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THE McKAY CORRESPONDENCE, THE COXETER 

ELEMENT A N D REPRESENTATION THEORY 

BY 

Bertram K O S T A N T * 

1 .1 . Introduct ion . — A fundamental question in harmonie analysis is : 
given a locally compact group £?, a closed subgroup H, and an irreducible 
representation n of G, how does the restriction ir\H decompose. Consider this 
question in the following very basic situation : G = SU(2) and H — T is any 
finite subgroup of SU(2). The classification of all finite subgroups T of SU(2) 
is classical and well known. See e.g. [12] or [13] . Let S ( C 2 ) = n=0 ( c 2 ) 
be the symmetric algebra over C 2 and let nn be the representation of SU(2) 
on S n ( C 2 ) induced by its action on C 2 . One knows nn is irreducible for all 
n and the set of equivalence classes {TTn}, n = 0 , . . . , defines the unitary 
dual of SU(2). Now let r C 517(2) be any finite group. The question then 
in this case is : how does rn| T decompose for any n E Z+. The question 
is particularly interesting in the light of the M C K A Y correspondence. The 
latter sets up a bijection between T, the unitary dual of T, with the nodes of 
the extended Dynkin diagram of a simple Lie algebra g, of type A, D or E. 
Thus, the question becomes : what is the multiplicity of a particular node 
for any n e z + . 

The problem above has arisen recently in connection with the resolution 
of certain algebraic singularities. One way of dealing with it is by the use of 
the theory of complex reflection groups. The latter enables one to decompose 
polynomials into a sum of products of "invariants" and "harmonics". This is 
an old technique and its appropriateness in the present context was pointed 
out by P. S L O D O W Y . This approach has been carried out by G . G O N Z A L E Z -

S P R I N B E R G and J . - L . V E R D I E R in [2] and H . K N O R R E R in [5] . An effective 
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method for computing these multiplicities is achieved and consequently 
one obtains an explanation of the M C K A Y correspondence. However the 
multiplicities are not significantly related to g itself. 

In this paper the whole matter is viewed in a completely different way. We 
accept the M C K A Y correspondence; thereby setting up a bijection of all such 
r and all simple complex Lie algebras g = fi(T) of type A, D and E. The 
question we ask is : in what way does V and the multiplicities in rn |T "see" 
the structure of g and vice versa. What we show is that these multiplicities 
come in a beautiful way from the root structure of g. More explicitly they 
come from the orbit structure of the Coxeter element a on the set of roots 
of g. In fact the "harmonics" come from intersecting the orbits of a with the 
roots of a distinguished Heisenberg subalgebra n of g and the "invariants" 
come from the scalar product of those roots in that orbit of a which contains 
the highest root if). (The degree of the minimal "invariant" appears then as 
twice the coefficient of y at the branch point.) Besides making connection 
with 7r n |r, new results in the orbit structure of a are obtained. We remark 
that all the results are obtained using Lie theoretic principles and there is 
no reliance on empirical observations. Also, the decomposition itself into 
"invariants" times "harmonics" is seen in the root structure and there is no 
need for recourse to reflection group theory. 

1.2. — Let r Ç SU(2) be a non-trivial finite subgroup of SU (2) and 
let { 7 0 , . . . , l i } = f be the set of equivalence classes of irreducible finite 
dimensional complex representations of T. Then if 7 : r -+ SU(2) is the 
given 2-dimensional representation one defines an (Z + 1 ) X (Z + 1 ) matrix 
A i r ) with entries in Z+ by decomposing the tensor product 

7? ® 7 = iA ( r)fj7.-

into irreducible components. John M C K A Y has made the remarkable observa
tion (see [6] and [7]) that there exists a complex simple Lie algebra g = Mr 
of rank Z such that 

A(T) = 2-C(%), 

where g is the affine Kac-Moody Lie algebra associated to g and C(g) is 
a Cart an matrix of g. Moreover the correspondence r - /X r = g sets 
up a bijection between the set of all isomorphism classes of such subgroups 
r C SU(2) and the set of all isomorphism classes of complex Lie algebras of 
type A, D and E. 

The Cartan matrix C(g) is with respect to an ordered set of simple roots 
ai G h', i = 0 , . . . ,Z, where h Ç h are, respectively, Cartan subalgebras of 
g Q g. The indexing may be chosen so that 70 is the trivial representation 
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of r and a0 G h' is the added simple root corresponding to the negative of 
the highest root Y E h' of g. Now if 

rn r = 
i 

i=0 
mai, 

we associate to rn |T the element vn 
E h' in the root lattice defined by 

putting 

vn = 
I 

i'=0 
irti oci. 

The problem we set for ourselves is then the determination of the generating 
function Pr{t), with coefficients in h', defined by putting 

M*) = 
71 = 0 

vntn. 

We restrict our attention to the cases where the Coxeter number h = 2g 
of g is even (so that g G Z+). This excludes only the case where T is a cyclic 
group of odd order. (The latter case is readily dealt with by considering 
first the cyclic group T X Z2 of even order where z 2 = { ± / } . ) We can now 
speak of the special node i* of the Dynkin diagram of g. If g = Ai then i* 
is the branch point. If g ¥ A2m-1 (Aom has been excluded) then i* is the 
midpoint. Our main results will be stated in the following sequence of six 
theorems. 

Remark — In the light of Slodowy's observation (see § 1 .1 ) the following 
result ( T H E O R E M 1.3) is not new. However, the product decomposition in 
T H E O R E M 1.3 arises not from reflection group theory but from a study of 
the Coxeter element. As a consequence the numbers involved are directly 
related to the root structure of g = fi[T). But then if one proceeds to make 
the connection with the reflection group theory one obtains as a theorem 
(not just an observation) that the numbers of reflecting hyperplanes is given 
in terms of the Coxeter number and the lesser degree of the two fundamental 
invariants is given in terms of the highest coefficient of the maximal root of g. 

T H E O R E M 1 . 3 . There exist zl• G h ; , % = 0 , . . . , h, and even integers 
2 < a < b < h such that 

( 1 . 3 . 1 ) Pr(t) = 

h 

i=0 
Z{tx 

( 1 -la){\ -tb) 
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The integers a and b are determined by the next result. The table of these 
values is given in T H E O R E M 5 . 1 7 . 

T H E O R E M 1 . 4 . One has a — 2d where d — d{. is the coefficient of 
the highest root ip corresponding to the special node i* ( 1 for Ah 2 for Dh 3 

for Eq, 4 for Ej and 6 for Eg). Furthermore b is given by 

( 1 . 4 . 1 ) b = h + 2 - a. 

In addition one has 

( 1 . 4 . 2 ) ab = 2 I T I . 

If W is the (finite) Weyl group of (h,g) then one knows that there is 
a Coxeter element a G W corresponding to II = { a i , . . . , a / } such that 
o = r2t 1 where r2, t1 G W have order at most 2 and correspond to a 
decomposition n = i l i u n 2 into orthogonal sets. The order may be chosen 
so that r2ip = rp. For n G Z_i_ let rn — Ti if n is odd and Tn = r2 

if n is even. 
Also let r ( " ) be the alternating decreasing product T(n) = l~n1~n-l • • • 7*1. Let 
c = 6/2. The vectors Z{ are determined in 

T H E O R E M 1 . 5 . One has ¿o = zh 

= Oi0. For n = 1 , . . . , h — 1, one 
mm znehf (not just h' ) and zn is given by 

( 1 . 5 . 1 ) z n = T ( n - l ) W — T (n) Y 

where ip is the highest root of (h ,g ) . Furthermore 

( 1 . 5 . 2 ) Zg = 2a{. 

and in general one has the symmetry 

( 1 . 5 . 3 ) Zg + k — Zg-k 

for fc = l , . . . , f l f . Finally if n = l , . . . . û f - l there exists distinct OL{1 , . . . , Q¿ir 
G 

n y , y G { l , 2 } , where j = n mod 2 snc/i that 

( 1 . 5 . 4 ) 2n = ai1 H h a; t r . 

Moreover 

( 1 . 5 . 5 . ) r = 

1 IF1< n < d - 1 : 

2 if d < n < e — 1 ; 

3 •if e < n < g — 1 ; 
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and in fact r — 1 , 2 , or 3 according as to whether (r (n) Y, r (n-1) Y) is positive. 
zero, or neqative. For n = a + 1 , . . . , ft — 1 the number r is then given by the 
symmetry ( 1 . 5 . 3 ) . 

Remark 1.6. — Instead of generating zn by the highest root ip the zn's 
can be generated in a manner similar to ( 1 . 5 . 1 ) using the simple root o;^ 
instead of xb. (See T H E O R E M 5 . 1 5 ) . 

1.7. — Now the Poincaré series Pr(t)i for the individual representations 

li is obviously obtained by considering only the ith coefficient of the vectors 
vn Clearly by T H E O R E M 1.3, using the subscript i for this coefficient 

Pv{t)i 
z(t) i 

(l-ta) (l-tb) 
where 

z(t) = 
h 

n=0 
zntn. 

Thus to determine Pr(t)< we have onlv to determine z(t)i Consider first the 
case i = 0 . One notes that Pr(t)o is the Poincaré series for the algebra of 
invariants 5 f C 2 ) r . The following is known although probably not expressed 

in terms of the Coxeter number h oî g and the largest coefficient d = a/2 of 
the highest root Y of (h,g) It is an immediate consequence of T H E O R E M 1.5. 

T H E O R E M 1 . 8 . One has z{t)o = 1 4- th so that 

( 1 . 8 . 1 ) Pr(t)n = 
1+ th 

(l-ta)(l-tb) 

Next consider the case where i= i* One notes that 7n is an irreducible 
representation of maximal dimension of T and is the unique such in case 
lilT) = E6,E7 or E8 Observe that the coefficient of t9 is 2 in the following 
result. This is the only occurrence of a coefficient greater than 1 for any 
z(t) i 

T H E O R E M 1 . 9 , One has 

( 1 . 9 . 1 ) z ((t) i* 
d-i 

j=0 

t9-23 . 
d-1 

3=0 

tg+2j. 

In particular z 1 = a= 2di* 
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1.10. — Now let $ be the set of roots <p of (h.g) such that (<P,V0 > 0; 

One has 

( 1 . 1 0 . 1 ) Card$ = 2h - 3 

and one may refer to $ as a Heisenberg system since a set of corresponding 
roots vectors span a Heisenberg Lie subalgebra of g, of dimension 2h — 3 . By 
intersecting $ with the I orbits (naturally parametrized by n) of the Coxeter 
element a one obtains a partition 

( 1 . 1 0 . 2 ) Q= 

i 

i=1 

qi 

One proves 

( 1 . 1 0 . 3 ) Card & = 2d,-, 
2d, - 1, 

if % y£ 2* 
if i = 

where the dz are the coefficients of the highest root. That is 

lb = 

i 

t— l 

di ai 

On the other hand there is a natural function <p (-> n((p) G Z + on the set of 
positive roots defined using the r (~) Among other things it is injective on 
each Qi. The case for the remaining nodes is settled by 

T H E O R E M l . l l . If i = O or i* then 

fi.ii.i) Z(t)i = 

x E Q i 

fn(cp) 

so that in particular all the coefficients of z[i)i are either 1 or 0 . Furthermore 
the coefficients of tg-k and tg+k are equal for k = l,...,flf and vanish for 
k = 0. Finally, (by ( 1 . 1 0 . 3 ) ) , z{l)i = 2d{. 

