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RECURRENCE OF BROWNIAN MOTIONS ON COMPACT MANIFOLDS 
by J.R. Baxter and G.A. Brosamler 

§1. INTRODUCTION AND SUMMARY 

00 CO 
Let M be a compact C manifold of dimension d. AC metric g a n ^ a 

00 

C vector field V on M determine a "Brownian motion on M, i . e . a strong Markov 

process {Q,A; P X , xeM; X :̂ £H-M, F^,9 ,t>0} with continuous sample paths and 

generator (1.1) L = 1 
2 A + V 

where A is the Laplace-Beltrami operator associated with the metric,g. If m 

denotes the Riemann measure induced by g, then PX{X^B} = /Bp(t,x,y)dm(y), 

t > 0, x e m, B Borel m, and the transition density p is the fundamental 

solution of 

LyP(t,x,y) = $ 
ot 

p(t,x,y) , 

where L' is the dual of L with respect to m. 

We shall discuss certain aspects of the recurrence pattern of such 

Brownian motions, which - appropriate for the occasion - are connected with 

Schwartz distributions. To be precise, we are interested in the asymptotic 

behaviour of functionals 

(1 .2) L (f) = L (f,u)) = j]jf(x )ds. t t J 0 s 

These functionals are well-defined for a l l u> e Q if f : M+R is bounded Borel, 

and are well-defined p m -a .e . if f e L1(M). The exceptional Q-set depends of 
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J. R. BAXTER, G. A. BROSAMLER 

course on f. The case d = 1 plays a special role. In this case there exists $$ 
x 1 + 1 such that P to ) = 1, x e M, and fox. e L (R ) for a> e Q„, f e L (M) . Just 0 loc 0 

take as the Q-set where the local time L(t,x) is a well-defined continuous 

function on R+x M, and observe 

(1 .3) L (f ) = / f(x)L(t,x)dm(x). t J M 
The connection between the functionals (1.2) and the recurrence pattern of the 

Brownian motion X is rather obvious: We recall that X has a unique invariant 

probability measure X, and that d\ = <j)dm, (J> > 0, <J> e C (M), L'(J) = 0 (see e.g. 

[1]). The ergodic theorem gives for al l f £ I? (M) 

(1 .4) PX{lim t~ L (f) = S(f)> = 1, 
t-VOD 

with S(f) = J^fdX. A tr ivial consequence is that for al l x e M 

(1 .5) PX{lim t" L t(f) = S(f), f e C(M)} = 1, 
t->-o° 

which of course implies that P -a .e . the cluster set as t-><», of x

t (w) equals M. 

More delicate investigations of the recurrence pattern of X involve 

naturally the fluctuations of L^(f). In [1] a central limit theorem and a lo^"" 

law were obtained for these fluctuations for f bounded Borel. The normalized 

asymptotic variance was obtained as the self-energy of f, i . e . 

(1 .6) c 2 = 2(f,Gf) 
L (dX) 

= JJgrad Gf| d\, 
M 

where G : L (M) -> L (M) is defined as the Green operator 

(1.7) (Gf)(x) = Jg(x,y)f(y)dm(y) 

with the Green kernel 

(1 .8) g(x,y) = J*Q{p(s,x,y) - <t>(y)}ds. 

Recall that G is positive, i . e . (Gf,f) 
L2(dX) 

> 0 and (Gf,f) 
L 2(d\j 

= 0 iff f = c 

m-a »e• 

Our restriction to f bounded Borel was of course unnecessary. The 

natural class of functions in this context is the class P(M) of "functions with 

bounded potentials", at least if one insists on P X -a.e. results for a l l x e M. 
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We define 

P(M) = 

{f e L

1 (M); sup/[r(x,y)] d + 2 | f (y) |dm(y) < œ} if d > 3 
1 -i{f c L (M); sup J log~r(x,y)|f(y)|dm(y) < «,} if d = 2 

L (M) if d = 1 , 
where r is the geodesic distance of x, y for a C°° metric g. Obviously, the space 

P(M) is an invariant of the differentiable manifold, i . e . does not depend on the 

specific metric chosen. Moreover, if f e P(M) then IIGfH < oo and for al l x e M, 
CO 

X 1 + 
P -a .e . fox. e L 1 q c (R ) . The following theorem strengthens results in [1]. 

(1.9) THEOREM: Let f e P(M). 

(a) For any probability measure v on_ M, the PV-law of t " 1 / 2 {L t ( f ) - tS( f )} 

converges weakly to the normal distribution N(0,a f ) . 

(b) For a l l x € M, P X -a.e. cluster set 
t -> oo 

L (f)-tS(f) 

/2t log logt 
= [-a f/ +a f ] . 

In [1] we posed the problem to prove a "universal" log^-law for a 

natural class of functions on M with one single exceptional null-set, similar to 

the "universal" law of large numbers (1.5). The difficulty is obvious, as it is 

a priori not clear how to obtain the "universal" law even for bounded functions, 

by approximation from the law (1.9) (b) for countably many functions. Such an 

approximation argument leads tr ivially from (1.4) to (1.5). If the class of 

functions may contain unbounded functions, simultaneous local integrability of 

f ox. has to be checked. 

Our problem was solved in [2] for M = T ,̂ the d-dimensional torus, 

g the flat metric on M, V = 0, by choosing as function class the Sobolev space 

Ha(T^), a > ~ - 1. The treatment in [2] is based on the description of Ha(T^) in 

terms of i ts Fourier transform and on very special properties of the 

trigonometric functions. I t is not clear how to adapt this technique even to the 

case of the non-flat torus. 
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In [3] the results of [2] were partially extended to general (M,g), 

V = 0, by making use of the Riesz kernel. In the present paper we refine the 

arguments of [3] and thereby obtain the results of [2] for general M, g, V 

without the restriction on the index a that was necessary in [3]. 

Just as in [3] we shall use the notion of Sobolev spaces {Ha(M),a>0} as 

defined (invariantly) in [8]. These function spaces are "Hilbertian" spaces. 
00 

They are associated intrinsically with the C manifold M (and do not depend on g 

or V), just as are the function spaces {LP(M), p>1} and P(M). Via the regularity 
CD 

theorem for e l l ipt ic differential equations with C coefficients, the 
spaces Ha(M) can be made accessible to our Brownian motion by a Hilbertian space 
isomorphism KS : L̂ (M) Ha(M), where the operator KS is given by a kernel, a a 
defined in terms of the invariants Q and V of our Brownian motion. For details 

see §3. Recall that H°(M) = L2(M) and that C°°(M) = H°(M) = lim Hk(M). Moreover, 

Ha(M) _c C(M) if a > ̂ - (Sobolev's Theorem). If a < | f e Ha(M) will in general 
d 

not be bounded. But if d > 2, a > — - 1 or d = 1, a > 0, then Gf, grad Gf are 

continuous for f e Ha(M) (Lemma (8.1)). Also if d > 3, a > |- - 2 then 

Ha(M) c. P(M), whereas for d = 2, H°(M) £P(M). 

We shall prove the following theorems. (1.10) THEOREM: Let d > 2. 

There exists a measurable set q q £ q such that; 

(a) e tQ Q c Qq, a l l t > 0. 

(b) P x (q q ) = 1, a l l x e M. 

(c) fox. (go) e L_ (R+) for oj e q n , f e loc 0 
4 - , 

Ct , v 
H (M) . 

(d) For a l l a >"^"" 1f w £ ^ q ' t > ° ' f^>L t(f,oj) is continuous on h a(m). 

By what was said above about the case d = 1, the statements of the 

theorem remain true for d = 1, if every ha(m) is replaced by l 1 (m). 

(1.11) theorem: For al l x e m, P X -a .e . 

