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EXTENSION OF A PERVERSE SHEAF OVER 
A CLOSED SUBSPACE 

by Jean-Louis VERDIER (*) 

1.- REVIEW OF Sp 

i 
Let X be an analytic space, Ye »X a closed subspace, U = X - Y and 

j : U<—>X the inclusion map. Let C be the normal cone of Y in X . Denote again 
by i : Yc—>C the inclusion, set U' = C - Y , and let j :Uf<—>C be the inclu
sion. 

The specialization functor Sp goes from D (X) to the category 
const D (C) of constructible monodromic complexes [2]. It induces a functor const,mon 

again denoted by Sp from D (U) to D (U1) and by extension Sp 
const const,mon 

will also denote the identity functor D (Y) > D (Y) . Let us list some 
const const 

properties of Sp : all those Sp' s are exact. 

1) Sp "commutes" with i^, i , i', j ^ , j , D 

2) Sp transformes the fundamental octahedron F 

i*i*F i*i*F 

jijF i*i F 

1*1 j*j F 

into the corresponding one for Sp F 
(*) Extrait d'une lettre adressée à R. Mac Pherson en novembre 1982. Cette lettre 

est un commentaire sur le résultat de R. Mac Pherson et K. Vilonen, présenté 
dans ce colloque. 
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EXTENSION OF A PERVERSE SHEAF 

3) Sp preserves perversity. Hence Sp is an exact functor Per(X) >Per Mon(C) , 

and Sp commutes with the perverse cohomology functor. 

2.- THE EXTENSION PROBLEM : REDUCTION TO A CONE 

Denote by G1(U,C) the category whose objects are (G,S,a) where G€Per(U) , 
•k 

S 6 Per Mon(C) , a : j S -̂ -»Sp(G) , and whose morphisrosare the obvious one. 

PROPOSITION.- The functor gl : Per(X) »G1(U,C) that sends F to 

gl(F) = (j F, Sp(F), canonical) is an equivalence of categories. 

gl is faithful! : Suppose that a map m satisfies gl(m) =0 . Therefore ĵ j m = 0 

and by adjunction and distinguished triangle we see that there exists a factoriza-
* mT ' 

tion of m of the type F • î i F *i^i'G »>G . Passing to the 0-th perverse 
cohomology we see that m factors through 

F 1*

Pi*F n 
•k G 

. P * . . .P.t 
We know that F »i i F is surjective and i'G »G is injective. Hence 
n is unically defined by m but also by Sp (m) . Hence n = 0 

gl is fully faithful! : Let F, G £ Per(X) and (a,3) : gl(F) >gl(G) . We want 

to find m : F—>G such that gl(m) = (a,3) 

Consider the following commutative diagram with exact rows : 

(*) 

0 
i*

P

i

!F Sp(F) P. .* 
J*J SpF 

.PI.' 
i. R i F 
•k 

0 

3 p. j 3 
J* 

. p .. » 
xÄ R'i 3 

o . P. ! 
1 G 

«0 

The compatibility between a and 3 implies that 

P. 
Sp J*a 

P * 

The first claim is that 

(**) 

P. .* . P 1 . ! 
i* Ri F 

0 

P. p ' 

Pj*j
*G 

i > i ! G 0 

is commutative. This is because 

Hom(F,G) Hom(Sp F,Sp G) 

is bijective when G is supported on Y . 

Call 1(F) the image of F P. .* 
ĵ j F .We therefore have an exact sequence 
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J.-L. VERDIER 

0 1(F) P. .* .Pi.! 
R'i F 

0 

The commutativity of (**) gives an a1 : 1(F) »I(G) such that j a' =a . The 

second claim is that the diagramm of extensions 

0 i F 
•k 

F KF) 0 

P ' 

0 - . P. G 

a' 

•KG) '0 

1 
is commutative : since Ext (F,G) >Ext (Sp(F),Sp(G)) is bijective when G is 
supported on Y , it is enough to check the commutativity after applying Sp , 
and this commutativity is then given by (*). Hence there is a : F—»G such that 
.*- . _ 
j a = a . Modifying (a,3) by gl(a) , we can assume now that a = 0 . But then 
P. * P 1 f 

Ĵ j 3 = i,v R i'3
 == 0 . Hence (3 factors through 
Sp(F) p * 6' . P. i 

i, iSpG 
•Sp G 

since 3f can be lifted, 3 can also be lifted. 

gl is essentially surjective : Let (G,S, canonical) be an object of G1(U,C) 

The canonical map j*j s 
. P 1 . ! 
i / R i S 
•k 

0 defines a map P * 
i*j G 

u P » 
•o 

Set G' =keru . We have an exact sequence 

0 P » 
( o , i / i ' s ) 

(G,S,C) gl(G') 0 

Since Ext1(F,G) >Ext'(SpF, Sp G) is bijective when G is supported in Y 

this exact sequence lifts to Per(X) 

3.- REVIEW OF <f> AND ¥ . 

