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1.

VANISHING THEOREMS ON SINGULAR SPACES

J.H.M. Steenbrink.

INTRODUCTION

The classical vanishing theorem of Kodaira-Akizuki-Nakano [1] of which we
will describe a generalization to singular spaces is the following.

THEOREM. Let X be an n-dimensional compact complex manifold, L an ample line

bundle on X. Then

Hq(X,n§ ®L)=0 for p+q>n.
A partial generalization is furnished by Grauert and Riemenschneider [5]:
THEOREM. Let X be a compact complex space of dimension n, L an ample line

bundle on X and v : X ~ X a proper birational morphism such that X is smooth.
Then

a) Hq(x,n*e§ ®L)=0 for q >0 ,
b) an*n§ =0 for q > 0

This gives no information about the P for p # n. In fact, Ramanujam [11] ob-
serves that vanishing of Hq(X,ﬂ*Q§ ® L) in the terminology of the theorem of
Grauert Riemenschneider need not hold.

Two observations are fundamental for the understanding of the problem. The first
one, due to Grauert and Riemenschneider, is that to define Q; for an n-dimen-
sional singular space X one must specify which properties of 2" one wants to
remain valid: either its rdle as a dualizing sheaf or its function in the
vanishing theorems. They show that their vanishing theorem is no longer true if
one replaces n*9§ by Grothendieck's dualizing sheaf Wy Because the two
vanishing results above are closely related to and have been proved by Hodge
theory, it is desirable to focus attention to the Hodge theoretic properties

of the sheaves oP. On the other hand, it appears that for a singular space P
need not generalize to one single sheaf but to a complex of sheaves with
0-Tinear differential and coherent cohomology sheaves. This idea is present in
the work of Du Bois [4]. Following P. Deligne's work on mixed Hodge structures
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he shows , that to each complex algebraic variety X one may associate a filtered
complex (Kk,F) which resolves the constant sheaf C, and such that the complexes
GrEKk have OX - linear differentials and coherent analytic cohomology sheaves.
Moreover (Kk,F) is functorial and in a sense unique up to isomorphism in the
filtered derived category D+F(X,¢). In the smooth case Kk is realized by the
holomorphic De Rham complex and F is its "filtration béte" o

c>ka ={0 > e >0~ 95 > Q§+1 >oeee}
Guillén, Navarro Aznar and Puerta proved the following theorem ([7,Th. 6.6.1,
Th. 6.7.11) :

MAIN THEOREM. Let X be a compact complex variety of dimension n, L an ample line
bundle on X and (Kk,F) the filtered De Rham complex of X. Then

k @ L) =0 form>n ,

b) Hm(GrFKk) =0 form<porm>n.

a) H'(X,GrPk

Here H denotes hypercohomology and H stands for cohomology sheaf. We will deduce
the main theorem from

THEOREM 2. Let X be an n-dimensional complex projective variety, T < X such that
XNI ©s nomsingular,l an ample line bundle on X and m : X + X a proper birational
mapping such that X is nonsingular, £ = n'l(z) s a divisor with normal crossings

on X and © maps X~E isomorphically to XNL. Then

a) Hq(Y,JEnﬁ(]og E) @ n*L) = 0 for p+q > n ,

b) an*JEQ§(1og E) =0 for p+q > n .

Here n&(]og E) is the logarithmic De Rham complex and Je is the ideal sheaf of the
divisor E. Observe that statement a) is equivalent to

1) =0 for p+q < n

a') Hq(Y,Q§(log E)  n*L~
by Serre duality. If in a') one takes q=0, p < n, one obtains a special case of
Bogomolov's vanishing theorem (see [2,131).

The purpose of this note is, to make an advertisement for the important results
obtained in (7] and to present a relatively simple proof of the main theorem in
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the spirit of Ramanujam's proof of the Kodaira-Akizuki-Nakano vanishing theorem.
For simplicity we restrict ourselves to the case of a very ample line bundle L.
The general case can be obtained by passing to a finite covering, ramified along
a section of a high multiple of L. For more vanishing theorems the reader is re-
ferred to [7] and [131].

. THE FILTERED DE RHAM COMPLEX.

We give a short description of the construction of the filtered complex (Kk,F).

(2.1) Let X be a complex algebraic variety of dimension n. A simplicial space
of level k over X is a sequence XO""’Xk of complex algebraic varieties to-
gether with maps €43 : Xi > X1._1 for 0 < j <1 < k, where we put X = X—l’ satis-

fying e.

