Astérisque

Victor Guillemin
 The integral geometry of line complexes and a theorem of Gelfand-Graev

Astérisque, tome S131 (1985), p. 135-149
http://www.numdam.org/item?id=AST_1985__S131__135_0

© Société mathématique de France, 1985, tous droits réservés.
L'accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

THE INTEGRAL GEOMETRY OF LINE COMPLEXES AND A THEOREM OF GELFAND-GRAEV

BY

Victor Guillemin

1. Introduction

Let $P=\mathbf{C P}^{3}$ be the complex three-dimensional projective space and let $G=\mathbf{C G}(2,4)$ be the Grassmannian of complex two-dimensional subspaces of \mathbf{C}^{4}. To each point $p \in G$ corresponds a complex line l_{p} in P. Given a smooth function, f, on P we will show in $\S 2$ how to define properly the line integral,

$$
\begin{equation*}
\int_{l_{p}} f(\lambda) d \lambda d \bar{\lambda} \cdot=\widehat{f}(p) . \tag{1.1}
\end{equation*}
$$

A complex hypersurface, S, in G is called admissible if there exists no smooth function, f, which is not identically zero but for which the line integrals, $(1,1)$ are zero for all $p \in S$. In other words if S is admissible, then, in principle, f can be determined by its integrals over the lines, $l_{p}, p \in S$. In the 60 's Gelfand and Graev settled the problem of characterizing which subvarieties, S, of G have this property. We will describe their result (and, in fact, sketch a rough proof of it) in §3. At first glance their result is rather puzzling : Admissibility turns out not to be a generic property of varieties. In fact very few S 's posses this property.
The purpose of this paper is to describe how this result can be used as the rationale for a method of constructing multi-branched analytic solutions of the wave equation on compactified Minkowski space with prescribed singularities. We will describe this method in $\S 4$ and illustrate it with
examples in $\S \S 5-6$. Finally in $\S 7$ we will describe an analogue of the GelfandGraev theorem for compactified Minkowski space.

2. The Gelfand line transform

Let $f: f(z, \bar{z})$ be a smooth function on $\mathbf{C}^{2}-0$ which is bihomogeneous of bidegree $(-2,-2)$; i.e.

$$
\begin{equation*}
f(\lambda z, \bar{\lambda} \bar{z})=|\lambda|^{-4} f(z, \bar{z}) \tag{2.1}
\end{equation*}
$$

for all $\lambda \in \mathbf{C}^{*}$. Let $d z=d z_{1} \wedge d z_{2}$. Since f is not in \mathcal{L}^{1} the integral

$$
\begin{equation*}
\int f(z, \bar{z}) d z d \bar{z} \tag{2.2}
\end{equation*}
$$

diverges; however, one can still make sense of $(2,2)$ as follows. Let

$$
\Xi=z_{1} \frac{\partial}{\partial z_{1}}+z_{2} \frac{\partial}{\partial z_{2}}
$$

and let ω be the form of type 1-1:

$$
\begin{equation*}
\omega=\iota(\Xi) \iota(\bar{\Xi}) f d z \wedge d \bar{z} \tag{2.3}
\end{equation*}
$$

This form has nice properties with respect to the principle fibration: $\mathbf{C}^{2}-$ $0 \xrightarrow{\pi} \mathbf{C P}{ }^{1}$. Namely it vanishes when restricted to fibers; and, by $(2,1)$, it is invariant under the action of the structure group, \mathbf{C}^{*}. Thus there exists a form, μ, of type 1-1 on $\mathbf{C P}_{1}$ such that

$$
\omega=\pi^{*} \mu
$$

We define (2.2) to be the integral

$$
\begin{equation*}
\int_{\mathrm{CP}^{1}} \mu \tag{2.4}
\end{equation*}
$$

It is clear that we can formulate the definition, (2.4), in a coordinatefree way. If V is a complex vector space of dimension $2, f$ a smooth bihomogeneous function on $V-0$ of bidegree $(-2,-2)$ and Ω an element of $\wedge^{2,2}\left(V^{*}\right)$ then the integral

$$
\begin{equation*}
\int_{V} f \Omega \tag{2.5}
\end{equation*}
$$

is well-defined (independent of coordinates).
Consider now a bihomogeneous function, f, on $\mathbf{C}^{4}-0$ of bidegree $(-2,-2)$. Given a point $p \in G$, let V be the complex 2 -dimensional subspaces of \mathbf{C}^{4} represented by p. We will define the line transform, \widehat{f}, of f at p as follows. By definition it will be an element of the space

$$
\begin{equation*}
\Lambda^{2,2}\left(V^{*}\right)^{*} \tag{2.6}
\end{equation*}
$$

