JøRGEn Hoffmann-JøRGENSEN
 The law of large numbers for non-measurable and non-separable random elements

Astérisque, tome 131 (1985), p. 299-356
http://www.numdam.org/item?id=AST_1985__131__299_0

© Société mathématique de France, 1985, tous droits réservés.
L'accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

J. Hoffmann-Jørgensen

1. Introduction. The law of large numbers has been in the center of probability ever since it was discovered by James Bernoulli around 1695 (published in 1713 in "Ars Conjectandi"). Lately it has been generalized to random variables taking values in a Banach space, see [1], [4], [5] and [6]. However in these papers it is assumed, that the random variables are measurable and separably valued, two conditions which, weird as it may sound, are not fulfilled in the first and most natural example of an infinitely dimensional law of large number, viz. the Glivenko-Cantelli theorem, see $[8, \mathrm{p} .20]$ or $[2, \mathrm{p} .261]$.

Let ξ_{1}, ξ_{2}, \ldots be a sequence of independent identically distributed real random variable with distribution function $F(t)=P\left(\xi_{n} \leq t\right)$. Let F_{n} be the empirical distribution function based on ξ_{1}, \ldots, ξ_{n}, i.e.

$$
\begin{equation*}
F_{n}(t)=\frac{1}{n} \sum_{j=1}^{n} 1_{\left\{\xi_{j} \leq t\right\}} \tag{1.1}
\end{equation*}
$$

Then the Glivenko-Cantelli theorem states that

$$
\begin{equation*}
\sup _{t}\left|F_{n}(t)-F(t)\right| \underset{n \rightarrow \infty}{\rightarrow} 0 \text { a.s. } \tag{1.2}
\end{equation*}
$$

Let $B(\mathbb{R})$ be the set of all bounded real valued function on \mathbb{R} with its usual sup-norm:

$$
\|f\|_{\infty}=\sup _{t}|f(t)|
$$

Then $\left(B(\mathbb{R}),\|\cdot\|_{\infty}\right)$ is a Banach space, and if

$$
X_{n}(\omega, t)=1_{\left\{\xi_{n} \leq t\right\}}(\omega) \text { and } X_{n}(\omega)=X_{n}(\omega, \cdot)
$$

Then X_{n} is a random variable with values in $B(\mathbb{R})$, and the Glivenko-Cantelli theorem just states, that the sequence $\left\{X_{n}\right\}$ satisfies the law of large numbers in $B(\mathbb{R})$, i.e. that we have

$$
\frac{1}{n} \sum_{j=1}^{n} X_{n} \rightarrow F \quad \text { a.s. in } \quad\left(B(\mathbb{R}),\|\cdot\|_{\infty}\right)
$$

However X_{n} is neither measurable with respect to the Borel σ-algebra on $B(\mathbb{R})$, nor is it separably valued.

This example shows, that the general Banach space versions of the strong law of large number are too special and too poor to cover the first and most natural example of an infinite dimensional strong law of large numbers. In this paper I shall prove an infinite dimensional version of the strong law of large numbers, which neither assumes measurability nor separability of the random vectors, and which covers the Glivenko-Cantelli theorem as well as many other uniform laws of large numbers for stochastic processes.

2. The general case.

In all of this section we let (S, S, μ) denote a probability space and $(B,\|\cdot\|)$ a Banach space with dual space $\left(B^{\prime},\|\cdot\|\right)$ and second dual ($B^{\prime \prime},\|\cdot\|$). As usual we shall consider B as a
closed subspace of $B^{\prime \prime}$.
Let $f: S \rightarrow B$ be a function. Then we say, that f is μ-measurable, if f is μ-measurable when B has its Borel σ-algebra. We say that f is weakly μ-measurable (respectively weakly μ-integrable), if $x^{\prime}(f(\cdot))$ is μ-measurable (respectively μ-integrable) for all $x^{\prime} \in B^{\prime} . ~ I f ~ f ~ i s ~ w e a k l y ~ \mu$-integrable then we define its mean:

$$
E f=\int_{S} f d \mu
$$

to be the linear functional on B^{\prime} defined by

$$
(E f)\left(x^{\prime}\right)=\int_{S} x^{\prime}(f(s)) \mu(d s) \quad \forall x^{\prime} \in B^{\prime}
$$

It is wellknown that $E f \in B^{\prime \prime}$. If f is weakly μ-integrable and $E f \in B$, then we say that f is Gelfand μ-integrable. We say that f is Bochner μ-measurable, if f is μ-measurable and $f(S \backslash N)$ is separable in $(B,\|\cdot\|)$ for some μ-nullset $N \in S$. Finally we say that f is Bochner μ-integrable, if f is Bochner μ-measurable and $\|f(\cdot)\|$ is μ-integrable. And we shall consider the following four function spaces

$$
\begin{aligned}
& L_{W}^{1}(\mu, B)=\{f: S \rightarrow B \mid f \text { is weakly } \mu \text {-integrable }\} \\
& L_{G}^{1}(\mu, B)=\{f: S \rightarrow B \mid f \text { is Gelfand } \mu \text {-integrable }\} \\
& L^{1}(\mu, B)=\{f: S \rightarrow B \mid f \text { is Bochner } \mu \text {-integrable }\} \\
& \left.L_{*}^{1}(\mu, B)=\{f: S \rightarrow B \mid\}^{*}\|f(s)\| \mu(d s)<\infty\right\}
\end{aligned}
$$

It is wellknown that $L^{1}(\mu, B) \subseteq L_{G}^{1}(\mu, B) \subseteq L_{W}^{1}(\mu, B)$ and that the integral above coincides with the usual Bochner integral on $L^{1}(\mu, B)$ (see [3] p. 112 and p. 149).

J. HOFFMANN-JØRGENSEN

As we shall work with non-measurable functions we shall use a few concepts concerning non-measurable sets and functions. Let (Ω, F, P) be a probability space, then P^{*} and P_{*} denotes the outer and inner P-measure and $\int^{*} f d P$ and $\int \star$ fdP denotes the upper and lower P-integrals of f, whenever f is an arbitrary map from Ω into $\overline{\mathbb{R}}=[-\infty, \infty]$. And if f is an arbitrary map from Ω in $\overline{\mathbb{R}}$, then f_{\star} and f * denotes the lower and upper p-envelopes of f, i.e.
(2.1) f_{*} and f * are measurable: $(\Omega, F) \rightarrow \overline{\mathbb{R}}$
(2.2) $\quad f_{*}(\omega) \leq f(\omega) \leq f *(\omega) \quad \forall \omega \in \Omega$
(2.3) $P_{*}\left(f_{*}<g \leq f\right)=P_{*}(f \leq g<f *)=0 \quad \forall P$-measurable functions $g: \Omega \rightarrow \overline{\mathbb{R}}$

If ξ is a map from Ω into a measurable space (M, B) we say that ξ is P-perfect if ξ is P-measurable and
$(2.4) \quad\left(P_{\xi}\right)_{\star}(A)=P_{\star}\left(\xi^{-1}(A)\right) \quad \forall A \subseteq M$
where P_{ξ} is the distribution law of ξ on (M, B). It is easily checked that (2.4) is equivalent to either of the following three conditions
(2.5) $\forall F \in F \exists B \in B: B \subseteq \xi(F)$ and $P\left(F \backslash \xi^{-1}(B)\right)=0$

$$
\begin{equation*}
P(F \mid \xi=x)=0 \quad \text { for } \quad P_{\xi}-a \cdot a \cdot x \in M \backslash \xi(F), \quad \forall F \in F \tag{2.6}
\end{equation*}
$$

(2.7) $\quad \int^{*} f \circ \xi d P=\int^{*} \mathrm{fdP}_{\xi} \quad \forall \mathrm{f}: \mathrm{M} \rightarrow \overline{\mathbb{R}}$

Moreover the composition of perfect maps are perfect, i.e.
(2.8)

```
If }\xi:\Omega->(M,B) is P-perfect and \eta:M->(L,A) is
    P}\mp@subsup{\xi}{}{\prime}\mathrm{ -perfect, then nok is P-perfect.
```

Let $L L N(\mu, B)$ denote the set of all function $f: S \rightarrow B$, which satisfies the following version of the strong law of large numbers:
(2.9) $\exists a \in B: \lim _{n \rightarrow \infty}\left\|a-\frac{1}{n} \sum_{j=1}^{n} f\left(s_{j}\right)\right\|=0$ for $\mu^{\infty}-a \cdot a \cdot\left(s_{j}\right) \in S^{\infty}$ where $\left(S^{\infty}, S^{\infty}, \mu^{\infty}\right)$ is the countable product of (S, S, μ) with itself. Notice, that we do not assume any measurability or separability of f, but of course a.s. convergence makes good sense no matter whetiner the functions are measurable or not.

Let $f \in \operatorname{LLN}(\mu, B)$, then the vector $a \in B$ occuring in (2.9) is of course uniquely determined, and we shall call it the mean of f and it is denoted

$$
a=E f=\int_{S} f d \mu
$$

Note that if $f \in \operatorname{LLN}(\mu, B)$ and f is Gelfand integrable, then by the real valued law of large number we have that the vector a in (2.9) equals the Gelfand integral of f. So there is no ambiguity in our notation. Actually we shall see below that every function f in LLN($\mu, B)$ is Gelfand integrable.

Clearly we have the following simple properties of $\operatorname{LLN}(\mu, B):$
(2.10) $\operatorname{LLN}(\mu, B)$ is a linear space
(2.11) $\operatorname{E}: \operatorname{LLN}(\mu, B) \rightarrow B$ is a linear map

And if φ is a bounded linear map from (B,\|•\|) into a Banach space $(A,\|\cdot\|)$, then we have

J. HOFFMANN-JØRGENSEN

(2.12)	$\varphi(f(\cdot)) \in \operatorname{LLN}(\mu, \mathrm{A})$
(2.13)	$\forall f \in \operatorname{LLN}(\mu, \mathrm{~B})$
$(\mathrm{Ef})=\mathrm{E} \varphi(\mathrm{f})$	$\forall f \in \operatorname{LLN}(\mu, \mathrm{~B})$

Let (Ω, F, P) be a probability space, and let $\left\{\xi_{n}\right\}$ be a sequence of independent identically distributed random variables with values in (S, S) and distribution law μ. Then evidently we have

$$
\begin{equation*}
\left\|E f-\frac{1}{n} \sum_{j=1}^{n} f\left(\xi_{j}\right)\right\| \underset{n \rightarrow \infty}{\rightarrow} 0 \quad \text { p-a.s., } \quad \forall f \in \operatorname{LLN}(\mu, B) \tag{2.14}
\end{equation*}
$$

However, even if $B=\mathbb{R}$, we may have functions f, such that the averages $n^{-1}\left(f\left(\xi_{1}\right)+\ldots+f\left(\xi_{n}\right)\right)$ converges P-a.s., but $f \notin \operatorname{LUN}(\mu, B)$. However if the sequence $\left\{\xi_{n}\right\}$ is P-perfect, i.e. if the product map

$$
\xi(\omega)=\left(\xi_{\mathrm{n}}(\omega)\right)_{1}^{\infty}
$$

is P-perfect from Ω into $\left(S^{\infty}, S^{\infty}\right)$, then we shall see in Theorem 2.3 below, that this cannot occur.

Note that we have not assumed any measurability or separability of functions in $\operatorname{LLN}(\mu, B)$. However it turns out (see Theorem 2.4) that any function f in $\operatorname{LLN}(\mu, B)$ is weakly measurable and Gelfand integrable. To see this we need a couple of lemmas.

Lemma 2.1. Let $S_{n} \subseteq S$ so that $\mu *\left(S_{n}\right)=1$ for all $n \geq 1$. Then we have
(2.1.1)

$$
\left(\mu^{\infty}\right) *\left(\prod_{n=1}^{\infty} S_{n}\right)=1
$$

Moreover if $f_{n}: S \rightarrow B$ are maps, so that $f_{n}\left(s_{n}\right) \rightarrow 0$ for $\mu^{\infty}-a . a$.
$\left(s_{j}\right) \in S$, then there exist a sequence $\left\{g_{n}\right\}$ of measurable maps from (S, S) into $\overline{\mathbb{R}}$, so that
(2.1.2)

$$
\left\|f_{n}(s)\right\| \leq g_{n}(s) \quad \forall s \in S
$$

(2.1.3) $\quad g_{n}\left(s_{n}\right) \rightarrow 0$ for μ^{∞}-a.a. $\left(s_{n}\right) \in S$

Actually we may take g_{n} to be the upper μ-envelope of $\left\|f_{n}(\cdot)\right\| \cdot$

Proof. Let $S_{n}=\left\{F \cap S_{n} \mid F \in S\right\}$ and $\mu_{n}(F)=\mu^{*}(F)$ for $F \in S_{n}$. Then S_{n} is a σ-algebra on S_{n} and μ_{n} is a probability measure on $\left(S_{n}, S_{n}\right)$. By Tulcea's theorem (see [2] p. 183), we know that the product probability space:

$$
\left(S_{\infty}, S_{\infty}, \mu_{\infty}\right)=\left(\prod_{j=1}^{\infty} S_{j}{ }_{j=1}^{\infty} S_{j}, \otimes_{j=1}^{\infty} \mu_{j}\right)
$$

is welldefined, and since

$$
\mu_{\infty}\left(\prod_{j=1}^{\infty} F_{j} \cap S_{j}\right)=\prod_{j=1}^{\infty} \mu_{j}\left(F_{j} \cap S_{j}\right)=\prod_{j=1}^{\infty} \mu\left(F_{j}\right)=\mu^{\infty}\left(\prod_{j=1}^{\infty} F_{j}\right)
$$

for all $\left\{F_{j}\right\} \subseteq S$, we conclude that

$$
\mu_{\infty}\left(F \cap S_{\infty}\right)=\mu^{\infty}(F) \quad \forall F \in S^{\infty}
$$

Hence if $F \supseteq S_{\infty}$ and $F \in S^{\infty}$, then $\mu^{\infty}(F)=1$. Thus (2.1.1) follows.
Let g_{n} be the upper μ-envelope of $\left\|f_{n}\right\|$ (see (2.1)-(2.3)) and let

$$
s_{n}=\left\{s \in S \mid g_{n}(s) \leq 2\left\|f_{n}(s)\right\| \text { or }\left\|f_{n}(s)\right\| \geq 1\right\}
$$

Then I claim that $\mu^{*}\left(S_{n}\right)=1$ for all $n \geq 1$. So let $n \geq 1$ and put

$$
h_{n}=\min \left\{1, \frac{1}{2} g_{n}\right\}
$$

then h_{n} is measurable and $S \backslash S_{n} \subseteq\left\{\left\|f_{n}\right\| \leq h_{n}<g_{n}\right\}$. Hence by (2.3) we have that $\mu^{*}\left(S_{n}\right)=1$. Now let $L \in S^{\infty}$, so that $f_{n}\left(s_{n}\right) \rightarrow 0$ for all $\left(s_{n}\right) \in L$ and $\mu^{\infty}(L)=1$. Then by (2.1.1) we have that
(i)

$$
\left(\mu^{\infty}\right) *\left(L_{0}\right)=1 \text { where } L_{0}=L \cap \prod_{n=1}^{\infty} S_{n}
$$

Now let $\left(s_{n}\right) \in L_{0}$, then $f_{n}\left(s_{n}\right) \rightarrow 0$ so for some $p \geq 1$ we have that $\left\|f_{n}\left(s_{n}\right)\right\|<1$ for all $n \geq p$, and since $s_{n} \in S_{n}$ we find that $g_{n}\left(s_{n}\right) \leq 2\left\|f\left(s_{n}\right)\right\|$ for all $n \geq p$. Hence $g_{n}\left(s_{n}\right) \rightarrow 0$ for all $\left(s_{n}\right) \in L_{0}$, and since g_{n} is measurable for all $n \geq 1$ we conclude from (i) that $g_{n}\left(s_{n}\right) \rightarrow 0$ for $\mu^{\infty}-a . a .\left(s_{n}\right) \in S^{\infty}$. I.e. the sequence $\left\{g_{n}\right\}$ satisfies (2.1.2) and (2.1.3).