1j€i+1,j+1 = €4i%i¢l,] for all j < i :

“ Xy X =B Xg X

By composing any sequence of eq j's, q=0,...,1 one obtains well-defined maps

Let 8P = ((tg...unt)) ¢ RPHEP ) e,
'l-

t. =2 0 all i} be the standard p-simplex.
21 .

=0, 1

For all j < i one has the map e'*J: a > ' given by

eIt t. 1) = (t t. 1,0,t t, 1)
00 otisg 00 e +atyaps0styseestig)

(2.2) The geometric realization |X,| of the simplicial space X, over X is the
space, obtained from the disjoint union of all Xix A',i=0,.. .,k by identification
of the points

(x,e (1)) and (c45008)

for x ¢ Xi,t € A1_1,1 >1and 0 < j < i. One has a natural map

lel = [X,| — X

which is continuous.

We call X, ~ X a simplicial resolution of X if the Xi are smooth, the morphisms
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€43 are proper and |e| has contractible fibers.

In [7] the theory of mixed Hodge structures for complex algebraic varieties has
been built up using simplicial resolutions as above, which are obtained from
"cubical schemes", in contrast to Deligne's approach which uses a stronger kind of
simplicial schemes with maps both ways, which are necessarily infinite. Of course
the resulting mixed Hodge structures are the same.

(2.3) PROPOSITION. Let X be an n-dimensional complex algebraic variety. Then there
exists a simplictal resolution X, of X such that dim X_i < n-i.
PROOF. See [7,52].

REMARK. Suppose that X, - X is a simplicial resolution and that Z < X is a closed
subvariety which is transverse to all morphisms g5 ¢ Xi - X (e.g. a sufficiently
general hyperplane section if X is quasiprojective). Put Zi = ZxXXi. Then the Zi

form in a natural way a simplicial resolution of Z.

(2.4) If Y is a smooth complex variety, we let EQ denote the complex valued c”
De Rham complex of Y. It has a decomposition into Hodge types

m_ P»q
Eg= @ E
p+g=m

If X is a singular variety, we construct an analogous complex of sheaves as fol-
lows. We first choose a simplicial resolution X. -~ X. Then we let

.o m
KX - @ Eix EX.
i,m i
The differential in Kk has the form d=d'+d" where d' is ordinary differentiation
of C” forms and

"o RTREA . m m
A P I T MR PN

We filter Kk by

PRy = D @ g™
rzp i i

Then (Kk,F) is an incarnation of the filtered De Rham complex of X.

REMARK. This definition differs from the one used by Du Bois. He considers essen-
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tially Re,0y where @° denotes algebraic differential forms. One has a filtered
quasi-isomorbhism
lRe*Q)'(an — KX
(2.5) PROPERTIES (see [4,54]).
1. The differentials di : K; > K;+1 are differential operators of order one.
2. The differentials on the graded complexes

P.- _ Pye Pl .
GrFAX =F KX/F Ky
are Ox-linear and their cohomology sheaves are coherent analytic sheaves on X.
3. Kk is a resolution of the constant sheaf € on X.

4. If X is a compact algebraic variety over C, the spectral sequence of hyper-
cohomology

EP9 = WPFA(x,6rPK;) = HPYI(x,K;) = HPYA(x,L)
1 F™X X
degenerates at E; and abuts to Deligne's Hodge filtration: E?q = GrEHp+q(X,E).
5. Up to isomorphism in the filtered derived category D+F(X,E) of X, the complex
(Kk,F) does rot depend on the choice of the simplicial resolution X of X .
In particular the coherent sheaves
95,-Pk:
H GrFKX

are invariants of X as an analytic space.

(2.6) SMALL INCARNATIONS.

For some special types of spaces, Kk can be described up to quasi-isomorphism
without passing to a simplicial resolution.

- If E is a variety with normal crossings, then

(KgoF) =

aiso (ag/torsion, a)

where o is the "filtration béte". If E 1ies on a complex manifold Y with
dim Y = dim E+1 one has

Qé/torsion = QQ/JEQQ(log E)
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(Friedman).

If X has only toroidal singularities,

(Kk,F)q?SO (J*QU,O)

where j : U » X denotes the inclusion of the regular locus of X.