Notice that an element of $(2,6)$ is defined by describing how it pairs with an element, Ω, of $\Lambda^{2,2}\left(V^{*}\right)$. For $\widehat{f}(p)$ the answer is given by the integral $(2,5)$; i.e. by definition :

$$
\begin{equation*}
\langle\widehat{f}(p), \Omega\rangle=\int_{V} f \Omega \tag{2.7}
\end{equation*}
$$

Functions on $\mathbf{C}^{4}-0$ which are bihomogeneous of bidegree $(-2,-2)$ can be regarded as sections of a line bundle, $\mathcal{L} \rightarrow P$. We will denote by \mathcal{M} the line bundle on G whose fiber at p is (2.6). With this notation we can regard the line transform described above as an integral operator

$$
\begin{equation*}
R: \Gamma(\mathcal{L}) \rightarrow \Gamma(\mathcal{M}), \quad R f=\widehat{f} \tag{2.8}
\end{equation*}
$$

It is not hard to show that R is injective and to describe its range using the representation theory of $S L(4, \mathbf{C})$. We prefer here to give a more elementary description of its range. Let U_{0} be the open subset of G consisting of all points $p \in G$ for which the restriction of $d z_{1} \wedge d z_{2}$ to V is non-zero. (As above V is the 2-dimensional subspace of \mathbf{C}^{4} represented by p). Then, V can be described by linear equations of the form

$$
\begin{aligned}
& z_{3}=a z_{1}+b z_{2} \\
& z_{4}=c z_{1}+d z_{2}
\end{aligned}
$$

where a, b, c and d depend on V. In fact a, b, c and d are coordinate functions on U_{0}, and $d z_{1} \wedge d z_{2}$ provides one with a trivialization of \mathcal{M} over U_{0}; so for $p \in U_{0}$

$$
\begin{align*}
\widehat{f}(p) & =\widehat{f}(a, b, c, d) \tag{2.9}\\
& =\int f\left(z_{1}, z_{2}, a z_{1}+b z_{2}, c z_{1}+d z_{2}\right) d z_{1} d z_{2} d \bar{z}_{1} d \bar{z}_{2}
\end{align*}
$$

Differentiating under the integral sign one obtains

$$
\begin{equation*}
\Delta_{0} f=\left(\frac{\partial}{\partial a} \frac{\partial}{\partial d}-\frac{\partial}{\partial b} \frac{\partial}{\partial c}\right) f=0 \tag{2.10}
\end{equation*}
$$

Similarly

$$
\begin{equation*}
\bar{\Delta}_{0} f=\left(\frac{\partial}{\partial \bar{a}} \frac{\partial}{\partial \bar{d}}-\frac{\partial}{\partial \bar{b}} \frac{\partial}{\partial \bar{c}}\right) f=0 \tag{2.11}
\end{equation*}
$$

More generally given a decomposible element ν, of $\Lambda^{2}\left(\mathbf{C}^{4}\right)^{*}$ let U_{ν} be the open subset of G consisting of all points, p, for which the restriction of ν to V is non-zero. Then ν defines a trivialization of \mathcal{M} over U_{ν}; and, with respect to this trivialization, there exists second order differential operators, Δ_{ν} and $\bar{\Delta}_{\nu}$, analogous to $(2.10)_{0}$ and $(2.11)_{0}$, such that

$$
\begin{equation*}
\Delta_{\nu} f=0 \tag{2.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{\Delta}_{\nu} f=0 \tag{2.11}
\end{equation*}
$$

on U_{ν}. Let \mathcal{M}_{1} be the line bundle over G whose fiber at p is $\Lambda^{2,2}\left(V^{*}\right) \otimes$ $\Lambda^{2}\left(V^{*}\right)^{*} \otimes \Lambda^{2}\left(C^{4} / V\right)^{*}$, and let $\overline{\mathcal{M}}_{1}$ be its complex conjugate. Patching together the Δ_{ν} 's and $\bar{\Delta}_{\nu}$'s one gets intrinsically defined second order differential operators

$$
\begin{equation*}
\Delta: \Gamma(\mathcal{M}) \rightarrow \Gamma\left(\mathcal{M}_{1}\right) \tag{2.12}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{\Delta}: \Gamma(\mathcal{M}) \rightarrow \Gamma\left(\overline{\mathcal{M}}_{1}\right) \tag{2.13}
\end{equation*}
$$

such that $\Delta \widehat{f}=\bar{\Delta} \widehat{f}=0$. This proves one half of the following proposition.
Proposition. - A section $g \in \Gamma(\mathcal{M})$ satisfies the equations

$$
\begin{equation*}
\Delta g=\bar{\Delta} g=0 \tag{2.14}
\end{equation*}
$$

if and only if $g=\widehat{f}$ for some section, f, of \mathcal{L}.
We recall next that if $p \in G$ the cotangent space to G at p can be identified with

$$
\begin{equation*}
\operatorname{Hom}\left(\mathbf{C}^{4} / V, V\right) \tag{2.15}
\end{equation*}
$$