2 . 1 . T h e M c K a y Correspondence . Let r Ç SU(2) be any finite 

subgroup of SU(2). Let f be its representation dual (i.e., T is the set of 

equivalence classes ot complex, irreducible finite dimensional representations 
of T). Write / + 1 for the cardinality of T and order the elements of T so that 

r = { 7 o , 7 i , . . . 5 7 / } 
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where yo is the 1-dimensional trivial representation oí 1 . One now deimes an 
(/ + l )x(Z + l) matrix AID with non-negative integer entries as follows : Ihe 
group r is given as a subgroup of SU[2) so that the embedding r SU{2) 

defines a distinguished 2-dimensional representation 7. (Note that 7 is not 
necessarily irreducible.) If 1 < i J < I + 1 let aij e z + be defined by the 
tensor product decomposition 

7i ® 7 = 

/ + 1 

2=1 

aij Y i. 

Then A(T) is given by 

(2.1.1) (A(T))ij = aij. 

2.2. — Now let g be a complex simple Lie algebra 01 rank Í and let ñ be 
a Cartan subalgebra of g. Let h' be the dual space to h and let a t £ h', 
i = 1,...? L, be an ordered set of simple positive roots with respect to some 
choice of a positive root system. The corresponding Cartan matrix o (g ) is 
the I X I matrix with integral entries defined by putting 

(2.2.1) ( C (g)) ij 2(a,-,ay) 

(ai, ai) 

where, as usual, the bilinear form, JB, on h is induced by the Killing form 
on g. The Weyl group W of (h,g) will be regarded as operating on h'. 

Now associated to g is the corresponding affine Kac-Moody Lie algebra g 
considered here, however, modulo the central extension. See e.g. [3]. (We will 
only use elementary facts about the root system of g.) We recall that the 
Cartan subalgebra h of g has dimension / + 1. Also, we can regard h' C h ; 

when h' is the dual space to h and an ordered set of simple (positive) roots 
ai G h ; , i = 0, 1, of (h,g) includes the ordered set (i > 0) of simple 
positive roots of (h ,g) . The a t , i > 0, are a basis of h' and one extends 
the bilinear form B to a symmetric (but singular) bilinear form B on h ' by 
putting 

(2.2.2) (a0,ai) = a*), 

i = 1 , . . . , / , where y is the highest positive root of (h ,g) , and putting 

(2.2.3) (a0,a0) = (V>,V0-

The Weyl group W of (h,g) the so-called affine Weyl group — is the 

group, operating linearly on h ' , generated by the reflections corresponding 



216 B. K O S T A N T 

to the simple positive roots a î 5 i > 0. (Note that ( 0 ^ , 0 ^ ) > 0 for i > 0.) 

In particular then we can regard W W so that the action of W is now 
extended from an action on h' to an action on h' The following well-known 
fact is immediate from (2.2.2) and (2.2.3). 

P R O P O S I T I O N 2 . 3 . The vector a 0 + ip e h ' is B orthogonal to every 
vector in h' and consequently an + é is fixed under the action ofW. 

2.4. — The Cartan matrix C (g) of g is the ( / + l ) x ( / + l ) matrix defined by 
(2.2.1Ì for i,j = 0 , . . . , / , so that it contains C(e) as an Ixl principal minor. 
It is explicitly determined by the extended Dynkin diagram — a graph where 
the nodes correspond to the simple roots. We will only be concerned in this 

paper with the case where g is simply laced. That is, the case where (ûJt,Q!t) 
is independent of i the A, D, E family. Then (2.2.1 , if not zero, is 1 
and this is indicated by a line segment joining the i th and •th nodes. We 
write down the extended Dynkin diagrams of the A, D, E family and include 
the coefficients of the W-fixed vector xo + Y relative to the simple roots, as 
superscripts above or to the side of the nodes. For clarity, the line segments 
joined to the 0 t h node is made of dashes. 

1 1 1 1 

1 

Ai 

1 

2 2 2 1 

1 1 

Di 

(2.4.1) 

1 2 3 2 1 

2 

1 

Eq 
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1 2 3 4 3 2 1 

2 

E7 

1 2 3 4 5 6 4 2 

3 

# 8 

John M C K A Y made a remarkable observation relating the finite subgroups 
r of SU{2) with the complex simple Lie algebras of type A, D and E. See 
[6] and [7]. The relation is established by an equality of matrices involving 
A( r ) on one hand and C (g) on the other. 

f H E O R E M 2 .5 (McKay correspondence). Let T be a non-trivial 
(i.e., CardT > 1) subgroup of SU(2) and let the notation be as above. In 
particular, A(T) is the (I + 1) X (/ + 1) matrix defined by (2.1.1). Then 
there exists a complex simple Lie algebra g of rank I and of type A, D or 
E, unique up to isomorphism, and an ordering of the simple positive roots 
of the associated affine Kac-Moody Lie algebra g together with a bisection 

{Yj} {aj} , Yj xj (so that 7o —»• ocq) such that 

AÍT) = 21 cm. 

Here I is the {I + 1 X (/ + 1 identity matrix. Moreover, the correspondence 
r g sets up a bijection between the set of isomorphism classes of non-
trivial finite subgroups of SU[2) and the isomorphism classes of complex 
simple Lie algebras of type A, D and E. 

Since the finite subgroups of SU(2) and their representatives are well 
known, T H E O R E M 2.5 may be proved simply by checking. Among other re
sults, a classification-free proof of T H E O R E M 2.5 has been given by STEIN
BERG in [11] and by A R T I N - V E R D I E R in [1]. See also S L O D O W Y , [8], Appendix 
III and [9]. 

2.6. — Let fi denote the McKay correspondence so that g = ß IT) in the 
notation of T H E O R E M 2.5. If I SU(2) is a finite subgroup and j is a node 
in the extended Dvnkin diagram D of ti(T) let N 7 be the set of all nodes in 
D which are joined to j by a line segment. Note that 3 i N(j) A well-known 
immediate consequence of T H E O R E M 2.5 is 
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C O R O L L A R Y 2 . 7 . Let the notation be as in T H E O R E M 2.5. Then 

(2.7.1) Yj i — 
keN(j) 

Ik-

Now, recalling P R O P O S I T I O N 2.3, write 

(2.7.2) an 4- ib = 

i 

i=0 
d{ a{ 

so that the d t are the integers appearing in the diagrams (2.4.1). Another 
well-known easy consequence of T H E O R E M 2.5 is 

C O R O L L A R Y 2 . 8 . — Let the notation be as in T H E O R E M 2.5 and let 
dim 7^ be the dimension of the representation 7y. Then 

(2.8.1) dim7y = dj 

for all j = 0,...,l. 

Proof. A vector X = {Xj\ E R l+1 J = o,...,i, is an eigenvector of 
A(r ) with eigenvalue 2 if and only if for all j 

(2.8.2) 2Xj = 
k E N(j) 

xk. 

But d = {dj} satisfies this condition since an + é is W invariant and e = 
{dim 7y} satisfies this condition by Corollary (2.7.1). However, dn — en — 1. 
Thus d — e since 2 as an eigenvalue of A(T) has multiplicitv at most 1. This 
is clear because C(g) = 21 - A(T) has the non-singular C(g) as a principal 
I X I minor 

2.9. — Now for any n = 2 , 3 , . . . , let (1) z n 
be a cyclic group of order n, 

(2) A n be a dihedral group of order 2n, (3) AA be an alternating group on 4 
letters so that 1^4 I = 12 [vertical lines denotes order), (4) 54 be a symmetric 
group on 4 letters so that \S4\ = 24 and, finally, '5) As be an alternating 
group on 5 letters so that | A 5 | = 60. 

The following is a well-known classical result. (See e.g., [121, § 2.6 or [13], 
Chap. I, § 6.) 

T H E O R E M 2 . 1 0 . — A non-trivial finite group admits a faithful embed
ding in 5 0 ( 3 ) if and only if it is isomorphic to one of the groups above. In 
particular, then, the list above breaks up the set of non-trivial finite subgroups 
of S0(3) into 5 distinct types. 
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Now let 

(2.10.1) SU{2) - > S O ( 3 ) 

be the usual double covering. If F C 5 0 ( 3 ) is a finite subgroup let F* Ç 
SU(2) be its inverse image so that 

(2.10.2) IF = 2 F . 

Except for one special family all subgroups r Ç SU{2) are of the form F* 

for F ÇSO (3). 

P R O P O S I T I O N 2 . 1 1 . Let r ç SU (2) then r = F for some (nec
essarily unique) F SO (3) if and only if T is not a cyclic group of odd 
order. 

Proof One notes that T is of the form F* for F SO (3) if and only 
if minus the identity is contained in T. But clearly this is the case if and 
only if |r| is even. On the other hand, if |T| is odd, T injects faithfully into 
S O ( 3 ) under the map (2.10.1) but then T is cyclic of odd order by T H E O R E M 

2.10. 

2.12. — In this paper we are primarily interested in only those subgroups 
of SU (2) which are of the form F* for F SO (3) The groups Z n 5 A n , 
A4, S4 and A5 listed above will henceforth ( T H E O R E M 2.10) be regarded 
as subgroups of 50(3) and hence z*n A* 4* 9* and ¿ 5 are subgroups of 
SU(2). 

P R O P O S I T I O N 2 . 1 3 . With regard to the McKay correspondence one 

has 

(2.13.1 

(1) µ(Z*n) — A2n-i ; 

(2) M a ; ) — Dn+2 ; 

(3) *(A*4 = E e ; 
(4) µ(S*4) = ¿ 7 5 
(5) µ(A*5) — ^ 8 -

Proof. — This is stated in the McKay correspondence. However granting 
only T H E O R E M 2.5, the proof follows easily from the bijectivity in T H E O R E M 

2.5 together with a comparison of (2.4.1) with the following well-known facts : 

(1) the numbers, dim 7, where Y E F, and F = A4, S4 and ¿ 5 and (2) the 
commutativity of Z*n and the non-commutativity of A* as well as Card F* 
in these two cases. 
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Remark 2.14. — It may also be noted that if T C 5(7(2) is a cyclic group 
of order m, then /x(r) = A m _ i . This then includes the case (m odd) not 
considered in P R O P O S I T I O N 2.13. 

2.15. — Let g be a complex simple Lie algebra and let h = h(g) be 
its Coxeter number. By definition h is the order of the Coxeter element in 
a Weyl group of g. If / = r ankg , we recall (see [4] T H E O R E M 8.4), that I 
divides d img and, in fact. 

(2.15.1) d img = (h + 1)1. 

For the cases that concern us, we record 

P R O P O S I T I O N 2 . 1 6 . 

(l) h(Am) = m+ 1, 
so that in particular h{A2n-i) = 2n; 
(2) M A i + 2 = 2 n + 2 ; 
(3) h(Ee) = 12; 
(4) h(E7) = 18; 
5 h(E8) = 30. 

With regard to the McKay correspondence one has 

P R O P O S I T I O N 2 . 1 7 . Let r Ç 5/7(2) be any non-trivial subgroup. Put 
h = h(fi(T)) then 

(2.17.1) h = 

Y E T 

dim 7. 

