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VANISHING THEOREMS ON SINGULAR SPACES 

J.H.M. Steenbrink. 

1. INTRODUCTION 

The classical vanishing theorem of Kodaira-Akizuki-Nakano [1] of which we 

will describe a gêneraiization to singular spaces is the following. 

THEOREM. Let X be an x\-dimensional compact complex manifold, L an ample line 
bundle on X. Then 

HQ(X,^ ® L) = 0 for p + q > n . 

A partial gêneraiization is furnished by Grauert and Riemenschneider [5]: 

THEOREM. Let K k a compact complex space of dimension n, L an ample line 
bundle on X and TT : X -> X a proper bivational morphism such that X is smooth. 
Then 

a) HQ(X,7r̂ ~ ® L) = 0 for q > 0 , 

b) Rqir̂ ~ = 0 for q > 0 . 

This gives no information about the ftP for p * n. In fact, Ramanujam [11] ob­
serves that vanishing of HC|(X,7T d~ ® L) in the terminology of the theorem of 
Grauert Riemenschneider need not hold. 
Two observations are fundamental for the understanding of the problem. The first 
one, due to Grauert and Riemenschneider, is that to défi ne ^ for an n-dimen-
sional singular space X one must specify which properties of ftn one wants to 
remain valid: either its rôle as a dualizing sheaf or its function in the 
vanishing theorems. They show that their vanishing theorem is no longer true if 
one replaces by Grothendieck's dualizing sheaf w .̂ Because the two 
vanishing results above are closely related to and have been proved by Hodge 
theory, it is désirable to focus attention to the Hodge theoretic properties 
of the sheaves oP. On the other hand, it appears that for a singular space 
need not gêneraiize to one single sheaf but to a complex of sheaves with 
û-linear differential and cohérent cohomology sheaves. This idea is présent in 
the work of Du Bois [4]. Following P. Del igné's work on mixed Hodge structures 
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ne shows , that to each complex algebraic variety X one may associate a filtered 
complex (K^F) which résolves the constant sheaf (Ex and such that the complexes 
GrpK̂  have 0̂  - linear differentials and cohérent analytic cohomology sheaves. 
Moreover (K^9F) is functorial and in a sensé unique up to isomorphism in the 
filtered derived category D+F(X,Œ). In the smooth case is realized by the 
holomorphic De Rham complex and F is its "filtration bête" o> : 

a>p x̂ = {0 " ' 0 ^x fix+1 ~* " * } * 

Gui lien, Navarro Aznar and Puerta proved the following theorem ([7,Th. 6.6.1, 
Th. 6.7.1]) : 

MAIN THEOREM. Let X be a compact complex variety of dimension n, L an ample line 
bundle on X and (K ,̂F) the filtered De Rham complex of X. Then 

a) Hm(X,Grj?K̂  ® L) = 0 for m > n , 

b) Hm(Grj?K£) =0 for m < p or m > n . 

Here h dénotes hypercohomology and H stands for cohomology sheaf. We will deduce 
the main theorem from 

THEOREM 2. Let X be an n--dimensional complex projective variety, E c X such that 
X^E is nonsingular,L an ample line bundle on X and TT : X X a proper birational 
mapping such that X is nonsingular, E = TT ^ ( E ) is a divisor with normal crossings 
on X and TT maps X̂ E isomorphically to X Î. 27zen 

a) HQ(X,JEd~(log E) ® TT*L) = 0 for p+q > n , 

b) RQTT:(tJÊ (log E) = 0 for p+q > n . 

Here ^(log E) is the logarithmic De Rham complex and J£ is the idéal sheaf of the 
divisor E. Observe that statement a) is équivalent to 

a') HQ(X,ftS(log E) ® TT*!."1) = 0 for p+q < n À 

by Serre duality. If in a') one takes q=0, p < n, one obtains a spécial case of 
Bogomolov's vanishing theorem (see [2,13]). 
The purpose of this note is, to make an advertisèment for the important results 
obtained in [7] and to présent a relatively simple proof of the main theorem in 
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the spirit of Ramanujam's proof of the Kodaira-Akizuki-Nakano vanishing theorem. 
For simplicity we restrict ourse!ves to the case of a very ample line bundle L. 
The gênerai case can be obtained by passing to a fi ni te covering, ramified along 
a section of a high multiple of L. For more vanishing theorems the reader is re-
ferred to [7] and [13]. 

2. THE FILTERED DE RHAM CQMPLEX. 

We give a short description of the construction of the filtered complex (K^,F). 

