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INTRODUCTION

Let X be a real manifold, F a sheaf on X, or better an objet
of D+(X), the derived category of the category of complexes bounded
from below of sheaves on X. Let T*X be the cotangent bundle to X.
We associate to F a closed conic subset of T*X, denoted SS(F),

the "micro-support of F" , as follows

*
Definition O0.1. : Let p = (xo,io) e TX . Then p ¢ SS(F) if and

*
only if there exists an open neighborhood U of p in T X such

that for any (x1,£1) e U , any real C1—function ¢ on X, with

¢(x1) =0, d¢(x1) = 51, we have : (1RT =0

{x;¢(X)20}(g))x1

In other words the micro-support of F describes the set of codi-

rections of X where F, and its cohomology, "do not propagate".
This definition is motivated by the following situation.

Assume X is a complex manifold, and let Tﬂ be a coherent module

over the Ring JDX of (holomorphic, finire order) differential ope-
*

rators. Let char( Tﬂ ) be the characteristic variety of T in T X.

Then we can interpret a well-known result of Zerner [1 ], Bony-

Schapira [ 1], Kashiwara [ 5], through the formula

(0.1) SS(RHom,. (T, ©O,)) < char( )

A natural problem then arising in the theory of (micro-)differential
equations, is to evaluate the set of codirections of propagation for
the sheaf of hyperfunction or microfunction solutions of Tff (or more
generally of a system of micro-differential equations). To be more
precise, let M be a real analytic manifold of dimension n, X a

complexification of M. Recall that the sheaf B, (resp. CM) of Sato's

M

*
hyperfunctions on M (resp. Sato's microfunctions on TMX, the conormal



MICROLOCAL STUDY OF SHEAVES

bundle to M in X) 1is defined by :
By = RI, (Oy) @ w, [n]

(resp. Cy = uM(@X) ® wy [n])

where Wy is the orientation sheaf on M, [n] means the n-shift

in D+(X), and (¢) 1is the functor of Sato's microlocalization

V!
along M (cf. Chapter 2).
Then the problem is: evaluate SS(lRHonli) (m, BM)) or
X
c ) - ) A .
SS(lRHoma(DX('YTI, m))- Taking F ]RHongx(Tﬂ, ﬁx) this is a parti
cular case of the following problem : given F ¢ Ob(D+OQ), and M a

real submanifold of X, calculate SS(IR['y (E)) or SS(uy(F)).

As we see, in this new formulation, we may forget that X 1is a

complex manifold, and we do not study separately the &)X—module'Tﬂ
from one side and the sheaf 0X on the other side. On the contrary
we work with the whole complex of solutions of T/ in (9X. The only
information that we keep is the geometrical data of the characteris-
tic variety, which is interpreted in terms of micro-support (in fact

we shall prove in Chapter 10 that the inclusion in (0.1) 1is an

equality).
Now let us come back to the subject of this paper.

We study in Chapter 4 and 5 the functorial properties of the micro-
support : behavior under direct or inverse images, functors
IRHom(+,*), - % + , specialization, Fourier-Sato transformation,
microlocalization (the construction of these functors are recalled
in Chapter 1 and 2). But in order to manipulate micro-supports, the
definition (0.1) given above is too much of a local one and one has
to replace it by a more global criterium. This is achieved in Chap-

ter 3, using a Mittag-Leffler procedure for sheaves (Theorem 1.4.3).
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The calculations of Chapters 4 and 5 are all essentially based on
the computation of the micro-support of the direct image of a sheaf
by an open immersion. In this case the procedure, and the result,
are very similar to those encountered in the theory of micro-hyper-
bolic systems (cf. our work [2]), and the set we obtain is defined
as a "normal cone", (Theorem 4.3.1.). The preliminaries concerning

such normal cones are presented in Chapter 1, §2.