Lemma 2.2. Let (Ω, F, P) be a probability space and ξ a P-perfect map from Ω into a measurable space (M, B). Let f be a P-measurable map from Ω into a measurable space (L, A), and g an arbitrary map from M into L, such that

$$
\begin{equation*}
f(\omega)=g(\xi(\omega)) \quad \forall \omega \in \Omega_{0} \tag{2.2.1}
\end{equation*}
$$

where Ω_{0} is a subset of Ω. Then there exist a set $B_{0} \in B$ such that

$$
\begin{equation*}
\mathrm{B}_{0} \subseteq \xi\left(\Omega_{0}\right) \quad \text { and } \quad \mathrm{P}_{\star}\left(\Omega_{0} \backslash \xi^{-1}\left(\mathrm{~B}_{0}\right)\right)=0 \tag{2.2.2}
\end{equation*}
$$

(2.2.3) $\quad g^{-1}(A) \cap B_{0}$ is P_{ξ}-measurable $\quad \forall A \in A$
i.e. $g \mid B_{0}$ is P_{ξ}-measurable, and $P_{\xi}\left(B_{0}\right) \geq P_{*}\left(\Omega_{0}\right)$.

Proof. It is no loss of generality to assume that P is complete. Let $F \in F$ be chosen so that $F \subseteq \Omega_{0}$ and $P(F)=P_{*}\left(\Omega_{0}\right)$. And let $P(F \mid \xi=x)$ be a conditional expectation of ${ }^{1}{ }_{F}$ given ξ. Then by (2.6) we may assume that $P(F \mid \xi=x)=0$ for all $x \notin \xi(F)$. Now let

$$
\mathrm{B}_{0}=\{\mathrm{x} \mid \mathrm{P}(\mathrm{~F} \mid \xi=\mathrm{x})>0\}
$$

Then $B_{0} \in B$, and
(i)

$$
P\left(F \cap \xi^{-1}(B)\right)=\int_{B \cap B_{0}} P(F \mid \xi=x) P_{\xi}(d x) \quad \forall B \in B
$$

And since $P(F \mid \xi=x)=0$ for $x \notin \xi(F)$ we have

$$
\begin{equation*}
\mathrm{B}_{0} \subseteq \xi(\mathrm{~F}) \subseteq \xi\left(\Omega_{0}\right) \tag{ii}
\end{equation*}
$$

From (i) we find that $P\left(F \backslash \xi^{-1}\left(B_{0}\right)\right)=0$, and since $P_{*}\left(\Omega_{0} \backslash F\right)=0$, we see that ${ }^{B_{0}}$ satisfies (2.2.2).

Now let $F_{0}=F \cap \xi^{-1}\left(B_{0}\right)$, then $F_{0} \in F$, and $\xi\left(F_{0}\right)=B_{0}$. Also since $F_{0} \subseteq F \subseteq \Omega_{0}$, it follows easily from (2.2.1) that we have

$$
\begin{equation*}
g^{-1}(A) \cap B_{0}=\xi\left(F_{0} \cap f^{-1}(A)\right) \quad \forall A \subseteq L \tag{iii}
\end{equation*}
$$

Now let $A \in A$, then $F_{0} \cap f^{-1}(A)$ and $F_{0} \cap f^{-1}\left(A^{C}\right)$ belongs to F, so by (2.5) there exist $B_{1}, B_{1}^{\prime} \in B$ so that

$$
\begin{align*}
& B_{1} \subseteq B^{\prime} \subseteq B_{0} \quad \text { and } \quad B_{1}^{\prime} \subseteq B_{0} \backslash B \tag{iv}\\
& P\left(F_{0} \cap f^{-1}(A) \backslash \xi^{-1}\left(B_{1}\right)\right)=P\left(F_{0} \cap f^{-1}\left(A^{C}\right) \backslash \xi^{-1}\left(B_{1}^{\prime}\right)\right)=0
\end{align*}
$$

where $B=g^{-1}(A) \cap B_{0}=\xi\left(F_{0} \cap f^{-1}(A)\right)$. Now put $B_{2}=B_{0} \backslash B_{1}^{\prime}$, then by (iv) we have that $\mathrm{B}_{1} \subseteq \mathrm{~B} \subseteq \mathrm{~B}_{2}$ and from (i) and (v) we find

$$
\begin{aligned}
0 & =P\left(F_{0} \cap \xi^{-1}\left(B_{2} \backslash B_{1}\right)\right)=P\left(F \cap \xi^{-1}\left(B_{2} \backslash B_{1}\right)\right) \\
& =\int_{B_{2} \backslash B_{1}} P(F \mid \xi=x) \quad P_{\xi}(d x)
\end{aligned}
$$

since $F_{0}=F \cap \xi^{-1}\left(B_{0}\right)$ and $B_{2} \subseteq B_{0}$. Now $B_{2} \backslash B_{1} \subseteq B_{0}$ and so $P(F \mid \xi=x)>0$ for all $x \in B_{2} \backslash B_{1}$, hence we have that $P_{\xi}\left(B_{2} \backslash B_{1}\right)=0$ and $B_{1} \subseteq B \subseteq B_{2}$. Thus $B=g^{-1}(A) \cap B_{0}$ is P_{ξ}-measurable and so (2.2.3) holds. ㅁ

Theorem 2.3. Let (Ω, F, P) be a probability space and let $\left\{\xi_{n}\right\}$ be a P-perfect sequence of independent, identically distributed, (S, S)-valued random variables with μ as their common distribution law. Let f be a map from S into the Banach space ($B,\|\cdot\|$), and suppose that there exist a Bochner measurable function $a: \Omega \rightarrow B$, and a set $\Omega_{0} \in F$, such that $P\left(\Omega_{0}\right)>0$ and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=1}^{n} f\left(\xi_{j}(\omega)\right)=a(\omega) \quad \forall \omega \in \Omega_{0} \tag{2.3.1}
\end{equation*}
$$

Then $f \in \operatorname{LLN}(\mu, B)$ and $a(\omega)=E f$ for $P-a . a . ~ \omega \in \Omega_{0}$.

Proof. By removing a nullset from Ω_{0}, we may assume that there exist a separable subspace B_{0} of B so that $a(\omega) \in B_{0}$ for all $\omega \in \Omega_{0}$. Let $\xi(\omega)=\left(\xi_{1}(\omega), \xi_{2}(\omega), \ldots\right)$, then by assumption ξ is a p-perfect map from Ω into $\left(S^{\infty}, S^{\infty}\right)$. Let us put

$$
\begin{aligned}
& L=\left\{\left(s_{j}\right) \in S^{\infty} \left\lvert\, \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=1}^{n} f\left(s_{j}\right)\right. \text { exists in }(B,\|\cdot\|)\right\} \\
& \alpha(s)= \begin{cases}0 & \text { if } \quad\left(s_{j}\right) \in S^{\infty} \backslash L \\
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=1}^{n} f\left(s_{j}\right) & \text { if }\left(s_{j}\right) \in L\end{cases}
\end{aligned}
$$

Then by (2.3.1) we have that $\xi\left(\Omega_{0}\right) \subseteq L$ and $a(\omega)=\alpha(\xi(\omega))$ for all $\omega \in \Omega_{0}$. So by Lemma 2.2 there exist $L_{0} \in S^{\infty}$ so that $L_{0} \subseteq \xi\left(\Omega_{0}\right) \subseteq L$, $\mu^{\infty}\left(L_{0}\right) \geq P\left(\Omega_{0}\right)>0$, and $\alpha \mid L_{0}$ is μ^{∞}-measurable (note that $P_{\xi}=\mu^{\infty}$). Let

$$
\begin{aligned}
& L_{k}=\left\{\left(s_{j}\right) \in S^{\infty} \mid\left(s_{k+1}, s_{k+2}, \ldots\right) \in L_{0}\right\} \quad \forall k \geq 0 \\
& L_{\infty}=\bigcup_{k=0}^{\infty} L_{k}
\end{aligned}
$$

Then $L_{k} \in S^{\infty}$ for all $0 \leq k \leq \infty$, and $\mu^{\infty}\left(L_{k}\right)=\mu^{\infty}\left(L_{0}\right)>0$ for all $k \geq 0$. Hence

$$
\mu^{\infty}\left(L_{\infty}\right) \geq \mu^{\infty}\left(\lim \sup L_{k}\right) \geq \underset{n \rightarrow \infty}{\lim \sup } \mu^{\infty}\left(L_{k}\right)>0
$$

and so by the zero-one law we see that $\mu^{\infty}\left(L_{\infty}\right)=1$. Moreover if τ_{k} is the translation map:

$$
\tau_{k}(s)=\left(s_{k+1}, s_{k+2}, \ldots\right) \quad \forall s=\left(s_{j}\right)
$$

Then $\alpha(s)=\alpha\left(\tau_{k}(s)\right)$ for all $s \in L$, and so $\alpha \mid L_{k}$ is μ^{∞}-measurable for all $0 \leq k<\infty$, and since $\mu^{\infty}\left(L_{\infty}\right)=1$ we sœthat α is $\mu^{\infty}-$ measurable on all of S^{∞}, and that $\mu^{\infty}(L)=1$. Moreover since $\alpha(\xi(\omega))=a(\omega) \in B_{0}$ for $\omega \in \Omega_{0}$, we have that $\alpha(s) \in B_{0}$ for all $s \in L_{\infty}$. Thus α is Bochner measurable from ($S^{\infty}, S^{\infty}, \mu^{\infty}$) into ($\mathrm{B},\|\cdot\|$).

Now let C be a countable subset of B_{0}^{\prime} which separates points in B_{0}. Since $\alpha(s)=\alpha\left(\tau_{k}(s)\right)$ for all $s \in S^{\infty}$ and all $k \geq 1$, it follows from the zero-one law that $x_{0}^{\prime}(\alpha(\cdot))$ is constant μ^{∞}-a.s. For all $x_{0}^{\prime} \in C$. And since C separates points in B_{0} and C is countable it follows that α is constant μ^{∞} a.s., since $\alpha(s) \in B_{0}$ for $\mu^{\infty}-a . a$. $s \in S^{\infty}$. Thus there exist $a_{0} \in B$ so that

$$
\begin{gathered}
\qquad \alpha(s)=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=1}^{n} f\left(s_{j}\right)=a_{0} \\
\text { for } \mu^{\infty}-a \cdot a . \quad s=\left(s_{j}\right) \in S^{\infty} \text {. Hence } f \in \operatorname{LLN}(\mu, B), \text { and clearly we } \\
\text { have } a(\omega)=a_{0}=\operatorname{Ef} \quad P-a . e . \text { in } \Omega_{0} . \quad
\end{gathered}
$$

Theorem 2.4. Let (S, S, μ) be a probability space and $(B,\|\cdot\|)$ a Banach space. Then we have

$$
\begin{equation*}
L^{1}(\mu, B) \subseteq \operatorname{LLN}(\mu, B) \subseteq L_{G}^{1}(\mu, B) \cap L_{*}^{1}(\mu, B) \tag{2.4.1}
\end{equation*}
$$

$$
\begin{equation*}
\int^{*}\|\mathrm{f}\| \mathrm{d} \mu<\infty \quad \forall \mathrm{f} \in \operatorname{LLN}(\mu, \mathrm{~B}) \tag{2.4.2}
\end{equation*}
$$

Remark. The key point of the second inclusion in (2.4.1) is to prove that every f in $\operatorname{LLN}(\mu, B)$ is weakly measurable. The proof below of this fact is due to M. Talagrand (private communication), who has also proved a very nice and surprising characterization of LLN(μ, B) (handwritten manuscript).

Proof. The first inclusion is a wellknown result due A. Beck (see [1] p. 26).

Let $f \in \operatorname{LLN}(\mu, B)$ and let $x^{\prime} \in B^{\prime}$ and $g(s)=x^{\prime}(f(s))$. Then g is real valued, $g \in \operatorname{LLN}(\mu, \mathbb{R})$ and $E g=x^{\prime}(E f)$. Now let g_{*} and g* be the lower and upper μ-envelopes of g. We shall then show

$$
\begin{equation*}
g_{*}=g^{*} \quad \mu-\mathrm{a} \cdot \mathrm{~s} . \tag{i}
\end{equation*}
$$

To see this we choose two measurable functions h_{0} and h_{1} from S into $\overline{\mathbb{R}}$, such that

$$
\begin{array}{ll}
g_{*}(s)=h_{0}(s)=h_{1}(s)=g^{*}(s) & \forall s \in\left\{g_{*}=g^{*}\right\} \\
g_{*}(s)<h_{0}(s)<h_{1}(s)<g^{*}(s) & \forall s \in\left\{g_{*}<g^{*}\right\} \tag{iii}
\end{array}
$$

Note that $h_{0}(s)=h_{1}(s)=g(s)$ on $\left\{g_{*}=g^{*}\right\}$, so h_{0} and h_{1} are finite every where. Now by (2.3) we have

$$
\begin{aligned}
& \mu_{*}\left(h_{0}<g\right) \leq \mu_{*}\left(g_{*}<h_{0} \leq g\right)=0 \\
& \mu_{\star}\left(g<h_{1}\right) \leq \mu_{\star}\left(g \leq h_{1}<g^{*}\right)=0
\end{aligned}
$$

Hence if $S_{0}=\left\{g \leq h_{0}\right\}$ and $S_{1}=\left\{h_{1} \leq g\right\}$, then $\mu^{*}\left(S_{j}\right)=1$ for $j=0,1$. Now let $L \in S^{\infty}$ so that $\mu^{\infty}(L)=1$ and

$$
\frac{1}{n} \sum_{j=1}^{\infty} g\left(s_{j}\right) \rightarrow E g \quad \forall\left(s_{j}\right) \in L
$$

If we put

$$
L_{j}=L \cap\left(S_{j} \times S_{j} \times \ldots\right) \quad \text { for } \quad j=0,1
$$

Then by Lemma 2.1 we have that $\left(\mu^{\infty}\right) *\left(L_{j}\right)=1$ for $j=0,1$. And by definition of S_{0} and S_{1} we have

$$
E g \leq \underset{n \rightarrow \infty}{\liminf } \frac{1}{n_{j}} \sum_{j=1}^{n} h_{0}\left(s_{j}\right) \quad \forall\left(s_{j}\right) \in L_{0}
$$

$$
E g \geq \underset{n \rightarrow \infty}{\lim \sup } \frac{1}{n_{j}} \sum_{j=1}^{n} h_{1}\left(s_{j}\right) \quad \forall\left(s_{j}\right) \in L_{1}
$$

Since h_{0} and h_{1} are measurable we consequently find that the two inequalities holds $\mu^{\infty}-a . s .$, and since $h_{0} \leq h_{1}$ everywhere we have

$$
E g=\lim _{n \rightarrow \infty} \frac{1}{n_{j}} \sum_{j=1}^{n} h_{0}\left(s_{j}\right)=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=1}^{n} h_{1}\left(s_{j}\right)
$$

J. HOFFMANN-JØRGENSEN

for $\mu^{\infty}-\mathrm{a} \cdot \mathrm{a} .\left(\mathrm{s}_{\mathrm{j}}\right) \in \mathrm{S}^{\infty}$.
Now by the converse law of large numbers, we have that h_{0} and h_{1} are μ-integrable and

$$
\begin{equation*}
\int_{S} h_{0} d \mu=\int_{S} h_{1} d \mu=E g \tag{iv}
\end{equation*}
$$

(see [2] p. 122). But $h_{0} \leq h_{1}$ and $h_{0}<h_{1}$ on the set $\left\{g_{*}<g *\right\}$, hence by (iv) we have that $\mu\left(g_{*}<g^{*}\right)=0$, and so $g_{*}=g^{*} \mu-a . s .$.

Thus g is μ-measurable and μ-integrable and we have

$$
\int_{S} g d \mu=\int_{S} x^{\prime}(f(s)) \mu(d s)=x^{\prime}(E f)
$$

for all $x^{\prime} \in B^{\prime}$. Thus f is Gelfand integrable and $E f$ is the Gelfand integral of f.

Now let us show that $f \in L_{\star}^{1}(\mu, B)$. First we note that if $f \in \operatorname{LLN}(\mu, B), \quad$ then

$$
\begin{equation*}
\frac{1}{n} f\left(s_{n}\right) \rightarrow 0 \text { for } \mu^{\infty}-\text { a.a. }\left(s_{j}\right) \in S^{\infty} \tag{v}
\end{equation*}
$$

Let h be the upper μ-envelope of $\|f(\cdot)\|$. Then by Lemma 2.1 we have that $n^{-1} h\left(s_{n}\right) \rightarrow 0$ for $\mu^{\infty}-a . a .\left(s_{n}\right) \in s^{\infty}$, and so by Lemma 1.4 (p.53) in [5] we have that h is μ-integrable, and since $\|f(s)\| \leq h(s) \quad$ for all $s \in S$, we see that $f \in L_{*}^{1}(\mu, B)$.