(2.1) Let X be a complex algebraic variety of dimension n. A simpliaial space 
ùf lêVêl k over X is a séquence XQ,...,X^ of complex algebraic varieties to-
gether with maps e^. : X.. X _̂̂  for 0 < j < i < k, where we put X = X^, satis-
fyi"9 eijei+l,j+l = eijeT+l,j f0r 311 j < 1 : 

(xj£ij(t)) (ldld) Xl r 5 xQ — x 

By composing any séquence of e . 's , q=0,...,i one obtains well-defined maps 
Q 5 J 

(xj£ij(t)) and (e..(x) 

Let Ap = {(tn, . . . , t ) c Fp+11 z:P_n t, = l, t, > 0 ail i} be the standard p-simplex. 
For ail j < i one has the map e 1 ^ : A -> A given by 

s 1 ' ^ , . . . , ^ . ^ ) = ( t Q 9 . . . 9 t . _ v 0 9 t y . . . 9 t . _ 1 ) . 

(2.2) The géométrie réalisation |X.| of the si mpli ci al space X. over X is the 
space, obtained from the disjoint union of ail X̂.x A1 ,i=0,...,k by identification 
of the points 

(xj£ij(t)) and (e..(x),t) 

for x £ X.,t e A1" ,i > 1 and 0 < j < i. One has a natural map 

Ici : |X.| — X 

which is continuous. 
We call X. + X a simplifiai resolution of X if the X. are smooth, the morphisms 

332 



VANISHING THEO REM S ON SINGULAR SPACE S 

ê j are proper and |el has contractible fibers. 

In [7] the theory of mixed Hodge structures for complex algebraic varieties has 
been built up using simplicial resolutions as above, which are obtained from 
"cubical schemes", in contrast to Deligne's approach which uses a stronger kind of 
simplicial schemes with maps both ways, which are necessarily infinité. Of course 
the resulting mixed Hodge structures are the same. 

(2.3) PROPOSITION. Let X be an n--dimensional complex algebraic variety. Then there 
exists a simplicial resolution X# of X such that dim X. < n-i. 
PROOF. See [7,§2]. 

REMARK. Suppose that X. -> X is a simplicial resolution and that Z c X is a closed 
subvariety which is transverse to ail morphisms : X̂  + X (e.g. a sufficiently 
gênerai hyperplane section if X is quasiprojective). Put Z. = Zx X.. Then the Z. 
form in a natural way a simplicial resolution of Z. 

(2.4) If Y is a smooth complex variety, we let Ey dénote the complex valued C°° 
De Rham complex of Y. It has a décomposition into Hodge types 

Em = tY 
p+q=m 

Fp>q 

If X is a singular variety, we construct an analogous complex of sheaves as fol-
lows. We first choose a simplicial resolution X. -> X. Then we let 

Kx = 
i .m 

Pm 
£i* EX. ' 

The differential in has the form d=d'+d,{ where d' is ordinary differentiation 
of C°° forms and 

A " v / i \ i+ J ssdr . dr dr i=mW sls D dkrrm 

We fil ter by 

W dkr s 
r>p i 

r-rjm-i-r 
ei.EX. 

Then (K ,̂F) is an incarnation of the filtered De Rham complex of X. 

REMARK. This définition differs from the one used by Du Bois. He considers essen-
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tially IRe^x where n' dénotes algebraic differential forms. One has a filtered 
quasi-isomorphism 

sks!w< 
xan 

kd w!% 

(2.5) PROPERTIES (see [4,§4]). 

1. The differentials d̂  : -> are differential operators of order one. 
2. The differentials on the graded complexes 

Epq ^lP+q(X,GrPK') eked +sik 

are 0^-linear and their cohomology sheaves are cohérent analytic sheaves on X. 
3. is a resolution of the constant sheaf (E on X. 
4. If X is a compact algebraic variety over (D, the spectral séquence of hyper-

cohomology 

Epq l̂P+q(X,GrPK') ^P+q(X,K') = HP+q(X,(E) 

dégénérâtes at E-̂  and abuts to Del igné's Hodge filtration: EÇq * Gr̂ Hp+q(X,(D). 
5. Up to isomorphism in the filtered derived category D+F(X9(D) of X, the complex 

(K ,̂F) does not dépend on the choice of the simplicial resolution X. of X . 
In particular the cohérent sheaves 

kqkd .dr 

are invariants of X as an analytic space. 

(2.6) SMALL INCARNATIONS. 

For some spécial types of spaces, can be described up to quasi-isomorphism 
without passing to a simplicial resolution. 

- If E is a variety with normal crossings, then 

( K r , F ) ? (ftA/torsion, a) t 'qiso t 

where a is the "filtration bête". If E lies on a complex manifold Y with 
dim Y = dim E+l one has 

^/torsion * Q^/J^(]og E) 
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(Friedman). 

- If X has only toroidal singularities, 

(K'F) - (j#n,'jscr) 
Â qiso u 

where j : U -> X dénotes the inclusion of the regular locus of X. 