The condition that GrgKk be a resolution of OX defines "Du Bois singularities".
See [12,83] where it is shown that, if a normal Gorenstein surface X satisfies
this condition, then the only singularities of X can be rational double points,
simply elliptic points or cusps.

Suppose X has dimension n and X, -~ X is a simplicial resolution such that
dim Xi <n for i > 0. Then
n,. _ n:
GPFKX = £gx
where [-n] means a shift of n places to the right. Remark that X0 -+ X may be
any resolution of X and that E; is a fine resolution of ! .

X

Hence 0 0
i n,. i=-n n
H (GrFKX) = R eO*QX

0

By statement b) of the theorem of Grauert and Riemenschneider this vanishes for
i # n. Hence for any resolution = : X - X one has

n, . n
GFFKX q?so W*QY [-n] .

. THE FILTERED DE RHAM COMPLEX OF A PAIR.

(3.1) Let f : Y > X be a morphism of complex algebraic varieties. Then there
exist simplicial resolutions Y. - Y and X - X and a commutative diagram

3;

f.
—

< &— =<

—fs
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where f_ is a morphism of simplicial spaces. By pulling back differential forms
one obtains a mapping

* . . .
*: K — fK

which is compatible with the filtration F. We let Kk Y denote the cone of f*, i.e.

m
X,Y

m

m-1
X ® f.K

K Y

= K
d(g,n) = (-dg,dn + *(g)).

It carries a filtration F which is given by

m-1

- FP¢D P
PPy @ £,FPcy

We do not claim uniqueness of (Kk Y,F) in D+F(X,G) though this is probably true.

(3.2) EXAMPLE. Let Y be smooth and E < Y a divisor with normal crossings. Then
K; = Q% and Ké = né/torsion. As the map

f* 2y + Qp/torsion
is surjective, its cone is filtered quasi-isomorphic to Ker(f*). Hence
K?,E = JE Qi(log E)

and F corresponds again to the "filtration béte".

(3.3) PROPOSITION. Let X be a complex algebraic variety, £ < X a closed subvariety
such that X~z is smooth, w : Y -~ X a proper birational map such that Y is smooth,
E = n-l(z) is a divisor with normal crossings on Y and = maps Y~NE isomorphically
to XNz. Then for all p

. . +
GY'EKX,Z: R, J;2)(Tog E) in DY(X,0).

PROOF. The morphism = : (Y,E) » (X,z) of pairs induces a morphism
*

ol K).(,Z > F*KQ,E
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which is a filtered quasi-isomorphism by [4, Prop. 3.9].
(3.4) COROLLARY. With notations as above, for any line bundle L on X one has
m . m-
H'(X,GrPk; ® L) = K" P(¥,3.a8(log E) © n*L)

and

H"(GrPK;, o) = R P gpab(log E) .

VANISHING THEOREMS.

(4.1) We first reformulate our Main Theorem for pairs (X,z):

THEOREM 1. Let X be a complex projective variety of dimension n, I < X a
closed subvariety such that XN is smooth, L an ample line bundle on X. Then

a) Hm(X,GrEKk’ZeoxL) =0 forms>n ,
M, ~p,. -
b) H (GrFKX Z) 0 form<p orm>n

By Corollary (3.4) this follows from the more down-to-earth Theorem 2 as
formulated in the introduction.

(4.2) We first deduce the Main Theorem from Theorem 1. Observe that for each
p one has in D+(X,¢) the exact triangle

GriKy o > GrPKy > i,6rPk: > arPe; (113

where i : £ > X is the inclusion. Hence the sequence

m . m . m, . .
H (GrEKX’Z) > H(GrPKy) » H (1*GrEK2)

is exact for all m. If m > n, the first term is zero by statement b) from
Theorem 1 and the last term is zero by induction on the dimension. Hence
statement b) of the Main Theorem follows. Statement a) is proved by taking

337



J. H. M. STEENBRINK

the tensor product of (*) with L and considering part of the Tong exact hyperco-
homology sequence in a similar way.

(4.3) Because Theorem 1 follows from Theorem 2, we only have to prove Theorem 2.
We first consider statement a'):

HI(X,08 (1og E) o ) =0 forp+qg<n.