Theorem 2.4 gives a necessary condition for $f \in \operatorname{LLN}(\mu, B)$ and we shall now seek sufficient conditions. To do this we shall introduce a topology on B^{S} (the set of all function from S into B), and show that $\operatorname{LLN}(\mu, B)$ is closed in this topology. Since $L^{1}(\mu, B) \subseteq \operatorname{LLN}(\mu, B)$ we will then know, that the closure of $L^{1}(\mu, B)$ is contained in $\operatorname{LLN}(\mu, B)$, and in sections 3 and 4 we shall see
that this fact implies the law of large number for a large class of stochastic processes.

Definition 2.5. (The π-topology). Let (B,\|•\|) be a Banaci space, then a finite partition of the norm $\|\cdot\|$, is a finite set σ of functions from B into $\overline{\mathbb{R}}+=[0, \infty]$, such that
(2.5.1) $\quad \alpha(x+y) \leq \alpha(x)+\alpha(y) \quad \forall x, y \in B \quad$ and $\quad \alpha(0)=0 \quad \forall \alpha \in \sigma$
(2.5.2) $\quad\|x\| \leq \max _{\alpha \in \pi} \alpha(x) \quad \forall x \in B$
I.e. a finite partition of $\|\cdot\|$ is a finite set of subadditive $\overline{\mathbb{R}}+$-valued functions on B whose maximum dominates the norm $\|\cdot\|$. We put

$$
\Pi(\|\cdot\|)=\{\sigma \mid \sigma \text { is a finite partition of }\|\cdot\|\}
$$

If (S, S, μ) is a probability space and ($B,\|\cdot\|$) is a Banach space we put:

$$
\begin{equation*}
\sigma(\mathrm{f})=\max _{\alpha \in \sigma} \int_{S}^{*} \alpha(\mathrm{f}(\mathrm{~s})) \mu(\mathrm{ds}) \quad \forall \mathrm{f} \in \mathrm{~B}^{\mathrm{S}} \forall \sigma \in \Pi(\|\cdot\|) \tag{2.5.3}
\end{equation*}
$$

Note that $\sigma(f)$ is subadditive on B^{S}, but not necessatily homogeneous nor symmetric.

We can then define a convergence notion on B^{S} as follows. If $\left\{f_{\lambda} \mid \lambda \in \Lambda\right\}$ is a net in B^{S} and $f \in B^{S}$, we shall say that $\left\{f_{\lambda}\right\}$ is π-convergent to f, and we write $f{ }_{\lambda} \xrightarrow{\pi} f$, if

$$
\begin{equation*}
\forall \varepsilon>0 \exists \lambda_{0} \in \Lambda \exists \sigma \in \Pi(\|\cdot\|): \sigma\left(f_{\lambda}-f\right)<\varepsilon \quad \forall \lambda \geq \lambda_{0} \tag{2.5.4}
\end{equation*}
$$

Let Φ be a subset of B^{S}, then we say that Φ is π-closed, if
for every π-convergent net $\left\{f_{\lambda}\right\} \subseteq \Phi$ with $f_{\lambda} \xrightarrow{\pi} f$, we have that $f \in \Phi$. Since a subnet of a π-convergent net clearly is π-convergent to the same limit, we have that the class of all π-closed sets is closed under finite unions and arbitrary intersections. Thus there exists a topology on B^{S}, which we shall call the π-topology, such that a set $\Phi \subseteq B^{S}$ is closed in the π-topology, if and only if Φ is π-closed. Clearly we have

$$
\begin{equation*}
\mathrm{f}_{\lambda} \xrightarrow{\pi} \mathrm{f} \Rightarrow \mathrm{f}_{\lambda} \rightarrow \mathrm{f} \text { in the } \pi \text {-topology. } \tag{2.5.5}
\end{equation*}
$$

I do not know if the converse implication holds, i.e. if $\xrightarrow{\pi}$ is a topological convergence notion, but I strongly suspect that this is not so in general.

If $\Phi \subseteq B^{S}$ is $\pi \rightarrow$ closed, and Φ is a map from Φ into a topological space T, then it is easily checked, that φ is continuous in the restricted π-topology, if and only if φ satisfies:
(2.5.6)

$$
\varphi\left(f_{\lambda}\right) \rightarrow \varphi(f) \quad \forall f \in \Phi \forall\left\{f_{\lambda}\right\} \subseteq \Phi \quad \text { so that } \quad f_{\lambda} \xrightarrow{\pi} f
$$

A function φ satisfying (2.5.6) is said to be π-continuous on Φ. Finally we let $L_{\pi}^{1}(\mu, B)$ denote the $\pi-c l o s u r e ~ o f ~ L{ }^{1}(\mu, B)$, i.e. $L_{\pi}^{1}(\mu, B)$ is the smallest $\pi-c l o s e d$ set containing $L^{1}(\mu, B)$.

Lemma 2.6. Let (S, S, μ) be a probability space, and (B,\|•\|) a Banach space. Then we have

(2.6.1).	If $f_{\lambda} \xrightarrow{\pi} f$ and $t \in \mathbb{R}$, then $t f_{\lambda} \xrightarrow{\pi} t f$
(2.6.2)	If $f_{\lambda} \xrightarrow{\pi} f$ and $g \in B^{S}$, then $f_{\lambda}+g \xrightarrow{\pi} f+g$

Moreover if $\sigma \in \Pi(\|\cdot\|)$, and $x^{\prime} \in B^{\prime}$ with $\left\|x^{\prime}\right\| \leq 1$, then we have
(2.6.3) $-\sigma(f) \leq \int_{*} x^{\prime}(f(s)) \mu(d s) \leq \int^{*} X^{\prime}(f(s)) \mu(d s) \leq \sigma(f)$
(2.6.4)
$\left|\int^{*} x^{\prime}(f(s)) \mu(\mathrm{ds})\right| \leq \sigma(f) \quad \forall f \in B^{S}$
(2.6.5)
$\left|\int_{*} X^{\prime}(f(s)) \mu(\mathrm{ds})\right| \leq \sigma(f) \quad \forall f \in B^{S}$

$$
\begin{equation*}
\int^{*}\left|\mathrm{x}^{\prime}(\mathrm{f}(\mathrm{~s}))\right| \mu(\mathrm{ds}) \leq 2 \sigma(\mathrm{f}) \quad \forall \mathrm{f} \in \mathrm{~B}^{S} \tag{2.6.6}
\end{equation*}
$$

$$
\begin{equation*}
\|E f\| \leq \sigma(f) \quad \forall f \in L_{W}^{1}(\mu, B) \tag{2.6.7}
\end{equation*}
$$

Proof. (2.6.1): If $t=0$ then (2.6.1) is obvious. So suppose that $t \neq 0$ and let $\varepsilon>0$ be given. Then we choose $\lambda_{0} \in \Lambda$ and $\sigma \in \Pi(\|\cdot\|)$ such that $\sigma\left(f_{\lambda}-f\right)<\varepsilon /|t|$ for $\lambda \geq \lambda_{0}$. If $\alpha \in \sigma$ we put

$$
\tilde{\alpha}(x)=|t| \alpha\left(t^{-1} x\right) \quad \forall x \in B
$$

Then $\tilde{\sigma}=\{\tilde{\alpha} \mid \alpha \in \sigma\}$ belongs to $\Pi(\|\cdot\|)$, and

$$
\tilde{\sigma}\left(t f_{\lambda}-t f\right)=|t| \sigma\left(f_{\lambda}-f\right)<\varepsilon
$$

for all $\lambda \geq \lambda_{0}$. Thus $t f i r t h$.
(2.6.2) : Evident:
(2.6.3): Let $f \in B^{S}, \sigma \in \Pi(\|\cdot\|)$ and $x^{\prime} \in B^{\prime}$ with $\left\|x^{\prime}\right\| \leq 1$.

If $\sigma(f)=\infty$ then (2.6.3) is obvious. So suppose that $\sigma(f)<\infty$. Then
(i)

$$
\int^{*}\|f\| d \mu \leq \sum_{\alpha \in \sigma} \int^{*}{ }_{\alpha}(f) d \mu \leq k \sigma(f)<\infty
$$

J. HOFFMANN-JØRGENSEN

where k is the number of elements in σ. Let $g(s)=x^{\prime}(f(s))$ and let g_{*} and g^{*} be the lower and upper μ-envelopes of g. Also let f_{α} be the upper μ-envelope of $\alpha(f(\cdot))$. Then by (i) we have that g_{\star}, g^{*} and f_{α} are μ-integrable and

$$
\begin{equation*}
\int_{S} f_{\alpha} d \mu=\int^{*} \alpha(f(s)) \mu(d s) \tag{ii}
\end{equation*}
$$

$$
\begin{equation*}
\int_{S} g * d \mu=\int^{*} x^{\prime}(f(s)) \mu(d s) \tag{iii}
\end{equation*}
$$

(iv)

$$
\int_{S} g_{*} d \mu=\int_{*} x^{\prime}(f(s)) \mu(d s)
$$

Now let m be any real number satisfying
(v)

$$
\int_{S} g_{\star} d \mu<m<\int_{S} g^{*} d \mu \text { or } m=\int_{S} g_{*} d \mu=\int_{S} g^{*} d \mu
$$

Then we can find a measurable function h, such that
(vi)

$$
h(s)=g_{*}(s)=g^{*}(s) \quad \forall s \in\left\{g_{\star}=g^{*}\right\}
$$

$$
\begin{equation*}
g_{\star}(s)<h(s)<g^{*}(s) \quad \forall s \in\left\{g_{\star}<g^{*}\right\} \tag{vii}
\end{equation*}
$$

(viii)

$$
\int_{S} h d \mu=m
$$

As in the proof of Theorem 2.4 we find that

$$
\mu^{*}(g \leq h)=\mu^{*}(g \geq h)=1
$$

Hence by Lemma 2.1 we have that the two sets:

$$
\begin{aligned}
& M_{0}=\left\{\left(s_{j}\right) \in S^{\infty} \mid g\left(s_{j}\right) \leq h\left(s_{j}\right) \quad \forall j \geq 1\right\} \\
& M_{1}=\left\{\left(s_{j}\right) \in S^{\infty} \mid g\left(s_{j}\right) \geq h\left(s_{j}\right) \quad \forall j \geq 1\right\}
\end{aligned}
$$

have outer μ^{∞}-measure equal to 1 . And by the real valued law of large numbers there exist $M \in S^{\infty}$ with $\mu^{\infty}(M)=1$ and

$$
\begin{equation*}
\frac{1}{n} \sum_{j=1}^{n} h\left(s_{j}\right) \rightarrow m \quad \forall\left(s_{j}\right) \in M \tag{ix}
\end{equation*}
$$

(x)

$$
\frac{1}{n} \sum_{j=1}^{n} f_{\alpha}\left(s_{j}\right) \rightarrow \int_{S} f_{\alpha} d \mu \quad \forall\left(s_{j}\right) \in M
$$

(see (viii)). Now note that we have

$$
\begin{aligned}
& -\max _{\alpha \in \sigma} \frac{1}{n} \sum_{j=1}^{n} f_{\alpha}\left(s_{j}\right) \leq-\max _{\alpha \in \sigma} \frac{1}{n} \sum_{j=1}^{n} \alpha\left(f\left(s_{j}\right)\right) \\
& \leq-\max _{\alpha \in \sigma} \frac{1}{n} \alpha\left(\sum_{j=1}^{n} f\left(s_{j}\right)\right) \leq-\frac{1}{n}\left\|\sum_{j=1}^{n} f\left(s_{j}\right)\right\| \\
& \leq x^{\prime}\left(\frac{1}{n} \sum_{j=1}^{n} f\left(s_{j}\right)\right)=\frac{1}{n} \sum_{j=1}^{n} g\left(s_{j}\right) \\
& \leq \frac{1}{n}\left\|\sum_{j=1}^{n} f\left(s_{j}\right)\right\| \leq \max _{\alpha \in \sigma} \frac{1}{n} \alpha\left(\sum_{j=1}^{n} f\left(s_{j}\right)\right) \\
& \leq \max _{\alpha \in \sigma} \frac{1}{n} \sum_{j=1}^{n} \alpha\left(f\left(s_{j}\right)\right) \leq \max _{\alpha \in \sigma} \frac{1}{n} \sum_{j=1}^{n} f_{\alpha}\left(s_{j}\right)
\end{aligned}
$$

since each α in σ is subadditive, $f_{\alpha} \geq \alpha(f(\cdot))$ and $\|x\| \leq \max \alpha(x)$. Hence by (ii) and (x) we find

$$
\begin{aligned}
-\sigma(f) & \leq \liminf \frac{1}{n} \sum_{j \rightarrow \infty}^{n} g\left(s_{j}\right) \\
& \leq \lim \sup _{n \rightarrow \infty} \frac{1}{n} \sum_{j=1}^{n} g\left(s_{j}\right) \leq \sigma(f)
\end{aligned}
$$

for all $\left(s_{j}\right) \in M$. Now since $\mu^{\infty}(M)=\left(\mu^{\infty}\right) *\left(M_{0}\right)=1$ we have that $M \cap M_{0} \neq \phi$ and if $\left(s_{j}\right) \in M \cap M_{0}$, then

$$
m=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=1}^{n} h\left(s_{j}\right) \geq \liminf \frac{1}{n} \sum_{j \rightarrow \infty}^{n} g\left(s_{j}\right) \geq-\sigma(f)
$$

And similarly since $M \cap M_{1} \neq \phi$ we have that $m \leq \sigma(f)$. I.e. we have shown that any real number m satisfying (v) also satisfies

$$
-\sigma(f) \leq m \leq \sigma(f)
$$

But then (2.6.3) follows from (iii) and (iv).
(2.6.4): By (2.6.3) we have

$$
\begin{aligned}
& \int^{*} x^{\prime}(f(s)) \mu(d s) \leq \sigma(f) \\
& -\int^{*} x^{\prime}(f(s)) \mu(d s) \leq-\int_{*} x^{\prime}(f(s)) \mu(d s) \leq \sigma(f)
\end{aligned}
$$

and so (2.6.4) holds.
(2.6.5) follows from (2.6.3) as above.
(2.6.6): Let us put

$$
\begin{array}{ll}
S^{+}=\left\{s \in S \mid x^{\prime}(f(s)) \geq 0\right\} & f^{+}=1_{S^{+}} f \\
S^{-}=\left\{s \in S \mid x^{\prime}(f(s))<0\right\} & f^{-}=1_{S^{-}} f
\end{array}
$$

Then by (2.6.3) we have

$$
\begin{aligned}
\int^{*}\left|x^{\prime}(f)\right| d \mu & \leq \int^{*} x^{\prime}\left(f^{+}\right) d \mu-\int_{*} x^{\prime}\left(f^{-}\right) d \mu \\
& \leq \sigma\left(f^{+}\right)+\sigma\left(f^{-}\right)
\end{aligned}
$$

If $\alpha \in \sigma$ then

$$
\begin{aligned}
& \alpha\left(f^{+}\right)=1_{S^{+}} \alpha(f)+1_{S^{-}} \alpha(0) \leq \alpha(f) \\
& \alpha\left(f^{-}\right)=1_{S^{+}} \alpha(0)+1_{S^{-}} \alpha(f) \leq \alpha(f)
\end{aligned}
$$

Thus $\sigma\left(\mathrm{f}^{+}\right) \leq \sigma(\mathrm{f})$ and $\sigma\left(\mathrm{f}^{-}\right) \leq \sigma(\mathrm{f})$ and so (2.6.6) follows. (2.6.7): Immediate consequence of (2.6.4).