Assume that Y is a principal divisor and let f be an equation of Y . Then 

C(f) : C—>A and the projection C—>Y define an isomorphism C-^YxA 

(A the affine line). We have the usual functors ^ , (j)̂  , ̂ C(f) > ̂ C(f) ^ 

and the commutative diagram 

(*) 
Øf 

can var 

Wf t = 1-0 Wf 

as well as a similar diagram for C(f) 0 ) . 

1) We have <J>ĉf ̂ o Sp = (J)f > \(f ) ° SP = Wf can SP F = can f > var SP F = var F 

t(SpF) = t 

(1) "test un caractère japonais de lTécriture Katakana qui se lit "se". 
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EXTENSION OF A PERVERSE SHEAF 

2) ̂ Q(f) i-s simply the restriction at Yx {1} 

Using these statements and what is known of Sp , we get that 

3) ¥[-1] and cf)[-l] commutes with duality 

4) ¥[-1] and Ø (-1) preserve perversity. They are exact on perverse sheaves. 

They commute with perverse cohomology. 

5) F c jJ*F var is an isomorphism 

F — j , j F can is an isomorphism 

6) Let j ! j
*F F • 

j*j
*F 
be the canonical maps. Applying the functor $ and 

using the isomorphism in 5), we get (*). 

It is a nice exercise to look at the transform of the fundamental octahedron 

(section 1) by $ . 

4.- AN EQUIVALENCE OF CATEGORIES 

Assume that X = Yx A and f = pr2 . Denote by V and <|) the functors relati

ve to pr^ . All the complexes that we consider are monodromic with respect to 

pr̂  . Denote by Per(Y,-t) the category of perverse object on Y equipped with 

an endomorphism -fc such that 1 -"fc. is an automorphism. 

PROPOSITION.- The functor Ft >(̂ (F) [-1] ,19 from PerMon(U) to Per(Y,t) is an 

equivalence of categories. 

This comes from the fact that perverse objects are sheaves. 

Denote by Per(Y,can,var) the category of object of the form 

W can Ø var W 

where ¥ , <j) are perverse and 1 - var can is an automorphism (or equivalently 

1 - can var is an automorphism). 

PROPOSITION.- The functor F<—»(¥(F) [-1]-£ ĉKF) [-1]¥(F) [-1] ) is an equivalence 

of categories from PerMon(Yxâ) to Per(Y,can,var) . 

The proof is due to Deligne : the simple objects in Per Mon (Y xA.) are of three 

types 

a) Simple perverse objects with support in Y 

b) Simple perverse objects such that S=¥(M)[-1] is simple on Y and 

a(M) = multiplication by X£C for X^1 (such objects will be denoted 

(S,X)) 

c) Simple perverse M such that (̂M) [-1] is simple on Y and a(M) =Id 
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Notice that in case b) M is isomorphic to ĵ j M and jfj M and in case c) 
M is isomorphic to j , * j M and pr̂ i M where pr̂  : C—>Y is the canonical pro
jection. 
Simple objects in Per(Y,can,var) are of three types 
a) 0 > ({)—»0 where § is simple 

C clTl VcHT 
b) m • <j) • ¥ where ¥ is simple and var.can is multiplication by X £ 0 

(such object will be denoted by (lF,X)). 
c) Y >0 >V where ¥ is simple (denoted by OF,0)) 
it is easy to check that the functor Fi—•(¥(F)[-1] > ...) establishes a bijec-
tion between isomorphism classes. Then one has to check that this functor induces 
a bijection on Ext1 between simple objects. Now objects of type a) and b) don't 
mix, objects of type b) for different X don't mix, objects of type b) and c) 
don't mix. We have Extl((S1,X), (S2,X)) = Extl(S1,S2), Ext1(M,N) = 
Ext1 (<j)[-1 ]M, c(>[-1]N) when M and N have support in Y , 
Ext1(M,N) = Extl(li/[--1 ]M,y[-1 ]N) if M and N are of type c) . So it remains to stu
dy ExtL(M,N) when M is of type a) and N of type c). In the topological case 
N = pr'N' [-1] where N' is simple on Y . So Ext (M,N)=Ext (M,N') and we have 
a similar conclusion in Per(Y,can,var). The last case is Ext1(M,N) when M is 
of type c) and N of type a), and we have 

Exti(M,N) = Ext1(H/(M) ,N) = Ext l _ 1 (¥[-1 1 (M) ,cj>[-1 ] (N) ) 
and this is the same as in Per(Y,can,var). Now the proof of the equivalence goes 
by induction on the length of the different objects. 
COROLLARY 1.- Let YcX be a principal divisor and f an equation of Y . The 
functor Fi KF/U,¥f (F)[-1] -^-> <J)f(F)[-1] v a r > y (F)[-1] is an equivalence bet-
ween Per(X) and the category consisting of objects (G,̂  *<j> *¥,a) 
where G€Per(U), (¥—> (f)—>H/) 6 Per(Y,can,var) and a : ̂ ( G ) ^ ^ is an isomorphism 
such that "t(G) = a 1 ° var o can o a 
Remarks : 1) It is interesting to look at simple objects of PerMon(N) when N is 
a rank one vector bundle on Y . You see then the influence on the classification 
of the twisting of N (which provides a non trivial central extension of the T T ^ ) . 
2) All of this goes over to the case of perverse etale sheaves. And in the corol
lary 1 , one can use the tame (J) and T 
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EXTENSION OF A PERVERSE SHEAF 

3) The involution w-Ø of the category Per(Y,can,var) is the Fourier transform 

of PerMon(YxA) . 