(1 .12) cluster set 
t •> CO 

L (f)-tS(f) 

/2t log logt 
= [-a f, +a fl 
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for a l l f 

4 - 1 

a 2 H (M) if_ d > 2, and for a l l f e L (M) if d = 1 . 

Notice that this "universal" log2-law implies a "universal" law of 

large numbers: For a l l x e M, P X -a.e. 

(1 .13) lim t~ L (f) = S(f) 
t-x» 

for a l l f 

«>f -1 

Ha(M) if d > 2, and for al l f e L2(M) if d = 1. 

Notice that the functions f in (1.13) need not be bounded as in (1.5). 

It is possible to give a function space (or rather distribution space) 

version of the log2~law and of the central limit theorem. To this end we bring 

in the spaces {H a(M), a>0} which are the duals of the Hilbertian spaces 

{Ha(M),a>0} . We let H"~°°(M)=lim H~k(M) = dual of H°(M). For more details see §3. 

We define L : R+ x Q H~œ(M) by L (u>)(f) = L (f,o>), f e C°°(M) . 

In view of (1.2), L îui) can also be thought of as the image measure on M of 

Lebesgue measure on [0,t] under the random mapping X.(oj): R+ M. By (1.5) this 

highly singular random measure on M converges if normalized, weakly to X, 

P X-a.e.,x e M. 

The following theorem deals with the singularity ofL^. 

(1.14) THEOREM: Let d > 2. 

(a) On the set QQ of theorem (1.10), we have for a l l t > 0, L (w) e 

a>r -1 

H~a(M) 

and Lt(w)(f) = L t(f,a)) for f e 
oi>-z -1 

HŒ(M) . 

(b) There exists a measurable set QQ such that in addition to (a)-(d) of Theorem 

(1 .10) we have: 

For every a > ~ - 1, the process {L , t>0} on QQ is a strongly continuous 

H a(M)-valued additive functional with respect to the Borel sets on H~a(M). 
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Notice that for every co e QQ of theorem (1.14) (b), L.(f,u)) is 

continuous for al l f e 
a > f " 1 

Ha(M). -Again, by what was said about the case 

2 * 

d = 1, we have that for d = 1, { L (m), t>0} is a strongly continuous (L (M)) -

valued process on the set Q ,̂ where the local time is defined. 

As for the asymptotic behaviour of L in each H a(M) we have the 
2 

following two theorems. In these theorems B denotes the unit ball in L (d\) and 

G*: L 2(d\) L 2(d\) is the adjoint of G. We identify H~° (M) and H° (M) = L2(dX). 

(1.15) THEOREM (LOG2-LAW): Let d > 2. For al l x e M, P X -a.e. for a l l . » I -

(a) The random set 
L (w)-ts 

r t 
A t log logt 

t> e 2} in_ H a(M) is relatively strongly 

compact in H a(M). 

(b) The strong H a (M) -cluster set as t « of 
L t(w)-tS 

/2t log logt 
* 1 /2 equals (G+G ) B. 

If d = 1, statements (a) and (b) hold if "all a > - 1" is replaced by "a = 0". 
2 

Notice that the cluster set in (b) is a compact set in L (M). As it is also 

compact in H a(M), (b) implies a strong law of large numbers for /_t» This law 

strengthens the weak convergence (1.5) of ^f- t « 

(1.16) THEOREM (CENTRAL LIMIT THEOREM): If_d> 2, a > - | - 1, or d = 1, a = 0, 

then there exists exactly one Gaussian measure on the Hilbertian space H a(M) 

with mean 0 such that 
(1.17) 

H a(M) 
A(f i)A(f0)dji (X) = ((G+G )f ,f ] 1 2 1 2 L2(dX) 

, f f e Ha(M) 

and for every probability measure v on M, the Pv-law of the H a(M)-valued random 
-1 /2 variable t {I - tS} converges weakly to u. .  . t 
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The covariance operator S : H (M) -> H (M), defined uniquely by 

(1 .18) 
R~a (M) 

A(f, U(f~)dp, (A) = (S f ,f. 1 2 a 1 2 
Htt(M) 

, f 1,f 2 e Ha(M), 

depends of course on the specific choice of the inner product in the Hilbertian 

space Ha(M). 

In a forthcoming paper we shall discuss limit laws for general additive 

functionals. 

§2. RIESZ KERNELS AND OPERATORS 

We begin with a few remarks on the behaviour of the transition 

density p for small t: 

There exist a, C > 0 such that 

(2.1) p(t,x,y) < C {t 
d 
2 

e 

a[r(x,y)] 
t + 1 }, x,y e M; t <1, 

and 

(2.2) |grad x p(t,x,y) | < C{t 
d+1 

2 e 

2 
g[r(x,y)] t + 1}, x,y e M; t < 1. 

Here r and grad denote geodesic distance and gradient defined by g. 

Estimate (2.1) is given in [5] for p , the fundamental solution of 

1 
2 

A PQ = ò 
at 

p Q ; estimate (2.2) for pQ is obtained in essentially the same way. 

The two estimates for p itself follow from 

( + ) p(t,x,y) = p n ( t ,x ,y) + t 
J 0 

/dm(z)pQ( t-s,z,y)<t>(s,x,z) 

where 
00 

1 
*1 

cp(t,x,y) = (j; (t,x,y) = V(y) •grad yp Q(t,x,y) , *k+1 rt r *k (\) (t,x,y) = J ds Jdm(z)4> (s,x,z)c|;( t-s,z,y) 

For the integration in (+) use 
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[ r (x ,z ) j 2 

2 t 1 
[ r (z ,y) ] 2 

2 t 2 

2 
c [r(x,y)] 

2 ( t 1 + t , ) 

M 
e 

t d/2 
e 

d/2 
C2 

dm(z) < c 1 
e , x,ye M; t , t > 0. 

The fact that ( + ) gives the fundamental solution of L'p(t,x,y) =— p(t ,x ,y) , is 
y ot 

verified by (weak) differentiation. 
Estimates (2.1) and (2.2) imply for a > 0 

(2.3) ¡ \ t a*" 1p(t,x,y)dt < 

C if a > d 
2 

C{1 + log~r(x,y)} if a = d 
2 

C [ r ( x , y ) ] - d + 2 a if a < d 
2 

and 

(2.4) |grad x p(t ,x,y)dt | < C[ r (x ,y ) ]~ d + 1 . 

For large t we shall use the estimate (see [1]) 

(2.5) |p(t,x,y)-(t)(y) I < Ae , x,y e M, t > 1, 

which, together with p(t+1,x,y) = /p(1,x,z)p(t,z,y)dm(z), implies algo 

(2.6) |grad J {p(t,x,y)-<|>(y)}dt| < C, x,y e M. 

As was done in [3], we shall make use of the "Riesz kernels" 

(2.7) g (x,y) 1 
r(ct) 

Jq t a" 1{p(t,x,y)-<|)(y)}dt, a > 0, x,y € M. 

The {g , a>0} form a semigroup with respect to dm and we have g = g. 
a 1 

This lat ter kernel was introduced in [1], where i t was shown that 

(2.8) L g(x,y) = -6 (x) + <j)(y). 

All g are bounded below. From (2.3) and (2.5) we obtain 

(2.9) g (x,y) < 
nr 

fc if a > 1 
2 

C{1 + log~r(x,y)} if a = d 
2 

I . . N1-d+2a C[r(x,y)] if a < d 
2 
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From (2.4) and (2.6) we have 

(2.10) |gradxg(x,y) | < C[r(x,y)]~ d + 1 . 