Theorem 2.7. Let (S, S, μ) be a probability space and $(B,\|\cdot\|)$ a Banach space, then we have

$$
\begin{equation*}
\mathrm{f} \sim \mathrm{Ef} \text { is } \pi \text {-continuous: } \mathrm{L}_{\mathrm{W}}^{1}(\mu, \mathrm{~B}) \rightarrow\left(\mathrm{B}^{\prime},\|\cdot\|\right) \tag{2.7.1}
\end{equation*}
$$

$$
\begin{equation*}
L_{*}^{1}(\mu, B) \text { is a } \pi-c \text { losed, and } \pi \text {-open linear space } \tag{2.7.2}
\end{equation*}
$$

$L_{\pi}^{1}(\mu, B), \operatorname{LLN}(\mu, B), L_{G}^{1}(\mu, B)$ and $L_{w}^{1}(\mu, B)$ are π-closed linear subspaces of B^{S}
(2.7.4)

$$
L^{1}(\mu, B) \subseteq L_{\pi}^{1}(\mu, B) \subseteq \operatorname{LLN}(\mu, B) \subseteq L_{G}^{1}(\mu, B) \cap L_{\star}^{1}(\mu, B)
$$

Proof. (2.7.1) follows easily from (2.6.7).
(2.7.2): If $\left\{f_{\lambda} \mid \lambda \in \Lambda\right\}$ be a net in B^{S}, so that $f_{\lambda} \xrightarrow{\pi} f$ then there exist $\lambda \in \Lambda$ and $\sigma \in \Pi(\|\cdot\|)$, so that $\sigma\left(f_{\lambda}-f\right) \leq 1$. Now let k be the number of elements in σ, then

$$
\begin{aligned}
\int^{*}\|f\| d \mu & \leq \int^{*}\left\|f_{\lambda}\right\| d \mu+\int^{*}\left\|f_{\lambda}-f\right\| d \mu \\
& \leq \int^{*}\left\|f_{\lambda}\right\| d \mu+\sum_{\alpha \in \sigma} \int^{*} \alpha\left(f_{\lambda}-f\right) d \mu \\
& \leq k+\int^{*}\left\|f_{\lambda}\right\| d \mu
\end{aligned}
$$

Hence if $f_{\lambda} \in L_{*}^{1}(\mu, B)$ then so does f, and consequently we have that $L_{*}^{1}(\mu, B)$ is π-closed. Similarly we have

J. HOFFMANN-JØRGENSEN

$$
\begin{aligned}
\int^{*}\left\|f_{\lambda}\right\| d \mu & \leq \int^{*}\left\|f_{\lambda}-f\right\| d \mu+\int^{*}\|f\| d \mu \\
& \leq k \sigma\left(f_{\lambda}-f\right)+\int^{*}\|f\| d \mu \\
& \leq k+\int^{*}\|f\| d \mu
\end{aligned}
$$

so if $f_{\lambda} \in B^{S} \backslash L_{*}^{1}(\mu, B)$ then so does f, and consequently we have that $L_{*}^{1}(\mu, B)$ is π-open.
(2.7.3): The spaces $\operatorname{LLN}(\mu, B), L_{G}^{1}(\mu, B)$ and $L_{W}^{1}(\mu, B)$ are evidently linear spaces, however since the π-topology is not a linear topology in general (see (2.5. i+2i),it is not evident that $L_{\pi}^{1}(\mu, B)$ is a linear space. To see that this is actually so we put

$$
\begin{array}{rlrl}
L_{t} & =\left\{f \in B^{S} \mid t f \in L_{\pi}^{1}(\mu, B)\right\} & & \forall t \in \mathbb{R} \\
L(g) & =\left\{f \in B^{S} \mid f+g \in L_{\pi}^{1}(\mu, B)\right\} & \forall g \in B^{S}
\end{array}
$$

Then by (2.6.1) and (2.6.2) we have that L_{t} and $L(g)$ are π-closed for all $t \in \mathbb{R}$ and all $g \in B^{S}$. Clearly we have that $L^{1}(\mu, B) \subseteq L_{t} \cap L(g)$ for all $t \in \mathbb{R}$ and all $g \in L^{1}(\mu, B)$. Thus $L_{\pi}^{1}(\mu, B) \subseteq L_{t} \cap L(g)$ whenever $t \in \mathbb{R}$ and $g \in L^{1}(\mu, B)$. I.e. $t f$ and $f+g$ belongs to $L_{\pi}^{1}(\mu, B)$ whenever $t \in \mathbb{R}, f \in L_{\pi}^{1}(\mu, B)$ and $g \in L^{1}(\mu, B)$. Hence $L^{1}(\mu, B) \subseteq L(g)$ for all $g \in L_{\pi}^{1}(\mu, B)$ and so as above we have that $f+g$ belongs to $L_{\pi}^{1}(\mu, B)$ whenever f and g belongs to $L_{\pi}^{1}(\mu, B)$. Thus $L_{\pi}^{1}(\mu, B)$ is a linear space.

By definition we have that $L_{\pi}^{1}(\mu, B)$ is π-closed. Now let $\left\{f_{\lambda} \mid \lambda \in \Lambda\right\}$ be a net in $L_{w}^{1}(\mu, B)$, such that $f_{\lambda} \mathbb{T}_{f} \in B_{B}$. Then there exist $\lambda_{k} \in \Lambda$ and $\sigma_{k} \in \Pi(\|\cdot\|)$ such that $\sigma_{k}\left(f_{\lambda}-f\right) \leq 2^{-k}$ for all $\lambda \geq \lambda_{k}$. Now by $(2.6 .6)$ we have

$$
\int^{*}\left|x^{\prime}\left(f_{\lambda}(s)\right)-x^{\prime}(f(s))\right| \mu(d s) \leq 2^{-k+1}\left\|x^{\prime}\right\|
$$

for all $x^{\prime} \in B^{\prime}$, and all $\lambda \geq \lambda_{k}$. Now since $x^{\prime}\left(f_{\lambda}(\cdot)\right)$ is μ-integrable for all λ we find that $x^{\prime}(f(\cdot))$ is μ-integrable, and so $L_{W}^{1}(\mu, B)$ is π-closed. Moreover if $f_{\lambda} \in L_{G}^{1}(\mu, B)$ for all $\lambda \in \Lambda$, then $\left\|E f_{\lambda}-E f\right\| \rightarrow 0$ by (2.7.1), and so $E f \in B$, since B is norm closed in $B^{\prime \prime}$. Thus $f \in L_{G}^{1}(\mu, B)$ and so $L_{G}^{1}(\mu, B)$ is $\pi-c l o s e d$. Now suppose that $\left\{f_{\lambda}\right\} \subseteq \operatorname{LLN}(\mu, B)$ so that $f_{\lambda} \xrightarrow{\pi} f$. Let $h_{\alpha \lambda}$ be the upper μ-envelope of $\alpha\left(f_{\lambda}(\cdot)-f(\cdot)\right)$ whenever α is a map: $B \rightarrow \overline{\mathbb{R}}_{+}$and $\lambda \in \Lambda$. By assumption there exist $\lambda_{k} \in \Lambda$ and $\sigma(k) \in \Pi(\|\cdot\|)$ so that

$$
\begin{equation*}
\int^{*} \alpha\left(f_{\lambda}-f\right) d \mu=\int_{S} h_{\alpha \lambda} d \mu \leq 2^{-k} \quad \forall \lambda \geq \lambda_{k} \quad \forall \alpha \in \sigma(k) \quad \forall k \geq 1 \tag{i}
\end{equation*}
$$

Since $\operatorname{LLN}(\mu, B) \subseteq L_{G}^{1}(\mu, B)$ by Theorem 2.4 , we have that $f \in L_{G}^{1}(\mu, B)$ and $E f_{\lambda} \rightarrow$ Ef. Hence we may assume that λ_{k} is chosen so large that

$$
\begin{equation*}
\left\|\mathrm{Ef}-\mathrm{Ef}_{\lambda}\right\| \leq 2^{-\mathrm{k}} \quad \forall \lambda \geq \lambda_{\mathrm{k}} \tag{ii}
\end{equation*}
$$

Let $k \geq 1$ and $\lambda \geq \lambda_{k}$ be fixed for a moment, then we have

$$
\begin{aligned}
& \left\|E f-\frac{1}{n} \sum_{j=1}^{n} f\left(s_{j}\right)\right\| \leq\left\|E f-E f_{\lambda}\right\|+\left\|E f_{\lambda}-\frac{1}{n} \sum_{1}^{n} f\left(s_{j}\right)\right\| \\
& \leq 2^{-k}+\left\|E f_{\lambda}-\frac{1}{n} \sum_{j=1}^{n} f_{\lambda}\left(s_{j}\right)\right\|+\frac{1}{n}\left\|\sum_{j=1}^{n}\left(f_{\lambda}\left(s_{j}\right)-f^{n}\left(s_{j}\right)\right)\right\| \\
& \leq 2^{-k}+\left\|E f_{\lambda}-\frac{1}{n} \sum_{j=1}^{n} f_{\lambda}\left(s_{j}\right)\right\|+\frac{1}{n} \max _{\alpha \in \sigma(k)}^{\alpha}\left(\sum_{j=1}^{n}\left\{f_{\lambda}\left(s_{j}\right)-f\left(s_{j}\right)\right\}\right) \\
& \leq 2^{-k}+\left\|E f_{\lambda}-\frac{1}{n} \sum_{j=1}^{n} f_{\lambda}\left(s_{j}\right)\right\|+\max _{\alpha \in \sigma(k)}^{\frac{1}{n}} \sum_{j=1}^{n} h_{\alpha \lambda}\left(s_{j}\right)
\end{aligned}
$$

for all $n \geq 1$. Now since $f_{\lambda} \in \operatorname{LLN}(\mu, B)$ and $h_{\alpha \lambda}$ is μ-integrable we find by (i) that

$$
\limsup _{n \rightarrow \infty}\left\|E f-\frac{1}{n} \sum_{j=1}^{n} f\left(s_{j}\right)\right\| \leq 2^{-k}+\max _{\alpha \in \sigma(k)} \int_{S} h_{\alpha \lambda} d \mu \leq 2^{-k+1}
$$

for $\mu^{\infty}-\mathrm{a} . \mathrm{a} .\left(\mathrm{s}_{j}\right) \in \mathrm{S}^{\infty}$ and all $\mathrm{k} \geq 1$. Hence $\mathrm{f} \in \operatorname{LLN}(\mu, B)$ and so $\operatorname{LLN}(\mu, B)$ is $\pi-c$ losed.
(2.7.4): The first inclusion is trivial, and since LLN (μ, B) is π-closed by (2.7.3) and contains $L^{1}(\mu, B)$ by Theorem 2.4 , the second inclusion follows. The last inclusion was proved in Theorem 2.4. व

If B is separable then $L^{1}(\mu, B)=L_{G}^{1}(\mu, B) \cap L_{*}^{1}(\mu, B)$ and we have equality everywhere in (2.7.4). M. Talagrand has introduced a new measurability concept for B-valued functions, called properly measurable, and he has shown for an arbitrary Banach space B, that $f \in \operatorname{LLN}(\mu, B)$, if and only if f is properly measurable and $f \in L_{*}^{1}(\mu, B)$ (to appear).

In the next two sections we shall set that in the non-separable case we may have, that $L^{1}(\mu, B) \neq L_{\pi}^{1}(\mu, B)$, and one may naturally pose the following problem

Is: $L_{\pi}^{1}(\mu, B)=\operatorname{LLN}(\mu, B)$?

In Definition 2.5 we introduced the π-topology on B^{S}, and in Lemma 2.6 we showed that $f \sim t f$ and $f \sim f+g$ are π-continuous for all $t \in \mathbb{R}$ and all $g \in B^{S}$. However if $f \notin I_{*}{ }_{*}(\mu, B)$ then by (2.7.2) we have that $t \sim t f$ is discontinuous at $t=0$ in the π-topology. Hence the π-topology is not a linear topology, if $L_{*}^{1}(\mu, B) \neq B^{S}$ (i.e. if $\operatorname{dim} L^{1}(\mu, \mathbb{R})=\infty$ and $\left.\operatorname{dim} B \geq 1\right)$. However we may pose the following problem:
(2.16) Is the π-topology on $L_{*}^{1}(\mu, B)$ a linear topology?

In order to solve this problem one probably need to exhibit an explicitly defined neighborhood base at 0 for the π-topology, and I have not been able to do this. In connection with the π-topology one may pose several problems e.g.
(2.17) Does: $f_{\lambda} \rightarrow f$ in the π-topology imply $f_{\lambda} \xrightarrow{\pi} f ?$
(2.18) Is: $\mathrm{cl}_{\pi}(\Phi)=\left\{\mathrm{f} \mid \exists\left\{\mathrm{f}_{\lambda}\right\} \subseteq \Phi: \mathrm{f}_{\lambda} \xrightarrow{\pi} \mathrm{f}\right\}$?
where $c l_{\pi}(\Phi)$ is the $\pi-c l o s u r e$ of Φ.

3. Sample bounded stochastic processes

We shall now specialize the results of the previous section to the case where $B=B(T)$ is the set of all bounded real valued functions on a set T with its usual sup-norm (see [3] p.240).

Let T be a set and $\varphi: T \rightarrow \mathbb{R}$ a function. If $A \subseteq T$ and $t \in T$ we define

$$
\begin{aligned}
& \|\varphi\|_{A}=\sup _{u \in A}|\varphi(u)| \\
& W_{A}(\varphi, t)=\sup _{u \in A}|\varphi(u)-\varphi(t)| \\
& W_{A}(\varphi)=\sup _{u, v \in A}|\varphi(u)-\varphi(v)|
\end{aligned}
$$

with the convention: sup $\varnothing=0$. A finite cover of T is a set $A=\left\{A_{1}, \ldots, A_{n}\right\}$ of non-empty subsets of T, such that $T=A_{1} U \ldots \| A_{n}$. We let

$$
\Gamma(T)=\{A \mid A \text { is a finite cover of } T\}
$$

denote the set of all finite covers of T.
Let (S, S, μ) be a probability space and let T be a set. A stochastic process g on (S, S, μ) with time set T is a map $g: S \times T \rightarrow \mathbb{R}$, such that $g(\cdot, t)$ is μ-measurable for all $t \in T$. If $g: S \times T \rightarrow \mathbb{R}$ is a stochastic process we put

$$
g(s)=g(s, \cdot) \in \mathbb{R}^{T} \quad \forall s \in S
$$

Then $s \sim g(s)$ is a μ-measurable map from S into \mathbb{R}^{T} with its product σ-algebra. A first order stochastic process $g: S \times T \rightarrow \mathbb{R}$, is a stochastic process g, such that $g(\cdot, t) \in L^{1}(\mu)$ for all $t \in T$. The mean function of a first order stochastic process g is the function

$$
M(t)=\int_{S} g(s, t) \mu(d s)
$$

A stochastic process $g: S \times T \rightarrow \mathbb{R}$ is uniformly bounded in μ-mean, if we have

$$
\begin{equation*}
\int^{*}\|g(s)\|_{T^{\mu}}(d s)=\int^{*} \sup _{t \in T}|g(s, t)| \mu(d s)<\infty \tag{3.1}
\end{equation*}
$$

(Note that $\|g(\cdot)\|_{T}$ need not be μ-measurable). Finally we say that a stochastic process $g: S \times T \rightarrow \mathbb{R}$ is totally bounded in μ-mean, if g is a first order stochastic process satisfying

$$
\begin{equation*}
\forall \varepsilon>0 \exists A \in \Gamma(T): \int^{*} W_{A}(g(s)) \mu(d s)<\varepsilon \quad \forall A \in A \tag{3.2}
\end{equation*}
$$

Let $g: S \times T \rightarrow \mathbb{R}$ be a stochastic process, then clearly we have
(3.3) If g is uniformly bounded in μ-mean, then $g(s) \in B(T)$ for $\mu-a . a . \quad s \in S$ and $g \in L_{*}^{1}(\mu, B(T))$
(3.4) If g is totally bounded in μ-mean, then g is uniformly bounded in μ-mean.

Proposition 3.1. Let T be a set and (S, S, μ) be a probability space. Let $g: S \times T \rightarrow \mathbb{R}$ be a first order stochastic process, such that for all $\varepsilon>0$ there exist sets. L_{0} and L_{1} and stochastic processes $\quad g_{j}: S \times L_{j} \rightarrow \mathbb{R}$ for $j=0,1$ satisfying
(3.1.1) $\quad \forall t \in T \exists\left(x_{0}, x_{1}\right) \in L_{o} \times L_{1} \quad$ so that $\quad g_{O}\left(s, x_{o}\right) \leq g(s, t) \leq g_{1}\left(s, x_{1}\right)$
for all $s \in S$ and $\int_{S}\left\{g_{1}\left(s, x_{1}\right)-g_{O}\left(s, x_{o}\right)\right\} \mu(d s) \leq \varepsilon$
(3.1.2) $\exists A_{j} \in \Gamma\left(L_{j}\right): \int^{*} W_{A}\left(g_{j}(s)\right) \mu(d s) \leq \varepsilon \quad \forall A \in A_{j} \quad \forall j=0,1$

Then g is totally bounded in μ-mean.