The notion of micro-support allows us to work with sheaves "micro-
locally", that is, locally in T*X. In fact for a subset Q of T*X,
we 1introduce the triangulated category D+(X;Q) obtained from

D+(X) by localization on { , that is, by regarding as the zero
object the sheaves whose micro-support do not meet § . A useful tool
in the microlocal study of sheaves, is the "G-topology". The idea
of the G-topology is the following : in order to work microlocally,
let us say on X x U where X 1is open in a real vector space E

and U 1is an open cone in the dual space E*, the usual topology on
X is too strong, and may be weakened by introducing a closed convex
proper cone G in E whose polar set G° is contained in

(-U) U {0}, and by considering only those open sets Q of X such

that
(0.2) Q = (2 +G) NKX

Let XG be the space X endowed with the G-topology (i.e. : the

open subsets of X satisfy (0.2)) and let & be the continuous

G G

map X —> X Let QO and 91 be two G-open subsets of E such

G
that QO C 91, 91\ Qo ccX. then one proves (cf. Theorem 3.2.2.)

that for F e Ob(D+(X)) one has the isomorphism

“T1Re L IRT

(0.3) o
SR SUS

(F) ——> F in D (X Int (@ 2)) * Int(-6%))
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and moreover :

(0. 4) SS (07 RS ,IRT °)

(F)) . X x (-G
c- N\E, T

Thus the G-topology permits to cut off sheaves in the "dual variable",
which can be compared to the cut off of differential operators by
classical pseudo-differential operators. Remark that we had already
introduced the G-topology in our work [:2] in order to give a meaning
to the action of microdifferential operators on the sheaf of holomor-

phic functions.

With all these tools in hand, it is now not too difficult to extend

contact transformations to sheaves.

* *
Iet & : TY DOV > U« T X be a contact transformation and let
*
A be the image of the graph of ¢ by the antipodal map of T X. Let
K be a sheaf on X x Y, with SS(K) « A in a neighborhood of A ,

K satisfying some other suitable conditions (cf. Theorem 6.3.2.).

Then we prove that the transformation :

_ -1
(0.5) ¥t E—> Rq,, (kB ]! F)

gives an equivalence of categories between D+(X;U) and D+(Y;V).
Here a4 and q, denote the projections from X X Y to X and Y

respectively. We prove that such transformations WK always exist

locally, and are essentially unique up to the shift (i.e. : transla-
tion of the complexes in D+(X)). Moreover WK "commutes" to micro-

localization, up to shifts.

As a corollary, we obtain that micro-supports of sheaves are always

*
involutive subsets of T X (Theorem 6.4.1.).

In order to calculate the shifts which naturally appear when perfor-

ming a contact transformation, we introduce in Chapter 7 the notion of



INTRODUCTION

simple sheaves, (microlocally along a smooth Lagrangean manifold A
of T*X). This notion is analogous to that of "simple holonomic Modu-
les" of M. Sato, M. Kashiwara, T. Kawal [j ] or to that of "Fourier
distributions" of L. HOrmander [2]. This study requires classical
computations on the index associated to three Lagrangean manifolds
(the "Maslov index"), (cf. V.P. Maslov [1], J. Leray |2,

I,. H6rmander (loc. cit.)). For example if M 1is a submanifold of X,

*
the sheaf Z, on X is simple on T X, with shift % codim M. We

M M
study the functorial properties of simple sheaves, and in particular
the shift obtained by interchanging the two operations of microloca-

lization and contact transformation.

Next we derive some applications of our theory, (Chapters 8,9,10).

First we study 1IR- or € - constructible sheaves. Those sheaves are
characterized by some finitude properties and the fact that their
micro-supports are Lagrangean sets (and subanalytic in the real case,
C-analytic in the complex case). Thus the functorial properties of
constructible sheaves are derived from the functorial properties of

micro-supports.

For example we may perform contact transformations on IR-constructi -
ble shcaves. Moreover ({-constructible sheaves (on a complex manifold
X) are just those IR-constructible sheaves whose micro-support is
stable by the action of ¢ on T*X , and this allows us to state
theorems on direct images for (€-constructible sheaves by a holomor-
phic map £ : ¥ —> X , in the non proper case. In particular such
direct images are always (@-constructible when dim X = 1, locally

on Y.

Using the Riemann-Hilbert correspondence, wemay translate our results on
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C-constructible sheaves to obtain results for regular holonomic sys-
tems (M. Kashiwara, T. Kawai [6]), in particular results on direct
images in the non proper case. We also give a microlocal construction
of the Riemann-Hilbert correspondence which enables us to characte-
rize perverse sheaves as those sheaves whose shift is zero (microlo-

cally, and generically on their micro-support).