Notice that sup / | g^(x,y) | dm(y) < <», sup / | grad^g(x,y) | dm(y) < <». we shall also 

use the following estimates which enable us to deal with convolutions of the 

expressions on the right side in (2.3) and (2.9): For 0 < o * < d , 0 < T < d 

(2.11) f[r(x,z)]" a [r(z,y)]" T dm(z) < J M 
fC _ if a + t < d 
C{1 + log r(x,y)} if a + t = d 
C[r(x ,y)] d ~ a " T if a + t > d 

(see also [3]). 

For convenience we shall use the invariant measure dX = (j)dm as 
-1 -1 

reference measure and relabel [(J)(y)] p(t ,x,y) , [<j>(y)] g^(x,y) by p(t ,x,y) , 
g (x,y). Estimates (2.9) and (2.10) obviously hold for the new g . Equation a ct 
(2.7) becomes 

(2.7') g a ( x ' y ) = r k T Q t a " 1 {p(t ,x,y)-1}dt , 

and (2.8) goes over into 

(2.8-) Lxg(x,y) = - 6 y(x) + 1 . 

The new ĝ  form a semigroup with respect to dX. 
2 2 

The Riesz operators : L (M) L (M), a > 0, are defined by 
(2.12) (G f)(x) = fg (x,y)f(y)dX(y) . 

a J a 

Equation (2.12) by the way defines also a semigroup of operators on L1(M). As 

G = G^ we conclude from (2.10), that for f € L1 (M) 

(2.13) (grad Gf)(x) = /gradxg(x,y)f(y)dX(y) 

(in distribution sense). Also for f e L1(M), we have from (2.8) that 

(2.14) L(Gf) = -f + Sf 

(in distribution sense). Recall that the identity 
(2.15) JfGfdX /|grad Gf|2dX, f e L2(M) u P(M) , 

2 
implies positivity of G on L (dX). 
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2 If v is a smooth measure on M, such that G is self-adjoint on L (dv), 

then v is proportional to X. We denote by A* the (formal) adjoint of an operator 

A on L2(dX). Obviously, (G*f)(x) = Jg*(x,y)f(y)dX(y), f e L2(M), where 

g*(x,y) = g(y,x). According to [7], L* = A - V + grad log <t>. Moreover, L or 
2 

equivalently G are self-adjoint on L (d\) iff V is a gradient field, in which 1 s 1 1 1 s s case V = — grad log $ • Let L = —(L + L*) = — A + — grad log $. Then (L )* = L 

and LS = L iff L = L*. The transition semigroup generated by LS has also X as 

i t s invariant measure. 

§3. THE SOBOLEV SPACES (M), g e R 

These spaces are defined invariantly in [8]. We shall use their real 
version, rather than the complex version of [8]. For a > 0, the Hilbertian 

spaces Ha(M) form a monotone chain of linear subspaces of H°(M) = L2(M). We have 
a a 

H (M) £ H (M) if a > a , and n Ha(M) = C°°(M) . 
a>0 2 2 If f e H (M), we have Lf £ L (M). Since the only solutions c|> of 14 = 0 

2 

are the constant functions, (2.14) implies for f e H (M) 

(3.1 ) G(Lf) = -f + Sf . 
2 2 

Notice that (2.14) also implies that the operator G + S : L (M)+L (M) is 
invertible. This by the way, implies invertibili ty of the operators 

2 
K = G + S on L (M), since the K form a semigroup. Notice that S(K f) = Sf a def a/2 a a 2 s for f e L (M). We put Kq = I . The operators corresponding to L will be 
denoted by K . They form a semigroup of positive, self-adjoint operators a 
on L2(dX) . 

(3.2) THEOREM: 

(a) For a l l positive integers k, is a Hilbertian space isomorphism 

K2k : ( M ) * H ( M ) * 
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s s 2 a (b) For a l l a ) 0, K is a Hilbertian space isomorphism K : L (M) -* H (M). a a 

Proof of (a): One proves that for every k, K is a Hilbertian space isomorphism 

k 2 = h 2 k • h 2 k + 2 . 2k+2 2k 
Firstly, the linear operator T = L - S: H -* H is 

2k 
continuous. To show then that T is onto, let f € h . By (2,14) and the 

00 
regularity theorem for el l ipt ic differential equations with C coefficients, we 

2k+2 2k+2 conclude that Gf e H , hence ~ K

2

f € H ' and T(-K2f) = f. Moreover, T is 
invertible because (3.1) implies •"K

2

T^ = f» BY the open mapping theorem 
-1 2k 2k+2 T = -K : H •> H is also continuous. 

Proof of (b): For a > 0, we define the Hilbert spaces "^(M) by H^M) = 

KS(L2(M)), endowed with the inner product (KSu , KSu ) = f u. u d\. To show (b), a a 1 a 2 -jja M 2 

i t suffices to show that the underlying Hilbertian spaces of If^M) are Ha(M). 

By (a), this is true if a = 2k. According to [8], H a, a e (2k,2k+2), is the 

—2k+2 —2k underlying Hilbertian space of the Hilbert space Q (R ,H ), where Q k+1— cc /2 t 

denotes quadratic interpolation of Hilbert spaces. (This space does not depend 

on the particular choice of admissible inner products in the Hilbertian spaces 

2k+2 2k a 
H , H .) I t therefore suffices to show that H = Hc+1-ct/2 ( ï ï 2 k + 2 , ï ï 2 k ) . 

Letting t = k + 1 - a/2, H = Q ( ? 2 k + 2 , i 2 k > —2k 
we have for f ,f e H , ( f - , / f

2 ^ 
-2k 

' ( K 4 f l ' V -2k + 2' 
and hence for f

1 / f

2

 e ïï2k+2 

' W h » ( K 4 t V f 2 > ïï2k+2 5" ' 

^ 2 ~~2k"f,2 
Now H (M) is the completion realized in L (M), of C (M), hence of H (M), with 
respect to li ii , and H is defined as the completion, realized in 

~H<X 

—2k 2 —2k+2 
H (M) c l (M), of H (M) with respect to ii II . Part (b) follows. 

H 
It follows from the preceding theorem, that for a > 0, |3 > 0, 

KS defines a Hilbertian space isomorphism KS : Ĥ (M) + Ha+^(M). a a 
Since n Ha(M) = C°°(M), this implies in particular that KS(C°°(M)) CC°°(M). As 
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C°°(M) c ^(C'CM)) for al l k, i t follows thai KS(CC°(M)) = C°°(M) for a l l a > 0. a 
Following [8], we let H~a(M) = dual of Ha(M), a > 0. As C°°(M) is dense 

in Ha(M), we may also consider each H a(M) as a linear subspace of the dual of 

C°°(M). The H a(M) are Hilbertian spaces. Clearly, ~ ai ~a2 
H (M) £ H (M) for 0l^<0l2. 

We shall from now on fix an admissible inner product in Ĥ (M) by setting 

H°(M) = L 2 (d \ ) . By doing so we may identify Ĥ (M) with i ts dual H ̂ (M), and 

thereby "extend" the chain {Htt (M), cc>0} to a chain {Ha (M), aeR} of linear 
oo S 0 subspaces of the dual of C (M). The semigroup K on H (M) extends in a unique a 

way to a semigroup on u HP(M) if we require that for X e H , a > 0 we have 
p£R 

KSX £ H°(M) and a 

(3.3) JKSl*(\>d\ = X(KS<(;) for <\> e C°°(M). 
cc or 

Notice that KS : u Ĥ (M) -> 0U Ĥ (M) is invertible. Letting KS = (KS )~1 , we 
a p£R (3eR -a a 

have that for any ct,(3 £ R, defines a Hilbertian space isomorphism 

(3.4) KS : HP(M) - H a + P(M). a 

The lat ter is a Hilbert space isomorphism if we endow as we shall a l l Ha(M) with 
2 

the inner products carried over from L (d\) by the isomorphisms 
KS : L 2(d\) Ha(M). a 

§4. PROOF OF THEOREM (1.9) 

2 
We may assume > 0. I t is well-known that for f e P(M), al l x e M, 

x + P -a .e . (Gf)oX. e C(R ). I t follows from (2.14) that for any probability 

measure v on M, the process 

(4.1) Mt(f) 
def 

(Gf)(X ) - (Gf)(XQ) + L t(f) - tS(f), t > 0 

is a continuous PV-martingale. Now (2.3) implies sug EXLfc(f) < «> for f e P(M), 

and from (2.11) we conclude |grad Gf| e P(M) for f e P(M). (Notice e.g. that by 
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(2.11) for d > 3, / [ r ( ^ , x ) ] " d + 2 [ r ( ^ 2 , x ) ] " d + 1 [ r ( ^ , x ) ] " d + 1 d m ( x ) < C { [ r ( ^ ^ 2 ) ] " d + 2 . 