Proof. Let $\varepsilon>0$ be given, and let $A_{o}=\left\{A_{1}, \ldots, A_{k}\right\}$ and $A_{1}=\left\{B_{1}, \ldots, B_{m}\right\}$ be the finite covers of L_{o} and L_{1} from (3.1.2).

Now put

$$
\left.\begin{array}{rl}
c_{i j} & =\{t \in T
\end{array} \left\lvert\, \begin{array}{r}
\exists\left(x_{o}, x_{1}\right) \in A_{i} \times B_{j}: g_{O}\left(s, x_{0}\right) \leq g(s, t) \leq g_{1}\left(s, x_{1}\right) \\
\text { for all } s \in S \text { and } \int_{S}\left\{g_{1}\left(s, x_{1}\right)-g_{O}\left(s, x_{0}\right)\right\} \mu(d s)<\varepsilon
\end{array}\right.\right\}
$$

Then by (3.1.1) we have that $\left\{C_{i j} \mid(i, j) \in \Lambda\right\}$ is a finite cover of T and

$$
\begin{equation*}
\int^{*} \theta_{i j} d \mu \leq \varepsilon \quad \forall(i, j) \in \Lambda \tag{i}
\end{equation*}
$$

Now let $(i, j) \in \Lambda$ and $t^{\prime}, t^{\prime \prime} \in C_{i j}$, then we choose $\left(x_{o}^{\prime}, x_{1}^{\prime}\right)$ and $\left(x_{o}^{\prime \prime}, x_{1}^{\prime \prime}\right)$ in $A_{i} \times B_{j}$ according to the defining property of $C_{i j}$. Then we have

$$
\begin{aligned}
& g\left(s, t^{\prime}\right)-g\left(s, t^{\prime \prime}\right) \leq g_{1}\left(s, x_{1}^{\prime}\right)-g_{O}\left(s, x_{O}^{\prime \prime}\right) \\
& =g_{1}\left(s, x_{1}^{\prime}\right)-g_{1}(s, v)+g_{1}(s, v)-g_{O}(s, u)+g_{O}(s, u)-g_{O}\left(s, x_{o}^{\prime \prime}\right) \\
& \leq W_{B_{j}}\left(g_{1}(s)\right)+\left\{g_{1}(s, v)-g_{O}(s, u)\right\}+w_{A_{i}}\left(g_{O}(s)\right)
\end{aligned}
$$

for all $(u, v) \in A_{i} \times B_{j}$. Taking infimum over all $(u, v) \in A_{i} \times B_{j}$ we find

$$
g(s, t)-g(s, t ") \leq W_{B_{j}}\left(g_{1}(s)\right)+\theta_{i j}(s)+W_{A_{i}}\left(g_{O}(s)\right)
$$

So interchanging t^{\prime} and $t^{\prime \prime}$ gives

$$
W_{C_{i j}}(g(s)) \leq W_{B_{j}}\left(g_{i}(s)\right)+\theta_{i j}(s)+W_{A_{i}}\left(g_{O}(s)\right)
$$

for all $s \in S$ and all (i,j) $\in \Lambda$. And by (3.1.2) and (i) we have

$$
\int^{*} W_{C_{i j}}(g(s)) \mu(d s) \leq 3 \varepsilon \quad \forall(i, j) \in \Lambda
$$

Thus g is totally bounded in μ-mean, since $\left\{C_{i j} \mid(i, j) \in \Lambda\right\}$ is a finite cover of T. \quad

Theorem 3.2. Let T be a set, and (S, S, μ) a probability space. Let $g: S \times T \rightarrow \mathbb{R}$ be a first order stochastic process, then the following four statements are equivalent:

$$
\begin{equation*}
g \text { is totally bounded in } \mu \text {-mean } \tag{3.2.1}
\end{equation*}
$$

$$
\begin{gather*}
\forall \varepsilon>0 \exists A \in \Gamma(T) \quad \exists f_{O} \in L^{1}(\mu, B(T)) \text { such that } \tag{3.2.2}\\
\int^{*}\left\|g(s)-f_{O}(s)\right\|_{A} \mu(d s) \leq \varepsilon \forall A \in A
\end{gather*}
$$

(3.2.3) There exists a totally bounded, ultra pseudo-metric

$$
\begin{gathered}
\rho \text { on } T, \text { satisfying: } \forall \varepsilon>0 \exists \delta>0, \text { such that } \\
\int^{*} \mathrm{w}_{\mathrm{B}_{\rho}(\mathrm{z}, \delta)}(\mathrm{g}(\mathrm{~s}), \mathrm{t}) \mu(\mathrm{ds}) \leq \varepsilon \quad \forall t \in \mathrm{~T}
\end{gathered}
$$

(3.2.4) There exists a totally bounded, uniformity U on T, satisfying: $\quad \forall \varepsilon>0 \exists U \in U$, such that

$$
\int^{*} w_{u(t)}(g(s), t) \mu(d s) \leq \varepsilon \quad \forall t \in T
$$

where

$$
B_{\rho}(t, \delta)=\{u \in T \mid \rho(u, t)<\delta\} \text { and } U(t)=\{u \in T \mid(u, t) \in U\}
$$ whenever ρ is a pseudo-metric on T and $U \subseteq T \times T$.

Remark (a): A totally bounded pseudo-metric on T is a pseudometric ρ on T, such that T may be covered by finitely many ρ-balls of radius ε for all $\varepsilon>0$.
(b) : A totally bounded uniformity is defined similarly, i.e. the uniformity U is totally bounded if the cover: $\{U(t) \mid t \in T\}$, of T admits a finite subcover for all $U \in U$.
$(c):$ An ultra pseudo-metric on T is a pseudo-metric ρ on T satisfying the following strong triangle inequality:

$$
\rho(u, v) \leq \max \{\rho(u, t), \rho(t, v)\}
$$

for all $u, v, t \in T$.

Proof. (3.2.1) \Rightarrow (3.2.2): Let $\varepsilon>0$ be given and choose a finite cover A of T, so that (3.2) holds. By replacing A with a suitable refinement we may assume that the sets in A are mutually disjoint. For each $A \in A$ we choose a point $t_{A} \in A$ and we define

$$
f_{0}(s)=\sum_{A \in A} g\left(s, t_{A}\right) 1_{A}
$$

Then f_{o} maps S into $B(T)$ and since $g\left(\cdot, t_{A}\right) \in L^{1}(\mu)$ we have that $f_{o} \in L^{1}(\mu, B(T))$. If $A \in A$, then

$$
\left\|g(s)-f_{0}(s)\right\|_{A}=w_{A}\left(g(s), t_{A}\right) \leq W_{A}(g(s))
$$

and so by (3.2) we have that

$$
\int^{*}\left\|g(s)-f_{o}(s)\right\|_{A} \mu(d s) \leq \int^{*} W_{A}(g(s)) \mu(d s) \leq \varepsilon
$$

for all $A \in A$. Thus (3.2.2) holds.

$$
(3.2 .2) \Rightarrow(3.2 .3): \text { By }(3.2 .2) \text { there exist } A_{k} \in \Gamma(T) \text { and }
$$ $f_{k} \in L^{1}(\mu, B(T))$, so that

$$
\begin{equation*}
\int^{*}\left\|g(s)-f_{k}(s)\right\|_{A} \mu(d s) \leq 2^{-k-1} \quad \forall A \in A_{k} \quad \forall k \geq 1 \tag{i}
\end{equation*}
$$

Now notice that the set of functions of the form

$$
h(s)=\sum_{B \in B} h_{B}(s) 1_{B}(\cdot)
$$

where $B \in \Gamma(T)$ and $h_{B} \in L^{1}(\mu) \quad \forall B \in B$, is $\|\cdot\|_{1}$-dense in $L^{1}(\mu, B(T))$. Hence we may assume that f_{k} is of this form for all k, i.e.

$$
\begin{equation*}
f_{k}(s)=\sum_{B \in B_{k}} h_{k B}(s) 1_{B}(\cdot) \tag{ii}
\end{equation*}
$$

where $B_{k} \in \Gamma(T)$ and $h_{k B} \in L^{1}(\mu) \quad \forall B \in B_{k} \forall k \geq 1$. Now let $F_{k}=\sigma\left(A_{1} \cup \ldots \cup A_{k} \cup B_{1} \cup \ldots \cup B_{k}\right)$, then F_{k} is a finite o-algebra on T. If $t \in T$ we let $F_{k}(t)$ denote F_{k}-atom containing t. Since $F_{1} \subseteq F_{2} \subseteq \ldots$ we have

$$
\begin{equation*}
F_{1}(t) \supseteq F_{2}(t) \supseteq \cdots \quad \forall t \in T \tag{iii}
\end{equation*}
$$

And we define

$$
\rho(u, v)=\sup \left\{2^{-n} \mid n \in \mathbb{N}, \quad F_{n}(u) \cap F_{n}(v)=\varnothing\right\}
$$

for $u, v \in T$, with the convention: $\sup \varnothing=0$. Then I claim that we have
(iv)

$$
\rho \text { is an ultra pseudo-metric on } T
$$

(v)

$$
B_{\rho}\left(t, 2^{-n}\right)=F_{n}(t) \quad \forall t \in T \quad \forall n \geq 1
$$

(vi) ρ is totally bounded.
(iv): Clearly $\rho(t, t)=0$ and $\rho(u, v)=\rho(v, u)$. Now let $u, v, t \in T$, and let $\rho(u, v)=2^{-p}$. Then $F_{k}(u)=F_{k}(v)$ for $1 \leq k<p$ and $F_{p}(u) \cap F_{p}(v)=\varnothing$, and so either $t \notin F_{p}(u)$ or $t \notin F_{p}(v)$. In the first case we have that $\rho(u, t) \geq 2^{-p}$, and in the second case we have that $\rho(v, t) \geq 2^{-p}$. Thus in any case we have

$$
\rho(u, v) \leq \max \{\rho(u, t), \rho(t, v)\}
$$

Thus ρ is an ultra pseudo-metric.
$(v):$ If $u \in B_{\rho}\left(t, 2^{-n}\right)$, then $\rho(u, t)<2^{-n}$, and so
$u \in F_{n}(u)=F_{n}(t)$. If $u \in F_{n}(t)$, then $u \in F_{j}(t)$ for all $1 \leq j \leq n$ by (iii). Hence $F_{j}(t)=F_{j}(u)$ for all $1 \leq j \leq n$ and so $\rho(u, t)<2^{-n}$, and $u \in B_{\rho}\left(t, 2^{-n}\right)$.
(vi) : Since F_{n} is a finite σ-algebra, we have that the set of F_{n}-atoms is finite. But then it follows from (v) that ρ is totally bounded.

Now let us show that the pseudo-metric ρ satisfies the condition in (3.2.3).

So let $\varepsilon>0$ be given and choose $k \geq 1$, such that $2^{-k}<\varepsilon$. Now put $\delta=2^{-\mathrm{k}}$ and (see (ii))

$$
f_{k}(s, t)=f_{k}(s)(t)=\sum_{B \in B_{k}} h_{k B}(s) 1_{B}(t)
$$

Then $f_{k}(s, \cdot)$ is F_{k}-measurable and so $f_{k}(s, \cdot)$ is constant on all F_{k}-atoms. Now let $t \in T$ and $u \in F_{k}(t)$, since $A_{k} \subseteq F_{k}$ is a covering of T, there exists an $A \in A_{k}$ such that $u, t \in F_{k}(t) \subseteq A$. Moreover since $f_{k}(s, t)=f_{k}(s, u)$ we have

$$
\begin{aligned}
|g(s, t)-g(s, u)| & \leq\left|g(s, t)-f_{k}(s, t)\right|+\left|f_{k}(s, u)-g(s, u)\right| \\
& \leq 2\left\|g(s)-f_{k}(s)\right\|_{A}
\end{aligned}
$$

And since $B_{\rho}(t, \delta)=B_{\rho}\left(t, 2^{-k}\right)=F_{k}(t)$ by (v) we have

$$
w_{B_{\rho}}(t, \delta)(g(s), t) \leq 2\left\|g(s)-f_{k}(s)\right\|_{A}
$$

Thus by (i) we conclude that

$$
\int^{*} \mathrm{w}_{\mathrm{B}_{\rho}(\mathrm{t}, \delta)}(\mathrm{g}(\mathrm{~s}), \mathrm{t}) \mu(\mathrm{ds}) \leq 2^{-\mathrm{k}}<\varepsilon \quad \forall t \in \mathrm{~T}
$$

and so (3.2.3) holds.
(3.2.3) \Rightarrow (3.2.4): Evident:
(3.2.4) $\Rightarrow(3.2 .1):$ Let $\varepsilon>0$ be given, then by (3.2.4) there exist $U \in U$ so that
(vii)

$$
\int_{w_{U(}(t)}^{*}(g(s), t) \mu(d s) \leq \varepsilon \quad \forall t \in T
$$

And since the uniformity is totally bounded there exist $t_{1}, t_{2}, \ldots, t_{n} \in T$ such that

$$
T=\bigcup_{j=1}^{n} U\left(t_{j}\right)
$$

Hence $A=\left\{U\left(t_{1}\right), \ldots, U\left(t_{n}\right)\right\} \in \Gamma(T)$, and by (vii) we see that (3.2) holds. Thus g is totally bounded in μ-mean, and the theorem is proved. \quad

Theorem 3.3. Let T be a set and (S,S,H) a probability space.
Let $g: S \times T \rightarrow \mathbb{R}$ be a stochastic process, which is totally bounded in μ-mean, then we have
(3.3.1)

$$
g \in L_{\pi}^{1}(\mu, B(T)) \subseteq \operatorname{LLN}(\mu, B(T))
$$

Hence if $\left\{\xi_{n}\right\}$ is a sequence of independent, identically distributed (S, S)-valued random variables defined on a probability space (Ω, F, P), and with μ as their common distribution law, then
(3.3.2)

$$
\sup _{t \in T}\left|m(t)-\frac{1}{n} \sum_{j=1}^{n} g\left(\xi_{j}, t\right)\right| \underset{n \rightarrow \infty}{\longrightarrow} 0 \quad \text { P-a.s. }
$$

where

$$
m(t)=\int_{S} g(s, t) \mu(d s)=E g\left(\xi_{j}, t\right)
$$

is the mean function of g.

Proof. By (3.3) and (3.4) we have that $g \in L_{*}^{1}(\mu, B(T))$. By (3.2.2) there exists $f_{k} \in L^{1}(\mu, B(T))$ and $A_{k} \in \Gamma(T)$, such that

$$
\begin{equation*}
\int^{*}\left\|g(s)-f_{k}(s)\right\|_{A}^{\mu(d s)} \leq 2^{-k} \quad \forall A \in A_{k} \quad \forall k \geq 1 \tag{i}
\end{equation*}
$$

Now put $\sigma_{k}=\left\{\|\cdot\|_{A} \mid A \in A_{k}\right\}$, since A_{k} is a finite cover of T we have that σ_{k} is a finite partition of the norm $\|\cdot\|_{T}$, and by (i) we have that $\sigma_{k}\left(f_{k}-g\right) \leq 2^{-k}$. Hence $f_{k} \xrightarrow{\pi} g$ (see Definition 2.5) and so (3.3.1) holds by Theorem 2.7. Now it is easily checked that $E g=m$ (see Example 3.5 (in particular (3.5.8)), and so (3.3.2) follows from (3.3.1) and (2.14).

Theorem 3.4. Let T be a set and (Ω, F, P) a probability space.

