in its underlying 
vector space, but it is convenient to consider the map 

(5) Opt(V) 3e^ge eS{V) 

from the set of optical frames to the set S(V) CV*®V* of scalar products 
in V given by 

ge = ei ® ei + e2 0 e2 + e3 ® e4 + e4 ® e3. 

I shall follow the tradition of classical differential geometry according to 
which one omits the symbol of the symmetric tensor product in all formulae 
for the fundamental quadratic form. Therefore, the last equation becomes 

ge = el + el + 2e3e4. 

Clearly, ge is a scalar product of Lorentz signature. If a G Go, then 

9ea = P~29e + 2fe4 

for some form £ G V*. For any e G Opt (y), the direction K is orthogonal 
to L with respect to ge. The restriction of ge to L induces a scalar product 
in L/K compatible with its conformai structure implied by (B) or (B'). Let 
E C S(V) be the image of Opt(V) by the map (5) . If g and g' G E, then 
there exist p ^ 0 and £ G V* such that 

(6) g' = p-2g + 2tK 

where 0 / K G L°. Condition (B) in the definition of optical structure in V 
may be replaced by : 
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(B") an orientation in L/K and an equivalence class E C S(V) of scalar 
products, of Lorentz signature, such that for any of them K is orthogonal to 
L, two scalar products g and g' being considered as equivalent if and only if 
they are related as in (6). 

Let 0 / k G K and 0 / /c G L°. A form a e f\V* such that 

k J a — 0 and /c A a = 0 

is said to be optical. (N.B. The property of being optical depends only on 
the flag structure). For example, the real part of the 2-form Fç> representing 
the amplitude of an electromagnetic wave in the limit of wave optics (cf. § 1) 
is optical. Let Ln (n — 0,1, 2) denote the space of optical (n + l)-forms. The 
vector space L° 0 L1 0 L2 of all optical forms is isomorphic, in a natural 
manner, to the 4-dimensional vector space L° ® /\(K° / L°). 

Assume V to be oriented and, for any g G S(V), let 

*(g) •• Av* - A ^ * 

be the Hodge dual corresponding to g and the orientation. If g G E then 
a(g) maps optical forms into optical forms, 

a(g) :Ln ^ L2"n, n = 0, l ,2 . 

Moreover, if g and g1 G E are related to each other as in (6), then 

(7) a(g') I Ln = p2n-2a{g) \ Ln. 

Of special interest are optical 2-forms. The vector space L1 of all such forms 
is isomorphic to L° ® (K°/L°) and may be identified with it. Under this 
identification, the Hodge map applied to L1 becomes a rotation by 90° in 
K°/L°, 

cr(g)(K®l) = ic® *J(7), 

where g G E, 7 G K°/L° — (L/K)* and 1J is the transpose of J . Moreover, 
eq. (7) for n — 1 may be replaced by the somewhat sharper 

PROPOSITION 1. — If F ^ 0 is an optical 2-form, g G E and g' is a 
scalar product of Lorentz signature, then 

o-(g)F = cr(g')F if and only if g'eE. 
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4. Optical Geometry 

Let M be a smooth, 4-dimensional, oriented manifold. An optical geometry 
on M may be defined in several equivalent ways, as 

(i) a smooth distribution of optical structures in the tangent spaces to 
M; 

(ii) a Go-structure on M; 
(iii) a complex line bundle Z/K —• M, where K and L are real vector 

sub-bundles of TM of fibre dimensions 1 and 3, respectively. 

If the real line bundle K is orientable — and hence trivial — one can 
characterize the corresponding optical geometry by giving 

(a) an equivalence class [(&,#)] of pairs consisting of a nowhere vanishing 
vector field k — a section of K — and a Lorentzian metric g on M, such that 
k is optical with respect to g, g(k,k) = 0; two such pairs (k,g) and (k',g') 
are considered as equivalent if, and only if, there are two nowhere vanishing 
functions À and p on M, and a (differential) 1-form £ on M, such that 

(8) k' — \k and g' — p 2g + 2£/c, 

where K is the 1-form on M defined by (v, /c) = g(v, k) for any vector field v 
on M ; 

(/?) an orientation in the bundle ker/c/X. 
Whenever the bundle K is trivial, as is the case in most applications, it 

is convenient to use the characterization of an optical geometry given under 
(a) and (/3). This is often done in the sequel even though most of the results 
could have been derived without the assumption of triviality of K. The set 
of all Lorentz metrics described under [a) is denoted by £. 