Let Σ_{p} be the set of rank one elements in this space. Since \mathbf{C}^{4} / V and V are two-dimensional the set, Σ_{p}, is a quadratic cone inside T_{p}^{*}. This shows that G is equipped with an intrinsic (complex) conformal structure such that Σ_{p}
is the cone of "light-like" rays at p. We will say more about this conformal structure in § 4.

Let Σ be the fiber bundle over G whose fiber at p is Σ_{p}. We claim that Σ is the characteristic variety of the system of partial differential equations (2.14). In fact let a, b, c and d be the coordinate functions on U_{0} described above and let α, β, γ and δ be the dual cotangent coordinates. Then for $p \in U_{0}$

$$
\Sigma_{p}=\{(\alpha, \beta, \gamma, \delta), \alpha \delta-\beta \gamma=0\}
$$

whereas

$$
\sigma\left(\Delta_{0}\right)(\alpha, \beta, \gamma, \delta)=\alpha \delta-\beta \gamma
$$

by (2.10).

3. Admissibility

Let S be a complex hypersurface in G. One calls S admissible if the integral transform

$$
\Gamma(\mathcal{L}) \rightarrow \Gamma(\mathcal{M} 1 S), \quad f \rightarrow \widehat{f} 1 S
$$

is injective. In [2], Gelfand et al. show that the following S 's are admissible :
Example 1. - Let W be a non-singular curve in P and let S be the set of all points $p \in G$ such that W and l_{p} intersect.

Example 2. - Let W be a non-singular surface in P and let S be the set of all points $p \in G$ such that l_{p} has at least one point of tangency with W.

Their main result is the following converse statement :
THEOREM. - If S is admissible then near a generic point S is locally as in example one or as in example two.

We will sketch a proof of this below. We first claim :
LEMMA. - For S to be admissible it has to be characteristic with respect to the differential operator, Δ.
"Proof". - If S were non-characteristic then the Cauchy problem

$$
\begin{equation*}
\Delta g=\bar{\Delta} g=0, \quad g=0 \text { on } S \tag{2.1}
\end{equation*}
$$

would be well-posed. But if g is a non-trivial solution of (2.1) then, by the proposition in $\S 2, g=\widehat{f}$ and $\widehat{f} 1 S=0$. Contradiction.

Unfortunately, if S is non-characteristic at a point, p, the Cauchy problem (3.1) is well-posed only in a small neighborhood of p; whereas, to get a
contradiction, we need to find a non-trivial global solution of (3.1). Therefore, this "proof" is not completely convincing. There is a convincing proof involving (3.1) ; but we won't attempt to describe it here.

We next require some facts about the characteristic variety, Σ, of the differential operator, Δ. Since Σ is a co-isotropic subvariety of $T^{*} G$, it is equipped with a canonical null-foliation. We will show that this null-foliation is fibrating with $\mathbf{C P}^{1}$'s as fibers and $T^{*} P-0$ as base.

Proof. - A typical element of $T^{*} P-0$ is of the form, $\xi \otimes x$, with $x \in \mathbf{C}^{4}-0$, $\xi \in\left(\mathbf{C}^{4}\right)^{*}-0$, and $\langle x, \xi\rangle=0$. Given a point, p, in G let V be the twodimensional subspace of \mathbf{C}^{4} represented by p. We will say that p belongs to $\gamma_{x, \xi}$ if

$$
\begin{equation*}
x \in V \text { and } \xi \in V^{0} \tag{3.2}
\end{equation*}
$$

The set, $\gamma_{x, \xi}$, defined by (3.2) is a complex line in G; and it is easy to see that the $\gamma_{x, \xi}$'s are exactly the light rays on G associated with the canonical conformal structure. Q.E.D.