 Let $X_{n}: \Omega \times T \rightarrow \mathbb{R}$ be a sequence of independent identically distributed stochastic processes, such that for some $k \geq 1$ we have(3.4.1) $\quad X_{k}$ is P-perfect: $\Omega \rightarrow\left(\mathbb{R}^{T}, B^{T}\right)$
(3.4.2) $\quad X_{k}$ is totally bounded in μ-mean

Then we have
(3.4.3)

$$
\sup _{t \in T}\left|m(t)-\frac{1}{n} \sum_{j=1}^{n} X_{j}(\omega, t)\right| \underset{n \rightarrow \infty}{\longrightarrow} 0 \quad \text { P-a.s. }
$$

where $m(t)=E X_{n}(t)$ is the common mean function of the processes X_{n}.

Proof. Let $(S, S)=\left(\mathbb{R}^{T}, B^{T}\right)$ and let μ be the common distribution law on (S, S) of the processes X_{n}. Put

$$
g(s, t)=s(t) \quad \forall s \in S=\mathbb{R}^{T} \quad \forall t \in T
$$

Then g is a stochastic process on (S, S, μ) and $X_{n}(\omega)=g\left(X_{n}(\omega)\right)$ for all $\omega \in \Omega$ and all $n \geq 1$. Now let $\varepsilon>0$ be given, then by (3.4.2) there exists a finite cover A of T, such that

$$
\int^{*} W_{A}\left(X_{k}(\omega)\right) P(d \omega) \leq \varepsilon \quad \forall A \in A
$$

And since X_{k} is P-perfect and $X_{k}(\omega)=g\left(X_{k}(\omega)\right)$ it follows from (2.7) that

$$
\int^{*} W_{A}(g(s)) \mu(d s)=\int^{*} W_{A}\left(X_{k}(\omega)\right) P(d \omega) \leq \varepsilon \forall A \in A
$$

Hence g is totally bounded in μ-mean, and so the theorem follows from Theorem 3.3.

Example 3.5. Let (S, S, μ) be a probability space, T a set and $g: S \times T \rightarrow \mathbb{R}$ a map such that
(3.5.1)

$$
g(s)=g(s, \cdot) \in B(T) \quad \forall s \in S
$$

From Corollary IV.5.2 in [3] we have that $B(T)^{\prime}=b a(T)$ is the set of all finitely additive real valued set functions on (T, 2^{T}) which are of bounded variation, and the total variation of $\lambda \in$ ba(T) equals its norm as an element of $B(T)^{\prime}$.

Thus g is weakly μ-measurable (μ-integrable), if and only if the function

$$
\begin{equation*}
s \sim \lambda(g(s))=\int_{T} g(s, t) \lambda(d t) \tag{3.5.1}
\end{equation*}
$$

is μ-measurable (μ-integrable) for all $\lambda \in b a(T)$. In view of the result in [10] (see also [9] p.364-366) we have that non-o-additive functions $\lambda \in b a(T)$ are highly non-measurable, so weak measurability is a severe restriction, which in general is difficult to verify. Now let $g \in L_{W}^{1}(\mu, B)$, then $E g \in B(T) "$, and

$$
\begin{equation*}
(E g)(\lambda)=\int_{S} \mu(d s) \int_{T} g(s, t) \lambda(d t) \tag{3.5.2}
\end{equation*}
$$

[^0]where $\|\lambda\|_{1}$ is the total variation of λ over T. In particular we see (put λ equal to the Dirac measure at t), that
\[

$$
\begin{equation*}
m(t)=\int_{S} g(s, t) \mu(d s) \tag{3.5.4}
\end{equation*}
$$

\]

exists for all $t \in T$ and m is bounded, i.e. $m \in B(T)$. Hence we see that g is Gelfand integrable, if and only if g satisfies the following 3 conditions:
(3.5.5)
(3.5.6)

$$
\begin{aligned}
& s \leadsto \int_{T} g(s, t) \lambda(d t) \text { is } \mu \text {-integrable } \forall \lambda \in \text { ba }(T) \\
& m(t)=\int_{S} g(s, t) \mu(d s) \text { exists and is bounded on } T \\
& \int_{S} \mu(d s) \int_{T} g(s, t) \lambda(d t)=\int_{T} \lambda(d t) \int_{S} g(s, t) \mu(d s) \forall \lambda \in \text { ba }(T)
\end{aligned}
$$

(3.5.7)

And if so, then
$\mathrm{Eg}=\mathrm{m}$

Note that (3.5.7) states that g, μ and λ satisfies the Fubini Theorem for all $\lambda \in$ ba(T). Now the Fubini Theorem is only rarely true for finitely additive set functions, so condition (3.5.7) is indeed a severe restriction. व

Example 3.6. Let (S, S, μ) be a probability space and let $\eta_{1}, \eta_{2}, \ldots$ be a sequence of real valued random variables on (S, S, μ). Now put

$$
g(s, j)=\eta_{j}(s), g(s)=g(s, \cdot)=\left(\eta_{j}(s)\right)_{j=1}^{\infty}
$$

Then by the Borel-Cantelli lemmas we have (3.5.1) $\sum_{j=1}^{\infty} \mu\left(\left|n_{j}\right|>a\right)<\infty$ for some $a \in \mathbb{R} \Rightarrow g(s) \in \ell^{\infty} \mu-a . s$. and the converse implication holds, if $\eta_{1}, \eta_{2}, \ldots$ are independent. Similarly it is easily checked that if $\left\{\eta_{n}\right\}$ satisfies the following condition
(3.6.2) $\quad \forall \varepsilon>0 \quad \exists m \geq 1: \sum_{j=1}^{\infty} \sum_{n=m}^{\infty} \mu^{\infty}\left(\left.s| | \frac{1}{n} \sum_{i=1}^{n} \eta_{j}\left(s_{i}\right) \right\rvert\,>\varepsilon\right)<\infty$ then $g(s) \in l^{\infty} \mu-a . s$. and

$$
\begin{equation*}
\sup _{j}\left|\frac{1}{n} \sum_{i=1}^{n} n_{j}\left(s_{i}\right)\right| \xrightarrow[n \rightarrow \infty]{ } 0 \quad \quad \mu^{\infty}-a \cdot s . \tag{3.6.3}
\end{equation*}
$$

J. HOFFMANN-JØRGENSEN

i.e. $g \in \operatorname{LLN}\left(\mu, \ell^{\infty}\right)$ and $E g=0$.

Now suppose that $\eta_{1}, \eta_{2}, \ldots$ are independent gaussian random variables with $E \eta_{j}=0$ and $E \eta_{j}^{2}=\sigma_{j}^{2}$, then a straight forward argument using the remarks above shows that the following 3 statements are equivalent

$$
\begin{equation*}
g(s) \in \ell^{\infty} \quad \mu-a . s . \tag{3.6.4}
\end{equation*}
$$

$g \in \operatorname{LLN}\left(\mu, \ell^{\infty}\right)$
$\exists a>0: \sum_{j=1}^{\infty} \exp \left(-a / \sigma_{j}^{2}\right)<\infty$
And similarly that the following 3 statements are equivalent
(3.6.7) $\quad g(s) \in c_{o} \mu-a . s . \quad($ see $[3], p .239)$
(3.6.8) $\quad g$ is totally bounded in μ-mean
(3.6.9)

$$
\sum_{j=1}^{\infty} \exp \left(-a / \sigma_{j}^{2}\right)<\infty \quad \forall a>0
$$

Putting $\sigma_{j}^{2}=\frac{1}{\log j}$ for $j \geq 2$, we thus obtain an example of a gaussian sequence, which satisfies the uniform law of large numbers, but which is not totally bounded in μ-mean.

Finally suppose that $\eta_{1}, \eta_{2}, \ldots$ is a Bernoulli sequence, i.e. $\eta_{1}, \eta_{2}, \ldots$ are independent and

$$
\mu\left(\eta_{j}=1\right)=\mu\left(\eta_{j}=-1\right)=\frac{1}{2}
$$

Then $g(s) \in l^{\infty}$ and $\|g(s)\|_{\infty}=1$ for all $s \in S$. However, if $\left(\eta_{j}\right)$ is a perfect sequence, then by [10] we have that the map

$$
s \sim \int_{\mathbb{N}} \eta_{j}(s) \lambda(d j)
$$

where $\lambda \in \operatorname{ba}(\mathbb{N}) \quad($ see Example 3.5$)$ is μ-measurable, if and only if λ is σ-additive (i.e. if and only if $\lambda \in \ell^{1}$). Hence g is not weakly μ-measurable and so $g \notin \operatorname{LLN}\left(\mu, \ell^{\infty}\right)$. \quad

Example 3.7. Let (S, S, μ) be an atomfree probability space, such that $\{s\} \in S$ for all $s \in S$. Let T be a subset of S and define

$$
\begin{aligned}
& g(s, t)=\left\{\begin{array}{lll}
1 & \text { if }(s, t) \in S \times T & \text { and } s=t \\
0 & \text { if }(s, t) \in S \times T & \text { and } s \neq t
\end{array}\right. \\
& g(s)=g(s, \cdot)=1_{\{s\}}
\end{aligned}
$$

Then g is a map from S into $B(T)$, and by Example 3.4 we have

$$
\lambda(g(s))=\int_{T} g(s, t) \quad \lambda(d t)=\left\{\begin{array}{lll}
0 & \text { if } & s \in S \backslash T \\
\lambda(\{s\}) & \text { if } & s \in T
\end{array}\right.
$$

for all $\lambda \in \mathrm{ba}(T)=B(T)^{\prime}$. Hence $\lambda(g(s))$ is only non-zero for countably many $s \in S$, and since μ is atomfree we find
(3.7.1) $s \sim \lambda(g(s))$ is S-measurable $\quad \forall \lambda \in \operatorname{ba}(T)$
(3.7.2) $\quad \lambda(g(s))=0 \quad \mu-\mathrm{a} . \mathrm{s} . \quad \forall \lambda \in \mathrm{ba}(\mathrm{T})$
(3.7.3) $\quad g \in L_{G}^{1}(\mu, B(T)) \cap L_{*}^{1}(\mu, B(T))$ and $E g=0$
(3.7.4) $\quad\|g(s)\|_{T}=1_{T}(s) \quad \forall s \in S$

Moreover if $\varepsilon>0$ is given, then since μ is atomfree there exist $S_{1}, \ldots, S_{n} \in S$ so that $S=S_{1} U \ldots U S_{n}$ and $\mu\left(S_{j}\right) \leq \varepsilon$ for all $j=1, \ldots, n$. Then $A=\left\{T \cap S_{j} \mid 1 \leq j \leq n\right\}$ belongs to $\Gamma(T)$, and if $A=T \cap S_{j} \in A$ then

$$
\int^{*} W_{A}(g(s)) \mu(d s)=\int^{*} \sup _{u, v \in A} \mid 1_{\{u\}^{(s)}-1_{\{u\}}(s) \mid \mu(d s) \leq \mu^{*}(A) \leq \varepsilon}
$$

Hence we have

(3.7.5)	g is totally bounded in μ-mean
$(3.7 .6)$	$g \in \operatorname{LLN}(\mu, B(T))$

Note that even though $\lambda(g(\cdot))=0 \quad \mu-a . s . f o r$ all $\lambda \in B(T)^{\prime}$, then $\|g(\cdot)\|_{T}$ need not vanish $\mu-a . s . \quad$ (take $T \subseteq S$ with $\left.\mu^{*}(T)>0\right)$. Also note that even though g is Gelfand integrable, then $\|g(\cdot)\|_{T}$ need not be μ-measurable (take T to be a non- $\mu-$ neasurable subset of S). \quad.

4. Sample continuous stochastic processes

We shall now see that if a first order stochastic process has sufficiently continuous sample paths, then it is totally bounded in mean.

Let L be a topological space, $\varphi: L \rightarrow \mathbb{R}$ a function and A a subset of L; then we define the boundary function by

$$
\partial_{A}(\varphi, x)=\inf \left\{W_{A \cap U}(\varphi) \mid U \in N(x)\right\}
$$

where $N(x)$ is the set of all neighbourhoods of x. Clearly, if x belongs to the closure of A, then we have

$$
\begin{equation*}
\partial_{A}(\varphi, x)=0 \Leftrightarrow \lim _{\substack{y \rightarrow x \\ y \in A}} \varphi(y) \quad \text { exists and is finite. } \tag{4.1}
\end{equation*}
$$

And so φ is continuous at x, if and only if $\partial_{L}(\varphi, x)=0$. If $\alpha: 2^{L} \rightarrow \overline{\mathbb{R}}$ is a set function and $a \in \mathbb{R}$, then we write $a=\lim _{U \rightarrow x} \alpha(U)$ if

$$
\begin{equation*}
\forall \varepsilon>0 \quad \exists U \in N(x): \quad|\alpha(U \cap V)-a| \leqq \varepsilon, \quad \forall V \in N(x) . \tag{4.2}
\end{equation*}
$$

Note that since $U \sim W_{A \cap U}(\varphi)$ is increasing in U, we have

$$
\begin{equation*}
\partial_{A}(\varphi, x)=\lim _{U \rightarrow x} W_{A \cap U}(\varphi) . \tag{4.3}
\end{equation*}
$$

Theorem 4.1. Let T be a set and (S, S, μ) a probability space.
Let $g: S \times T \rightarrow \mathbb{R}$ be a first order stochastic process and suppose that for all $\varepsilon>0$ there exist compact topological spaces L_{j} and stochastic processes $g_{j}: S \times L_{j} \rightarrow \mathbb{R}$ for $j=0,1$, satisfying
(4.1.1) $\forall t \in T \quad \exists\left(x_{0}, x_{1}\right) \in L_{0} \times L_{1}: \quad \exists_{0}\left(s, x_{0}\right) \leqq g(s, t) \leqq g_{1}\left(s, x_{1}\right)$
for all $s \in S$ and $\quad \int_{S}\left\{g_{1}\left(s, x_{1}\right)-g_{0}\left(s, x_{0}\right)\right\} \mu(d s) \leqq \varepsilon$
(4.1.2)

$$
\begin{aligned}
& \forall j=0,1 \quad \forall x \in L_{j} \quad \exists A \text { a finite cover of } L_{j}, \quad \text { so that } \\
& \lim _{U \rightarrow x} \int^{*} W_{A \cap U}\left(g_{j}(s)\right) \mu(d s)<\varepsilon \quad \forall A \in A .
\end{aligned}
$$

Then g is totally bounded in μ-mean and so $g \in \operatorname{LLN}(\mu, B(T))$.

Proof. We shall apply Proposition 3.1. So let $\varepsilon>0$ be given and choose L_{0}, L_{1}, g_{0} and g_{1} according to (4.1.1) and (4.1.2). Then evidently (3.1.1) holds. Now let $x \in L_{j}$ and choose $A_{x} \in \Gamma\left(L_{j}\right)$ so that

$$
\lim _{U \rightarrow X} \int^{*} W_{A \cap U}\left(g_{j}(s)\right) \mu(d s)<\varepsilon \quad \forall A \in A_{x}
$$

Then we may choose a neighbourhood U_{x} of x so that

$$
\begin{equation*}
\int^{*} W_{A \cap U_{x}}\left(g_{j}(s)\right) \mu(d s)<\varepsilon \quad \forall A \in A_{x} \tag{i}
\end{equation*}
$$

since A_{x} is finite. By compactness of L_{j} we can find a finite set $F \cong L_{j}$ so that $L_{j}=U_{x \in F} U_{x}$. Now put

$$
A=\left\{A \cap U_{x} \mid A \in A_{x}, x \in F\right\}
$$

Then A is a finite cover of L_{j}, and by (i) we have

$$
\int^{*} W_{A}\left(g_{j}(s)\right) \quad(d s)<\varepsilon \quad \forall A \in A
$$

Thus (3.1.2) holds and the Theorem follows from Proposition 3.1. a

Theorem 4.1 turns out to be a very useful interpolation principle. But in order to make its application more convenient, we shall study Condition (4.1.2) a bit closer. First notice that if L is a topological space and $f: S \times L \rightarrow \mathbb{R}$ is a stochastic process, then we have

$$
\begin{equation*}
\int^{*} \partial_{A}(f(s), x) \mu(d s) \leqq \lim _{U \rightarrow x} \int^{*} W_{A \cap U}(f(s)) \mu(d s) \tag{4.4}
\end{equation*}
$$ for all $A \subseteq L$ and all $x \in L$. Our next lemma gives some sufficient conditions for equality in (4.4).