- The condition that be a resolution of 0^ defines "Du Bois singul ari ties". 
See [12,§3] where it is shown that, if a normal Gorenstein surface X satisfies 
this condition, then the only singularities of X can be rational double points, 
simply elliptic points or cusps. 

- Suppose X has dimension n and X. -> X is a simplicial resolution such that 
dim X.j < n for i > 0. Then 

GRFKX = E0»EXQ C_N] 

where [-n] means a shift of n places to the right. Remark that XQ -> X may be 
any resolution of X and that Ey is a fine resolution of . 

Â0 x0 
Hence 

H (GrpKx) = R e0*flx . 

By statement b) of the theorem of Grauert and Riemenschneider this vanishes for 
i * n. Hence for any resolution TT : Y -> X one has 

Gr£/C ~ * ç& [-n] . 
r A q1S0 * A 

3. THE FILTERED DE RHAM COMPLEX QF A PAIR. 

(3.1) Let f : Y -> X be a morphism of complex algebraic varieties. Then there 
exist simplicial resolutions Y. -> Y and Xt -> X and a commutative diagram 

Y. f. X 

Y 
f 

X 
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where f. is a morphism of simplicial spaces. By pulling back differential forms 
one obtains a mapping 

f*: KX —* f*KY 

which is compatible with the filtration F. We let Y dénote the cone of f*, i.e. 

KX,Y " h * f*KY 

d(ç,n) = (-dç.dn + f * ( 0 ) . 

It carries a filtration F which is given by 

FpfÇ Y = FPKm ® fj*tf~l . 

We do not claim uniqueness of (K̂  Y,F) in D F(X,(E) though this is probably true. 

(3.2) EXAMPLE. Let Y be smooth and E c Y a divisor with normal crossings. Then 
Ky ~ ftÇ and K£ - ^/torsion. As the map 

f * : fty "*" ^r/torsion 

is surjective, its cone is filtered quasi-isomorphic to Ker(f*). Hence 

KY,E " °E Ŝ log Ê  

and F corresponds again to the "filtration bête". 

(3.3) PROPOSITION. Let X be a complex algebraic variety, E c X a closed subvariety 
such "that X^z is smooth, TT : Y -> X a proper birational map such that Y is smooth, 
E = ir~*(z) is a divisor with normal crossings on Y and TT maps ŶE isomorphically 
to XNE. Then for ail p 

Grfc * Fir#JEflÇ(log E) in D+(X,(D). 

PROOF. The morphism TT : (Y,E) -> (X ,z) of pairs induces a morphism 

TT* : sE + ÏÏ*^Y,E 
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which is a filtered quasi-isomorphism by [4 , Prop. 3 . 9 ] . 

(3 .4) CORQLLARY. With notations as above3 for any line bundle L on X one has 

JHM(X,Grjk* ® L) - Hm"P(Y,JÊ Ç(log E) ® TT*L) 

and 

Hm(GrPK-jE) * Rm"Pir#JEnÇ(log E) 

§4. VANISHING THEOREMS. 

(4 .1 ) We first reformulate our Main Theorem for pairs (X,l): 

THEOREM 1. Let X be a oomplex iprojective variety of dimension n, E c X a 
closed subvariety such that XNC smooth> L an ample line bundle on X. Then 

a) ^ . G r ^ . L) = 0 for m > n , 

b) «m(GrP«->z) = 0 /toz» m < p or m > n 

By CoroUary (3.4) this follows from the more down-to-earth Theorem 2 as 
formulated in the introduction. 

(4.2) We first deduce the Main Theorem from Theorem 1. Observe that for each 
p one has in D+(X,Œ) the exact triangle 

(*) H(Grjk* jE) + H(Grjk') + H(i*Gr^') 

where i : E X is the inclusion. Hence the séquence 

Hm(Grjk* jE) + Hm(Grjk') + Hm(i*Gr '̂) 

is exact for ail m. If m > n, the first term is zéro by statement b) from 
Theorem 1 and the last term is zéro by induction on the dimension. Hence 
statement b) of the Main Theorem follows. Statement a) is proved by taking 
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the tensor product of (*) with L and considering part of the long exact hyperco-
homology séquence in a similar way. 

(4.3) Because Theorem 1 follows from Theorem 2, we only have to prove Theorem 2. 
We first consider statement a'): 

Hq(X,tt£(log E) ® TT*!/"1) =0 for p + q < n . 