[ r ( S 2 , £ 3 ) r d + 2 + [ r ( 5 l f 5 ^ " d + 2 [ r ( 5 1 r 5 ^ l " d + 2 } ) . In any case, M(f) is a square 

integrable P -martingale, for al l v. The process 

(4.2) T t(f) = /^grad Gf| 2(X s)ds , t > 0 , 

v 
is i ts increasing process for a l l P . By the ergodic theorem we have 

PX{lim 
t-x» 

t t ( f ) 
t a J = 1. Since { } is shift-invariant, and since positive 

X-harmonic functions have to be constant, we obtain PX{lim t-x» 
T t(f ) 

t = a 2} = 1, a l l 

x € M, hence 

(4.3) PV{lim 
T t(f ) 

t = a 2. 
$ = 1, a l l v. 

Now, depending on f and v, there exists a probability space (Q',A',P') with a 

Wiener process {Wt,t>0} and a continuous time change {T t,t>0} on i t , such that 

the PV-law of M(f) and the P'-law of WoT are the same (see e.g. [6]). This 
2 

implies that WoT is a continuous L -martingale. Hence i ts increasing process is 

{T t, t>0} . I t follows that the P'-law of T and the PV-law of -u(f) are the same. 

Proof of Theorem (1.9)(a); 
v 

I t is sufficient to prove that the P -distribution of t - 1 / 2 M t ( f ) 

converges weakly to N(0,a 2). For this i t suffices to prove that with a = 2 
V 

for a l l e > 0, lim P' 
t-*» 

Vi 

7 T 

W ^ 
at. 

A 
> s} = 0. So let e > 0, n e (0,a). Then 

(4.4) P'{|wT - W a t | > e/t} < P'{|wT -W a t |>e/F, l ^ - a t ^ n t } + P'{| 
T t 

$ -a|>Ti}. 

As the P'-law of T and the PV-law of t(f) coincide, we conclude from (4.3), that 

for a l l n > 0 

(4.5) lim P'{ 
t>oo 

T 
t ' t 

a| > n} = 0. 
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Moreover, the f i rs t term on the right side of (4.4) is majorized by 

P'{ sup | w a t + s - w a t | > e/t} + P'{ sup |w a t _ s - w a t | > e / t } . 
0<s<nt 0<s<nt 

Now the P'-laws of {W -W , u > 0} and {W , u > 0}coincide as do the P'-laws of v+u v J 1 u J 

{Wv ^-W^ue [0, v]} and {W ,̂ue [0, v] } . I t follows that the f i rs t term on the right 

side of (4.4) is majorized by 

8P'{W > e/t} = 8P1 

Tit 

W 4-
r Tit 
/p t 

E 

/r7 

8 reo 
S2n <z/ 

e - S 2 / V 

This fact together with (4.5) implies that for a l l n e (0,a) 

èìS P ' { I w t " "at 1 > e / *> < 
8 foo 

/2 i V 
e-S2/V 

Letting T) •> 0, we obtain lim P'{|w - W | > e/t} = 0, a l l e > 0. T at t-*» t 

Proof of Theorem (1.9)(b): 

I t suffices to prove that for al l x e M, P X -a.e. £im 
Mt(f ) 

/2tlog logt 
= 1 . 

If (Q', A' ,P ' ) , W, T are as described above, corresponding to v = 6 , this is 

equivalent to showing that P '-a.e. lim 
T t 

/2tlog logt 
= 1• The latter follows from 

the log2-law for W and (4.3). 

§5. PROOF OF THEOREMS (1.10) AND (1.14) 

We shall s tart with 

(5.1) LEMMA: If d > 2, g > d 
2 

1, then for a l l t > 0 

(5.2) SUp e 
xeM 

/d\(^){/Qda[r(^,X a )]" d + a } 2 < « 

and 

(5.3) sup Jd\(x)EX{/£ da[r(£,X ) ] " d + a } 2 < - . 
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Proof: Clearly 

(5.4) E X { /^da [ r ( ^X a ) ] - d + a } 2 < 2 / /dX(y)dX(z ) [ r (^y ) ] - d + a [ r (^z ) ] - d + a 

/ o d a i p ( a i ' x ' y ) / o d a

2

p ( a 2 , y , Z ) 

From (2.3), applied to a = 1, we have for 6 > 0, 

Sq^op(o,x,y) < c(6)[r(x,y)] d 

(for any dimension). We therefore have as a majorant for the right side 

of (5.4) 

c /dm(y) [ r (C,y) ]" d + a [ r (x ,y ) ]" d " 6 + 2 /dm(z) [ r (^ ,z ) ]" d + a [ r (y ,z ) ]" d " 6 + 2 . 

If a > d - 2, this expression is bounded in (£,x) for 6 e (0,min{2,a-d+2}) 

by (2.11). If a e ("I - 1, d-2], 6 e (0, min{2,2(a- -| +1 )} ), we conclude 

from (2.11) that the expression is majorized by 

n i \r ,,-2d+2a-6+2. -d-6+2 -2d+2a-26+4 C1Jdm(y)[r(£,y)] [r(x,y)] <C 2 [r(£,x)] 

Estimates (5.2) and (5.3) follow. 

(5.5) COROLLARY: If_ d > 2 and 

(5.6) QQ = {(o;/dm(^){/Qda[r(^,Xc y)]~d + a}2 < », a l l t > 0, o > | - 1}, 

then PX(Q ) = 1 for x e M. 

(5.7) Remark: If d = 1, we define QQ as the Q-set where the local time L is 

defined as a continuous functional in (£ , t ) . 

We denote by g^, a > 0, the Riesz kernels associated with LS and i t s 

invariant measure X. Let k S = g S + 1. Then (KSf)(x) = f k S(x,y)f(y)d\(y). 
a a/2 a •'Ma 

As the kS are bounded below, the processes a 

(5.8) A t ( ^ } = ^0 k a ( ^ ' X

a

) d a ' t > ° ' £ e M 

are well defined on Q (possibly -h»). Let |A a (£)J t = |k^ (£,X^)|da. 
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If we let for a > 0, e M, 

a a(£,y) = {Via)}'* f ^u a ~\p a {u,Z,y) " 1 > d u + 1 - {r(a+D}" 1 

with p S the transition densities with respect to X, of the operator L S, and 

define for a > 0, t > 0 

b£<£) = {r(a)}" 1 /oda/Ju a " 1 p S (u^,X a )du, 

then Aa(£) = B a / 2 (F) + f^daa _(E,X ). Since for every a, a is bounded and for t t J 0 a/2 o a 
every a, 6 > 0, B?^2(F) < c/^da[r(^,X )] d (for any dimension d, application t ' u o 
of (2.3) to p S ) , we have as corollary of (5.2) and (5.3) 

(5.9) COROLLARY: Let d > 2. Then: 

(5.10) For a > d 
2 

1, t >0: sup EX /d \ (S) |A a (£) | 2 < a> . 

