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ISOMETRIC IMMERSIONS OF RIEMANNIAN MANIFOLDS 

BY 

M. GROMOV 

Denote by Qr the space of Cr-smooth quadratic differential forms g on 
a smooth manifold V (that are Cr-sections of the symmetric square of the 
cotangent bundle of V) and let 7? be the space of Cr-maps / : V —» TLq. 
Denote by D : 7? —> §r-i, for f > 1, the (first order non-linear differential) 
operator which assigns to each / the induced quadratic form g on V, that is 

(i) g(d,d') = (Dfd,Dfd'), 

for all pairs of tangent vectors d and d' in TV(V), v G V, where 

D / : T(y) -» T(R«) 

stands for the differential of / and where ( , ) denotes the Euclidean 
scalar product in Tw(Rq) = R* for all w = f(v) G R9. The relation (1) 
can be expressed in local coordinates u i , . . . ,un on V, for n = dimV, by 
p = n(n + l) /2 equations in the partial derivatives 

dtf = 
d 

oui 
i = l , . . . , n , 

(2) g{di,dj) = (dif,djf), l<i<j<n. 

Observe that the induced form g is always positive semi-definite : it is 
positive definite if and only if / is an immersion, (i.e. the differential Df 
is injective on TV(V) for all v G V). Thus D restricts to an operator from 
immersions to positive forms, called 

0 + : I m r - £ t 1 . 
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The study of D+ was originally motivated by the isometric immersion 
problem asking for a solution / to the equation D+f = g for a given 
Riemannian metric g E . This question was raised by SCHLÀFLI in 1873 
and one probably believed at that time that the existence of an isometric 
immersion / : (V, g) —• Hq might be helpful in the study of the intrinsic 
geometry of (V, g). Although this belief has not materialized so far, the 
operator d+ has turned out to be an amusing non-linear specimen worth 
of a study in its own right. An essential feature of V is the abundance of 
characteristic directions. In fact, all directions are characteristic for D if 
dim y > 2. Namely, for no hypersurface VQ C V the initial value problem 

(3) Df = 9, / I Vb = /o 

can be solved unless the initial map fo :Vo —+ R9 satisfies certain differential 
equations of its own. Indeed, if the map / : (V,g) —• R9 is isometric, then 
fo is isometric for the restricted metric go = g \ Vo on Vo- Now if fo is 
isometric, then the system (3) can be locally solved in the real analytic case 
by applying the Cauchy-Kovalevska theorem to an auxiliary second order 
system obtained by differentiating (1) two times and then by eliminating 
the third derivatives with an appropriate anti-symmetrization. To see how it 
works, we assume, for the sake of simplicity, the manifold V to be the metric 
product, 

(V,g) = (V0xR,g0 + dt2) 

and we write the equations (2) as follows : 

(4) 
(dif, djf) = ga = g[di,di) , 1 < i, j < n - 1, 
[dif,dtf) = 0, (dtf,dtf) = l, 

where dt stands for d/dt, and where the functions on V — Vo x R are 
constant in t. Hence 

0 = dt{dif,d,-f) = (dtt f, djf) + (dif,d,-tf). 

Next, 
0 = djidifM) = (dijfM) + (dif,djtf). 

Now, by alternating i and j we obtain with the above, 

(5) {dijf,dtf) = 0. 

which implies by differentiating in t, 

(5') (dijf,dttf) + (dtf,dijtf) = 0. 
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On the other hand 

o = dtj(dtf,dtf) = 2{(dtf,dijtf) + (ditf,djtf)). 

Therefore, 

(6) (duf,dijf) = (dtjf,d]tf). 

Finally, we differentiate in t the last two equations in (4) and obtain 

(dttf, dif) = -(dtf, duf), 
1 ' (dttf,dtf)=0. 

LEMMA. — A C3-map f : Vo x R —• Rg satisfies the equation Df = 
9 — 9o + at1 if and only if it satisfies the system (6) + (7) (which consists of 
p = n(n + l) /2 equations of the second order) as well as the following initial 
value conditions on VQ — VQ X 0 : 

(8) 
(dif,djf)=go{di,dj), (dtf,dtf) = l, 
(dtf,dif)=0, (dtf,dijf)=0. 

Proof. — The "only if" claim (i.e. the implication (2) (6) + (7) + (8)) 
has been already established. The "if" part follows by reversing the above 
computation. 

COROLLARY. — Let fo : (Vo,#o) -* be a real analytic isometric 
immersion whose derivatives difo, dijfo, 1 < i, j < n — 1, are linearly 
independent at every point VQ G V. Then, if Vo is a contractible manifold 
and if q > p = n(n +1)/2, there is a neighborhood U C Vo X R of Vo = Vo X 0 
which admits a real analytic isometric immersion f : (U,g) —* R9, such that 
/ 1 Vb = /0. 