Proof. — It is a well-known fact that h(g) is the sum of the coefficients 
(relative to the simple roots) of the highest root plus 1. (See [4], T H E O R E M 
8.4.) The result then follows from (2.8.1). | 

The reason for restricting ourselves to T of the form F* for F Ç 5 0 ( 3 ) 
has to do with the parity of h. The significance of this will be apparent later 
on. The following proposition could be proved by comparing P R O P O S I T I O N S 
2.13 and 2.16. However a proof follows from general representation theoretic 
considerations. 

P R O P O S I T I O N 2 . 1 8 . — Let the notation be as in P R O P O S I T I O N 2.17. 
Then h is even if and only ifT is of the form F* where F Ç 5 0 ( 3 ) . 

Proof. For any finite group E one knows that 
Y E E 

dim 7 is even if 
and only if \E\ is even (because (dim 7) = dim 7 mod 2). The result then 
follows from P R O P O S I T I O N 2.17 and the proof of P R O P O S I T I O N 2.11. 
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3.1. T h e vec tors vn and the affine Coxeter e lement . — Now let 
5 ( C 2 ) be the symmetric algebra over C 2 and, for any n e z +? let 5 n ( C 2 ) 
5 ( C 2 ) be the subspace of homogeneous elements of degree n. I he action of 
5/7(2) on c 2 extends naturally to an action of 5Í7(2) on Sn(C2) defining 
an irreducible representation RN ofSU{2). Clearly dim 7Tn = n + 1 and one 
knows that the unitary dual, SU(2), of sum may be described by 

SU{2) {TTn}, n = 0 , 1 , . . . 

Now let T Ç 517(2) be a non-trivial finite group and let the notation 
be as in § 2. The main problem we wish to consider in the paper is the 
determination of the restriction representation 7 r n | r for any n G Z+. This 
means determining the non-negative integers my(n), j — 0 , 1 , s o that 

7C„ IT = 
I 

j=0 
my(n)7j. 

We can clearly deal with this question by considering instead the correspond
ing vector vn(T) — vn in the dual h' of the Cartan subalgebra h of the affine 
Kac-Moody Lie algebra g. The vector vn is defined by putting 

(3.1.1) VN = 
L 

3=0 
my(n)ay. 

Note that if A C h', is the Z-span of the roots — that is, the root lattice — 
then vn G A. Introducing a generating function Pr{t) our problem then is 
the determination of the power series 

(3.1.2) Pr(t) = 
CO 

n = 0 
vntn 

with elements of A as coefficients. 

Remark 3.2. — One notes that in considering only the i t h component, 
(vn)i, of vn one obtains the Poincaré series Pr{t)i for the representation 
7t G T with respect to the action of T on 5 ( C 2 ) . In particular for i — 0 this 
is just the Poincaré series for the algebra of invariants 5 ( C 2 ) r . 

3.3. — Now if V denotes the C-vector space of all formal power series 

X = 

CO 

n=0 
xn tn, 
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where xn G h' then we may regard B G End V where B is a formal power 
series 

t-o 
Bntn 

with Bn G E n d h ' ; one obtains Bx just as in the multiplication of scalar 
power series except that BjXk G h' replaces what would normally be a 
product of scalars. 

Now let A G E n d h ' be the operator whose matrix with respect to the 
simple roots a», i = 0 , . . . ,Z, is just A( r ) . One notes that 

( 3 . 3 . 1 ) Avn = v n + 1 + v n _ i 

for all n G Z_|_ where v_i = 0 . This is clear from the definition of A(T) (see 
2 . 1 . 1 ) since by the Clebsch-Gordon formula for 5(7(2) one has 

rn TTl = 7 T n + 1 + 7 T n _ ! 

where 7T_i is the zero representation. 

L E M M A 3 . 4 . For any n G Z+ one has 

( 3 . 4 . 1 ) vn= 
[n/2] 

3=0 
( -1V n j 

j 
A n - 2 j a 0 . 

Proo/. For convenience put x = PT(t) E V Then by ( 3 . 3 . 1 ) one has 

tAx = ( 1 + t )x - v0. 

Thus (l-(tA-t2))x = v0. But since t factors out of tA-t2 it is clear that 
1 - (tA-t2) is invertible in End V and that 

x = 
k=0 

Bkv0, 

where B = tA-t3 = t(A-t). Thus 

Bk -
k 

3=0 

(-1V 
k 
3 

A k-jtk+j 
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Putt ing k + j — n we collect the coefficient of t n in 
k=0 

ßk One has k = n — j 

and k - j — n - 2j. Thus 

k=0 

oo 
Bk= 

oo 

n—0 

[n/2] 

¿=0 
( " l ) y 

n j 

j 
An-2j tn 

The result then follows since vq — a0. 

3.5. — Now let P be the set of integers 0 , 1 , . . . , / , and let P be the 
subset with 0 deleted. Then as one knows (see e.g. [10] for details) we 
may partition P (in fact uniquely) as a disjoint union P i U P2 so that for 

¿ = 1 , 2 the set IL = {ai i G PA consists of mutually orthogonal roots. If 
Pj = { * 1 j * 2 j • • • let t,'EW be defined by putting 

(3.5.1) Tj — Si1 Si2 ' • • Sik 

where Si G w for 2 = 0 , . . . , / , is the reflection corresponding to the simple 
root a{. The order in (3.5.1) is immaterial since the reflections in the product 
(3.5.1) commute with one another. In particular, one has 

(3.5.2) 2 2 
ri = r 2 = e 

(the identity of W). 

Now assume that V is of the form F* where F C 5 0 ( 3 ) . By P R O P O S I T I O N 

2.13 one notes that the extended Dynkin diagram contains no cycle of odd 
length. (This is also deducible from the parity of h.) In particular ao is 
orthogonal to all the elements in IIi or II2. Since we haven't fixed the 
labelling we now fix it so that an is orthogonal to all the elements of IIo. Let 
n 2 = n 2 U {a0} and let IIx = 11! Also let P2=p2 {0} and P1=P1. 

Now - 1 G F* where 1 here is the identity element in SU(2). Given any 
ieP one has ii(-D = ±i where I is the identity operator on the module of 

7 t , If 7 . ( - l ) = / we may regard Yj as a representation of F. The following 
proposition determines the sign and gives preliminary information on the 
non-zero components of vn. 

P R O P O S I T I O N 3 . 6 . Let the notation be as above. Then 7 . - 1 = 
( - 1 V 7 where J ' e { 1 , 2 } is such that iePj. In particular 

(3.6.1) F = {lj\jeP2}. 

Furthermore if we write for any n E Z +, 

vn= 

I 

i=0 
m,; [ ra ) ai 
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then mi(n) = 0 for all i G Pj where j - 1 = n mod 2. 

Proof If 7"e{ l ,2} let j E {1,2} be such that set-wise 0 \y} = { i ,2> 
Also let Qj P be defined by 

Qj={i EP|yi(-1)=(-1)jI} 
Now recalling (2.7.1) one has 

(3.6.2) J V ( i ) Ç Q? 

for any i where j is such that i G Qy. (We are identifying P with the set of 
nodes of the extended Dynkin diagram.) This is clear since T((-l) = - l . But 
(3.6.2) implies that the set of roots {ak\k G Qj} are mutually orthogonal. 
However 0 G Q 2 . By uniqueness one has Qi = Pi- This proves the first 
statement. The second follows immediately since 7Tn - 1 = ( - l ) V . 

3.7. Now let r2 = s0^2 = ?"2S0 and let r i = Ti One clearly has 

(3.7.1) ri 
2 

= r2 
2 = e. 

The statement in the next lemma is implicit in [10J and even more so 
in [11]. 

L E M M A 3 . 8 . — One has 

(3.8.1) A = N + r2 . 

Proof — Let i G P . Then z G Pj for some y G {1,2}. Clearly r7-at- = — a,-. 
But, using the notation in the proof of P R O P O S I T I O N 3.6, 

r^oci — ai -j 
2(ojfc,0!t-) 

(ak,ak) ak 

where the sum is over k G P>. 
j 

But then since the sum for k e P3 of the 

(2(ak,ai)l(ak,ak))ak is equal to 2a,-. and Pi Pj { O , . . . , / } , one has 

(ri + r2)at- = 2a{ -
i 

k=0 

2(ak,ai) 
(ock,ak) ak. 

Thus (ri + r2)ai Aai since 4 fr i = 2 1 - C g bv T H E O R E M 2.5. 
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3 . 9 . — Let c = r2ri so that c is a Coxeter element of W. It is not a Coxeter 
element of W. By ( 3 . 7 . 1 ) and ( 3 . 8 . 1 ) one has 

( 3 . 9 . 1 ) A2 = c + c~1 + 2I 

where / here is the identity operator on h'. 

L E M M A 3 . 1 0 . For any m G Z+ one has 

( 3 . 1 0 . 1 ) A2m = 
2m 

k=0 

2m 
k 

cfc~m. 

Proof. Let a = c + I and b = c~1 + I so that A2 = a + b by ( 3 . 9 . 1 ) . 
But clearly a + b = ab and a and b commute. Thus 

A2m = ambm 

But b — ac 1. Thus A2m = a2mc~m. However, 

a2m -
2m 

/c=0 

2m 
k 

ck 

We can now make an improvement on Lemma 3 . 4 . We first need some 
relations involving binomial coefficients. 

L E M M A 3 . 1 1 . Let j\n G Z+, where j < n. Then 

(3.11.1) 
3 

i=0 

(-1)i n — 2i 
.7 - i 

n — i 
i 

= 1 

and 

( 3 . 1 1 . 2 ) 
3 

i'=0 
(-1Y 

n 2i 

3 i 
n + 1 — i 

i 
1 zYj is even, 
0 if j is odd. 

Proof. — Because of the cancellation of (n - 2i) the ith term on the 
left side of ( 3 . 1 1 . 1 ) may be written (ji) (n-i j) Therefore to prove ( 3 . 1 1 . 1 ) it 
suffices to establish 

( 3 . 1 1 . 3 ) 
3 

i=0 
(-1Y 

7 

i 
n — i 

3 
= 1. 
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But as one knows 
1 

i l - í V + ' 

oo 

k=j 

K 

3 
tk-j 

so that the left side of ( 3 . 1 1 . 3 ) is just the computation of the coefficient of 
tn-j in the product (î-tv/d-t)^1. But this product is just oo 

i=0 
ti This 

proves ( 3 . 1 1 . 1 ) . 

We will prove ( 3 . 1 1 . 2 ) by induction on j . It is clearly true if j = .0 . Hence 
assume j > 0 and the result is true for smaller values. Clearly the result is 
true for n = j . Assume n > j . We may write 

( 3 . 1 1 . 4 ) 
n + 1 — i 

i 
= 

n — i 
i + 

n — i 

i - 1 

so that the left side of ( 3 . 1 1 . 2 ) decomposes into two sums. But one of the 
sums is just the left side of ( 3 . 1 1 . 1 ) and hence by ( 3 . 1 1 . 1 ) we have to show 
that 

( 3 . 1 1 . 5 ) 

3 

t = i 

( -1V 
n — 2i 

j-i 
n — i 

i-1 = 
0 if j is even, 
- 1 if j is odd. 