PROOF. Put w = n*L. We restrict ourselves to the case that L is very ample. Then
there exists Y ¢ |L| which is transverse to all mappings E n .n E - X if

E = E1 U...U Er This implies that Y=nu -1
with normal crossings on X. Hence D = Y n E is a divisor with normal crossings on

(Y) is smooth and YuE p1s a divisor

Y, mapping to S = £ n Y. Remark that Y~S is smooth, isomorphic to YD via w. We
have exact sequences (cf. [11, p.43])

(1) 0> 28 (log £) o u™' > 2B (log E) » 28 (log £) o 0 > 0

(2) 0> a¥  (log D) e w™' > 2 (log E) ® 0y > ab (log D) 0

By [8, Thm. 2] the pair (X-z,Y-S) is (n-1)-connected.
Hence the restriction mappings
HK (X2, 0) = HE(¥=S,0)

are isomorphisms for k < n-1 and injective for k=n-1. By [3] these mappings are
morphisms of mixed Hodge structures. Taking Gr? at both sides gives:
the mappings:

2 HY(X,2% (109 E)) - Hq(V,Qg(log D))

are isomorphisms for p + q < n-1 and injective for p+q = n-1. Moreover
=b_ o c__with
%q ™ ®pa° “pq

bog HI(V,2f (Tog E) © 0) » HI(V,2§ (10g D))

Cq HIF.ak (1og £)) » HI(Y,af (1og E) o ox)
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obtained from the sequences (2) and (1) respectively. By induction we may assume
that
Hq(V,Qg-l(]Og D)ow ) =0 for ptq < n

so b__ is an isomorphism for p+q < n-1 and injective for p+q = n-1. Hence the
same holds for Cpq’ which implies statement a').

(4.4) We now prove statement b):
Rwd Q§(]ogE=0 for p+tq > n .

Take Y as above and let U = X\Y. It clearly suffices to show that for all such U
r(u, R «J 92(109 E)) =0 for p+q > n .

Let T = n-l(U) = XY¥. Because U is affine, the Leray spectral sequence for
m:U~>U degenerates and we obtain the isomorphism

r(U.R%n,9p e (log £)) = HI(U,0p98 (109 £)|7) -

P _ p P _ p p
We let A" =4 QY (109 E+Y), B JEQX (log E) and C JDnv(log D).
We must show that HY (T, BP )“ 0 for p+g > n.As AplU Bplﬁ this is equivalent to
Hq(U,AplTj) = 0 for p+q > n

Because w induces an isomorphism from X\(VUE) onto X~(Yuz), by [9] we obtain that

HUOXSYLENY) = HN(XNY,5~Y) for all m .
Because X~Y and £~Y are affine this implies that
H'XSY, ExXY) =0 form>n .
Again considering GrE we obtain that
Hq(Y,Ap) =0 for ptq > n .

We have the exact sequence

HA(X,AP) > HA(U,AP) » Hq§1(Y,Ap) S HIFLE AP
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so our claim will follow from the following Temma.

4.5) LEMMA. HISE(W.AP) = 0 sor piq > n.
=R Y

PROOF. Taking residues along Y gives an exact sequence
0—>Bp—>Ap—>Cp—1—>0.
The connecting homomorphism gives a map

dg + HIT.CPh) = WJX.CP7) o HIGH(8P)

Claim: d is an isomorphism for p+q > n+l and surjective for p+q = n+l. Clearly
the Temma follows from this.
Proof of the claim: one has by [6,Thm. 2.8]

HIYH(%,8P) = Lin Extdtl (0, ,BP) .

Ox

KY?
As O, = O /w_k one obtains
KY = ™%X
Extl  (04.8°) =0  fori =1
=0y VKV

Bp ® wk/Bp

R

E&loy (Ok'Y’Bp)
Hence
HIZE (X,8P) = Lin HI(X,BP o < /BP) .

As in (4.3) one has sequences

(3), 0+ P louk!

-»Bp@wk@(}vf—» Cp®wk 0 .
By induction hypothesis Hq(Cr® ws) =0 if s =21, g+tr > n-1. This implies that
Hq(chbkaOY) =0 ifptg>n, k>2.

Hence Hq(Bp®Lu®Cv)£$ Hq$1@QBp).,Woreover sequence (3)1 gives a natural map

HI(CP™) > (8P o we Oy)
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which is surjective if p+q = n+l and an isomorphism for p+q > n+l. One easily
sees that this map corresponds to dp q Hence the claim follows and therewith

s

our Main Theorem.
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