We will denote by

$$
\begin{equation*}
\pi: \Sigma \rightarrow T^{*} P-0 \tag{3.3}
\end{equation*}
$$

the null-fibration. Now let S be a hypersurface in G which is characteristic with respect to Δ. Then its conormal vector at each point is "light-like"; so the conormal bundle

$$
\Lambda=N^{*} S-0
$$

is contained in Σ. Since Λ is Lagrangian this implies that for every point in Λ the leaf of the null-foliation passing through this point is also in Λ. Therefore Λ has to be of the form $\pi^{-1}\left(\Lambda_{1}\right)$ where Λ_{1} is a Lagrangian submanifold of $T^{*} P-0$. At "generic" points Λ_{1} is locally of the form

$$
\Lambda_{1}=N^{*} W-0
$$

where W, the projection of Λ_{1} into P, is a submanifold of P. Therefore we have proved that

$$
\begin{equation*}
N^{*} S=\pi^{-1}\left(N^{*} W\right) \tag{3.4}
\end{equation*}
$$

at "generic" points of $N^{*} S$. From (3.4) it is easy to deduce Gelfand's theorem in the following form

THEOREM. - The hypersurface, S, consists of all points, $p \in G$, such that l_{p} intersects W non-transversally.

4. The Penrose transform

The Penrose transform is the holomorphic analogue of line transform described in $\S 2$. It was used by Penrose and his collaborators to construct solutions of the wave equation on compactified Minkowski space. (See [3] and [4].) Before describing it we will review some facts about the geometry of compactified Minkowski space. A good reference for the material below is the survey article of Wells, [5].

We have already observed that G is equipped with a canonical (complex) conformal structure. It has three real forms, on which the induced (real) conformal structures are of type $(++++),(++--)$ and $(+++-)$ respectively, and these are $S^{4}, \mathbf{R G}(2,4)$ and compactified Minkowski space, which we will denote by M. A good way to view M as a submanifold of G is as follows. Consider on \mathbf{C}^{4} the Hermitian form

$$
\begin{equation*}
H(z)=\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}-\left|z_{3}\right|^{2}-\left|z_{4}\right|^{2} \tag{4.1}
\end{equation*}
$$

For each $p \in G$ let V_{p} be the two-dimensional subspace of \mathbf{C}^{4} represented by p. Then

$$
\begin{equation*}
M=\left\{p \in G, H=0 \text { on } V_{p}\right\} \tag{4.2}
\end{equation*}
$$

From this description of M one sees easily that the group $S U(2,2)$ acts as conformality transformations on M.

We will now show how one can take a holomorphic function defined on an appropriate open subset of P and convert it via the Penrose transform into a solution of the conformal wave equation on M. Incidentally the version of the Penrose transform which we will describe below is very close to the version which one finds in Penrose's earlier papers. (See [4].) Later Eastwood, Penrose and Wells found a more elegant and general definition, involving sheaf cohomology, which we won't attempt to describe here. (See [1].)

To start with, let f be a meromorphic function on $\mathbf{C}^{2}-0$ which is homogeneous of degree -2 , i.e. satisfies

$$
f(\lambda z)=\lambda^{-2} f(z)
$$

for all $\lambda \in \mathbf{C}^{*}$. Let Ξ be the vector field, $\left.z_{1} \partial /\left(\partial z_{1}\right)+z_{2} \partial / \partial z_{2}\right)$, and let ω be the one form, $\iota(\Xi) f d z_{1} \wedge d z_{2}$. As in $\S 2 \omega$ is of the form $\omega=\pi^{*} \mu$, where μ is a meromorphic one-form on $\mathbf{C P}{ }^{1}$ and $\pi: \mathbf{C}^{2}-0 \rightarrow \mathbf{C P}{ }^{1}$ is the canonical projection. Given a contour, γ, on CP^{1} not intersecting the poles of μ, we will denote by $\operatorname{Res}_{\gamma} f d z_{1} d z_{2}$ the integral

$$
\begin{equation*}
\operatorname{Res}_{\gamma} f d z_{1} d z_{2}=\int_{\gamma} \mu \tag{4.3}
\end{equation*}
$$