But putting i - 1 = k and n — 2 — m the left side of ( 3 . 1 1 . 5 ) is just 

3-1 

fc=o 

( - i r 
m — 2k 

j - 1 - k. 

m + 1 — k 

k 

But this is just the negative of the left side of ( 3 . 1 1 . 2 ) where m replaces n and 
j—1 < m replaces j . The result then follows by the induction assumption. 

If n = 2m is even, the following result expresses Vn as a partial sum of the 
elements in the orbit of a0 under the action of the extended Coxeter element 
c G W. Since, among other things, c does not have finite order the result is 
still not yet clarifying. 

If n = Zm + 1 is odd, we must replace a0 = v0 by vi Note that in this 

case the partial sum involves every other power of c rather than consecutive 
powers. 

P R O P O S I T I O N 3 . 1 2 . If n = 2m is even then 

( 3 . 1 2 . 1 ) vn= 

2m 

9=0 

c3-m O¿o 
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and if n — 2m + 1 is odd then 

(3.12.2) vn 
m 

•j=0 

2j-m v1. 

Proof If n = 2m, then by 3.4.1 

vn= 
m 

i=0 
- I V n — г 

г 
A2(m-i) » 0 -

But then substituting m — г for m in Lemma 3.10 we have, by (3.10.1), 

(3.12.3) vn= 
m 

i'=0 

(-1)i n — г 
г 

n-2i 

k=0 

n — 2i 
к 

ck+i-m ao 

Writing j — к + г and substituting j-i for к in (3.12.3) it is clear that j 
takes all values from 0 to n and that we can regard i as taking all values 
from 0 to y. Thus 

vn= 
n 

y=o 

i 

t'=0 

(-1) n — г 
г 

n — 2i 
j - i 

cj-mao 

The result (3.12.1) then follows from (3.11.1). Now assume n = 2m + 1. Put 
n 0 = 2m. Clearly Aa0 = vi by (3.3.1). Thus by (3.4.1) 

vn = 
m 

г=0 
( - 1 ) ' 

Пп + 1 - i 
г 

A2(m-i) v1 

and hence by (3.10.1) 

vn = 
m 

1=0 
( - 1 ) ' 

rin 4- 1 — i 
i 

no — 2i 

/c=0 

пп — 2г 
K C F C + T " " M V I . 

Again putting 3 — к + г we may take г and У arbitrary such that 0 < i < 
j< n 0 and, hence, we may write 

vn = 
2m 

j=0 

j 

•i=0 

(-1) n 0 + 1 - г 
г 

пп — 2г 
j - г 

cj-mv1 

The result then follows from (3.11.2). 
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4 . 1 . T h e Coxeter e lement aEW and the product formula for P r ( t ) . 
We now consider the element a = t2Ti G W. Clearly a is a Coxeter element 
in W. One thus has ah = e where h as in § 2 . 1 5 , is the Coxeter number of 
g. Since So t2=r2 SUBÌ 7"! = r1 we note also that 

( 4 . 1 . 1 ) c = s0a. 

Recalling the bilinear form B on h' let ao = 1 and put, for positive k G Z+, 

( 4 . 1 . 2 ) ttjfc = 2 
(<7*a 0 )ao) 

(û!0,û!o) 

Then ak E Z since aka0 is in the root lattice. Since 
oo 

k=0 
akt

k is invertible 

in the ring of all such power series, we can define a sequence bk e Z, 
fc = O , i , . . . , by inversion. That is, the sequence is defined, so that 

( 4 . 1 . 3 ) 
OO 

k=0 
&k tk 

CO 

j=0 

b,-t> = 1. 

We may thus define bk inductively so that for positive k 

( 4 . 1 . 4 ) bk = -
k-i 

j=o 

bj ak__j 

and 6o = l . 
We proceed now to convert from c to a in P R O P O S I T I O N ( 3 . 1 2 ) . We first 

observe 

L E M M A 4 . 2 . For any k E Z + one has 

( 4 . 2 . 1 ) cka0 = 
k 

j=0 

bj ok-j ao 

Proof. — The proof will be by induction on k. It is clearly true for k = 0 . 
Hence, assume k > 0 and that the result is true for smaller values. Since it 
is then true for k — 1 we have upon applying c to both sides of ( 4 . 2 . 1 ) , where 
k — 1 replaces fc, 

c an = 
k-l 

j=o 

bj s0 
<jk~i a0 



T H E McKAY C O R R E S P O N D E N C E 229 

because c = s0 a um SqO-k-J 
c*o = ok-jao - afc_7a0. Thus 

cka0 = 
k-i 

j=o 

bj a 3 ao — 
7 c - 1 

j=o 

bj ak-j a0. 

But then the result follows from (4.1.4). 

Now note that for any k G Z_|_ and ¿ = 1,2 that 

(4.2.2) ckri= ric -k 

We also note that 

(4.2.3) c R*I = c r2 

and 

(4.2.4) r2ck; = ricfc 1. 

LEMMA 4 . 3 . — For any positive k G Z+ one has 

c Ka0 = -
fc-i 

1=0 

6y rxO" fc-w 
ÛJQ. 

Proof Clearly (see § 3.5) 

(4.3.1) r2a0 = a0 

so that , since r2 = s0r2 = t 2 s 0 , 

(4.3.2) r2a0 = — ao-

But then c ka0 — -c kr2a0 = -r2cfca0 by (4.2.2) and hence c ka0 = 
- r i e * xa0 by 4.2.4). But r i = r i . Thus c fcao = -Tick xa0. The result 
then follows from (4.2.1). 

4.4. — Now for any n G Z+ let 

(4.4.1) rn= 
r1 if n is odd, 

T2 if n is even. 



230 B. K O S T A N T 

Also put r(°) = e and for n positive let 

(4.4.2) r (n) = rnrn-1 .... r2r1 

so that r^n) is an alternating product of r2 and r! with n factors. In particular 
if n — 2m is even then 

(4.4.3) r (n) = om, 

and if n = 2m + 1 is odd then 

(4.4.4) _(n) _ ^.m 

Now let un G h' be defined by putting 

(4.4.5) un = r (n) ao 

Remark 4.5. — If D(a) QW is the subgroup generated by T\ and r2 note 
that D(a) is isomorphic to the dihedral group of order 2h having the cyclic 
group jD+(<t) generated by a as a normal subgroup of order h. Thus we have 
that 

D(a)a0 = {un | n = 0 , 1 , . . . } . 

Also, since c*o is a root of (h ,g) , note that un is a root of (h,g) for all 
n G Z+. 

Now let u?o = ^o — ao and for n G Z+ positive let 

(4.5.1) wn = un -un -1. 

Also for any n G Z+ let 

(4.5.2) / n — 

n 

t=0 
6i. 

L E M M A 4 . 6 . For any n G Z+ one /ias 

(4.6.1) un = 
[n/2] 

j=o 
fjWn-2j-

Proof. — First assume that n = 2m is even. Then by Lemmas 4.2 and 
4.3 one has 

cka0 + c ka0 = bka0 + 
k-i 

7=0 
b3{ak 3a0 - rxak 3 la0) 
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for any positive k G Z+. But u2(k-i) = ° 3ao and u2(k-j)-l = Ti(jk 3 la0 

by (4.4.3) and (4.4.4). Thus 

cka0+c ka0 = 
k 

3=0 
bj VJ2k-2j-

bumming for k = 1 , . . . , m and adding a0 = boWn one has 

(4.6.2) Vn = 
m 

k=o 

k 

j=o 
fcj VJ2k-2j 

by (3.12.1). Now putting i = m — k + j so that 2fc — 2j = n — 2i then, in the 
sum (4.6.2), i ranges from 0 to m and j \ fixing i, ranges from 0 to i. Thus 
we mav rewrite 

vn = 
m 

i=0 

i 

3=0 
bj Wn-2i-

The result then follows for n — 2m by (4.5.2). 
Now assume n = 2m + 1 is odd. Recall that V\ = Av0 — Aan by 

(3.3.1). But A = r i + r 2 by (3.8.1). Let k G Z + be positive. Then ckvx = 
ckrxa0 + ckr2a0 = ck~1r2aQ + ckr2a0 by (4.2.3). But then by (4.3.2) 

(4.6.3) k k— 1 k 
cKvi = -c l a 0 - cKa0. 

But now c kvi = c kr1a0 + c kr2ao = rickan + r2cka0 by (4.2.2). However 
r2ck = rick~x by (4.2.4). Since r i = T\ we have 

(4.6.4) c kvi = TiCk 1a0 + Ticka0. 

Thus adding (4.6.3) and (4.6.4) and recalling (4.2.1) 

ckvx + c kv1 = (r1ck 1 - c^1)^ + (t^ - ck)a0 

k-l 

3=0 
bAT!**-1-' -*k-1->)a0 + 

k 

3=0 
bj ( r1ok-j -ok-j)ao 

k-l 

3=0 
bjw2rk_1_j)+1 + 

k 

3=0 
6jW2(*:-y) + l 

by (4.4.3), (4.4.4) and (4.5.1). 
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Now summing over the values k = 1 , 3 , . . . , ra, in case m is odd and 
k = 2 , 4 , . . . , r a , in case m is even and adding, in the latter case, v\ = 
riOLo + r2&o = Tio>o — an = W1 = 6QVJI one has, by ( 3 . 1 2 . 2 ) , 

v n = 
m 

fc=0 

k 

J = 0 
bj w2(k-j)+1 

Now, as before, put i = m — k + j so that 2(fc — + 1 = n — 2z. Then i 
ranges from 0 to m — [n/2] and j from 0 to i and we may write 

v n = 
m 

t=0 

i 
6, 

3=0 
U>n-2i 

and hence the result follows from ( 4 . 5 . 2 ) . 

We may express Lemma 4 . 6 in a more convenient form. Let 

/(*) = 
oo 

^=0 
fit23 

and let 

w(t) = 
OO 

i=0 
wttl. 

We recall also the definition of the generating function Pr{t) (see § 3 . 1 ) . 
Then the following factorization of Pr{t) is a restatement of L E M M A 4 . 6 . 
The "product" is well defined since the coefficients of f(t) are scalars and 
the coefficients of w(t) are vectors in h'. 

L E M M A 4 . 7 . One has 

Pr(t) = f(t)w(t). 

4 . 8 . — Now let /c G W be the long element of the Weyl group W so that , 
in particular, /c 2 = e. The element AC takes the positive roots of (h, g) to the 
negative roots and hence in particular. 

( 4 . 8 . 1 ) Kip — —ip> 

where, we recall, ip is the highest root. 
We recall (see P R O P O S I T I O N 2 . 1 8 ) that the Coxeter number h is even. Let 

h/2 = g G Z+. The following is well known and due to S T E I N B E R G . 
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L E M M A 4 . 9 . One has a9 — k. 

Proof. — This is in fact implicit in [10] . Using the notation of T H E O 
REM 6.3 in [10] one has that a9 = {Rx • • - Rn)h/2. But then T H E O R E M 6.3 
in [10] asserts that a9 carries all the positive roots into negative roots. Thus 
ag = k. I 

We note, by L E M M A 4 . 9 and ( 4 . 8 . 1 ) , that 

( 4 . 9 . 1 ) o~g ip = —ip. 