The general theory of G-structures (c/., for example, [38] and [39]) provides 
us with ready definitions of isomorphisms and automorphisms of optical 
geometries. Let the equivalence classes [(&,#)] an^ [{k'^g1)] define optical 
geometries in the manifolds M and M', respectively. A diffeomorphism 
/ : M —+ M' is said to be an isomorphism of optical geometries if [(&,#)] = 

f*g')]> where /* denotes the pull-back of tensor fields from M' to M 
defined by / . With some reluctance, I shall use the barbarism optomorphism 
instead of the longer expression 'automorphism of optical geometry'. 

Consider an optical geometry in M, let ((Pt)teIl denote the flow generated 
by the vector field k and let /c be a 1-form on M, defined as in (a). By 
extending the results presented in [40] one obtains 

PROPOSITION 2. — The following conditions are equivalent to each 
other : 
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(a) the 3-form K A CLK is optical, 
(b) K, A L^K — 0, where is the Lie derivative with respect to k, 
(c) the vector bundle L —> M is invariant by (<Pt), 
(d) the trajectories of k are optical geodesies for any g G £. 

The last condition admits a 'physical interpretation' : if it is satisfied, the 
congruence of trajectories of k may be associated with the rays of light. This 
motivates the following 

Definition. — A geometry of rays is an optical geometry for which any 
(and therefore all) of the conditions (a)-(d) are satisfied. 

There are optical geometries which are not geometries of rays. For exam­
ple, let M — {{xfj) G R4 : x\ > 0} be endowed with the optical geometry 
defined by [(&,#)], where 

k = 
d 

dx4 
+ x7x 

d 

dx2 
and g = dx\ + x\ dx\ + dx\ — dx\, 

then AC A L^K — [xx 1 dx± — dx^) A dx\ is nowhere zero. 
From now on only geometries of rays will be considered. According to § 3, 

for any g G £, the Hodge dual of the optical 3-form AC A d& is an optical 
1-form, i.e. a multiple of K. There thus exists a function w o n M such that 

(9) a(g)(K A d/c) = UK. 

Eq. (7) shows that OJ does not depend on g though it changes under a 
replacement of k by Xk] in a region where UJ ^ 0 one can always choose k so 
as to have UJ = 1. If UJ = 0, then the bundle (distribution of 3-dimensional 
vector spaces on M) L —• M is integrable; UJ thus measures the 'aholonomy' 
or 'twist' of the distribution. From the point of view of ray (also conformai) 
geometry only two values (0 and 1) of twist are relevant. 

Since dK A dx, = 0, one obtains from (9) the 'conservation law' 

d(ujo-(g)ti) = 0. 

The following example of ray geometry with twist is based on Robinson 
congruences [29, 41] which played a major rôle in the development of twistors 
[42], Consider the compactified Minkowski space M [43-48] with its natural 
conformai geometry and suitable orientation. Define first M as the semi-
Riemannian product S\ X S3 [31]. Let gn denote the standard Riemannian 
metric on Sn and let 7rn be the projection of M on Sn (n = 1 or 3). Put 

9 = n'ai 9s ~ TTi 9i 
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and let k be the global optical vector field on M with .Si-component the 
standard unit vector field on .Si and with .^-component a unit vector field 
tangent to the Hopf fibration of The optical geometry defined by the pair 
(k,g) has non-zero twist. The complex line bundle Z/K —* M is obtained, 
in this case, by pulling back to M the vector bundle TS2 considered as a 
complex line bundle over S2. 