It is clear that this definition is independent of the choice of coordinates, i.e. if V is a two-dimensional complex vector space, f a homogeneous meromorphic function on $V-0$ of degree -2 and Ω an element of $\wedge^{2,0}\left(V^{*}\right)$, then for an appropriate contour, γ, on the projective space $\mathbf{P V}$, the residue

$$
\begin{equation*}
\operatorname{Res}_{\gamma} f \Omega \tag{4.4}
\end{equation*}
$$

is well-defined.
Now let f be a meromorphic function on $\mathbf{C}^{4}-0$ which is homogeneous of degree -2 and let W be the set of rays (in P) on which f is singular. W is an algebraic subvariety of P, but it need not be non-singular; so we will denote by W_{0} the non-singular points of W and by W_{1} the curve of singular points. Let S be the set of all points, $P \in G$, such that the line, l_{p}, either intersects W_{1} or has a common point of tangency with W_{0}. Let p be a point not on S and let $V=V_{p}$ the subspace of \mathbf{C}^{4} represented by p. We will define $\widehat{f}(p) \in \Lambda^{2,0}\left(V^{*}\right)^{*}$ by the formula

$$
\begin{equation*}
\langle\widehat{f}(p), \Omega\rangle=\operatorname{Res}_{\gamma} f \Omega \tag{4.5}
\end{equation*}
$$

for $\Omega \in \Lambda^{2,0}\left(v^{*}\right), \gamma$ being a contour on the line $l_{p}=\mathrm{PV}$ avoiding points of $W \cap l_{p}$. Let \mathcal{M} be the line bundle on G with fiber

$$
\Lambda^{2,0}\left(V^{*}\right)^{*}=\Lambda^{2,0}(V)
$$

at p. If one varies the contour, γ, continuously with respect to p, one gets from (4.5) a multi-branched holomorphic section of \mathcal{M} over $G-S$ which satisfies the holomorphic analogue of the wave equation discussed in §2. By the theorem of Gelfand discussed in $\S 3, S$ is characteristic with respect to the wave equation; so the Penrose transform can be regarded as a tool for constructing multi-branched holomorphic solutions of the wave equation on G with singularities along a prescribed characteristic hypersurface. Restricted to M these solutions often become single-valued with singularities along a prescribed real characteristic hypersurface. (See § 7). We won't attempt here to give a systematic description of these solutions; but, in the next couple of sections, we will illustrate this method by means of examples.

5. Characteristic hypersurfaces of the first kind

We saw in $\S 3$ that there are two kinds of characteristic hypersurfaces in G. The first kind consists of all lines which pass through a fixed curve, and the second kind consists of all lines which have a common point of tangency with a fixed surface. In this section we will describe how to construct singlevalued holomorphic solutions of the wave equation with singularities along characteristic hypersurfaces of the first kind.

Let W be the algebraic curve in CP^{3} defined by the equations

$$
Q_{1}(z)=Q_{2}(z)=0
$$

where Q_{1} and Q_{2} are homogeneous polynomials in $\left(z_{1}, z_{2}, z_{3}, z_{4}\right)$ with no common factor. Let the function, f, in (4.5) be of the form

$$
\begin{equation*}
f=Q_{3} / Q_{1}^{m_{1}} Q_{2}^{m_{2}} \tag{5.1}
\end{equation*}
$$

where $\operatorname{deg} Q_{3}=m_{1} \operatorname{deg} Q_{1}+m_{2} \operatorname{deg} Q_{2}-2$, and choose the contour, γ, in (4.5) so that it surrounds all the zeroes of Q_{1} on the projective line, $l=\mathbf{P V}$, but none of the zeroes of Q_{2}. Then the expression (4.5) is welldefined providing no point on l is simultaneously a zero of Q_{1} and Q_{2}; i.e. providing the line, l, doesn't intersect the curve, W. In other words, let S be the characteristic hypersurface of the first kind consisting of all points, $p \in G$, for which the line, l_{p}, intersects W. Then, to each function of the form (5.1), there corresponds a holomorphic solution of the wave equation with singularities on S. Notice that this correspondence is not injective. If either m_{1} or m_{2} were equal to zero in (5.1), then the contour, γ, would surround all zeroes of $Q_{1}^{m_{1}} Q_{2}^{m_{2}}$; so the expression (4.5) would be identically zero. The most satisfactory way to describe this correspondence is in sheaf-theoretic terms: Let $\mathcal{L}_{\text {can }}$ be the canonical line bundle of the projective space P and let $\mathcal{L}=\mathcal{L}_{\text {can }}^{2}$. Let U_{1} and U_{2} be the subsets of P on which Q_{1} and Q_{2} are non-zero. Functions of the form (5.1) are identical with sections of \mathcal{L} over $U_{1} \cap U_{2}$ and functions of the form (5.1) with $m_{2}=0$ (respectively, $m_{1}=0$) are just sections of \mathcal{L} over U_{1} (respectively U_{2}). By Mayer-Victoris :

$$
\begin{equation*}
\Gamma\left(U_{1}, \mathcal{L}\right) \oplus \Gamma\left(U_{2}, \mathcal{L}\right) \xrightarrow{\rho} \Gamma\left(U_{1} \cap U_{2}, \mathcal{L}\right) \rightarrow H^{1}\left(U_{1} \cup U_{2}, \mathcal{L}\right) \rightarrow 0 \tag{5.2}
\end{equation*}
$$

and the image of ρ is contained in the kernel of the Penrose transform; so the Penrose transform is actually a map of $H^{1}(P-W, \mathcal{L})$ into the space of holomorphic solutions of the wave equation with singularities on S. This is the way the Penrose transform is described in [1] (where it is shown, in addition, that it is bijective).