4 . 1 0 . — Now for i = 0 , 1 , . . . , h - 1, let 

( 4 . 1 0 . 1 ) Z{ = Wi 

but we put 

( 4 . 1 0 . 2 ) z0 — a 0 

so that zn is defined for n — 0 , . . . , h. The following observation will later be 
important for us. It asserts in effect that the ao-component of zn vanishes 
for 1 < n < h - 1. 

L E M M A 4 . 1 1 . — One has z0 = Zh = OCQ but z n G h ; for 1 < n < h — 1 . 

Proof. — By definition z0 = z^ = a0. But now since Tj G W for j — 1 ,2 
it follows that 

un — a0 Eh 

for any n E Z+. (See ( 4 . 4 . 5 ) . ) Thus wn E h' for all n > 1. 

Let 

( 4 . 1 1 . 1 ) zt) = 
h 

i=0 
Zif. 

The next lemma is a key point. It asserts that we can reduce w(t) to a finite 
sum. 

L E M M A 4 . 1 2 . — One has 

w(t) = z{t) 
l + th' 

Proof — Let u(t) — /7=C Ujt3 . By definition of w« one clearly has 

( 4 . 1 2 . 1 ) w(t) = ( 1 - t)u(t). 
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But now obviously 
uh — aga0. 

Write oto = (a0 + ib) -ib. But then by P R O P O S I T I O N 2 . 3 and ( 4 . 9 . 1 ) one has 

( 4 . 1 2 . 2 ) Uh = oto + 2ip — 2{a0 + ip) - a0 

and hence un + Uh — 2(0:0 + ^ ) - But then by P R O P O S I T I O N 2 . 3 this element is 
invariant under W and hence, upon applying 7~i and r2 alternately, we have 

( 4 . 1 2 . 3 ) Uj + Uj+h — 2(a0 + ip) 

for any j G Z+. Thus if u(t) is the finite sum h-i 
i=0 

uiti then 

( 4 . 1 2 . 4 ) u(t)(l+th) = û-(t) + 2(a0 + ip) 
th 

l - t 

Now let w(t) be the finite sum h-1 
%=o 

Wit1 Then clearly 

( 4 . 1 2 . 5 ) ( 1 - t)u(t) = w{t) -uh-ith. 

But now 

( 4 . 1 2 . 6 ) r2ip = ip 

by ( 4 . 3 . 1 ) , since if) = (a0 + ip) — a0 (recalling P R O P O S I T I O N 2 . 3 ) . But since 
uh = a0 + 2ip by ( 4 . 1 2 . 2 ) it follows from both ( 4 . 3 . 1 ) and ( 4 . 1 2 . 6 ) that uh 

is fixed by r2. However Uh = T2Uh-i since /1 is even and hence Uh-i = ^ u ^ . 
Thus we also have 

( 4 . 1 2 . 7 ) uh-1=ao+2W. 
Now multiplying ( 4 . 1 2 . 4 ) by 1 - t it then follows from ( 4 . 1 2 . 1 ) , ( 4 . 1 2 . 5 ) 

and ( 4 . 1 2 . 7 ) that 

w(t)(l + th) = w{t) - [a0 + 2iP)th + 2{a0 + ip)th 

= w(t) + aQth. 

But w(t) + a0th = z(t) by definition of z(t). This proves the lemma. 

4 . 1 3 . We now proceed to express f(t) in terms of polynomials. Let 

OFT) = 

00 

7=0 
aA23 and b(t) = 

00 

1=0 

M 2 t so that , by ( 4 . 1 . 3 ) , bit) = l/a(i) EOSa 

now, by definition, clearly № = b(t)/(i-t*) and hence 

( 4 . 1 3 . 1 ) /(*) = 
1 

(l-t*)a(t) 
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Now if g > 1 put, for i = 1,... ,g — 1, 

(4.13.2) Ci = 
2((7«^,V) 

(V>,V) 

and in any case put 

(4.13.3) CQ = 1 and cg = — 1 . 

Thus in any case we can define a polynomial c(t) of degree h by putting 
c(t) = g 

j=o 
cjt-i 

L E M M A 4 . 1 4 . One /ias 

( 1 + * '>(*) =c{t). 

Proof. We note first that for any j > 1 

(4.14.1). a9 = 2 ( ^ v , V > ) 
W,W 

Indeed we may write an = (an + ip) — ijj. But since an + ijj is B orthogonal 
to h' one obtains (4.14.1) by substituting (ao +) -WO f°r ao in (4.1.2). But 
now by (4.9.1) one has 

(4.14.2) CLj + g + dj = 0 

for all positive j and aa + an = —1. Thus if a(t) = ><7-l 
j=o 

ajt2j one has 

(l + th)a(i) =â{t) -th. 

But â(t) - th is just c(t) by (4.13.2) and (4.13.3). 

4.15. — What is significant is the "jumps" in the numbers c,. Let an — 
qg+i — 1 and for j = 1 , . . . , g, let 

(4.15.1) qi = Ci - c,-_i. 

One then defines a polynomial q(t) of degree /i + 2 by putting 

(4.15.2) q(t) = 
9+1 

i=0 
qit2i 
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It will later be seen that q(t) has a particularly simple form. 

L E M M A 4 . 1 6 . One has 

q(t) = {l-t*)c(t). 

Proof. — This is obvious from the definition. One has only to notice that 
the coefficient of th+2 equals 1 in the product since ca = — 1. | 

The following lemma summarizes much of the above. It reduces the gen
erating function Pr{t) to a quotient of explicit finite sums. 

L E M M A 4 . 1 7 . One has 

Pr(t) = 
z(t) 
q(t) 

Proof — By L E M M A 4 . 7 one has Pr{t) = f(t)w(t). But then by L E M M A 
4 . 1 2 one has 

Pr(t) = f(t)z(t) 
l + th 

and hence by ( 4 . 1 3 . 1 ) 

Prit) 
z(t) 

(l + **) ( l -*2) a ( t ) 

But ( 1 + th)a(t) = c(t) by L E M M A 4 . 1 4 and hence the result follows from 
L E M M A 4 . 1 6 . | 

5 . 1 . T h e root s tructure of g and the simplif ication of the product 
formula for P r (0- — We now wish to be much more explicit about the 
polynomial q(t) and the vectors Z{ G h' for i = 1 , . . . , h — 1 . 

Let A Ç h' be the set of roots of (h, g) and let A + Ç A be that set of 
positive roots such that II Ç A+. We recall (see T H E O R E M 8.4 in [4]) that 
dim g = (h + 1 ) / or that Card A = hi and hence 

( 5 . 1 . 1 ) Card A+ = gl. 

Let r(") for n G Z+ be as in ( 4 . 4 . 2 ) . Also let 

L : W — • Z+ 

be the length function with respect to II. 
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L E M M A 5 . 2 . — lf h>n>k>0 then in the Bruhat ordering of W one 
has r W > 7-W. 

Proof. — Clearly r W = ag = K by L E M M A 4.9. Thus L ( r W ) = gl by 
(5.1.1). However upon substituting the product (3.5.1) for (ry), for j = 1, 2, in 
(4.4.2) it is clear that (4.4.2) for m — h becomes a product of gl elementary 
reflections (since T2TI involves I such reflections). Thus (4.4.2) becomes a 
minimal way of writing K as a product of elementary reflections. It follows 
therefore that if s G W is obtained from this product by deleting p left
most such reflections then the remaining product is minimal also for s 
and L(s) = gl — p. The lemma then follows immediately from well-known 
properties of the Bruhat ordering. | 

The proof of Lemma 5.2 and (4.4.3) and (4.4.1) clearly implies that if 
h > n > 0 one has 

(5.2.1) L ( r W ) = 
Im, if n = 2m is even, 
C a r d H i + Zm, if n — 2m + 1 is odd. 

Recall that ip G A+ is the highest root. 

L E M M A 5 . 3 . For n = 1 , . . . , h — 1, one has 

(5.3.1) zn = r ( n-1) Y -r(n) W 

Proof. — By definition (see (4.5.1), (4.10.1) and (4.4.5)) one has zn — 
un — u n - i — r ^ a 0 — r ( n _ 1 ) a 0 . But, by P R O P O S I T I O N 2.3, r^(a0 + ф) — 
c¿o + ф. Thus T^Uoto) — oto — Ф — т^ф and hence r^nUa0) — r ( n _ 1 ) a 0 = 
r (n-1) W -(n)W. 

5.4. — It is obvious from the definition of the vectors vn G h' that the 
entries of vn are non-negative. However this is not obvious for zn since, in 
fact, the polynomial q(t) does not have positive coefficients (see L E M M A 5.7). 
The following result establishes that not only are the coefficients of the zn 

non-negative they are, in fact, of a very special type. Also there is symmetry 
around the middle (n = g) and the middle one, zg, which is different from 
the others can be completely described isolating a particular node (later seen 
as the branch point or the middle point, in the case of ^ m - i ? of the Dynkin 
diagram) in P. 

L E M M A 5 . 5 . One has zn ^ 0 and 

(5.5.1) zn — zh — n 
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for n — l , . . . , f t — 1 . Furthermore there exists i* G Pj, j = 1,2,, with j 
congruent to g mod 2 such that 

( 5 . 5 . 2 ) ^ = 2aim. 

// however n ^ g then all the coefficients of zn are either 1 or 0 . In fact 
if j G { 1 , 2 } is congruent to n m o d 2 there exists distinct i\,i2,... , i r G P/ 
sucft £fta£ 

( 5 . 5 . 3 ) zn = ai1 + ai2 + ... +air, 
where r — 1, 2 or 3 and iftese £ftree cases occur, respectively, according as 
(r^tb.T^n~1^ib) is positive, zero, or negative. 

Proof. — Consider the partial ordering in h' defined so that x > y if 
x — y is in the Z+-cone spanned by the positive roots. In case u G h' is a 
dominant element of the weight lattice and s, t G W, where s > t in the 
Bruhat ordering, then one knows that tu > su in the partial ordering of h'. 
Thus r(n-1)V> > r^tp by L E M M A 5.2 and hence all the coefficients of zn, by 
( 5 . 3 . 1 ) , are in Z+. 

Now clearly z\ ^ 0 by definition (see § 3 . 5 ) of the sets P i and P2. Assume 
zn = 0 where 2 < n < h—1. Then r^ip = r ( n _ 1 ^ . Applying rn+i we clearly 
have 7 - ( n + 1 ) ^ = r (n"2 )^ (since rn+i = rn_x). But r ( n " 2 ) ^ > r ^ " 1 ) ^ > 
7 » V > > r(n+1)^« Therefore equalities hold. But r (n"1 )^ = r(n+1)^ implies 
that this non-zero element is fixed by cr. Since 1 is not an eigenvalue of 
a we have a contradiction so that zn / 0 . In particular the r^tp, for 
n = 0 , . . . , h — 1, are distinct and simply ordered. 