PRQQF. Put a) = TT*L. We restrict ourselves to the case that L is very ample. Then 
there exists Y e |L| which is transverse to ail mappings E. n...n E. -> X if 
E = E1 u...u E . This implies that Y = TT" (Y) is smooth and Y u E pis a divisor 
with normal crossings on X. Hence D = Y n E is a divisor with normal crossings on 
Y, mapping to S = £ n Y. Remark that Ŷ S is smooth, isomorphic to ŶD via TT. We 
have exact séquences (cf. [11, p.43]) 

(1) 0 -> tt§ (log E) ® a -* n£ (log E) + tt§ (log E) ® 0~ -> 0 

(2) 0 -+nv'l{]og D) ® uT1 + ^B(log E) ® Oy -> (log D) -> 0 

By [8, Thm. 2] the pair (X-z,Y-S) is (n-l)-connected. 

Hence the restriction mappings 

Hk(X̂ £,(D) ~-" Hk(Ŷ S,Œ) 

are isomorphisms for k < n-1 and injective for k=n-l. By [3] thèse mappings are 
morphisms of mixed Hodge structures. Taking GrJ? at both si des gives: 
the mappings: 

apq : Hq(X,^(log E)) - Hq(Y,^(log D)) 

are isomorphisms for p + q < n-1 and injective for p+q = n-1. Moreover 
a = b o c with pq pq pq 

b : Hq(Y,nj}(log E) ® Oy) Hq(Y,^(log D)) 

c : Hq(X,^(log E)) -> Hq(Y,ft$ (log E) ® Oy) 
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obtained from the séquences (2) and (1) respectively. By induction we may assume 
that 

Hq(Y,̂ Ë"1(log D) ® uT1) = 0 for p+q < n 

so b is an isomorphism for p+q < n-1 and injective for p+q = n-1. Hence the 
same holds for Cp ,̂ which implies statement a'). 

(4.4) We now prove statement b): 

rĈ *J£ ^$(log E) = 0 for p+q > n . 

Take Y as above and let U = X̂ Y. It clearly suffices to show that for ail such U 

r(U,Rq7r*JE^(log E)) = 0 for p+q > n . 

Let ïï = TT" 1 (U) = X̂ f. Because U is affine, the Leray spectral séquence for 
TT : U -> U dégénérâtes and we obtain the isomorphism 

r(U,RqTr,JE^(log E)) - Hq(ÏÏ,JE^(log E)^) . 

We let Ap = J£̂ P (log E+Y), Bp = (log E) and Cp = Jp^(log D). 
We must show that Hq(tT,Bp̂  ) = 0 for p+q > n.As Ap~ = B '̂jj this is équivalent to 
Hq(ïï,Ap|ïï) = 0 for p+q > n. 
Because TT induces an isomorphism from X̂ (YuE) onto X (̂Yuz), by [9] we obtain that 

Hm(X̂ Y,E->Y) - Hm(X\Y,z^Y) for ail m . 

Because X̂ Y and z^Y are affine this implies that 

Hm(X\Y, E^Y) =0 for m > n . 

Again considering Grp we obtain that 

Hq(X,Ap) = 0 for p+q > n . 

We have the exact séquence 

H^X.AP) + H^ÏÏ.AP) + H ^ ^ . A P ) . H^^X.AP) 
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so our cl ai m will follow from the following lemma. 

(4.5) LEMMA. Hq~ (X,AP) = 0 for p+q > n. 

PROQF. Taking residues along Y gives an exact séquence 

0 + Bp -, Ap + Cp_1 + 0 . 

The Connecting homomorphism gives a map 

Hm(Grjk* jE) + Hm(Grjk') + Hm(i*Gr^') 

Claim: dp ^ is an isomorphism for p+q > n+1 and surjective for p+q = n+1. Clearly 
the lemma follows from this. 
Proof of the claim: one has by [6,Thm. 2.8] 

HY(X,BP) ~- ] m ExtÇ (0kY,Bp) 

-k 
As 0,y - cWoo one obtains 

— 0~ (°kY,BP) = 0 for i * 1 

Ext*, (0ky5BP) - BP ®w/BP 

Hence 

HY(X,BP) * ljm Hq()T5BP®wk/BP) . 

As in (4.3) one has séquences 

/ox n rp-l k-1 Dp k rp k n (3). 0 -> CK ®OJ ->BK®u) ®0y->CK®w 0 

By induction hypothesis Hq(Cr® wS) = 0 if s > 1, q+r > n-1. This implies that 

Hq(BP® i/®0y ) = 0 if p+q > n, k > 2 . 

Hence Hq(Bp ® w ® ly)-^ H^ix '^) . Moreover séquence (3)^ gives a natural map 

Hq(CP_1) Hq(BP® a)® ) 
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which is surjective if p+q = n+1 and an isomorphism for p+q > n+1. One easily 
sees that this map corresponds to dp . Hence the claim follows and therewith 
our Main Theorem. 
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