Example. - Let $Q_{1}=z_{1}, Q_{2}=z_{2}$ and $f=\left(z_{1} z_{2}\right)^{-1}$.

In this example S is the characteristic cone consisting of all points, $p \in G$, for which the line l_{p} intersects the fixed line, l, defined by the equations $z_{1}=z_{2}=0$. The apex of this cone is the point, p_{0}, represented by the line, l, itself.

Let $U=G-S$. Notice that U consists of all points $p \in G$ with the property that the two-form $d z_{1} \wedge d z_{2}$ doesn't vanish on the space $V=V_{p}$. Hence there is a natural trivialization of the line bundle, \mathcal{M}, over U; and, with respect to this trivialization, the solution of the wave equation associated with f takes at p the value

$$
\begin{equation*}
\int_{\gamma} \mu \tag{5.3}
\end{equation*}
$$

μ being the one form

$$
\mu=\iota\left(z_{1} \frac{\partial}{\partial z_{1}}+z_{2} \frac{\partial}{\partial z_{2}}\right) \frac{d z_{1} d z_{2}}{z_{1} z_{2}}=\frac{d z}{z}
$$

where $z=z_{2} / z_{1}$ and γ is a contour on the line, l_{p}, surrounding the point $z=0$. However, it is clear that this integral is $2 \pi i$ for all p; i.e. the Penrose transform, \widehat{f}, of f is the constant function $\widehat{f}=2 \pi i$.

Next let U^{\prime} be the set of points $p \in G$ for which the two-form $d z_{3} \wedge d z_{4}$, restricted to V_{p}, doesn't vanish. If $p \in U \cap U^{1}$ the subspace, V_{p}, of \mathbf{C}^{4} can be described by a pair of equations of the form

$$
\begin{aligned}
& z_{1}=a z_{3}+b z_{4} \\
& z_{2}=c z_{3}+d z_{4}
\end{aligned}
$$

and, restricted to V_{p},

$$
d z_{1} \wedge d z_{2}=\operatorname{det}\left(\begin{array}{ll}
a & b \tag{5.4}\\
c & d
\end{array}\right) d z_{3} \wedge d z_{4}
$$

The fact that neither of these restrictions is zero says that

$$
\operatorname{det}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \neq 0
$$

As in $\S 2, a, b, c$ and d can be employed as coordinate functions on $U \cap U^{\prime}$, and with respect to these coordinates, the transition function relating the trivializations of \mathcal{M} given by $d z_{3} \wedge d z_{4}$ and by $d z_{1} \wedge d z_{2}$ is just the function

$$
\operatorname{det}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

by (5.4). Therefore, in terms of the trivialization given by $d z_{3} \wedge d z_{4}, \widehat{f}$ is equal to

$$
\widehat{f}(a, b, c, d)=2 \pi i /(a d-b c)
$$

on U^{\prime}; i.e. \widehat{f} is the so-called elementary solution of the wave equation :

$$
\frac{\partial}{\partial a} \frac{\partial}{\partial d}-\frac{\partial}{\partial b} \frac{\partial}{\partial c}
$$

6. Characteristic hypersurfaces of the second kind : an example

Let Q be an arbitrary non-degenerate quadratic form on \mathbf{C}^{4}. After making an appropriate change of coordinates we can assume that

$$
\begin{equation*}
Q(z)=z_{1} z_{2}+z_{3} z_{4} \tag{6.1}
\end{equation*}
$$

Let W be the quadratic surface in P defined by $Q=0$, and let S be the characteristic hypersurface in G associated with W. In other words $p \in S$ if and only if l_{p} is tangent to W. Notice that for $p \in S$ either l_{p} intersects W in a single point or l_{p} is entirely contained in W. Let S_{1} be the set of points for which the second alternative holds. It is easy to see that S_{1} is the singular locus of S and is the disjoint union of two CP^{1} 's (corresponding to the two rulings of W).