The argument above would fail for n = ft. In fact r^ip = KI\) — —ip. 
But rh = r2 and r2ip = V by ( 4 . 1 2 . 6 ) . Thus r ^ V = t(/i_1)^ = ~V>- F r o m 
the latter it is clear there exists 1 < k < ft — 1 such that r^k~^ip G A+ 
but r^ip G - A + . Put p = r ^ " 1 ) ^ and 7 = r^ip. One thus has T $ = 7 
when j G { 1 , 2 } and j has the same parity as k. But the only positive roots 
which change sign under Tj are clearly the elements of Ily. Thus /3 G lij and 
7 = —/3. That is, there exists a node i* G Py such that 

( 5 . 5 . 4 ) r(k-1) W = ai* 

and 

( 5 . 5 . 5 ) r^ip = -a , - , . 

Clearly then 

( 5 . 5 . 6 ) zk = . 
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Now if 2 < k < h - 2 then applying rk+1 to both ( 5 . 5 . 4 ) and ( 5 . 5 . 5 ) we 
have that r^k~2^ip = — r^+^tp. Iterating this way it is clear, since the r^ip 
are distinct for n — 0 , . . . , h — 1, that ( 5 . 5 . 4 ) and ( 5 . 5 . 5 ) can only happen if 
k — q. Also the iteration yields 

( 5 . 5 . 7 ) e( g-i) W = -r (g+j-1)W 

for j = 1 , . . . , g. But ( 5 . 5 . 7 ) clearly implies ( 5 . 5 . 1 ) . 

Now since the entries of zn are non-negative for n = l,...,h — 1 it 
follows for j G { 1 , 2 } , where j has the same parity as n, that (since 

e( g-i) W = -r (g+j-1)W) 

( 5 . 5 . 8 ) ( r ^ - ^ V s a ) > 0 

for any a 6 Fly. Note that , even though r^n >ip might be negative simple, 
( 5 . 5 . 8 ) implies An-^ip <£ ITy. But then if r ( n _ 1 ^ 4- one must have 

( 5 . 5 . 9 ) 
2 ( r ( n - i ) ^ a ) 

(a, a) 
= 0 , 1 

for any a G Tlj. Since the r(i)W are simply ordered it follows from ( 5 . 5 . 4 ) 

that r ^ " 1 ) ^ $ Tlj if n / k = g. Thus in this case the coefficients of zn are 
either 0 or 1. That is, if n / there exists distinct ¿ 1 , 1 * 2 , . . . , ¿r £ Pj sucn 
that 

( 5 . 5 . 1 0 ) r(n-i)^ _ ah _ a.a = r(n)̂  
and one has if(?-(n 1^,a;t .) = 1, where K = 2 

(W,W) 
for y = 1 , . . . , r. Taking 

the inner product of both sides of ( 5 . 5 . 1 0 ) with KT (n-1) W it follows that 
# ( r ( n - i U r ( * U ) = 2 - r . This proves the lemma since the distinctness of 
the r(j)W implies that 2 — r = 1 , 0 , —1 or —2. However —2 cannot occur by 
( 5 . 5 . 7 ) since n / g. | 

For later use we record in the next proposition some facts established in 
the proof above. We recall that tp is the highest root, ?~(n) is defined by 
( 4 . 4 . 2 ) , and h = 2g is the Coxeter number which is assumed to be even. 

P R O P O S I T I O N 5 . 6 . For n — 0 , . . . , h — 1 the roots r^n)ip are distinct 
and simply ordered with respect to the 7i+-cone spanned by A+ with r^tp — 
ib highest and 

( 5 . 6 . 1 ) r ( h-1) W = -W 

lowest. Moreover if j G { 1 , 2 } has the same parity as g 

( 5 . 6 . 2 ) T^-1>^ = ai, e Tlj-
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where i* G P is the node picked out in L E M M A 5.5. Thus r^'ip G A_|_ if 
n = 0 , . . . , g — 1. Finally 

e( g-i) W = -r (g+j-1)W 

for j=1,...,g. 

We can now pretty much pin down the polynomial q(t). The following 
result together with L E M M A 4.17 completes the proof of T H E O R E M 1.3. 

L E M M A 5 . 7 . — There exists even integers a and b with 2 < a < b < h 
such that a + b = h + 2 and 

(5.7.1) ï(t) = ( l - f ) ( l - * 6 ) -

Proof Now q(t) = 0+1 
¿=0 qit2i with gö - <7o+i = 1> recalling: § 4.15. 

Also EN = 1 BSE ca = - 1 . Thus if g = 1 then one has q0 = q2 = 1 and 

<?i = c0 - c0 = -2 and hence alt) = ( 1 - f 2 ) 2 . That is a = 6 = 2. Assume 
# > 1. Then since <rg 1 = a-1k one has a3 1ip z=—a 1ip so that , by (4.15.1), 
(4.13.2) and (4.13.3), 

Qi = qg 
2((7^,^) 

(WnW) 
- 1 . 

But since <TI/> 7̂  ^ one nas qi = qg < 0. But also o/t < 0 for i = 2 , . . . , g — 1, 
by P R O P O S I T I O N 5.6 since t/> is dominant and for these values 

qi = 
2(<rtV> - t r1-1^ ,^) 

(WnW) 

by (4.13.2) and (4.15.1). 

On the other hand (oiw,w)= - ( oiy,ogW) and hence 

(cr>,V) = -(<r9-V,V') . 

Thus (cr>,V) = -(<r9-V,V').(cr>,V) = -(<r9-V,V'). for i = 2 , . . . , g — 1, so that 

(5.7.2) Qi — Qg+l-i 

for i — 1 , . . . . a. But now, by (4.13.3) and (4.15.1), g 
i=1 

Qi — Cq — cq = —2. 
Thus, since the gz are non-positive integers, there exists by (5.7.2) a unique 
positive integer d where 1 < d < (g + l ) / 2 such that qd < 0. Also 
qd — <7e where e = # + 1 — d. We can also conclude that qd = —I 
if d < (g + l ) / 2 and gd = —2 if d = (# + l ) / 2 . That is in any case 
q(t) = 1 - ta - tb + th+2 = (1 - ta)(l - tb) where a = 2d and 6 = 2c. I 
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Let d and e be as in the proof above so that a — 2d and b — 2e and 

( 5 . 7 . 3 ) d + e = g+1. 

As an immediate corollary, recalling ( 4 . 1 3 . 2 ) and ( 4 . 1 5 . 1 ) , one obtains the 
values of 2(<TnV>,'0) 

(W,W) 
for 0 < n < g. In the following result one is to ignore 

those intervals (e.g., if d — 1 = 0 ) which do not make sense. 

T H E O R E M 5 . 8 . One has 

( 5 . 8 . 1 ) 
2(<rné,é) 

(WnW) 

2 if n = 0 , 
1 ifl<n<d-l, 
0 if d < n < e — 1, 
- 1 if e < n < g — 1 , 
- 2 if n = g. 

We now observe 

L E M M A 5 . 9 . One has for any positive n G Z_l 

( 5 . 9 . 1 ) (cr>,V) = -(<r9-V,V'). 
Proof. Let r ( " n ) denote ( r W ) " 1 . Clearly r ( - n ) r ( n - l ) = ,-(271-1)^ Thus 

( 5 . 9 . 2 ) (cr>,V) = -(<r9-V,V').Y,Y) 

But r 2 r ( 2 n - l ) = R ( 2 N ) = C T N . On the other hand T2ip — ip by 4 . 1 2 . 6 . 
Thus one obtains ( 5 . 9 . 1 ) by applying r2 to both terms on the right side of 
( 5 . 9 . 2 ) . | 

We can now determine, in terms of d and e, the integer r in L E M M A 5 . 5 . 
We recall that r is the number of non-zero entries in zn where n ^ g. Write 
r = r (n) . Again in the following lemma an interval is to be ignored if it 
makes no sense. 

L E M M A 5 . 1 0 . One has 

( 5 . 1 0 . 1 ) r(n) — 
1 ifl< n < d- 1 , 
2 if d < n < e — 1 , 

3 if e < n < g — 1, 

and (by symmetry) 

( 5 . 1 0 . 2 ) r In) = 
3 ifg + l<n<h — e, 
2 if h — e+l<n<h —d. 
1 ifh-d+l<n<h-l 
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Proof. — This follows immediately from L E M M A 5.9, T H E O R E M 5.8 and 
the final statement of L E M M A 5.5. | 

Remark. — It should be noted that zn is a root only if r(n) = 1. 

Now let \{ G h', i = 1 , . . . , / , be the highest weights of the fundamental 

representations of g. That is, the At are defined so that 2(yi,ai) 
2(yi,ai) 

=8ij. Also 

if n G Z_l- then as in the proof of L E M M A 5.9 let r ( - n ) = (r(n))-1. 

L E M M A 5 . 1 1 . Let 1 < i < I and let j G {1, 2} be such that i G Pj. 
Let n G Z + . Then, if j and n have opposite parity, 

(5.11.1) r(-(n-l))A) _r(-n)A 0 

whereas if j and n have the same parity 

(5.11.2) r(-(n-i))Xi_T(-n)Xi = T(-{n-i))at_ 

Proof — By definition rW = ^ r ^ - 1 ) so that r ( -n ) = r t - ^ - ^ r , , . 
Hence the left side of (5.11.1) or (5.11.2) is just r ^ " " 1 ) ) ( A ; - rn\i). But, 
clearly, if j and n have opposite parity then r„A, = A, whereas if they have 
the same parity rnA, = Â  — a,. | 

Let Vi € h', i = 1 , . . . , / , be the basis of h' which is dual to the simple 
roots. Clearlv 

(5.11.3) Vi = 
2 

(<Xi,0!i) 
At. 

The following lemma will enable us to determine d and e (and hence a 
and b). 

L E M M A 5 . 1 2 . Let k G Z_l be such that 0 < k < (g — l ) / 2 . Then 

(5.12.1) 
2(okW,w) 

(W,W) 
— (^n 5 zg-2k). 

where, we recall, û G P is t/ie special node picked out in L E M M A 5.5 or 
P R O P O S I T I O N 5.6. 

Proof If 2k < g — 1 we can clearly write as an increasing product 

2(yi,ai)r(-(n-i))Xi_T(-n)Xi = T(-{n-i))at_ 

However, since 2k + 1 is odd, we note that r2k+1 ... rg-1 
= T ( - ( 3 - 2 f c - l ) ) 

Thus in any case we have 

(5.12.2) T(2k) _ T(-(g-2k-l))T(g-l) 
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But now T(2k) = ok On the other hand r(g-l)^ = ai by (5.6.2) Thus 
applying both sides of (5.12.21 to ip we have 

(5.12.3) ^ = r(-(g-2/c-l))ai* 

However if j G {1,2} is such that i* G Fy then, by P R O P O S I T I O N 5.6 j has 
the same parity as g or g — 2k. Thus L E M M A 5.11 applies and we can write 

r(-(n-i))Xi_T(-n)Xi = T(-{n-i))at_ _r(-0r-2*))AtV 

But then taking the inner product with tp and moving the Weyl group 
elements to the other side we have 

(5.12.4) (<r*V>,V>) = (Au,r^-2fc"1V " rU-2k>tl>). 

