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Central limit theorems for additive functionals of reversible Markov chains and 
applications 

Claude Kipnis and S. R. S. Varadhan 

1. Introduction 

This art icle deals with applications of a central limit theorem for general 

additive functions of reversible Markov chains. Although the results are valid in 

the context of continuous time processes and we have in mind several possible 

applications we will concentrate here on the simple case of a Markov chain and a 

single application to a random walk among random scatterers. We will omit the 

details of the proof which will appear elsewhere. 

2. The Problem 

Let Ẑ  be the lat t ice of d-dimensional vectors with integral components. Let 

ft be the space of al l possible subsets of Z d . We have a translation invariant 

measure PQ on ft . We will assume that is ergodic with respect to translations 

on Ẑ  and has in addition some mild regularity assumptions. A point a> ft will 

be thought of as fixed random assignment of scatterers among the sites in Z d. 

Translation invariance of PQ means that the random scatterers form a medium that 

is s ta t is t ical ly homogeneous. 

We consider a particle that starts from the origin at time 0 and travels 

through Ẑ  in time with both time and space steps being discrete. Ini t ial ly we 

pick at random with equal probability one of 2d possible coordinate directions 

and the particle moves in that direction taking one step per unit time. I t does 

not change i t s course until i t arrives at a site that is the location of a 

scatterer. When that happens i t picks a new direction independently of everything 

and with equal probabilities from among the same set of 2d directions. 

These results were obtained at New York University when the f i rs t author was 
a visi tor . This research is supported by NSF Grant No. MCS-8117526 and 
MCS-8301364. 
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The particle wanders in this manner through Zd changing i t s direction every now 

and then when i t comes across a scattering location. If X̂  is the position of 

the particle after n time steps we want to show that the distribution of -A- X 
/n n 

is approximately Gaussian. We would also like to show that — X r , , converges to 
vn Lntj 

a Brownian motion (with some covariance matrix) in distribution. 

The fact that the scattering si tes are fixed forever introduces long term 

correlations and standard methods of central limit theorems for dependent random 

variables do not apply directly. The method we will outline is relatively 

straightforward and applies directly without any need for hard computations. 

3. Additive Functionals of Markov Chains 

Let (X E) be a measurable space and q(x,dy) a transition probability on 

(X, E) . We assume that q(x,dy) is reversible with respect to a probability 

measure X on (X,E) and that the stationary Markov chain P^ with A as in i t i a l 

distribution is ergodic. Let cj> (x) be a function on X such that 

(3.1) j $ (x) A(dx) = 0 

and 

(3.2) j <j> (x) X(dx) < » 

Let X„,X_,...,X be the Markov chain with distribution . We are interested x 2 n A 
in proving the central limit theorem for 

(3.3) Y = n 
n 

j=l 
<MX.) . 

If we denote by F_. the a-field generated by X^rX^,. . . ,X_., then we construct F_. 

measurable random variables £. such that 
-i 

(3.4) Ш . I F ] = 0 a.е. Pj 

and if 

(3.5) Z = n 
n 

j=l 
$j 
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then 

(3.6) lim 
n-*°° 

1 
/n 

sup 
l<D<n 

I Z . - Y . I = 0 1 1 

in probability with respect to P,. Moreover £. vary covariantly with time trans-
A 3 

lations. In particular Ẑ  is a homogeneous additive functional which is a 

Martingale. Standard techniques see for instance [1] apply to this case. 

The problem then is reduced to proving the following theorem: 

Theorem 3.1. Suppose <j> (x) satisfies 

(f> (x) dA(x) = 0 

2 
<|> (x) dX(x) < 0 0 

and for a l l i> G L9(A), there is a constant C independent of such that 

(3.7) 4>(x) ty(x) X(dx) I <_ C [i)(x) - ii> (y) ] 2 q(x,dy) X(dx) 
1/2 

Then there exists a homogeneous additive functional Ẑ  satisfying (3.4), (3.5) 

and (3.6) such that 

E [C.] < « 

In particular the functional form of the central limit theorem is valid for Y . 
n 