Lemma 4.2. Let L be a topological space (S, S, μ) a probability space and $f: S \times L \rightarrow \mathbb{R}$ a stochastic process. Let $x_{0} \in L$, let $A \subseteq L, ~ a n d$ let F be a μ-measurable subset of S satisfying $\exists U \in N\left(x_{0}\right)$ so that $\int_{F}^{*} W_{A \cap U}(f(s)) \mu(d s)<\infty$ L has a countable neighbourhood base at x_{0}
(4.2.3)

$$
\begin{aligned}
& \forall U \in N\left(x_{0}\right) \quad \exists V \in N\left(x_{0}\right) \quad \text { such that } V \cong U \text { and the } \\
& \text { map: } \quad s \sim 1_{F}(s) W_{A \cap V}(f(s)) \text { is } \mu-\text { measurable }
\end{aligned}
$$

where $N\left(x_{0}\right)$ is the set of all neighbourhoods of x_{0}. Then we have

$$
\begin{equation*}
s \sim 1_{F}(s) \partial_{A}\left(f(s), x_{0}\right) \text { is } \mu \text {-integrable } \tag{4.2.4}
\end{equation*}
$$

(4.2.5)

$$
\begin{aligned}
\lim _{U \rightarrow x_{0}} \int_{S}^{*} W_{A \cap U}(f(s)) \mu(d s) & =\lim _{U \rightarrow x_{0}} \int_{S \backslash F}^{*} W_{A \cap U}(f(s)) \mu(d s) \\
& +\int_{F} \partial_{A}\left(f(s), x_{0}\right) \mu(d s)
\end{aligned}
$$

```
    Moreover, if f: SxL -> \mathbb{R is an arbitrary stochastic process,}
and F\congS is \mu-measurable, then (4.2.3) holds in either of the fol-
lowing two cases:
```

Case 1°. There exists a countable set $D \subseteq A$ such that $f(s, \cdot)$ is D-separable on A for all $s \in F$.

Case 2 ${ }^{\circ}$. There exists a Blackwell σ-algebra G on L containing a neighbourhood base at x_{0} such that $A \in G$ and f is $S \otimes G-$ measurable.

Remarks. (a): Let L and M be topological spaces and $\varphi: L \rightarrow M$ a function. If D and A are subsets of L, we say that φ is D-separable on A if
(4.2.6) $\quad \varphi(G \cap A) \cong c l \varphi(G \cap D) \quad \forall G$ open $\cong L$
where clB denotes the closure of B. Note that if φ restricted to A is continuous, then φ is D-separable on A whenever D is a dense subset of A.
(b) : A σ-algebra G on a set L is called a Blackwell o-algebra if $\varphi(\mathrm{L})$ is an analytic subset of \mathbb{R} in the sense of [9], whenever φ is a real G-measurable function on L.
(c): Let L be a topological space; then the Baire σ-algebra, denoted $B a(L)$, is the smallest σ-algebra on L making all real valued continuous functions measurable. It is well-known that if L is K-analytic in the sense of [9] (e.g. if L is a compact Hausdorff
space), then $B a(L)$ is a Blackwell σ-algebra.
(d): The main feature about Blackwell σ-algebras, which we shall use here, is the so-called Projection Theorem. Suppose that G is a Blackwell σ-algebra on L, and S is an arbitrary σ-algebra on S; if $A \subseteq S \times L$ belongs to the product σ-algebra $S \otimes G$, then we have
(4.2.7) $\quad \pi_{S}(A)$ is μ-measurable, $\forall \mu$ a probability on (S, S), where $\pi_{S}(s, x)=s$ is the natural projection of $S \times L$ onto S.

Proof. By (4.2.1) - (4.2.3) there exists a countable neighbourhood base $\left\{V_{n} \mid n \geqq 1\right\}$ at x_{0} such that
(i)

$$
\mathrm{v}_{1} \supseteqq \mathrm{v}_{2} \supseteqq \cdots \supseteqq \mathrm{~V}_{\mathrm{n}} \supseteqq, \ldots
$$

$$
\begin{equation*}
\int_{F}^{*} W_{A \cap V_{1}}(f(s)) \mu(d s)<\infty \tag{ii}
\end{equation*}
$$

$$
\begin{equation*}
\varphi_{\mathrm{n}}(\mathrm{~s})=1_{\mathrm{F}}(\mathrm{~s}) \mathrm{W}_{\mathrm{A} \cap \mathrm{~V}_{\mathrm{n}}}(\mathrm{f}(\mathrm{~s})) \text { is } \mu \text {-measurable } \forall \mathrm{n} \geqq 1 \tag{iii}
\end{equation*}
$$

By (i) we have that $\left\{\varphi_{n}\right\}$ decreases, and since $\left\{V_{n}\right\}$ is a base at x_{0}, we have that

$$
\varphi_{\mathrm{n}}(\mathrm{~s}) \downarrow 1_{\mathrm{F}}(\mathrm{~s}) \partial_{\mathrm{A}}\left(\mathrm{f}(\mathrm{~s}), \mathrm{x}_{0}\right)
$$

By (ii) we have that φ_{1} is μ-integrable, and so by the monotone convergence theorem we have that (4.2.4) holds and

$$
\lim _{n \rightarrow \infty} \int \varphi_{n} d \mu=\lim _{n \rightarrow \infty} \int_{F} W_{A \cap V_{n}}(f(s)) \mu(d s)=\int_{F} \partial_{A}\left(f(s), x_{0}\right) \mu(d s) .
$$

J. HOFFMANN-JØRGENSEN

Now since $\left\{V_{n}\right\}$ is a neighbourhood base at x_{0}, we find (iv)

$$
\lim _{U \rightarrow x_{0}} \int_{F}^{*} W_{A \cap U}(f(s)) \mu(d s)=\int_{F} \partial_{A}\left(f(s), x_{0}\right) \mu(d s)
$$

Finally, since F is μ-measurable, we have

$$
\begin{aligned}
\lim _{U \rightarrow x_{0}} \int^{*} W_{A \cap U}(f(s)) \mu(d s) & =\lim _{U \rightarrow x_{0}} \int_{F}^{*} W_{A \cap U}(f(s)) \mu(d s) \\
& +\lim _{U \rightarrow x_{0}} \int_{S \backslash F}^{*} W_{A \cap U}(f(s)) \mu(d s)
\end{aligned}
$$

and so (4.2.4) follows from (iv).

Case 1°. Let f be a stochastic process such that $f(s, \cdot)$ is D-separable on A for all $s \in F$, where D is a countable subset of A. Then it is easily verified that

$$
W_{A \cap U}(f(s))=W_{D \cap U}(f(s))=\sup _{x, y \in D \cap U}|f(s, x)-f(s, y)|
$$

for all $s \in F$, and all open sets U in L. Since DNU is at most countable and $f(\cdot, x)$ is μ-measurable for all $x \in L$, it follows that $W_{A \cap U}(f(\cdot)) 1_{F}$ is μ-measurable whenever U is open. Thus (4.2.3) holds.

Case 2°. Now suppose that $A \in G$ and f is $S \otimes G$-measurable where G is some Blackwell o-algebra on L containig a neighbourhood base at x_{0}. Now let $G \in G$ and put

$$
\begin{aligned}
\varphi(s, x, y) & =|f(s, x)-f(s, y)| \\
\varphi_{0}(s) & =W_{G}(f(s))=\sup _{x, y \in G} \varphi(s, x, y) .
\end{aligned}
$$

Then φ is $S \otimes G \otimes G$-measurable, and $G \otimes G$ is a Blackwell σ-algebra.

Hence if $a \in \mathbb{R}$, then the set

$$
A=\{(s, x, y) \in S \times L \times L \mid \varphi(s, x, y)>a, x \in G, y \in G\}
$$

belongs to $S \otimes G \otimes G$. Let $\pi_{S}(s, x, y)=s$ be the natural projection of $S \times L \times L$ onto S. Then by the Projection Theorem (4.2.7) we have that the set

$$
\pi_{S}(A)=\{s \mid \exists x, y \in G: \varphi(s, x, y)>a\}=\left\{s \mid \varphi_{0}(s)>a\right\}
$$

is μ-measurable. Thus $W_{G}(f(\cdot))$ is μ-measurable for all $G \in G$, and since $A \in G$ and G contains a neighbourhood base at x_{0}, we conclude that (4.2.3) holds whenever $F \cong S$ is μ-measurable.

Recall that a topological space L is called first countable if every point in L has a countable neighbourhood base. And a subset A of L is called separable if there exists a countable set D such that $D \cong A \subseteq c l D$, where $c l D$ denotes the closure of D.

Theorem 4.3. Let T be a compact, first countable, topological space, and (S, S, μ) a probability space. Let $g: S \times T \rightarrow \mathbb{R}$ be a stochastic process which is uniformly bounded in μ-mean, and suppose that for all $\delta>0$ there exists a finite cover A of T satisfying (4.3.1) A is separable $\forall A \in A$ (4.3.2) $\quad \mu_{\star}\left(s \in S \mid \partial_{A}(g(s), t)=0 \quad \forall t \in T\right) \geqq 1-\delta \quad \forall A \in A$. Then g is totally bounded in μ-mean, and $g \in \operatorname{LLN}(\mu, B(T))$.

Remarks. (a): It follows from the proof below that we may replace Condition (4.3.1) by the following condition:
(4.3.3) $\left\{\begin{array}{l}\forall A \in A \exists D \subseteq A \quad \exists F \in S \text { such that } D \text { is countable, } \\ \mu(F) \geqq 1-\delta \text { and } g(s, \cdot) \text { is } D-s e p a r a b l e \text { on } A \quad \forall s \in F .\end{array}\right.$
(b): Let $F_{A}=\left\{s \mid \partial_{A}(g(s), t)=0 \quad \forall t \in T\right\}$ be the set occurring in (4.3.2). It is then easily checked that we have
(4.3.4) $\quad F_{A}=\left\{\begin{array}{l|l}s \in S & \begin{array}{l}\text { the restriction of } g(s, \cdot) \text { to } A \text { has a continuous } \\ \text { real valued extension to the closure of } A\end{array}\end{array}\right\}$
i.e. $s \in F_{A}$ if and only if there exists a continuous function ψ from $c l A$ into \mathbb{R} such that $g(s, t)=\psi(t) \quad \forall t \in A$.

Proof. We shall apply Theorem 4.1, so let $\varepsilon>0$ be given. Let ψ be the upper μ-envelope of $\|g(\cdot)\|_{T}$; then by assumption we have that $\psi \in L^{1}(\mu)$ and hence there exists $\delta>0$ such that
(i)

$$
\int_{\mathrm{B}} \psi \mathrm{~d} \mu \leqq \frac{1}{2} \varepsilon \quad \forall \mathrm{~B} \in S \quad \text { with } \mu(\mathrm{B}) \leqq \delta
$$

Now put $L_{0}=L_{1}=T$ and $g_{0}=g_{1}=g$. Then evidently (4.1.1) holds. Now let $t_{0} \in T$ and choose a finite cover A of T satisfying (4.3.1)-(4.3.2). Let $A \in A$; then by (4.3.2) there exist $F \in S$ so that $\mu(F) \geqq 1-\delta$ and $\partial_{A}(g(s), t)=0$ for all $t \in T$ and all $s \in F$. Then the restriction of $g(s, \cdot)$ to A is continuous, so by (4.3.1) there exists a countable set $D \subseteq A$ such that $g(s, \cdot)$ is D-separable on A for all $s \in F$. Hence by Lemma 4.2 (see Case 1°) we have

$$
\begin{aligned}
\lim _{U \rightarrow t_{0}} \int^{*} W_{A \cap U}(g(s)) & \leqq \int_{S \backslash F} 2 \psi d \mu+\int_{F} \partial_{A}\left(g(s), t_{0}\right) \mu(d s) \\
& =\int_{S \backslash F} 2 \psi d \mu
\end{aligned}
$$

since $W_{A \cap U}(g(s)) \leqq 2 \psi(s)$ for all $s \in S$ and $\partial_{A}\left(g(s), t_{0}\right)=0$ for all $s \in F$. Now since $\mu(S \backslash F) \leqq \delta$, it follows from (i) that (4.1.2) holds. Thus the Theorem follows from Theorem 4.1. ם

Corollary 4.4. Let T be a compact, separable, first countable, topological space and (S, S, μ) a probability space. If $C(T)$ is the Banach space of all real valued continuous functions on T with its usual sup-norm: $\|\cdot\| \mathrm{T}$, then we have
(4.4.1) $L_{\pi}^{1}(\mu, C(T))=\operatorname{LLN}(\mu, C(T))=L_{*}^{1}(\mu, C(T)) \cap L_{W}^{1}(\mu, C(T))$.

Remark. If T is a compact metric space, then $C(T)$ is $\|\cdot\|_{T}{ }^{-}$ separable, and so the equalities in (4.4.1) follows from Beck's theorem (see [1] p. 26). However, if T is not metrizable, then $C(T)$ is not $\|\cdot\| \|_{T}$-separable. The split interval, i.e. $[0,1] \times\{-1,1\}$ with its lexicographic order topology, provides an example of a compact, first countable, separable, Hausdorff space which is not metrizable.

Theorem 4.5. Let T be a compact, first countable topological space, G a Blackwell σ-algebra on T containing a base for the topology on T, and (S, S, μ) a probability space. Let $g: S \times T \rightarrow \mathbb{R}$ be an $S \otimes G$-measurable process which is uniformly bounded in μ-mean, and
suppose that for all $\delta>0$ and all $t \in T$ there exists a finite cover $A_{t, \delta}$ of T satisfying
(4.5.1) $\quad A_{t, \delta} \cong G \quad \forall t \in T \quad \forall \delta>0$
(4.5.2) $\quad \mu^{*}\left(s \in S \mid \partial_{A}(g(s), t)=0\right) \geqq 1-\delta \quad \forall A \in A_{t \delta} \quad \forall t \in T \quad \forall \delta>0$.

Then g is totally bounded in μ-mean, and $g \in \operatorname{LLN}(\mu, B(T))$.

Remark. Note that $\partial_{A}(g(s), t)=0$ for all $t \in T \backslash c l A$ and all $s \in S$, and that if $t \in c l A, \quad$ then we have

Also notice that Condition (4.5.2) is much weaker than Condition (4.3.2).

Proof. We shall apply Theorem 4.1 in much the same way as in the proof of Theorem 4.3. So let $\varepsilon>0$ be given. Let ψ be the upper μ-envelope of $\|g(\cdot)\|_{T^{\prime}}$ then by assumption we have that $\psi \in \mathrm{L}^{1}(\mu)$, and so there exists $\delta>0$ such that
(i)

$$
\int_{\mathrm{B}} \psi \mathrm{~d} \mu \leqq \frac{1}{2} \varepsilon \quad \text { if } \quad \mathrm{B} \in S \quad \text { and } \quad \mu(\mathrm{B}) \leqq \delta
$$

Now put $L_{0}=L_{1}=T$ and $g_{0}=g_{1}=g$. Then evidently (4.1.1) holds. Now let $t \in T$ and choose a finite cover $A=A_{t \delta}$ of T satisfying (4.5.1) and (4.5.2). By Lemma 4.2 (see Case 2° and put $F=S$) we have that $\partial_{A}(g(\cdot), t)$ is μ-integrable and

$$
\begin{equation*}
\lim _{U \rightarrow t} \int^{\star} W_{A \cap U}(g(s)) \mu(d s)=\int_{S} \partial_{A}(g(s), t) \mu(d s) \tag{ii}
\end{equation*}
$$

for all $A \in G$, in particular for all $A \in A_{t \delta}$ (see (4.5.1)). Let $A \in A_{t \delta}$ and put

$$
B=\left\{s \mid \partial_{A}(g(s), t)>0\right\} ;
$$

then B is μ-measurable and $\mu(B) \leqq \delta$ by (4.5.2). Hence by (i) and (ii) we have

$$
\lim _{U \rightarrow t} \int^{*} W_{A \cap U}(g(s), t) \mu(d s)=2 \int_{B} \psi d \mu \leqq \varepsilon
$$

since $\partial_{A}(g(s), t) \leqq 21_{B}(s) \psi(s)$. Thus (4.2.1) holds, and so the theorem follows from Theorem 4.1. ם

Corollary 4.6. Let \hat{T} be a compact, first countable, topological space, \hat{G} a Blackwell σ-algebra on \hat{T} containing a base for the topology on \hat{T} and $T \in \hat{G}$ a subset of \hat{T}. Let (S, S, μ) be a probability space, and $g: S \times T \rightarrow \mathbb{R}$ a stochastic process satisfying

(4.6.1)	g is $S \otimes G$-measurable
(4.6.2)	$\int_{t \in T}^{*} \sup _{t}\|g(s, t)\| \mu(d s)<\infty$

where $G=\{G \in \bar{G} \mid G \cong T\}$ is the trace of \hat{G} on T. Suppose that for every $\hat{t} \in \hat{T}$ there exists a finite cover $\hat{A}_{\hat{t}}$ of \hat{T} such that $\hat{A}_{\hat{t}} \subseteq \bar{G}$ and

$$
\begin{equation*}
\mu^{*}\left(s \mid \lim _{\substack{t \rightarrow \hat{t} \\ t \in A \cap T}} g(s, t) \text { exists }\right)=1 \tag{4.6.3}
\end{equation*}
$$

for all $A \in \hat{A}_{\hat{t}}$ with $\hat{t} \in \operatorname{cl}(A \cap T)$. Then g is totally bounded in μ-mean, and $g \in \operatorname{LLN}(\mu, B(T))$.