In this section we will compute the Penrose transform of the function

$$
\begin{equation*}
f=1 / Q \tag{6.2}
\end{equation*}
$$

Before we do so, however, let's consider a somewhat simpler problem. Let $q=q\left(z_{1}, z_{2}\right)$ be a non-degenerate quadratic form on $\mathbf{C}^{2}-0$, and let's compute the residue

$$
\operatorname{Res}_{\gamma}\left(d z_{1} d z_{2} / q\right)
$$

where γ is a contour on $\mathbf{C P}^{1}$ surrounding one of the zeroes of q. We can make a linear change of coordinates

$$
\begin{equation*}
\binom{w_{1}}{w_{2}}=B\binom{z_{1}}{z_{2}} \tag{6.3}
\end{equation*}
$$

so that $q\left(z_{1}, z_{2}\right)=w_{1} w_{2}$. Moreover, if

$$
q(z)=k_{11} z_{1}^{2}+k_{12} z_{1} z_{2}+k_{21} z_{2} z_{1}+k_{22} z_{2}^{2}
$$

with $k_{12}=k_{21}$, and J and K are the matrices

$$
J=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right) \quad \text { and } \quad K=\left(\begin{array}{cc}
k_{11} & k_{12} \\
k_{21} & k_{22}
\end{array}\right)
$$

then

$$
\begin{equation*}
B J B^{t}=K \tag{6.4}
\end{equation*}
$$

With this change of coordinates we get

$$
\operatorname{Res}_{\gamma}\left(d z_{1} d z_{2} / q\right)=(\operatorname{det} B)^{-1} \operatorname{Res}_{\gamma}\left(d w_{1} d w_{2} / w_{1} w_{2}\right)
$$

In $\S 5$ we showed that the residue on the right was just $2 \pi \sqrt{-1}$; so we get the formula

$$
\begin{equation*}
\operatorname{Res}_{\gamma}\left(d z_{1} d z_{2} / q\right)=2 \pi(\operatorname{det} K)^{-1 / 2} \tag{6.5}
\end{equation*}
$$

since $-(\operatorname{det} B)^{2}=\operatorname{det} K$ by (6.4).
Let's come back now to the problem of computing the Penrose transform of (6.2). Let U be the subset of G consisting of all points, p, for which the restriction of $d z_{1} \wedge d z_{2}$ to V_{p} is non-zero. If $p \in U$ the equations of V_{p} are

$$
\begin{aligned}
& z_{3}=a z_{1}+b z_{2} \\
& z_{4}=c z_{1}+d z_{2}
\end{aligned}
$$

and a, b, c and d can be employed as coordinate functions on U. Let A be the matrix

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

Then the quadratic form, $z_{1} z_{2}+z_{3} z_{4}$, restricted to V_{p}, is of the form

$$
\left(z_{1}, z_{2}\right)\left(J+A J A^{t}\right)\left(z_{1}, z_{2}\right)^{t}
$$

and, therefore, by (6.5), the Penrose transform of (6.2) is the function

$$
\begin{equation*}
\widehat{f}=\widehat{f}(a, b, c, d)=2 \pi \operatorname{det}\left(J+A J A^{t}\right)^{1 / 2} \tag{6.6}
\end{equation*}
$$

Affine Minkowski space sits inside of U as the set of matrices

$$
A=\left(\begin{array}{ll}
u & w \\
\bar{u} & v
\end{array}\right)
$$

with w complex and u and v real; so the restriction of (6.6) to affine Minkowski space is

$$
\begin{equation*}
2 \pi\left[(\operatorname{det} A+1)^{2}+4|w|^{2}\right]^{-1 / 2} \tag{6.7}
\end{equation*}
$$

or, in terms of the more familiar space-time coordinates,
$u=(1 / \sqrt{2})\left(x_{0}+x_{1}\right), \quad v=(1 / \sqrt{2})\left(x_{0}-x_{1}\right), \quad w=(1 / \sqrt{2})\left(x_{2}+i x_{3}\right)$,

$$
\begin{equation*}
\widehat{f}=2 \pi h(x)^{-1 / 2} \tag{6.8}
\end{equation*}
$$

where

$$
\begin{equation*}
h(x)=\left[\frac{1}{2}\left(x_{0}^{2}-x_{1}^{2}-x_{2}^{2}-x_{3}^{2}\right)+1\right]^{2}+4\left(x_{2}^{2}+x_{3}^{2}\right) \tag{6.9}
\end{equation*}
$$

Notice that (6.9) is non-negative, so \widehat{f} is single-valued on Minkowski space with singularities on the hyperbola

$$
x_{0}^{2}-x_{1}^{2}=2, \quad x_{2}=x_{3}=0
$$

Remark. - One gets a very similar formula for the Penrose transformation of the function

$$
P / Q^{k},
$$

P being a homogeneous polynomial in z of degree $2 k-2$.