According to part (c) of PROPOSITION 2, in a geometry of rays, the flow 
generated by a section k : M —• K preserves the bundle Z —» M, but not 
necessarily the complex (conformai) structure of the bundle Z/K —• M. To 
see this, consider, as in a previous example, M = G R4 : Xi > 0 } , 
g = dx\ + x\ dx\ + dx\ — dx\, and choose now k — d/dx4 + d jdx\ so that 
the corresponding optical 1-form is K = dx\ — dx4. The pair (k,g) defines in 
M a geometry of rays without twist, UJ = 0. The bundle Z is spanned by fc, 
x~[1dJdx?, and d/dx^ so that the complex structure in Z/K may be defined 
bv 

J 2X1 1 d 
dx2 

+ 6- d 
dx3 

mod & = a d 
dx3 

-bxT1- d 
dx2 

mod k. 

This complex structure is not preserved by the flow generated by fc, as may 
be inferred from 

Lk ax, 1 ^ 1 
d 

dx2 
+ 6- d 

dx3 
! = —ax, 2 d 

dx2 ' 

where a, 6 G R. The flow generated by k is 'shearing' : it changes the relative 
length of vectors in Z/K. 

5. Geometries of rays without shear 

Definition. — A geometry of rays without shear is an optical geometry 
such that the flow generated by k consists of optomorphisms. 

For simplicity, let us assume that the vector field k defining, together 
with g G £, the optical geometry in M is complete so that its flow is a 
one-parameter group of global transformations of M. It is not difficult, but 
slightly cumbersome, to reformulate subsequent paragraphs so as to allow a 
k which need not be complete. 

PROPOSITION 3 . — Let the pair (k,g) define an optical geometry in M. 
The following conditions are equivalent to each other : 

(a) the optical geometry is a geometry of rays without shear; 
fb) for any t G R, 

d e = E 
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where (<Pt) 25 the flow generated by k and E is the set of all metrics on M 
defining the same optical geometry as g ; 

(c) there is a function fi and a 1-form v on M such that 

(10) Lkg = pig + v®K + K®v. 

The equivalence of (a) and (b) follows from the definition of optomor-
phisms, whereas the equivalence of (b) and (c) follows from properties of Lie 
derivation. Eq. (10) implies 

LjçK, = (fi + k J V)K 

so that K A LjçK — 0 and the geometry of rays without shear is a particular 
case of a geometry of rays. 

The importance of geometries of rays without shear results from the 
fundamental 

THEOREM 1 (Ivor ROBINSON [3], cf. also [30] and [40]). — An op­
tical geometry of class Cu admits a nowhere vanishing, optical solution of 
sourceless Maxwell's equations if and only if it is a geometry of rays without 
shear. 

Let F be such a solution on M, then 

(11) fcJF = 0, klo-(g)F = 0 

and 

(12) dF = 0, da(g)F = 0 

so that 

(13) LkF = 0 and Lka(g)F = 0. 

By integration, the last two equations imply, for any t EH, 

(14) <p*tF = F and <p*ta(g)F = a(g)F. 

By naturality of the Hodge dual, 

<p;*(g)F = v(<p*tg) <p*tF. 

Using both equations (14) one obtains 

a{g)F = a(<p*tg)F 
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Finally, PROPOSITION 1 implies ^p\g G £ and PROPOSITION 3 shows that the 
flow (<Pt) consists of optomorphisms. This completes the proof of the "only 
if" part of the theorem. The "if" part is proved by constructing suitable 
initial data on a hypersurface transversal to k and extending them to the 
manifold M by means of the flow [49]. 

It is often claimed that such a solution can be found in any smooth 
geometry of rays without shear. However, as pointed out by J. TAFEL [56], 
the constraint equations on the initial data, in the case of rays with twist, are 
of the Hans Lewy type [57]. For this reason, the geometry has been assumed 
here to be of class rather than C°°. The latter assumption is sufficient 
when the rays are without twist. 

The structure of the set of all optical solutions of Maxwell's equations 
depends crucially on whether the rays are twisting or not. This may be seen 
by considering the optical geometry in R4, with coordinates x\ — x, x2 — y, 
£3 = r and x4 = induced by the pair (k,g), where 

k = 
d 
dr' 

g = dx2 + dy2 + 2/c dr 

and 
AC = du -\- 1 

2 
j(xdy — ydx), w = 0 or 1. 