Let Y czX be closed subspace and D : {f =0} a principal divisor containing Y, 

and FGPer(X-Y) . Then ¥f(F) [-1] is defined all over D and we have on D a 

morphism of perverse sheaves 

(*) yf(F)[-1] yf(F)[-1] . 

Let j : X - Y <—*X be the inclusion. The diagram (*) induces on D-Y the diagram 

Vf .(F)[-1] Y f .(F)[-1] 

and F being defined on X - Y we have a commutative diagram 

*f.j <F)[-1] 

can var 

Y f .(F)[-1] ^joj(F)[-1] 

COROLLARY 2.- The category Per(X) is equivalent to the category of objects of 

the type (F,S,a) where F € Per(X - Y) S =MF)[-1] 
Ø 

yf(F)[-1] 

S/D- Y y f ej(F)[-1] 
<f>f .(F)[-1] 

.(F)[-1] canonical 

and 

a is an isomorphism 

on y_ .(F)[-1] . 

This follows from the corollary 1. 

Assume now that F/X - Y is such that (|>_ .(F) =0 . Hence t/D - Y = 0 and *t 

factors through 

Yf (F)[-1] •Pi*yf(F)[-1] 
(Y) 

Fi!^f(F)[-1] Yf(F)[-l] 

The factorization in the above cor. should be of the form 

Ø 

Wf(-1) +
Pi*yf(F)[-l] Vyf(F)[-l] —>^f(F)[-l] 

(Y) 

Denote by Per(X;D-Y) the category of perverse object on X such that 

cj)foj(F)=0 . 

COROLLARY 3.- The category Per(X ; D - Y) is equivalent to the category of objects 

of the type (F,S) where F € Per (X - Y ; D - Y) , s= P i*y-1] 
Ø 

P.!Tf[-1] . 

'{Y} 

This follows from cor. 2. 
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J.-L. VERDI ER 

As an example suppose Y is a point x and let F be an object of Per(X- {x}) 

The generic divisors going through x will be transversal to F (i.e (J)(F) =0). 

To see this take a local embedding of (X,x) in (An,0) and look at XflH where 

H is an hyperplan in êJ1 

«• . ^ n—1 

Let X be the blow-up of X with center 0 and X̂ c: P the exceptionnal divisor. 

Take a Whitney stratification y6 of X , that stratifies F (defined over X - X Q) 

and X q . For generic H the proper transform H will be transversal to the 

stratification /i^ induced by on X q . But then by Whitney theory H will be 

transversal to in a neighbourhood of X^ . Hence for those H we will get 

(j)(F)=0 . Pick such an H , set XDH = D , then FePer(X.5 X - D) . 

According to the corollary 3, an extension of F to all of X is given by a 

diagram Ø 
p * 
i ¥f(F)[-1] 

Pi!yf(F)[-1] 

{x} 

where the objects are perverse sheaves over {x} , i.e vector spaces. In fact we 

have 
Pi*yf(F)[-1] = % V f ( F ) ) x (usual cohomology ! ) , 

V^f(F)[-l]= H{^}(D,yf(F)) 

In terms of balls and complex links we have 

Pi*y f (F)[-1]= H
 1(D £nX ô,F) , 

Pi!yr(F)[-1]= H
 1(D fìXx,F) . 

f c e o 

5,- RELATION WITH FOURIER TRANSFORM : A PROBLEM 

Assume now that X=A n, Y = 0 . Let F be an object of Per Mon(An -{O}) , and 

F an extension to A n . We have a diagram 

(*) 
F. 

P. ! 
j F 

Pj*F 

Let DE = {£=0} a hyperplane in general position with respect to F . Then it 

can be checked that 
Pi*yç(F)[-1]= ^(

PJjF) ç 

*ç(F)[-1]= f(F) 

Pi !^(F)[-l]=?( Pj ÄF) c 
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EXTENSION OF A PERVERSE SHEAF 

and that the map 
Ø 

p * " 
i Y 

P

i'W 

{0} 
comes from (*) by applying the Fourier transform. 

Hence those invariant are equipped with a natural action of TT^ (U) when U is an 

open subset of A , on which j F) is non singular. But then comes the follo

wing problem : 

To describe an extension, one can take any vector space V and a factorization of 

"t̂ Qj . But interprating the construction in terms of Fourier transform, one sees 

that V is endowed with a structure of ^-module ! I do not understand well what 

is happening. If all this is true this would certainly imply that the representa-
p.* P . ! r n . .. 

tions occuring in i ¥[-1] and i'̂ t-lj , well defined up to trivial represen
ts ) 

tations, have an extremal property that I can not formulate for the moment \;. 

J.L VERDIER 
Centre de Mathématiques de l'E.N.S 
ERA 589 

(*) Pour la réponse à cette question, voir la lettre de B. MALGRANGE p. 
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