Then we study micro-differential systems on a complex manifold X,

or more generally bounded complexes of free C‘f’n;(—modules of finite
rank, where Z:l;{ is the ring of microlocal operators on X of Sato-
Kashiwara-Kawai (loc. Cit.). If ‘H‘[ is such a complex we recall how
the G-topology gives a meaning to the complex F = ]Rg_qgém(ﬁ/, @X)
and we relate the support of H{ to the micro-support of F X By this
method we obtain the involutivity of Supp(?ﬂ) which generalizes
the corresponding theorem of Sato-Kashiwara-Kawai (loc. cit.) for
coherent é’x—modules. when microlocalizing F along real submani-
folds of X, and applying the results of Chapter 5, we immediately
recover (and we even improve) the results of our previous work [ 2].
As another application of the relation between supp(‘m) and SS(F),
we give a bound to the characteristic variety of the restriction to
a complex submanifold Y of a coherent g)x—module TH . This gene-
ralizes previous works on this subject (Kashiwara-Kawail ES] P
Kashiwara-Schapira [3]). In a similar way we give a bound to the

Az
analytic wave front set of the distribution I (f. + io) J . We end

33
Chapter 10 with a new description of the action of éll;{ on &.,, by

sending él};{ in the sheaf of microlocal homomorphisms of ﬁx.

In the last chapter, we study the action of complex contact trans-
formations on the sheaf @X on a complex manifold X . More preci-
sely if ‘PK is the equivalence of categories defined in (0.5), and

K is a simple sheaf with shift n = dimmx (along a complex Lagrangean

10
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*
submanifold of T (X x Y)), then we prove that one can locally
"quantize" WK as an isomorphism between WK( @X) and @& in

D+(Y;V) (after shrinking V).

In particular if N and M are two real submanifolds of X such that
*
a complex contact transformation ¢ interchanges TNX N v and

*
T, X N U, then one can locally find an isomorphism beetween the shea-

M

ves uN(@X) ‘v and uM(@X) ‘U [d] where the shift d 1is explicitly
calculated. This improves previous results of Sato-Kashiwara-Kawal
(loc. cit.) who considered the case where N and M are real ana-
lytic and X 1is a complexification of N and M , and results of
Kashiwara-Kawai [4 | who considered the case where the Levi forms

of N and M where non degenerate. In fact our method is essential-
ly different, since we proceed with the sheaf @X itself, without
using the induced Cauchy-Riemann systems. As an application we obtain,

almost without any computation, new theorems for the vanishing of the

cohomology groups HJ(uM( 6&))p.

The main results of this paper have been announced in our papers

[4],5].

Let us conclude by thanking Mrs Catherine Simon for her excellent

typing and her great patience with our numerous corrections.

11






CHAPTER 1 - PRELIMINARIES

§1.1. Notations and conventions

1.1.1. Let X be a topological space, S a subset of X. We denote
by S and Int(S) the closure of S and the interior of S, res-
pectively.

For a sequence {xn} in X, X, —p~> X means that this sequence
converges to X.

In a metric space, the distance between two sets A and B 1is denoted
d(A,B).

Let E Dbe a real vector space, I a cone with vertex at O in E.

The polar cone, Fo, is defined by :

*
r° = {0 eE ; <v,6> %0 Vv e T}

*
where E is the dual space to E.

1.1.2. Let X be a real manifold of class c% (1 € o ® or a = w,

which means that X 1is real analytic). We denote by TX (resp. T*X)
the tangent (resp. cotangent) bundle to X. If Y is a submanifold
of X, TYX (resp. T;X) will denote the normal (resp. conormal) bundle
to Y. In particular TXX (resp. T;X) denotes the zero section of TX
(resp. T*X). We usually denote by 1 (resp. m) the projection from
TX (resp. T*X) to X.

If E 1is a vector bundle over X, p : E —> X 1its projection, we
identify X with the zero section of E, and denote by E the bund-
le E with the zero section removed. We denote by § the projection

E » X, and by "a" the anti-podal map in E (or E). If s is a

subset of E, s? is the image of S by this map.