(5.11) For a > d 
2 

1, t > 0: sup e A a (£) | 2 < CO 

(5.12) QQ £ (w; /d \ (£) |A a (£) | 2 < » a l l t > 0, a l l a > j - 1} . 

(5.13) Remark: If d = 1, then for al l t > 0, sup E* 
x.F 

2 
[L(t,£)J < (The proof 

follows from (2.3) and E X [L(t ,£)] 2 < 2<J)2 (£) jjjdc^ /^do^pto^ ,x,£)-p(a 2 , £,£)). 

Proof of theorem (1.10): 

Let QQ be as in (5.6). I t remains to check (c) and (d). For any 

f £ Ha(M), a > 0, we have f = KS7, l e L2(M). If f e Htt(M), a > 4 - 1, to e Q„ 
a 2 0 

we conclude from (5.12) that 

{Jd\(£)|f(S>| | A a ( £ ) | t } 2 < /d \ (S) | f (£) | 2 . Jd \ (S) |A a (S) | 2 < oo. 

This and Fubini's theorem imply that foX.(o)) € l! (R+) and that 
loc 

(5.14) JdX(£)f(C)a"(C) = L (f,u>) 

The lat ter equation also implies that lim L (f ,w) =L (f.w) if Bf -fB 
n->co t n t n Ha(M 

ii f -fll 
n 

" 2 IT(m) 
• 0. 
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Proof of Theorem (1.14); 

Part (a) follows immedately from Theorem (1.10),(d). For the proof of 

part (b), we notice that for t > 0, a > ~ - 1, a> e Q of (5.6) we have 

(5.15) K% = A? . 
a t t 

In view of (3.3), this follows from (5.12) and 

jA£«(|,d\ = Lt(K^(|>), <f, e C°°(M), 

which in turn follows from KS6 e C°°(M), L (KS(b) = L (KS(b) and (5.14). By (3.4) 

strong continuity of L.(co) in H a(M) is equivalent to strong continuity of A a. in 

L2(M). But if w e QQ strong continuity of A a. in L2(M) follows from (5.12). 

Obviously, L (oj) = L (oj) + L (6 w), s , t > 0, and F -measurability of L follows s+t t s t t t 
from F t-measurability of to ̂  Lt(f,a>) for al l f e C°°(M). 

§6. PROOF OF THEOREM (1.11) 

For the proof of this theorem we need a well-known lemma for one-

dimensional Brownian motion. This lemma follows e.g. from a result in [4], but 

we shall give here an independent proof for the reader's convenience. 

(6.1) LEMMA: lf_ ( w

t , t>0} is a one-dimensional Brownian motion on (Q^A',? ' ) , 

then for a l l p > 1 

E'[sup 2 

t>e 

IwJ 

/2tlog logt 
p < ». 

Proof; Letting Y = sup 
t>e 

|w tl 

/2tlog logt 
2 

b = e , we obtain for a > 0 such that 

a 2 > 2b, a/log 2 
Vb 

> 1, that 
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P'{Y>a} = P'{ sup 
b<t<°o 

|w tl 

/2tlog logt 
> a} < 

00 

n=2 
P'{ 

b n " 1 

sup 
<s<bn 

| ws | 

/2b n" 1log(log b 1 1" 1) 
> a} 

00 
< I 

n=2 
4P'{ 

W 

/ b n 

a/21og(log bn"~1 ) 
Vb 

OD 
= I 4P'{W 

n=2 

a/2" /log(2(n-1)), 
/ T 

00 

n=2 
4 

/271 
e~a log[2(n-1)]/b CO 

n=2 
4 

/271 
1 

[ 2 ( n - l ) ] a 2 / b 

1 
2 ^ 

2a /b 

ao 

n=2 
4 

'271 
1 

( n - i r 
c 

2 a 2 / b 

But P'{Y>a} < c 
2 a /b 

for large a, implies that Y e L P(Q',P') for al l p > 1. 

In the following we shall consider the kernel k^ and the process 

{A t(£), t > 0} of §5. Even though in general for fixed £ e M, k ^ ( £ ' # ) / P(M), we 

were able to define A(£) (possibly +<») on al l of Q, because k^ is bounded below. 

Recall that the set QQ of (5.6) has PX-measure 1, a l l x e M. We shall prove the 

following 

(6.2) LEMMA: Let d > 2. For a l l a > d 
2 

1, P^"-a.e. 

(6.3) sup_ 
t>e 

Jd\(£)[A"(£)-t] 2 

2t log logt 
< 00 . 

Proof: If we define the process Ma(£) = M(k^(£,»)) as in (4.1), i . e . 

(6.4) M t ( C ) = G k a ( ^ ' # H X t ) " G k a ( ^ ' 0 ( V + A t ( ^ ) " t 

then Ma(£) is a square integrable P -martingale with continuous sample paths and 

increasing process 

(6.5) t"<£> = J^lgrad Gk^(^,.)| 2(X a)da . 

Recall that for al l t > 0, sup ETtA^U?)] < 00 for a > - - 1 (5.11), and notice 
I 

that for a > max(0, j - 2) 
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(6.6) sup Jd\(y)[Gk (£,•)] (y) < <*>, sup Jd\(£)[Gk (£,•)] (y) < « . 
a a 

£ y For later use we remark, that if a > -r- - 1, there exists 6 > 0 such that 

(6.7) sup E [t 1 ) ] < °°. 

This follows from sup | g radGk S ( • ) | 2 + 2 < ^ < °° for 6 > 0 satisfying 
0 a 

(2+26)(d-a-1) < d, which in turn follows from (2.10) and (2.9) and (2.11). In 

view of (6.6), (6.3) is proved if we prove 

(6.8) sup 
t>e 

Jd\(£)[M^(£)]2 

2t log log t 
< oo P -a .e . 

But (6.8) is proved if we prove 

(6.9) sup E sup 
I t>e 

[M«(Ç)]A 

2t log logt 
< oo. 

For the proof of (6.9) we let (as in §4) W,T on (Q^A'/P') be Brownian motion and 

time change (depending on a,£) such that the P^-law of Mtt(£) equals the P'-law 

of WoT. Then 

(6.10) E sup2 

t>e 

[m£(£)]2 

tlog logt 
= E" sup2 

t>e 

» * 2 

tlog logt 

Now 

sup 
t>e 

^ 2 

T 
t. tlog logt 

sup2 W + sup, 
t<e 1 t>e' 

< 
tlog logt 

• sup 
t>e^ 

T t log + log + T t 

t log log t 

2 
Moreover, for any 6 > 0, t > e 

T log log Tfc 

t log log t 

T t 
t 

T t 
t 

log+ Tt 
t 

< c 5{i + 

T 
A , 1+6, 
^t 

We conclude from (6.10): For al l 6 > 0, there exists C (independent of £, a) 
o 

such that 

(6.11 ) EX sup 
t>e 

[m^(^)]2 

tlog logt 
2 

E' supo Ŵ  + C.E'sup^ 
t<e t>e 

2 

tlog logt 
>{1+sup 

t>e 

Tt> 1+6, 

Applying (6.1) and Hoelder's inequality, as well as {e|x|} ' + < 1 + e | x | and 
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X ol 

the fact that the P'-law of T equals the P -law of t (£), we conclude that for 

al l l e M, ô > 0 

(6.12) E sup 
t>e 

m a A v r 

tlog logt 
< Cc + C' E sup„ ö o ^ 2 t>e 

t AD 

t 
1+ö 

Now, by the maximal ergodic inequality 

E sup2 

t>e 

vAV 

t 
1 + 6 < C- E*<t?<Ç» 1 + Ô. 