Remark. Since $T \in \hat{G}$, it follows easily that G is a Blackwell $\sigma-a l g e b r a$ on T, and from (4.6.1) and the Projection Theorem (4.2.7) it then follows that
(4.6.4) $\quad\|g(s)\|_{T}$ is μ-measurable (4.6.5) $\left\{s \mid \lim _{\substack{t \rightarrow \hat{t} \\ t \in A \cap T}} g(s, t)\right.$ exists $\}$ is μ-measurable for all $A \in \hat{G}$ and all $\hat{t} \in \operatorname{cl}(A \cap T)$.

Proof. We extend g to $\hat{g}: S \times \hat{T} \rightarrow \mathbb{R}$ by putting $\hat{g}(s, \hat{t})=0$ for $s \in S$ and $\hat{E} \in \hat{T} \backslash T$. Since $T \in \hat{G}$, we have that \hat{g} is $S \otimes \hat{G}-$ measurable, and by (4.6.2) we have that \hat{g} is uniformly bounded in μ-mean. If $\hat{t} \in \hat{T}$, we put

$$
A_{\hat{t}}=\left\{A \cap T \mid A \in \hat{A}_{\hat{t}}\right\} \cup\{\hat{T} \backslash T\}
$$

Then $A_{\hat{t}}$ is a finite cover of \hat{T}, and if $A \subseteq \hat{T}$ and $\hat{t} \in \hat{T}$, then

$$
\begin{aligned}
& \partial_{A \cap T}(\hat{g}(s), \hat{t})=\partial_{A \cap T}(g(s), \hat{t}) \\
& \partial_{\hat{T}^{\prime} \cap T}(\hat{g}(s), \hat{t})=0 .
\end{aligned}
$$

Since $\|\hat{g}(s)\|_{T}$ is finite $\mu-a . s ., i t$ follows from (4.6.3) and (4.5.3) that (4.5.2) holds. And since $T \in \hat{G}$ and $\hat{A}_{\hat{t}}^{\subseteq} \subseteq \hat{G}$, we see that $A_{\hat{t}} \subseteq G$, and so (4.5.1) holds.

Thus by Theorem 4.5 we have that \hat{g} is totally bounded in μ-mean, but this clearly implies that g is totally bounded in μ-mean. \quad.

Putting $\quad \hat{T}=\overline{\mathbb{R}}, \quad \hat{G}=B(\overline{\mathbb{R}}) \quad$ and

$$
\hat{A}_{\hat{t}}=\{[-\infty, \hat{t}[,\{\hat{t}\},] \hat{t}, \infty]\},
$$

we get the following corollary

Corollary 4.7. Let T be a Borel subset of $\overline{\mathbb{R}}, \quad(S, S, \mu)$ a probability space, and $g: S \times T \rightarrow \mathbb{R}$ a stochastic process satisfying
(4.7.1) $\quad G$ is $S \otimes B(T)$-measurable
(4.7.2) $\left.\int_{t \in T}^{*} \sup _{t \in(} \operatorname{s}, t\right) \mid \mu(d s)<\infty$

$$
\begin{equation*}
\mu^{*}\left(s \mid \underset{t \rightarrow u}{ } \lim _{t \rightarrow u} g(s, t) \underline{\text { exists })}=1 \quad \forall u \in T^{-}\right. \tag{4.7.3}
\end{equation*}
$$

$$
\mu^{*}\left(s \mid \underset{t \rightarrow u}{ } \lim _{t \rightarrow u} g(s, t) \underline{\text { exists })}=1 \quad \forall u \in T^{+}\right.
$$

where T^{-}and T^{+}are the set of all left,respectively,right limits points of T, i.e.

$$
\begin{aligned}
& T^{-}=\left\{u \in \overline{\mathbb{R}} \mid \exists\left\{t_{n}\right\} \cong T: \quad t_{n} \rightarrow u \text { and } t_{n}<u \forall n\right\} \\
& T^{+}=\left\{u \in \overline{\mathbb{R}} \mid \exists\left\{t_{n}\right\} \cong T: \quad t_{n} \rightarrow u \text { and } t_{n}>u \forall n\right\}
\end{aligned}
$$

Then g is totally bounded in μ-mean, and $g \in \operatorname{LLN}(\mu, B(T)) . \quad \square$

Clearly we have a similar result in more dimensions for any given family $\left\{\hat{A}_{\hat{t}} \mid \hat{t} \in \overline{\mathbb{R}}^{q}\right\}$ of finite Borel covers of $\overline{\mathbb{R}}^{q}$.

In the Glivenko-Cantelli case (see (1.1) and (1.2)) we have $S=T=R \quad$ and

$$
g(s, t)= \begin{cases}1 & \text { if } s \leqq t \\ 0 & \text { if } s>t\end{cases}
$$

and so the Glivenko-Cantelli theorem (1.2) is a direct consequence of Corollary 4.7.

In the q-dimensional Glivenko-Cantelli case we have $S=T=\mathbb{R}^{q}$ and

$$
g(s, t)= \begin{cases}1 & \text { if } s_{1} \leqq t_{1}, \ldots, s_{q} \leqq t_{q} \\ 0 & \text { otherwise. }\end{cases}
$$

Let $\quad \hat{T}=\overline{\mathbb{R}}^{q}$ and

$$
A_{\alpha \beta \gamma}(\hat{t})=\left\{\hat{u} \in \overline{\mathbb{R}}^{q} \mid \hat{u}_{j}=\hat{t}_{j} \forall j \in \alpha, \hat{u}_{j}>\hat{t}_{j} \forall j \in \beta, \hat{u}_{j}<\hat{t} \forall j \in \gamma\right\}
$$

whenever $\hat{t}=\left(\hat{t}_{1}, \ldots, \hat{t}_{q}\right) \in \overline{\mathbb{R}}^{q}$ and $\{\alpha, \beta, \gamma\}$ is a disjoint partition of $\{1, \ldots, q\}$. Then putting

$$
\hat{A}_{\hat{E}}=\left\{A_{\alpha \beta \gamma}(\hat{t}) \mid\{\alpha, \beta, \gamma\} \text { a disjoint partition of }\{1, \ldots, q\}\right\},
$$

we see that the multi dimensional version of the Glivenko-Cantelli theorem follows from Corollary 4.6.

Theorem 4.8. Let (Ω, F, P) be a probability space, and $\left\{\xi_{n}\right\}$ a sequence of independent, identically distributed, q-dimensional $(1 \leqq q<\infty)$, random variables on (Ω, F, P) such that (4.8.1) $\mu(\partial K)=0$ for all convex sets $K \cong \mathbb{R}^{q}$
where μ is the common distribution law of the ξ_{n} on \mathbb{R}^{q}. Let $M: \mathbb{R}^{q} \rightarrow[0, \infty]$ be an upper semi-continuous function such that M is μ-integrable. If Φ is the set of all functions, $\varphi: \mathbb{R}^{q} \rightarrow \overline{\mathbb{R}}$ satisfying:
(4.8.2) $\left\{s \in \mathbb{R}^{q} \mid \varphi(s) \geqq a\right\}$ is convex for all $a \in \mathbb{R}$
(4.8.3) $|\varphi(s)| \leqq M(s) \quad \forall s \in \mathbb{R}^{q}$,
then $\Phi \subseteq \mathrm{L}^{1}(\mu)$ and we have
(4.8.4)

$$
\sup _{\varphi \in \Phi}\left|\int \varphi d \mu-\frac{1}{n} \sum_{j=1}^{n} \varphi\left(\xi_{j}\right)\right| \underset{n \rightarrow \infty}{\rightarrow} 0 \quad \text { P-a.s. }
$$

Remarks. (a): If A is a subset of a topological space, then ∂A denotes the boundary of A, i.e. $\partial A=c l A \backslash i n t A$.
(b) : Notice that (4.8.1) holds in particular if μ is absolutely continuous with respect to a product of atom-free one-dimensional probability measures.
(c): A function φ satisfying (4.8.2) is usually called unimodal or quasi-concave.

Proof. First notice that by (4.8.1) we have that every convex set and every unimodal function is μ-measurable. Hence by integrability of M and (4.8.3) we find that $\Phi \subseteq L^{1}(\mu)$.

We shall apply Proposition 3.1 with $S=\mathbb{R}^{q}, \quad T=\Phi$ and $g(s, \varphi)=$ $\varphi(s)$ for $(s, \varphi) \in \mathbb{R}^{q} \times \Phi$. To do this, we need the so-called upper and lower Fell topologies.

Let Usc denote the set of all upper semi-continuous functions from \mathbb{R}^{q} into $\overline{\mathbb{R}}$. Then the upper Fell topology $\bar{\eta}$ on Usc is the weakest topology on Usc satisfying

$$
\begin{align*}
& \varphi \sim \sup _{s \in G} \varphi(s) \text { is lower semi-continuous } \forall G \text { open } \tag{i}\\
& \varphi \sim \sup _{s \in K} \varphi(s) \text { is upper semi-continuous } \forall K \text { compact. }
\end{align*}
$$

Then (Usc, $\bar{\eta}$) is a compact metric space and

$$
\varphi_{n} \rightarrow \varphi \text { in } \bar{n} \Longleftrightarrow\left\{\begin{array}{l}
\varphi(s) \leqq \limsup _{n \rightarrow \infty} \varphi_{n}\left(s_{n}\right) \quad \forall s \quad \forall s_{n} \rightarrow s \tag{iii}\\
\forall s \quad \exists\left\{s_{n}\right\}: s_{n} \rightarrow s \quad \text { and } \quad \varphi_{n}\left(s_{n}\right) \rightarrow \varphi(s) .
\end{array}\right.
$$

Now let $L_{1}=\Phi \cap$ Usc and $g_{1}(s, \varphi)=\varphi(s)$ for $(s, \varphi) \quad \mathbb{R}^{q} \times L_{1}$. It is then a routine matter to verify the following propositions:
(iv) $\quad L_{1}$ is a closed subset of (Usc, \bar{n})
(v) g_{1} is upper semi-continuous on $\mathbb{R}^{q} \times L_{1}$
(vi)

$$
\left\{\varphi_{\mathrm{n}}\right\} \subseteq \mathrm{L}_{1}, \quad \varphi_{\mathrm{n}} \rightarrow \varphi \quad \text { in } \quad \bar{n} \Rightarrow \varphi_{\mathrm{n}}(\mathrm{~s}) \rightarrow \varphi(\mathrm{s}) \quad \forall \mathrm{s} \in \mathrm{C}(\varphi)
$$

where $C(\varphi)$ is the set of continuity points of φ. If $D(\varphi)$ denotes the set of discontinuity points of φ and Q is a dense subset of \mathbb{R}, then the reader easily verifies the following inclusion:
(vii)

$$
D(\varphi) \cong \underset{q \in Q}{\cup} \partial\{\varphi \geqq q\} \quad \forall \varphi: \mathbb{R}^{q} \rightarrow \overline{\mathbb{R}}
$$

So by (4.8.1) and (vi) - (vii) we have
(viii)

$$
\mu(C(\varphi))=1
$$

$\forall \varphi \in \Phi$
(ix)

$$
\mu\left(s \mid \partial_{S}\left(g_{1}(s), \varphi\right)=0\right)=1 \quad \forall \varphi \in L_{1}
$$

Thus by Theorem 4.5 we have
(x)

$$
g_{1} \text { is totally bounded in } \mu \text {-mean. }
$$

Now let Lsc denote the set of all lower semi-continuous functions $\psi: \mathbb{R}^{q} \rightarrow \overline{\mathbb{R}}$ with its lower Fell topology η^{0}, i.e. the weakest topology Lsc satisfying
(i)* $\psi \sim \inf _{s \in G} \psi(s)$ is upper semi-continuous $\forall G$ open
(ii)* $\psi \sim \underset{s \in K}{\inf } \psi(s)$ is lower semi-continuous $\forall K$ compact.

Then exactly as above we have
$(x) * \quad g_{0}$ is totally bounded in μ-mean
where $L_{0}=\Phi \cap \operatorname{Lsc}$ and $g_{0}(s, \varphi)=\varphi(s)$ for $(s, \varphi) \in \mathbb{R}^{q_{\times}} L_{0}$.

Now let $\varphi \in \Phi$, and φ^{0} and $\bar{\varphi}$ be the lower respectively upper semi-continuous envelopes of φ. Since

$$
\left\{\varphi^{0}>a\right\}=\operatorname{int}\{\varphi>a\} \quad \text { and } \quad\{\bar{\varphi} \geqq a\}=\operatorname{cl}\{\varphi \geqq a\},
$$

we see that φ^{0} and $\bar{\varphi}$ are unimodal, and since M is upper semicontinuous and $(-M)$ is lower semi-continuous and $-M \leqq \varphi \leqq M$, we have

$$
-M(s) \leqq \varphi^{0}(s) \leqq \varphi(s) \leqq \bar{\varphi}(s) \leqq M(s) . '
$$

Thus $\varphi^{0} \in \mathrm{~L}_{0}$ and $\bar{\varphi} \in \mathrm{L}_{1}$ and moreover we have

$$
\begin{aligned}
& g_{0}\left(s, \varphi^{0}\right)=\varphi^{0}(s) \leqq \varphi(s) \leqq \bar{\varphi}(s)=g_{1}(s, \bar{\varphi}) \\
& g_{1}(s, \bar{\varphi})-g_{0}\left(s, \varphi^{0}\right)=0 \quad \forall s \in C(\varphi) .
\end{aligned}
$$

Hence conditions (3.1.1) and (3.1.2) hold by (4.8.1), (viii), (x) and (x)*. Thus by Theorem 3.1 we have that g is totally bounded in $\mu-$ mean and $g \in \operatorname{LLN}(\mu, B(\Phi))$, and so the theorem follows from (2.14). a

This work was supported by The Danish Natural Science Research Council

REFERENCES

1. A. Beck, On the strong law of large numbers, Ergodic Theory, Proc. Int. Symp. New Orleans 1961 (ed. F.B.Wright), Academic Press, 1963
2. Y. S. Chow and H. Teicher, Probability theory, Springer Verlag, 1978
3. N. Dunford and J. T. Schwartz, Linear operators, vol.I, Interscience, 1967
4. M. R. Fortet and E. Mourier, Resultat complementaire sur les élément aléatoires prenant leur valeur dans une espace de Banach, Bull. Sci. Math., 78 (1965), 24-30
5. J. Hoffmann-Jørgensen, Probability in Banach spaces, Ecole d'Eté de Probabilités de Saint Flour VI 1976, Springer Verlag, LNS 598 (1977)
6. J. Hoffmann-Jørgensen and G. Pisier, The law of large numkers and the central limit theorem in Banach spaces, Ann. Prob. 4 (1976), 587-599
7. J.-P. Kahane, Some random series, D. C. Heath, 1968
8. M. Loéve, Probability theory, 3rd edition, Van Nostrand, 1963
9. C. R. Rogers et al., Analytic sets, Academic Press, 1980
10. W. Sierpinski, Fonctions non complément additive et fonctions non measurable, Fund. Math. 30 (1938), 96-99
J. HOFFMANN-J \emptyset RGENSEN

Mathematisk Institut
Aarhus Universitet
Ny Munkegade 06-12 71 888000 Aarhus C
Danemark

[^0]: $|(E g)(\lambda)| \leq\|E f\|\|\lambda\|_{1}$