But the difference term on the right side of (5.12.4) is just zg-2k> The result 
then follows from (5.11.3) since ip and a:^ are ^-conjugate . (Of course in 
the case at hand g is simply laced and the last argument is unnecessary. 
However the argument applies more generally to any g where h is even.) | 

Remark 5.13. — We note that 

(5.13.1) (vi*, zg-j)=o 
for any 0 < j < g — 1 where j is odd. Indeed it is clear from the definition 
of zn that 

(5.13.2) <vi, zn> = O 

if i G Pj where j and n have opposite parities. But t* and g have the same 
parity proving (5.13.1). Thus (5.12.1) and (5.13.1) determine the coefficients 
of cev for any zn. 

Recall (see (2.7.2)) that dt , i = 1 , . . . , / , are the coefficients of the highest 
root ip relative to the simple roots a t . We can now prove 

L E M M A 5 . 1 4 . One has 

(5.14.1) d = d{^ 

where d — a 2 and a is given by L E M M A 5.7. 

Proof. — If g = 1, then d = a/2 = 1, as established in the proof of 
L E M M A 5.7. This proves (5.14.1) in this case since g = A\. Now assume 
g > 1. By definition of the zn one has 

(5.14.2) W - r (g-1) W = 
9-1 

n = l 
zn 
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But then by ( 5 . 6 . 2 ) one has 

( 5 . 1 4 . 3 ) W- ai * = 
g-1 

71=1 
zn. 

But then taking the inner product of both sides with vi* one has by L E M M A 
5 . 1 2 and R E M A R K 5 . 1 3 

( 5 . 1 4 . 4 ) d7- - 1 = 
K0-l)/2] 

fc=l 

2 (okW,W) 
(W,W) 

But now recalling the proof of L E M M A 5 .7 one has 1 < d < [(g + l ) / 2 ] 
and hence d — 1 < [(# — l ) / 2 ] . On the other hand e = g + l — d so that 
e-l = g-d> g- [(g+l)/2] > [{g - l ) / 2 ] . But then by ( 5 . 8 . 1 ) the sum on 
the right side of ( 5 . 1 4 . 4 ) is just d — 1. Thus aV = d. | 

Now we have only to identify the node i*. First, however, we observe 
that the zn can be generated in a simple way from the simple root at])t. Let 
n E Z_ l . Pu t TW = e if n = 0 and for n positive let TH = Tg+n--Tg+1. 
(One notes of course that r[n] = T(n) in case g is even.) 

T H E O R E M 5 . 1 5 . One has for n — 1 , . . . , g — 1 

( 5 . 1 5 . 1 ) Zg — n — zg-\-n = 7-Ha,-. - r[n-1] ai*. 

Proof. Note that for fc = 0 , . . . , g — 1 

( 5 . 1 5 . 2 ) T(k) = 7 . [g-fc- l ] r (g- l )> 

Indeed if k = g — 1 this is obvious. But for k < g — 1 one has r(k) = 
Tfc+i • • • r g _ i 7 - ( g _ 1 ) . However, clearly, r^+i • • • rg_x = rtg~fc_1' and this es
tablishes ( 5 . 1 5 . 2 ) . Thus by ( 5 . 6 . 2 ) 

( 5 . 1 5 . 3 ) r(-(n-i))Xi_T(-n)Xi = T(-{n-i))at_ 

But zg-n = r(<7-"-lU_r(!7-nU The result then follows from ( 5 . 1 5 . 3 ) and 
the symmetry ( 5 . 5 . 1 ) . 

We now have 

L E M M A 5 . 1 6 . — Ifg is not isomorphic to A2m+i [i-e-, F* is not cyclic) 
then i* is the branch point of the Dynkin diagram of g. If g = ^ 2 m + i then 
i* is the midpoint of the Dynkin diagram of g. 
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Proof. — If g is not isomorphic to A2m-i then the extended Dynkin 
diagram is a tree and hence, in the notation of § 2.6, iV(0) consists of only 
one point. Thus z\ — ip — T\i\) is a simple root (since again g ^ Ai). That 
is, r ( l ) = 1 in the notation of L E M M A 5.10. But then d > 1 by (5.10.1) and 
since d + e = g + 1 this implies e < g. But then 

(5.16.1) r(g-l) = 3 

by (5.10.1). However, since r(<7-2)̂  = ^_ir(g-l)^ 

(5.16.2) r(<7-2)^ = ^_ir(g-l)^ 

by (5.6.2). But since r[g — 1) = 3 it follows that CardN(i*) — 3. Thus i* is 
the branch point. 

Now assume g = A2m—i* We also assume that the nodes are ordered in 
the natural way given by the diagram. Clearly then 

(5.16.3) T^lp = (Xk+i + ak+2 H h Ot2m-l-k 

for 0 < k < g - 1 = m - 1. But then in particular r(<7-2)^ = ^_ir(g-l)^ The result 
then follows from (5.6.2). 

Since a = 2d and b = h + 2 — a we can now write down, using (2.4.1), the 
table of a and b values for the five types of subgroups F* C SU(2). 

T H E O R E M 5 . 1 7 . One has 

rr* g a b h 

K 

si 
¿1 

<4-2n-] 
Dn+2 

EQ 

E7 

2 
4 
6 
8 
12 

2n 
2n 

8 
12 
20 

2n 
2n + 2 

12 
18 
30 

The following result may be observed empirically from the table above. 
However it is more interesting to derive it from the general theory. 

T H E O R E M 5 . 1 8 . — One has 

(5.18.1) ab = 2\F*\. 

Proof. — Let x '• h' —• C be the linear map defined so that x{ai) = dim 7,. 
Thus, in the notation of (2.7.2), x(a«) = d< by (2.8.1). 
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By operating on the coefficients we extend x so that it maps power series 
with coefficients in h ' to ordinary power series with coefficients in C. 

Now by L E M M A S 4.17 and 5.7 

z(t)=(l-ta)(l-tb)Pr(t), 

where T — F*. But clearly 

(5.18.2) x(Pr(t)) = 
OO 

n = 0 

dimSn(C2)tn = 
oo 

n = 0 

(n+l)tn = 
1 

( l - ¿ ) 2 

Thus 

X (z(t)) 
1 - ta) 1 - 1 ) 

( 1 - * ) ( 1 - * ) 
(5.18.3) a-l 

t3 
•j=0 

6 - 1 

ti 
i=0 

Evaluating at t = 1 one has 

(5.18.4) (X(z(t)))(l) = ab. 

On the other hand, by definition of z(t), one has 

(x(4t)))(1) = 
h 

n=0 

X(zn). 

But 

(5.18.5) 
h 

n = 0 

zn = 2(a0 + tb) 

since zo = zh = a0 (see L E M M A 4.11) and the sum (5.18.5) taken from 1 to 
h — 1 equals 2ifj by (5.3.1) and (5.6.1). But clearly 

(5.18.6) X(a0 + VO = 
l 

i = 0 

d,2 

by (2.7.2) and (2.8.1). Thus ab = 2\F*\ by (5.1.4). 
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Now, recalling L E M M A S 5.7 and 5.14, the proof of T H E O R E M 1.4 is com
plete. Furthermore, recalling (5.3.1) and L E M M A S 5.5 and 5.10, the proof of 
T H E O R E M 1.5 is complete. 

6.1. T h e Poincaré series Pr(£)n for the individual representat ions 
7,- . — We now consider the question of determining the Poincaré series 
Pr{t)i for the individual representations 7,- G T where T = F*. If z(t)i is the 
polynomial obtained from z[t) by considering only the ith component then 
it follows from (1.3.1) that 

(6.1.1) Pt (t) i = 
z(t) i 

(1 — *a)(l — *6) 

Thus it suffices only to determine z(t)i. We first observe 

L E M M A 6 . 2 . — The sum of the coefficients of z(t)i is 2dt- where d{ is 
the coefficient of an + ip corresponding to the simple root at-. Furthermore if 
i # i* then all the non-zero coefficients of z(t)i are equal to 1. This is also 
the case for i — i* except that the coefficient oft9 is 2. Finally, in any case 
the coefficient oftg+k is equal to the coefficient of tg~k for k = 0 , . . . , # and 
it vanishes if k — 0 when i ^ i*. 

Proof. — The first statement follows from (5.18.5). The next two state
ments follow from L E M M A 5.5. I 

More explicitly consider first the case where i = 0. Note that Pr(£)o is 
just the Poincaré series for the algebra of invariants 5 (C2)r . The next result 
is a restatement of T H E O R E M 1.8. 

T H E O R E M 6 . 3 . One has z(t)0 = 1 + th so that by T H E O R E M 1.3 

Pr(t)o = 
l + th 

(l-ta)(l-tb) 

Proof. — This is an immediate consequence of L E M M A 4.11. 

Remark 6.4. — The relation (5.18.1) is now subject to another interpre
tation. One knows that the subgroup F C 5 0 ( 3 ) may be embedded as a 
normal subgroup of index 2 in a reflection group G C 0 ( 3 ) . One then has 

(6.4.1) LF*| = \G\. 

Indeed if F = Zn then G is the dihedral group operating in the same plane 
as F but leaving the perpendicular vector fixed. If F = An then F operates 
in a plane but half the elements of F map a perpendicular vector v ^ 0 into 
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its negative. The group G is generated by F and the reflection defined by v. 
The groups A4, S4 and As may be regarded, respectively, as the groups of 
proper rotations of the tetrahedron, cube and icosahedron. The group G is 
then the corresponding group of improper rotations. 

Now from the general theory of reflection groups one knows that the 
algebra, 5(C3)G, of G-invariants is generated by 3 algebraically independent 
homogeneous polynomials. Since G leaves invariant a non-singular symmetric 
bilinear form, one of these generators, I2, has degree 2. If 8 and e, with 8 < e, 
are the degrees of the other two, then the Poincaré series of S(C3)G is clearly 

Q(t) = 
1 

1 - i 2 
1 

1-t8 
1 

1 - íe 

and from the general theory of reflection groups 

(6.4.2) \G\ = 28e. 

On the other hand if r is the number of reflecting hyperplanes then again 
from this general theory trQ(t) is the Poincaré series for the sign represen
tation of G. Since only the identity and the sign representations are trivial 
on F it follows that (1 + tr)Q(t) is the Poincaré series of S(C3)F. However 
if H = 00 

n = 0 Hn is the space of harmonic polynomials on C3 then as a 
G-module 

5(C3) = C[I2}®H. 

Thus if P(t) is the Poincaré series of HF one has 

P(t)= i + tr 
( 1 - * « ) ( ! - « • ) 

since the Poincaré series of C[/2] is 1/(1 — t2). 
But now, using the notation of § 3.1, 7 1 " ^ ^ * has no non-trivial invariants 

if n is odd since — 1 G F*. On the other hand, 7r2n, defines a representation 
~2n of 5 0 ( 3 ) . This implies that (1.8.1) is just the Poincaré series defined by 
the representations lt2n\F* But one knows that the representation of 5 0 ( 3 ) 
on Hn is equivalent to n^n- Thus (1.8.1) is equal to P(t2) or 

l + th 

(l-ta)(l-tb) 
l + t2r 

(l-t26)(l-t2*) 
But then it is easy to see that r — g — h/2, 6 — d = a /2 , and e = e = 
6/2. Indeed from the general theory of reflection groups one knows that 
(2 - 1) + (8 - 1) + (e - 1) = r or 6 + e = r + 1. Thus 8 < r and e < r. But 
also a < h and 6 < h. By clearing denominators and considering primitive 
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2h and 4r roots of 1 it follows that h = 2r and then, similarly, 6 = d and 
e = e. We have thus proved from general principles the following empirically 
observed facts. 