Choosing 6 > 0 such that (6.7) holds, we conclude (6.9). 

For the proof of theorem (1.11), let {f } be a countable dense family 
n 

2 s— d in L (M), f = K f . For d > 2, a > — - 1, we consider the set n a n 2 

Q = Q_ n {a>; cluster set a 0 t -> ao 

L (f )-tS(f ) t n n 

/2tlog log t 
= [-a f , +a f ] a l l n} 

n n 

n {oj;sup 
t>e 

Jd\(£)[A"(Ç)-t] 2 

2t log log t 
< 00} . 

From (1.9b), (5.5), (5.11), (6.2) we have PX{Q } = 1, x e M. From (5.14), we 
a 

s— — 2 obtain for f = Kf, f e L (M) and u e Q. that a 0 
|L (f) - tS(f)| < llfll 

IT (d\) 
JdX(£)[a"(£)-t] 

Approximating f e L (d\) by functions ( f

n )
 w^ obtain that for w e , 

cluster set 
t •> oo 

L (f)-tffd\ 

2t log logt 
= t-a^, +a^]. Now consider Q for a ± — - 1. f f a n 2 n 

If d = 1, consider the square integrable P -martingale 

\ I V = g(£rXt) - g(£,xQ) + [<><£)] L(t,ç) - t, t > 0, 

and prove with the preceding arguments that P -a .e . 

sup 
t>e 

fdm(E)[L(t,E)-<b(£)t]2 

2t log log t 
< 0 0 / 

which together with (1.3) implies the assertion of the theorem for d = 1. 
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§7 Proof of Theorem (1.15) 

We shall use in Ha(M) the inner product induced by KS: L 2(d\) Ha(M), 
a 

except in the proof of lemma (7.13). If we let for d > 2, a > j - 1, w e QQ 

(7.1 ) L (f,0) ) L? - t, f)t/fdX- t/fdX = L? - t, f)t/fdX ( = (L? - t, f 

then L̂  £ Ha(M) and for f e Ha(M) 

(7.2) L (f,0) ) - t/fdX = (L? - t , f) 
fc t h«(m) 

by (5.14). If d = 1, a = 0, w e Q , we let 

(7.3) L°(. ) = [<J)(. )]"" 1L(t,.) 

Then (7.2) holds with a = 0. In any case we have from (5.15) 

(7.4) L°(. ) = [<J)(. ) [<J)( 

Notice that 

(7.5) L°(. ) = [<J)(. )]""1L(t,.) 

for d > 2 , a > - | - 1 , p > 0 , and if d = 1, a = 0, i t may be taken as the 
a 

definition of l^, (3 > 0. 
(7.6) lemma: lf_ k : Mxm -> R u {-co, +<»} is measurable and if for some 6 > 0, 

sup/ dm(x)|k(x,y)| 1 +^ < «> and sup/dm(y) |k (x ,y) | 1 + ^ < <*>, then the operator K, 

defined by (Kf)(x) = /^(x,y)f(y)dm(y), is a compact operator K : l2(m) -* l 2 (m). 

Proof: Obviously Kf e l} (m) for f £ l 1 (m). We show that K is a bounded operator 

on l (M): Since k' d = f sup/dm(y) |k(x,y) | < °°, k" d = f sup/dm(x)|k(x,y)| < a>, we 

have for the symmetric function u(y,z) Jdm(x)|k(x,y)|•|k(x,z)| that 

sup/dm(y)u(y,z) < k'»k" < <». By Fubini's theorem and the Cauchy-Schwarz 
z£m 
inequality we obtain for f £ l (dm) 
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Jdm(x)(Kf)2(x) < (JJdm(y)dm(z)f 2(y)u(y,z)) 1 / 2 •(J/dm(y)dm(z)f 2(z)u(y,z)) 1 / 2 

< k'k-llfll2 

L (dm) 
which implies that K is a bounded operator on L (dm) with 

(*) 1 /2 
IIKH < (k'kH) ' . 

But under the assumptions made, K is also a compact operator on L (M)• This is 

obvious for bounded k, since in this case K is even a Hilbert-Schmidt operator on 

L (dm)• In the general case we define the bounded kernels k by k = k if 

|k| < n, k^ = n if k > n, k^ = -n if k < -n, and denote by the corresponding 

compact operators : L (M) -* L (M). We conclude from (*) and the uniform 

integrability of {k(x,•), xeM} , (k(»,y), yeM} that UK -KB + 0 . As the class of 

compact operators is closed with respect to convergence in the operator norm, 

K is compact. 

As a consequence of the preceding lemma, the operators 
2 2 G, G* : L (M) L (M) 

are compact, as are 
KS : Hß(M) Hß(M) a 

for al l a > 0, ß > 0. 

We shall consider for a > 0, the operator 

(7.7) S = (G+G*) : Ha(M) + Ha(M). a 2a 
For al l a > 0, the operator S is positive, self-adjoint and compact. Let B be 

a ol 
the closed unit ball in Ha(M) and let 
(7.8) K = S 1 / 2 B , a > 0 . a a a 
Notice that is a norm-compact convex symmetric set in Htt(M). 

(7.9) LEMMA: K = (G+G*) 1 /V a 2a 0 
Proof: We introduce a CON system (<J>n, n>0} of eigenfunctions of 

S : Ha(M) + Ha(M), and denote by \ a the corresponding eigenvalues, letting a n 
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x l - o , . « - 1 . The system [<t£; (X a)" 1 / 2(G+G*) 1 / 2(f) a, n>1} is. ON in L2(dX). I t O n n 
2 

is also complete in L (dX ) : If for f 
eL2(M), Jf• (G+G*)1/2<j)̂ dX = 0 al l n > 1, 

then Jh(G+G*)1//2fdX = 0 al l h e L2(M), hence Jf(G+G*)fd\ = J|gradGf|2dX = 0, 

hence f = c. We get BQ = (CQ + 
00 

n=1 
C ( ^ ) - 1 / 2 ( G + G . ) 1 / V ; J C2 < 1}, 
n n Yn ^ ^n 

from which 

the proof is easily concluded. 

(7.10) Remark: The preceding lemma implies immediately that for a,p > 0, 

a+ß 2ß a 

d x (7.11) LEMMA: Let d > 2, a > — - 1 or d=1, a = 0 . Then for a l l x e M, P - a . e . , 

the random set 
L « - t 

/2tlog logt 
t > e 2} is relatively norm-compact in Ha(M). 

(7.12) Remark: In view of (7.5), relative norm-compactness in Ha(M) of 

ir - t 

/2tlog logt 

2 a • 
t>e } implies for a' > a, relative norm-compactness in H (M) of 

к - 1 
/2t log log t 

2 
t>e } . 

Proof of Lemma (7.11 ): 

Case 1 : d > 2, a > - - 1 . 

I t is sufficient to prove that P -a .e . the random set 

A" - t t 
/2t log logt 

2 2 t>e } is relatively norm-compact in L (dX). For this purpose 

let a e (— - 1 , a ) . Obviously, 

L (f,0) )(f,0) 

/2t log logt 
t>e 2} = KS 

a-a1 

k - 1 
/2t log logt 

t>e 2} 

2 
and relative L (dX)-compactness of the left side follows from lemma (6.2) and s 2 2 compactness of the operator K : L (dX) •> L (dX). 
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Case 2; d = 1, a = 0 . 

The assertion follows in the same way from the following lemma, dealing 

with one-dimensional local time. 