Since L^g — 0, the geometry is that of rays without shear. It is convenient 
to introduce the complex variable 

z — x + iy 
and the complex electromagnetic field, 

F + i * F 

where the dual, for an optical depends only on the optical geometry. One 
has 

* ( A C A d/c) = u;/c, *(AC A dz) — —i& A dz. 
The most general optical electromagnetic field corresponds to 

F + i * F = CK A dz 
where C : R4 —> C. Maxwell's equations (2) are now equivalent to dC/dr — 
0 and 

dC 
dz 

1 
4 

ILUZ 
dC 
du 

If to = 0, then the complex function C depends arbitrarily on u and is 
analytic in z. For u = 1, the last equation reduces to the one put forward 
by Hans LEWY in his construction of a smooth linear differential equation 
without solution [57]. 
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6. The integrable G0-structure 

Recall that, if M is an ra-dimensional smooth manifold and G is a 
Lie subgroup of GL(ra,R), then a G-structure on M is a restriction P 
of the bundle of linear frames LM to G. The G-structure P on M is 
said to be integrable if, for any point of M there is a system of local 
coordinates (xi,...,a:m) around that point, such that the local section 
(d/dxi,... ^d/dxrn) of LM is a section of the bundle P —•> M [39]. 

THEOREM 2. — An optical geometry, considered as a Go-structure, is 
integrable if and only if it is a geometry of rays without shear and twist. 

Indeed, assume first that P C LM is an integrable Go-structure on a 
4-dimensional manifold M. Let (x,y,r, u) be a system of local coordinates 
on M such that d/dy, d/dr, d/du) is a local section of P —> M. The 
vector field = d jdr is then a local section of X" — M and the metric tensor 

(15) g — dx + dy + 2dr du 

belongs to <?. Since = 0 and /c = cfox, the optical geometry defined by 
this Go-structure is a geometry of rays without shear and twist. Conversely, 
for any g G S defining, together with fc, a geometry of rays without shear 
and twist there is a system of local coordinates (x,?/,r, u) such that 

(16) k = d 
dr 

K = du 

and 

(17) g =i P~2[(dx - adu)2 + (dy - bdu)2} + 2dudr + cdu2 

where P, a, 6, and c are arbitrary functions [4]. Clearly, the metric tensors 
(15) and (17) define, together with fc, the same optical geometry. 

Let the manifold Mo = R4 be endowed with the integrable optical 
structure given, in terms of coordinates (x,y,r, u) by (15) and (16). Let TQ 
be the pseudogroup of local optomorphisms of M0. A locally defined vector 
field v on M0 generates a flow of local optomorphisms if and only if 

v = X d 
dx 

d 
dy + R 

d 
dr 

+ U 
d 

du 

where X + iY is an arbitrary function of u, analytic in z — x + iy, U 
depends on u only, and R is an arbitrary function on M0. Therefore, the Lie 
algebra of T0 is infinite-dimensional and T0 cannot be obtained by localizing 
the elements of a Lie group of transformations of M0. This observation is 
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related to the fact that the Lie algebra of the optical group Go is of infinite 
type [39]. 

The set <f0 of all metrics on Mo, which define, together with (16), the same 
optical geometry as (15), contains large classes of inequivalent solutions of 
Einstein's equations. In some cases these metrics are defined only on open 
submanifolds of Mo. The following solutions are in £0 : plane gravitational 
waves and their generalizations, the Schwarzschild metric, outgoing gravi­
tational waves with spherical wave-fronts [4] and a solution which has been 
interpreted [50] as corresponding to a uniformly accelerating charged mate­
rial point. All these and many other solutions are known in an explicit form 
[6, 51]. 

7. Application to Yang-Mills theory 

The notion of an optical field can be easily extended to Yang-Mills con­
figurations [7, 37]. Consider a Lie group of matrices, G C GL(N,R), and 
its Lie algebra Q C End(RiV). Let M be a 4-dimensional, smooth, oriented 
manifold with a metric tensor g of Lorentz signature. A Yang-Mills potential 
A is a ^-valued 1-form on M. The corresponding Yang-Mills field strength 

F = dA+±[A,A] 

satisfies the Bianchi identity 

(18) dF+ [A,F] = 0 

where brackets denote the commutator in Q and the exterior product of 
differential forms. If S : M —» G, then 

A' = S^AS + S^dS 

is said to be obtained from A by a gauge transformation. The field strength 
Ff corresponding to A' is 

(19) F' = S-XFS. 