Proof. — The immersed manifold /(Vo) C R9 admits, under our assump
tions, a real analytic unit vector field Xo : V0 —• T(R9) | Vo which is normal 
to the vectors d{f0 and dijfo, 1 < i, j < n — 1 at every point vo G Vo- Then 
the initial data / | V0 = fo and dtf | Vo = Xo satisfy the assumption of the 
lemma. Furthermore, the independence of <9t-/0, dijfo and X0 at all points 
vo E V, allows one to resolve the system (7) in dttf, and then to apply the 
Cauchy-Kovaleskayatheorem (see 3.1.2. in [G] for details). 

These considerations are due to JANET (see [J] , [Bu]) who applied them 
to an arbitrary metric g and thus proved by induction in n the following. 
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THEOREM [JANET, 1926]. — If a metric g onV is real analytic, then a 
small neighborhood U C V of any given point vo G V admits a real analytic 
isometric immersion (U,g) —• Rp for p = n(n + l ) /2 . 

(This result was also proven by É . CARTAN by a somewhat different 
method; see [C] and [B]). 

Observe that a generic real analytic manifold (V, g) admits no analytic 
(not even C°°) immersion into Hq for q < p = n(n + l ) /2 . This is seen 
by viewing the (infinite dimensional!) space Tq of maps V —> R9 as a q-
dimensional variety while the space g of metrics on V is assigned dimension 
p = n(n + l) /2 (as metrics are sections of a p-dimensional bundle over V. 
Infact a simple application of Sard's theorem to finite dimensional jet spaces 
shows (see [G-R]) the image D{7qQ) C to be a meager subset in Q^. 

A similar consideration suggests the following rigidity of generic immer
sions V —> Rg for q < p. To state this we divide 7q by the group Is of 
isometries of R9 and observe D to admit a factorization to an operator 

J £ / I s - S o o -

CONJECTURE. — If q < p = n{n + l) /2 £/ien £/ie operator D is one-to-
one on an open dense subset in J ^ / I s . [See [B] /or £/ie recent progress in 
the rigidity problem). 

The above conjecture claims the double points of the map (operator) D 
to be nowhere dense in the C°°-topology. 

Yet the subset of double points is expected to be quite substantial for 
p < 2q. The following result (see §3.3.4. in [G]) shows this subset to be 
C°-dense for p < 2q. 

THEOREM. — If q > p/2 + 2n + 2 then arbitrary continuous maps fi 
and fi of Y into R9 admit C°-approximations by real analytic immersions, 
say by f[, and by f2 respectively, such that Df[ = Df2. 

Now we turn to the global isometric immersion problem for q > p. If 
q — p^ the structure of (and, in particular, of the image ^(Iirioo) C 
appears formidably complicated. Yet, for q > p, one expects, the operator 

to behave like a reasonable smooth map of a ^-dimensional variety to 
a p-dimensional one. In particular, one expects the following dual to the 
rigidity conjecture. 

CONJECTURE. — If q > p, then there is an open dense subset Q in Im^ 
on which the operator is a submersion [in particular an open map) with 
infinite dimensional fibers. 

The truth of this conjecture for q > p + 2n was established by J . NASH 

(see [iV2]) in 1956 in the course of his solution of the isometric immersion 
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problem. Namely, NASH considers free maps f : V —> R9 whose osculating 
spaces (generated by the derivatives dif and didjf) have dimension n + p at 
all points v G V. Then he proves the above conjecture for fi = the subspace 
of free maps in Inioo. Moreover, the techniques in § 3.1. of [G] show the map 
D+ : 0 —• to be a Serre fibration for q > p + 2n + 3. This immediately 
implies the following 

ISOMETRIC IMMERSION THEOREM (see §3.1.7. in [G]). — Every C°°-
smooth riemannian manifold V admits an isometric C°° -immersion into R9 
for q = p + 2n + 3. (One does not know what happens for p < q < p + 2n + 3). 

The above immersion theorem remains valid for real analytic manifolds 
and maps but the image 

£>+(Imr) C g+_! 

is poorly understood for 1 < r < oo. However, the isometric immersion 
problem for r = 0 admits the following solution (see [Ni], [K]). 

THEOREM [NASH-KUIPER]. — //'V admits some immersion into R9, for 
q > n œ y/2p, then there also exists an isometric C1 -immersion (V,g) —* R9 
for an arbitrary C°-metric g onV. Moreover, the operator P+ : Imi —> Gjj" 
is a Serre fibration. 

See § 2.4.9. in [G] for a conceptual proof of this remarkable theorem. 
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