Idea of Proof: Suppose $(x) is of the form 

4>(x) = f (x) - (Qf) (x) 

where 

(Qf)(x) = f(y) q(x,dy) 

for some bounded measurable function f(*). Then 

MXj) = f(X.) - (Qf) (X ) 

= f(X ) - f(X j + 1 ) + f(X ) - (Qf)(X ) 

= f(X ) f(X )- f(Xj + 1) 
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Clearly 

E[f (X j + 1 ) I F.] = (Qf) (X.) 

and therefore 

E [ 5 j + 1 | F ] = 0 

n 

j=l 
ф(Х ) -

n 

j=l S B f ( W - f ( x i } " ^ i + c n + i 

and (3.6) follows from the boundedness of f(*). The general proof involves using 

(3.7) and reversibility to approximate (j> by functions of the form [I - Q] f and 

obtaining good estimates. This will be carried out elsewhere. 

4. Reduction of the Problem 

The problem we started out with can be reduced to the following situation. 

Let fiQ be the subset of Q consisting of those subsets that contain the origin. 

For each oo £ ftQ and v £ V where V is the set of 2d possible directions le t 

d(a),v) be the distance to the nearest scattering site from the origin in the 

direction v. Let us consider the transformation T in which corresponds 
v 0 

to translating the set by - d(w,v)v so that the new scattering site becomes the 
origin. We now have a family {t v £ v} of measure preserving transformations 

of ft . Although these transformations do not commute T T = identity for al l 0 v -v 

v £ V. We take for our state space X = fìQ x v, and a Markov chain on X with tran

sition probability 

(to,v) — (̂T̂ w, v') with probability 1 
2d 

for each v' £ V. Let £ be a fixed vector in R d. We need to prove the central 

limit theorem for 

Y = n 
n 

j=l 
<KX.) 

where 

il>(x) = d(to,v)<v,£> , 
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and x is the pair (03 ,v) . 

If we look at the induced process on ft^ alone i t is also a Markov chain with 

transition probabilities 

03 T̂u3 with probability 1 
2d 

for each v £ V. Moroever this chain is reversible relative to the measure PQ 

obtained by restricting to Q„ and normalizing. 

Let us define <J> (03) by 

(4.1) 4> (03) = 1 
2d v^v 

d(oj,v) <v,i¿> 

Then 

Ф(х. + 1) = Ф(х. + 1) - Ф(«*).)' + Ф(ш.) 

I t turns out that ^(X^+ 1) - cj)(o3_.) are Martingale differences and one uses the 

theorem of Section 3 to replace <J>(Wj) by a Martingale difference. In o rder to 

complete the proof we need only prove the estimate (3.7) for <J> (co) . 

Remark. The time has been mixed up. The real time has been changed to the number 

of scattering sites visited. But this is easily taken care of by using the ergodic 

theorem for the sum 

lim 
n _ $ 

1 
n d (03_. ,v. ) 

which affects the time scale in the end by a constant factor. At this point we need 

to assume that the Markov chain on ft^ x V with invariant measure P^ x tt where it is 
0 0 

the uniform distribution on the 2d directions is ergodic. 

5. The Estimate 

Finally we obtain the estimate (3.7) for the function <j> defined by (4.1). 
P 

E °[<j)((ü)\p(w)] 
P 

= E °[^(o3) - I d(ü),V) <V,J¿>] 
V 
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P 0 1 r = - E [ip (oj) • — 2, d(u),-v) <v,£>] 
v 

= idT E ° C ^ ( w ) I (d(u,v) - d(ü),-v)) <v,£>J 
v 

= Ja E 0 [ ^ ( ü ) ) I (<*<n,v) - d(T_vw,v)) <v,A>] 
v 

p 
= E [ j d(ü>,v) (̂ (03) -i|;(t a»)) <v,£>] 

v 

( 5 0 . 2 ^ 1 / 2 

< CE l [lp(T U)) - l[i((0) ] I 
^ V ' 

which is the estimate we need. We had to assume that 

E 
5 o 

v 

2 
[d (u),v) ] < 00 . 
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