The sourceless Yang-Mills equations are 

(20) da{g)F + {A,a{g)F} = 0. 

Let a vector field k define, together with g, an optical geometry on M. The 
Yang-Mills configuration defined by A is said to be optical if 

(21) fcJF = 0 
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and 

(22) kJa(g)F = 0. 

Both these conditions are invariant under gauge transformations (19). The 
Bianchi identity (18), together with (21), implies 

(23) LkF = [F,klA). 

If (20) and (22) are used, then a similar equation is obtained for the dual 
d(g) F 

(24) Lka{g)F = [a{g)F,kJA]. 

LEMMA. — Let a : R —• Q be a curve in Q and let s : R —> G be the 
solution of 

dsii) 
dt 

= s(t)a(t), ten, 

such that 
s(0) = id. 

The function (curve) / : R —» Q 

(25) /(*) = «(*)-1/(o)«(t) 

is then the solution of 

(26) 
df(t) 

dt 
f (0) = id. 

The proof of the LEMMA is straightforward. 

PROPOSITION 4. — Let (<pt) be the flow generated by a complete vector 
field k on M and let F be a Yang-Mills field strength such that (21) holds. 
Then there exists a map R x M 3 (t, x) i—• St{x) G G such that 

(27) ft F — Sf1FSt. 

Indeed, for any fixed x G M, let 

a(t)=<p't{klA){x), /(*) = 
d 

dt 
F (x) 
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and put St(x) = s(t), where s is determined as in LEMMA. Since 

d 
dt 

p\F = <ç*tLkF 

equation (23) implies (26); finally, (27) at x follows from (25). 

PROPOSITION 5. — If F is the field strength of an optical and sourceless 
Yang-Mills configuration, then 

a{g)F = a{<p*tg)F 

so that, if F ^ 0, the optical geometry is that of rays without shear. 
In fact, in PROPOSITION 4 one can replace the field strength F by its dual 

o~(g)F and obtain 
^*ta(g)F = Sf1a(g)FSt. 

An argument similar to the one used in proving THEOREM 1 leads now 
to the conclusion of PROPOSITION 5. An analysis of the initial data on a 
hypersurface transversal to k can be used to prove the local existence of 
an optical Yang-Mills configuration in any real analytic geometry of rays 
without shear [7]. 

THEOREM 3. — Consider two optical geometries M and M' correspond­
ing to the pairs (k,g) and (k'\g'), respectively. Let A' be the potential of an 
optical, sourceless Yang-Mills configuration on M1. If h : M —> M' is an 
isomorphism of optical geometries, then h* A' is the potential of an optical, 
sourceless Yang-Mills configuration on M. 

Indeed, the field strength F corresponding to A = h* A' is F = h*F'. Let /c 
and K' be, respectively, 1-forms on M and M;, defined as in (a) of § 4. From 
the definition of an isomorphism of optical geometries it follows, firstly, that 
h*kf and h* K,' are proportional to k and /c, respectively. Therefore, F is an 
optical 2-form. Secondly, by PROPOSITION 1, one has a(g)F = a{h*g')F so 
that the Yang-Mills equation (20) is satisfied on M. 

Remark. — The theorem is true, in particular, for electromagnetic fields 
and must have been known, for this case, to H. BATEMAN [26]. 

In particular, consider the Lorentzian manifold M, with metric tensor 
(17), and Minkowski space M' referred to coordinates (x\yf\r'\uf) and with 
metric 

g' = dx'2 + dy'2 + 2dr>'du'. 

The vector fields k = d/dr and k' = d/dr' define on M and M', respectively, 
optical geometries which are isomorphic with respect to the (local) diffeo-
morphism h : M —+ M' mapping into each other points with the same values 
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of the coordinate functions. Therefore, any optical Maxwell or Yang-Mills 
field can be transferred from Minkowski space to M. In particular, one can 
take for M Minkowski space referred to a system of curvilinear coordinates 
built around a time-like curve [52,53]. In this case, h transforms a plane wave 
in M into a spherical wave emanating from the particle whose worldline co­
incides with the curve. Such an h provides the example of an isomorphism 
of optical geometries which is not a conformai transformation. 
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