7. Characteristic hypersurfaces in compact Minkowski space

There is an interesting analogue of the theorem proved in § 3 for compact Minkowski space. For $p \in M$ let Σ_{p} be the light cone in $T_{p}^{*}-0$ and let Σ be the fiber bundle over M whose fiber at p is Σ_{p}. Since Σ is of codimension 1 as a submanifold of $T^{*} M-0$, it is co-isotropic and hence is equipped with a null-foliation. We will show that this null-foliation is fibrating with $\mathbf{R P}{ }^{1}$'s as fibers and an extremely interesting symplectic manifold as base. Recall that in § 4 we introduced the Hermitian form

$$
\begin{equation*}
H(z)=\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}-\left|z_{3}\right|^{2}-\left|z_{4}\right|^{2} \tag{7.1}
\end{equation*}
$$

on \mathbf{C}^{4}. Let P^{+}(respectively N) be the set of points in P where H is positive (respectively zero). It is not hard to show that P is a non-degenerate complex domain in the sense that at each point, p, on its boundary, N, the Levi form at p is non-degenerate. Moreover, at each point, p, of N there is an "inward
pointing" real covector $\xi \in T_{p}^{*} N-0$ annihilated by the tangential CauchyRiemann vectors at p. Let τ be the fiber bundle over N whose fiber at p is the ray

$$
\begin{equation*}
\tau_{p}=\{\lambda \xi, \lambda>0\} \tag{7.2}
\end{equation*}
$$

Since the Levi form is non-degenerate τ is a symplectic submanifold of $T^{*} N-0$.

THEOREM. - The null-foliation of Σ is fibrating with $\mathbf{R P}{ }^{1}$'s as fibers and τ as base.

Proof. - Given $x \in N$ let γ_{x} be the set of all points $p \in M$ such that the complex line, l_{p}, in N, associated with p, contains the point x. It is fairly obvious that γ_{x} is an $\mathbf{R P}{ }^{1}$. On the other hand it is not hard to see that γ_{x} is a light ray with respect to the conformal Lorentzian structure on M and that all light rays are of this form. (See for instance $\S 3$ of [5].) Q.E.D.

Let $\pi: \Sigma \rightarrow \tau$ be the null-fibration. Given a characteristic hypersurface, S, in M let Λ be its conormal bundle. To say that S is characteristic is equivalent to saying that Λ is contained in Σ; so Λ must necessarily be of the form

$$
\begin{equation*}
\Lambda=\pi^{-1}\left(\Lambda_{1}\right) \tag{7.3}
\end{equation*}
$$

where Λ_{1} is a conic Lagrangian submanifold of τ. Since the fiber, τ_{p}, of τ above $p \in N$ consists of the single ray (7.2), Λ_{1} is completely determined by its projection, W, on N. Moreover, since N is the projectivization of a conic symplectic manifold it has an intrinsic contact structure, and Λ_{1} is Lagrangian in τ if and only if W is Legendrian in N. We leave for the reader to show that (7.3) translates into the following statement :

THEOREM. - Let S be a characteristic (light-like) hypersurface in M. Then there exists a unique Legendrian submanifold, W, in N such that

$$
\begin{equation*}
S=\left\{p \in M, l_{p} \text { intersects } W\right\} \tag{7.4}
\end{equation*}
$$

Conversely if W is a Legendrian submanifold of N the set (7.4) is a characteristic hypersurface in M.

REFERENCES

[1] Eastwood (M.), Penrose (R.) and Wells, Jr. (R.O.). - Cohomology and massless fields, Communications in Math. Phys., t. 78, 1981, p. 305-351.
[2] Gelfand (I.M.), Graev (M.I.) and Vilenkin (N.Ya.). - Generalized Functions, vol. 5. - New York, Academic Press, 1966.
[3] Hughston (L.P.) and Ward (R.S.). - Advances in Twistor Theory. - London, Pitman, 1979.
[4] Penrose (R.) and MacCallum (M.A.H.). - Twistor theory : an approach to the quantization of fields and space-time, Phys. Rep., t. 6C, 1974, p. 241-316.
[5] Wells (R.O.). - Complex manifolds and mathematical physics, Bull. A.M.S., t. 1,2, 1981, p. 296-336.

Victor GUillemin
Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, U.S.A.