(7.13) LEMMA: If_ d = 1, then for a l l x e M, P X -a .e . : 

(a) L(t,«) e 
0<a<1/2 

Ha(M) for a l l t > 0, and for every a e [0,1/2),t H>L(t,») 

is a norm-continuous function from R+ to_ Ha(M)• 

(b) sup 2 

t>e 

IIL(t,0-t4)(OII2 

Ha(M) 
2t log log t 

< « for a l l a e [0,1/2). 

Remark: Notice that (b) is equivalent to 

(b«) sup 
t>e 

IIKS (L(t,. )-t<j>)n2 

— rv L2(dX) 
2t log log t 

< oo for al l a e [0,1/2) . 

Proof: a) If d = 1, then M = S 1 . We may assume w.l.o.g. that m(S1) = 1. We 

introduce on S1 the distance x from a fixed point 0 as coordinate. Then 

grad d 
ax 

, A = 
d 2 

dx2 
L = 1 

2 
d2 

dx2 

d 
dx 

v e C (S ). 

Let $ (x) = 1, <J> (x) = 2 sin 27inx, (J) (x) = 2cos 2-jinx. Recall that 0 2n 2n*t" I 
2 2 2 Aô = -X * , X ~ n n , and that {<j> , n>0} is a CON system in L (dm). Since 

Y n nT n n n 
G* = — {<b - fò dX + G(vd)')} for n > 1, we have for n > 1 y n X y n J T n Yn n 

(7.14) BG(J> H < 
n co 

C 
2 

n 

KG* )*l < 
n co 

C 
n 

As is well-known, for a > 0 

H a(S 1) = {f£L 2(S 1); 
00 

u 
(1+n2)a(f,(|) ) 2 

L (dm) 
< $} , 

and Ufi! = (1+n2)a(f,(|) ) 2 

L (dm) 

1/2 is an admissible norm in H (S ), which we 

shall denote by 
H a (s 1 ] 

in this proof. 
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(3) Also for the purpose of this proof only, we denote by g(»,*) the continuous 

m-density of the operator G . Since (g(x, •),$ ) _ = (G<h )(x), we conclude 
L (dm) 

from (7.14), that g(x,») e 
a<3/2 

Ha(S1 ) for a l l x e S 1 . Moreover, for 

a < 3/2, x H- g(x,») is a norm-continuous function from S to Ha(S ), as 

00 
y (1+n2)ai!G<}> II2 < oo. 
n n 0 0 

y) For t > 0, (o £ QQ, I £ S 1 , let 

(7.15) \ ( V = g(x t ,c) - g(xQ,S) + L(t,£) - t<j>(£). 

Obviously (M°(«),<J> ) n = M (<t> ), t > 0, a) £ Qn, with 
t n

T

¿ / j \ t n U 
L (dm) M U ) = (G<j) )(X J - (G<J) )(Xn) + L (<J> ) - t U d\ t n n t T n 0 t Yn ; Y n 

1 X of §4. Recall that for a l l x £ S , M

t ( $ n ) is a square integrable P -martingale 
t 2 

with increasing process tt(<t>n)
 = / o ^ ^ n ^ ( x

a)
do*. By the way, M.(<t>n) is 

continuous for a l l co e Q • -If we let 
CO 

Q- = {w; I (1+n 2) a sup (M°,<|> ) 2 < oo a l l T > 0, a l l a e [0,1/2)}, 
0 t<T z n l/(dm) 

x 1 1 then P (Q ) = 1 , x e S , since for a l l T > 0 , x £ S , n > 1 

EX sup[M U ) ] 2 < c EX (G4> ) ' | 2 (X )da < ^ | , ^ m t n • ' U ' n a ¿ t<T n 

and therefore for a l l T > 0, a e [0,1/2), x € S1 

oo 
EX[ J (1+nV sup(M°,<|> ) 2 ] < co. 

0 t<T L (dm) 

0 
Moreover, if co e , then M

t (
# ) e a<1/2 

H a(S 1) for t > 0, and for every a < 1/2 

the function t h> M^(•) is a norm-continuous function from R+ to H a (S 1 ) . In view 

of (7.15) we have proved (a) for L(t,«) - t<J>, rather than L(t,«)* But as 
00 i 

4> £ C (S ) = a>0 
Ha(S1 ), (a) follows. 
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(8) For the proof of (b), i t suffices in view of (a), to show that for al l 

a e (0,1/2), P X-a.e. 

IIL(t,-)-t<t>(«)!l 
H a(s 1) 

f U p 2 2t log log t < $ , 

or rather 
0 2 
11 H a(s 1) 

( 7 - 1 6 ) ^ 2 2t log logt < 00 

For a > 0, t > 0, oj e Q, ^ e S 1 , N > 1 let 

N 
m"n(5) = £a+n 2 ) a / 2 [M U )]$ it) 

t ^ g t Yn Yn ^ 

The process MaN(£) is a continuous square integrable P^"-martingale with increasing process 

<N<5> - / o d s | I ( i + n 2 ) a / 2 ( G * n ) ' ( x s ) * n ( 5 ) | : 

As in §6, we obtain for al l a ) 0, ^ e s \ N ) 1, 5 > 0 

(7.17) e sup 2 

t>e 
|мГ(5)Г 
2tlog logt < c {1 + e^Ixf ( C ) l 1 + 5 / 2 } 

< C6{1 + E ^ ^ d s | f ( 1 + n 2 ) a / 2 ( G * n ) ' ( X g ) $ n ( ? ) | 2 + 6 } . 

By a version of the Hausdorff-Young Theorem in Harmonic Analysis and by (7.14), 

we conclude that for a l l a e (0,1/2), 6 e (0, 1 2 a ), there exists C c such that 
a a, 0 

for al l x e S 1 , N > 1 

Jdl \ l ( 1 + n 2 ) a / 2 ( G 0 n ) ' ( x ) ^ ( U | 2 + 6 < . 

From this estimate and (7.17) we conclude that for al l a e (0,1/2), there exists 

C such that for a l l N > 1 a 

e sup 
t>e 

IIMf (.)li 2 

L2(dm) 
2t log log t 

< c $ , 
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or equivalently 

»m°V>» 2 , 
x t

 H

g ( s 1 ) , r 

^ 2 2tlog log t < ° a 

Letting N -+ oo , we obtain (7.16). 

Just as in [3] we shall now prove the function space version of the 

log2~law from a log2~law for vector-valued functions and the compactness lemma 

(7.11). The following log2~law for vector-valued functions follows from the 

log2-law for real-valued functions (1.9b) by exactly the same argument which led 

to Theorem (4.1) in [3]. 

(7.18) THEOREM: For a l l n > 1, a l l linearly independent functions 

f „ , # # # / f e P(M) we have for al l x e M, P X -a.e. that the R n-cluster set as t + oo 1 n 
(L (f ) f . . . , L (f )) n 

^ /2 t log log t n { ( C ^ . - C j e I \ ^ ± ^ < '} ^EfL 
i,D=1 

a = {(f ,<G+G*)f ) , i , j , - * , n } " 1 . 
1 3 l / (d\ ) 

Recall that a = Jgrad Gf^grad Gf_. d\, and that G + G*: L 2(d\) +L2(d\) is a 

positive self-adjoint compact operator. -We shall return to the eigenfunctions 

{*a, n>0} of S , introduced in the proof of lemma (7.9). Notice that n a 

(<J)",f) = S(f) for f e Ha(M), in particular S(<ba) = 0 for n ) 1. We denote 
0 Ha(M) 

by it̂ j : ha(m) -* ha(m) the projection on the subspace spanned by $Qity î ' " ' • h * 

Obviously u"(L"-t) = 0 and for N > 1 

(7.19) * ; X - t > - I a " , * a ) * a 

n-1 ' n HŒ (m) 

d x 
(7.20) LEMMA: Let_ d > 2 , a > - - 1 o r _ d = 1 , a = 0. Then for ai l x e M, P -
a.e. for a i l N > 0 