T H E O R E M 6 . 5 . — One has 

g — r and S = d. 

That is, the number of reflecting hyperplanes for the reflection group G C 
0(3) is equal to one half the Coxeter number ofg. Also excluding a quadratic 
invariant the lesser degree of the two remaining fundamental symmetric in
variants of G is equal to the coefficient of the highest root ofg corresponding 
to the branch point (or mid-point, in the case of Z n ) of the Dynkin diagram 
ofg-

After the case where i = 0 another distinguished case is where i = i*. One 
notes that 7 ^ is an irreducible representation of maximal dimension. For 
the cases A\, S% and Al it is the unique such representation. The following 
result is a restatement of T H E O R E M 1.9. 

T H E O R E M 6 . 6 . One has 

(6.6.1) z(t)i*= 
d-1 

i'=0 

tg-2i ^ 
d-l 

i=0 

t9+2i 

In particular z(l)i# — 2d — a. 

Proof. — This is immediate from (5.12.1) and (5.8.1). 

6.7. — The expression (6.6.1) was derived basically by studying that orbit 
of the Coxeter element a which contains ai*. More generally we will see that 
z(i)i may be obtained from that orbit of a which is "associated" with at-. 

Let A_ = - A + and for any t G W let 

(6.7.1) *( = P A . n A + 

so that ^ t is the set of positive roots which become negative upon applying 
t. One knows that 

(6.7.2) Card *t = Lit) 

where, as in § 5.1, L is the length function on W. 
The sets * r ( n ) , n = l,...,h, have a particularly nice form. For any 

n G Z let Il„ = n2 if n is even and IIx if n is odd. If n G Z+ recall 
that r ( - n ) = ( r W ) " 1 . 
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P R O P O S I T I O N 6 . 8 . For n = 1,..., h, one has r^^-^Un Ç A+ 
and 

( 6 . 8 . 1 ) Wr (n)= 
n 

j=1 
r ( -w-D)ny 

IS a disjoint union. In particular 

( 6 . 8 . 2 ) A+= 
h 

n = l 

r(-(n-1)) IIn 

a disjoint union. Also if h > n > m > 1 £/ien 

( 6 . 8 . 3 ) * R ( - ) Ç * T ( N ) . 

Proof. — If s,t EW where L(st) = L(s) + L(t) then one knows that 

( 6 . 8 . 4 ) *R(-) Ç *T(N). 

is a disjoint union. Indeed upon writing s *A_ = ^s U (s A_ fl A_) it 
follows that the left side of ( 6 . 8 . 4 ) is contained in the right side for any 
8,teW. But then ( 6 . 8 . 4 ) follows from ( 6 . 7 . 2 ) . 

Now we may write r(n) = rnr(n-1) Furthermore it is clear from ( 5 . 2 . 1 ) 

that L(r(n)) = L(rn) + L ( 7 - ( n - 1 ) ) when we note that L(rn) = C a r d n n . But 
then by ( 6 . 8 . 4 ) 

( 6 . 8 . 5 ) * R ( - ) = r ( - ^ - 1 ) ) * r n U ^ r ( n - 1 ) 

is a disjoint union. But clearly * R N = nn. The result then follows by 
induction since Ile is empty. 

6 . 9 . — Now for any (p G A+ let n(ip) G Z+, where 1 < n(<p) < h, be 
defined by the condition that for n = n(<p) 

( 6 . 9 . 1 ) *R(-) Ç *T(N).*R(-) Ç *T(N). 

This is well defined by ( 6 . 8 . 2 ) . 

Obviously, from ( 6 . 9 . 1 ) , if n = n(<p) then r ^ ^ V ^ n n . Let i((p) G P be 
defined so that 

( 6 . 9 . 2 ) *R(-) Ç *T(N).*R(-) Ç *T(N). 
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Remark 6.10. — If Y1,Y2 £ A+ note that 991 = Y2 if and only if 
nUpi) = n(v92) and ¿ ( ^ 1 ) = i((p2). 

Now one knows (see COROLLARY 8.2 (COLEMAN) in [4]) that each orbit 
of cr, acting on A, has exactly h elements. Consequently, there are exactly / 
orbits, A 1 , i = 1 , . . . , /, because Card A = hi. 

Let A 2

+ = A ' H A + . 

P R O P O S I T I O N 6 . 1 0 . — One has C a r d A ' + = g, % = 1 , . . . and the 

indexing may be chosen so that 

(6.10.1) A», = {(p E A_|_ i{ip) = %}. 

Proof. — Let R% C A_j_ be the subset defined by the right side of (6.10.1). 
If j E {1,2} is such that i E Ily, then n(<p) has the same parity as j for all 
<p E Rl by (6.9.2). It follows then easily from (6.9.2) that any two elements 
of Rl lie in the same a-orbit. On the other hand Rl has exactly g elements by 
(6.8.2). But, since Card A+ = gl, to prove the proposition it suffices only to 
observe that A!j_ is not empty. But this is clear since the sum of the elements 
in A 1 is necessarily zero (because 1 is not an eigenvalue of a). | 

Remark 6.11. — One notes from the argument above that the correspon
dence ip —• n((p) defines a bijection of A+ with the set of all integers from 1 
to h which have the same parity as j E {1,2} where i E TLj. 

Now let $ = {(p E A I (<p, ip) > 0} where, we recall, ip E A + is the highest 
root. Clearly ip E$. Let $ 0 = $ - {ip}. 

The following proposition is true, as the proof clearly shows, for any simple 
Lie algebra, simply laced or not. 

P R O P O S I T I O N 6 . 1 2 . One has $ Ç A_ l and 

(6.12.1) 
2(y,Y) 

(iP.iP) 
= 1 

for all <p E Furthermore Card $ 0 is even and in fact there exists a fixed 
point free involution (p —» (p of $>Q such that 

(6.12.2) ip = <p + ip 

for any <p E $ G . Finally if <Pi E i = 1, 2, then <pi +<p2 is not a root unless 

<Pi,<P2 £ $ o and ¥>2 = <Pi-

Proof. — Since ip is the highest root it is of maximal length (this is 
redundant in our case but it applies for a general g) and hence one has 
(6.12.1). But also $ C A_j_ since ip is dominant. If (p E $ 0 then ip — <p E A 
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since (<p,ip) > 0. But (ip,ip - <p) > 0 by (6.12.1) and hence ip - <p £ $G. Put 
ip — (p — (p. One has (p ̂  <p since 2<p is not a root. Finally, given V?2 £ $ 5 
then (ip,<pi + ^ 2 ) > (VsVO by (6.12.1) so that unless v?i + <£>2 = 4> one has 
£>i + <P2 i A again by (6.12.1). | 

We will refer to $ as the Heisenberg subsystem of A_|_. 

Remark 6.13. — If, for any (p £ A,ey £ g is a corresponding root vector, 
it is clear from P R O P O S I T I O N 6.12 that the span n ($ ) of the e^, for (p E Q 
is a Heisenberg Lie algebra having Ce^, as its center. One notes that n ($ ) 
is the nilradical of that parabolic subalgebra of g which, under the adjoint 
representation, stabilizes Ce^ . 

Now put $1: = $ D A* for i = 1 , . . . , / . We note that Qi Ç A*+ by 
P R O P O S I T I O N 6.12. 

The polynomial z(t)i has already been given for i = 0 and i — i*. For the 
remaining values one can prove 

L E M M A 6 .14 For i = 1 , . . . , ly where i ^ i*, one has 

(6.14.1) z[t)i = 

Y E Qi 

tn (y) 

Proof. — Let bn here, for n = 0 , . . . , h, be the coefficient of tn in z(t){. 

One has 60 = bh = 0 by L E M M A 4.11. Assume n = 1 , . . . , h — 1. Then in the 
notation of (5.11.3) one has bn = (zn,Vi). Thus 

bn = ( f ^ - ^ - f W ^ , ^ ) , 

= K ( V , r - ( n - 1 ) A , - r ( n ) A i ) , 

where K = 2 / ( a , - , a A by (5.11.3). 

But now if j G {1,2} is such that i € Tlj then bn = 0 by (5.11.1) if j and 
n have opposite parities and by (5.11.2) 

(6.14.2) bn = K{rl>,T-(n-1)ai), 

if j and n have the same parity. Assuming the latter 

bn — 
2 (W,W) 

(W,W) 

where (p = r~(n~1)ai since g is simply laced. Clearly <p G A+ and n((p) — n 
by (6.9.1) and P R O P O S I T I O N 6.10. But then (p / ip since i(ip) — z* by 
(5.6.2). Thus bn = 1 or 0 according as to whether <p G Qi or not. Recalling 
R E M A R K 6.11 this proves (6.14.1). | 
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Remark 6.15. — It follows immediately from (5.18.5) and (6.14.1) that 
for i ^ 

(6.15.1) Card$« = 2d,-. 

The argument in the proof above would apply to i = i* except when n = g. 
In that case <p = tb and ba = 2. Thus one has 

(6.15.2) Card*' '* = 2d,-. - 1. 

But then since 4 
t = l 

d, = /i — 1 bv (2.7.2) one has 

(6.15.3 Card $ = 2h - 3. 

This together with (5.5.1) completes the proof of T H E O R E M 1.11. 

6.16. — We compile a table of the polynomials z(t)i, i # i*, for the cases 
A\, S%, and A%. To do this we have to label the nodes. We have found the 
computation simplest bv using (5.15.11. 

A*4 

1 2 3 4 

5 

(e6) 

z(t)1 = t4 + t8 

z(t)2 = t3+ t5 + t7 + tg 

z(t)3 = t3 + t5 + t7 + t9 

z(t)4 = t4 + ts 

zlt)5 = t + t5 + t7 + Ì11 

S4* 

1 2 3 4 5 

6 

(F7) 
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z(t)1 = t6+t12 
z(t)o = t 5 + t 7 + t 1 1 + t 1 3 

z ( t ) , = t 4 + t& + t 8 + t W + t 1 2 + t 1 4 

z ( t ) 4 = t 2 + t 6 + t 8 + t 1 0 + t 1 2 + t 1 6 

z(t)5 = t + t 7 + t n + t 1 7 

2(t)6 = t 4 + t 8 + t 1 0 + t 1 4 

A* 

1 2 3 4 5 6 

7 

(Es) 

z(t)1=t + t 1 1 + t 1 9 + t 2 9 

zlùn = t2 + * 1 0 + * 1 2 + * 1 8 + i 2 0 + t2S 

z(t)3 = t3+t9 + t 1 1 + t 1 3 + t 1 7 + t 1 9 + t 2 1 + i 2 7 

*(t) 4 = t4 + + i 1 0 + * 1 2 + * 1 4 + t 1 6 + *18 + t 2 0 + *22 + *26 

z(t)5 =t6 + ts + t 1 2 + *14 + *16 + t 1 8 + *22 + t 2 4 

z(t)* = t7 + t 1 3 + t 1 7 + t 2 3 

z(t)7 = t6 + t 1 0 + t 1 4 + t 1 6 + t 2 0 + i 2 4 
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