(7.21) 1 Il - cluster set , . _ = n* K . 
H a(M) t . » / 2 t l o g l o g t a 
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Proof: I t is sufficient to prove (7.21) for N > 1. From (7.2) and (7.19) we 

have 

*«(L«-t) = j L (f,U>*« . 
n=1 

As Ha(M) c P(M) for d > 2 and H°(M) c P(M) for d = 1, we conclude from 
0 4 -1 

Theorem (7.18) that for al l x e M, P X -a.e. for a l l N > 1 
a a 

* N (L t - t ) N N 
II H - cluster set y ,, .—~ = {Y £ 4> ; J a. .C.£ .<1}# 

where a = b" , b. . = /*" (G+G*)d>adX = (S 4a,<l>a) = X?6. . . Obviously, ^ 1 3 V3 H a ( M ) i i ] 

a.. = (\?) 1 8 . . . On the other hand we have from the definition (7.8) of K , that ID i ID a 

# « - (? c n ( x a

n ) 1 / 2 < ; | c 2 <n = <? c B < x - > 1 / 2 # I c 2 < 1) 

- < ! c n < J a a

n r 1 c 2 < i > -

which proves (7.21). 

The preceding lemma and lemma (7.11) imply 
d x (7.22) LEMMA: Let d > 2, a > — - 1 or_d = 1, a = 0. Then for a l l x e M, P -

a.e. 

< 7 - 2 3 > ' ' H « ( I 1 ) " C l - n S e t 7 2 T T O T W T - - <a 

(7.24) Remark: In view of (7.5) and remark (7.10), the validity of (7.23) for 

an co e Qq, implies the validity of (7.23) for this oo and any a' > a. 

Theorem (1.15) now follows from Lemma (7.11), Remark (7.12), 

Lemma (7.22), Remark (7.24), Lemma (7.9) and (7.4). 
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§8. PROOF OF THEOREM (1.16) 

We shall start with three lemmas. In lemma (8.1) we shall take as 

version of the (weak) gradient of Gf the vector field 

(grad Gf)(x) = /grad xg(x,y)f(y)dX(y). 

(8.1) LEMMA: Let d ) 2, a > y - 1 or d = 1, a = 0. Then for a l l f e Ha(M), 

Gf and grad Gf are continuous. 

Proof: Under the issumptions made on a, we have for the kernels 

h (x,y) = /g(x,z)k S(z,y)d\(z) a a 

and 

h (x,y) = /grad g(x,z)k (z,y)d\(z) = grad h (x,y) a J x̂  a x a 

that 

(8.2) sup / |h a (x ,y) | 2 d\ (y) < «>, sup/ |h* (x,y) | 2d\(y) < ». 

Let now 7 = KS f and choose 1 c C°°(M) such that Hf" -fj| _ 0. If we let 
n L2(dX) 

f = KS"f , then f e C°°(M), hence Gf and grad Gf e C°°(M). From (8.2) and n a n n n n 
Cauchy-Schwarz we obtain IIGf-Gf II = ||GKS(f"-F ) II + 0, II grad Gf-grad Gf II +0, 

U co (X n oo noo 
which concludes the proof. 

(8.3) LEMMA: Let d > 2 , a > | - 1 or d = 1, a = 0. Let {<b", n>0} be a CON 
00 oo 

system in Ha(M). Then the series £ |G<ba| and £ | grad G<J) | converge uniformly 
o n 0 n 

on M. 

Proof: We shall use (8.2) of the preceding proof. Clearly 

(KS (ba,h (x,.)) , = (G<ba)(x) and (KS <j>a,grad h (x, • )) n = (grad Gc^Kx). 
" a n a L2(dX) n -a n x a L 2 ( d X ) 

43 



J. R. BAXTER, G. A. BROSAMLER 

This together with (8.2) implies that for al l x e M 

a 2 2 
I |(G<b )(x)| = J|h (x,y)| dX(y) 
0 

and 

oo 
I |grad G(j)a|2(x) = /|grad h (x, y ) | 2dX (y ) . 
0 n x a 

Now the argument that led to (8.2) for our choice of a can be strengthened to 
2 2 give continuity of the functions / |h (x,y)| d\(y), /|grad h (x,y)| d\(y). The CC x cc 

assertion then follows from lemma (8.1) and Dini's Theorem. 

(8.4) LEMMA: Let d > 2, a > ^ - 1 or_d = 1, a = 0. Then 

S = (G+G*): Ha(M) -> Ha(M) is of trace class, a 2a 

Proof: Consider the kernel of S i . e .  a 

s (x,y) = a 

fk̂  (x,z)[g(z,y) + g(y,z)]d\(z) if a > 0 2a 

g(x,y) + g(y,x) if a = 0 

Under the assumptions made on a i t follows from (2,9) and (2,11) that i s 

continuous on Mx M. Approximating by finite-dimensional operators, we obtain 
CO 

for the eigenvalues Xa of S that ) \ a < Js (x,x)d\(x). 
n a g n J a 

For the proof of theorem (1.16), notice that for f-j ,f2 e H (M) 

(8.5) (<G+G*)f ,f } 
L2(dX) 

= (S f . , f j a 1 2 Ha(M) 
Since S : Ha(M) Ha(M) is of trace class, there is a Gaussian measure \x on a <* 
H~a(M) with mean 0 such that (1.18) holds (See e.g. [9]). This measure is 

unique. Its characteristic functional 

¥(f) = 
H~a(M) 

e U ( f V Q), f e Ha(M), a 

is given by ^F(f) = e 
-<S f,f) 

a Ha(M) f € Ha(M). 
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We denote by (i^ the PV-distribution on H Œ(M) of t 1 / / 2{/_ t-tS} and by 

{(b", n>0} a CON system in Ha(M) such that 4>̂  E 1 . In order to show that ^ -* \i 

weakly, i t is sufficient to show that 

-(S f,f) /2 
(1) lim / d ^ U ) e U ( f ) = e * ( M ) , f e Ha(M) 

H_a(M) 
and co 
(2) lim sup / d(i"U) ^ [>(<t>a)] = 0 

N ~ H-
a(M) n = N 

(see e.g. [9]). 

Now (1) is equivalent to the weak convergence for al l f e Ha(M) of the 

PV-distribution of t 1 / / 2 ( L t ( f ) - t/fdX) to the normal distribution with mean 0 

and variance ((G+G*)f,f) , and the latter follows from Theorem (1.9a). 
L (dX) 

Furthermore, as J^dX = 0 for n > 1, (2) is equivalent to 

<2») lim 
N->co 

v 
sup E t>1 

CO 

n=N 

• V * n \ 2 
/ t 

= 0 

and the latter is verified as follows: We consider again the processes 

M (<t>a) = (G<j)a)(X ) - (G<J)a)(Xn) + L (<t)a), t > 0, n > 1 t Yn Tn t Yn 0 t Yn 

of §4. We recall that for al l n >1, M

t(<J> )̂ is a square integrable PV-martingale 

with increasing process 

T t < # /^|grad G^| 2 (X g )ds . 

I t follows that for n > 1 

EV[L t((J)^)]2 < 3EV[(G<t>^)(Xt)]
2 + 3EV[(G<t>^)(X0)]

2 + 3EV/^|grad G^| 2 (X )ds, 

therefore. 

e v 
00 

n=N 

L U " ) 

/ t 
2 < 6 li 

CO 

n=N 
|G<j)a|2|| + 3 II 
1 Tn 1 co 

CO 

n=N 
grad G(ba|2|| 

n co 
from which (2 1) follows by lemma (8.3). 
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