13
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*
1.1.3. Assume a > 2. The canonical 1-form on T X 1is denoted by

1,...,xn)

*
qree Xy 3 ? Ej dxj) on T X, we have

wy or simply w. For a system of local coordinates (x) = (x

on X, (x ; &dx) = (x

* % *
The Hamiltonian isomorphism H from T T X to TT X associated to

dw is defined by
* * %
(1.1.1) <6,v> = <dw, v A H(B)> , v e TT X, 6 ¢ T T X

* % *
We shall identify T T X and TT X by =-H. Thus

39 )
(1.1.2) -H(<A, dx> + <u, d&>) = <), §E> - <y, §§> .
1.1.4. Let f : Y —> X be a map of class c*. We denote by Pe
and We » OF simply by p and @ , the maps associated to f , from
* * *
Y *xTX to TY and T X respectively
X
* * *
(1.1.3) TY<—— Y XT X ——> T X
°f X Tg

We also define
* -
(1.1.4) TYX = Ker Pe

*
Assume o > 2 and f is an embedding. The projection from TYX to

Y defines the embedding :

* * * %
TYXTYX 4—-———>TTYX

Y
*
Using the zero section of TYX we get the embeddings
* * * * %
(1.1.5) TYS—>TY X TyXe—> T TX

Y

* *
Remark that TYX is a Lagrangean submanifold of T X, and the

14
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Hamiltonian isomorphism (1.1.2) induces an isomorphism

*x % *
(1.1.6) TTX = T, TX
TYX

* *
In particular , replacing X by T X, ¥ by TXX' we find the

embedding :

* *
(1.1.7) T X&——> TT X .

§1.2. Normal cones
1.2.1. Let X be a real manifold of class Ca, and let S and V,

be two subsets of X. The normal cone of S along V , denoted
C(S,V) , is the closed cone of TX defined as follows (cf.

Kashiwara-Schapira [2]).
Let x € X, and choose a system of local coordinates in the neigh-

borhood of x. We define the closed cone CX(S,V) of TXX by

9 ¢ CX(S,V) <==> there exists a sequence {(cn,sn,vn)}
(1.2.1) in R'x s x Vv such that {sn} and {vn} converge to

x and {cn(sn - vn)} converges to 6
and we set

(1.2.2) cis,v) = U c(s,v) .
xeX X

If X 1is a vector space, a vector 6 ¢ TXX does not belong to
CX(S,V) if and only if there exists an open cone T , with 6 ¢ T,

and a neighborhood U of x such that
(1.2.3) ((tnNnv) +T)NuUNs=¢

If V 1is smooth, C(S,V) 1is invariant by TV. In this case we deno-

te by CV(S) the image of C(S,V) in the normal bundle TVX :

(1.2.4) Cy(s) = c(s,v)/1v

15
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For example if X 1is a vector space, S a closed conic subset,
V a linear subspace, we find C(S,V) =S + V .
o

1.2.2. Let X be a manifold of class C  , a > 2 , Y a submanifold.

Proposition 1.2.1. (cf. Kashiwara-Schapira [ 3]).

Let (y,t) be a system of local coordinates on X such that

Y = {(y,t) ; £ =0}, and let (y,t ; n,1) be the associated coordi-

* *
nates on T X, Let A Dbe a conic subset of T X. Then :

*
(y,n) e TY N C , (A) <==> there exists a

TYX

sequence {(yn,tn ; nn,Tn)} in A such that :

(v ing) —x—> (yin)
(1.2.5)

|t > 0

n| n >0 itnHTn| n

* *
(Remark that T Y 1is naturally embedded into T , T X by (1.1.5)

TYX

and (1.1.6)).

Proof

%*
We set A = TYX' First we remark that the isomorphism -H between
* *
T A and TAT X is given by :
9 0
<n,dy> + <t,dt> +F——-> <«n, =—> - <t, §E>

* *
and hence T Y 1is embedded into TAT X by

(Yl n dy) > ((Y:O H OIO) ;7 n '—)

16
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i) let {(yn,tn ; nn,Tn)} be a sequence satisfying the condi-
tion of the proposition. Remark that there exists a sequence {en},

e, >0 such that tn/an —> O, €n|Tn[ ——> 0 , and €, x> 0. In
1/2

fact we take € = (]tni/’lTnl) for ]tn||rn] # 0. Then we have :

(yn,tn H €n nn, El’l Tn) n > (Y,O ; OIO)

(yn:o ;7 0, ¢ Tl’l) —_—> (y,O ; 0,0)

e, (ki e, n ) —x—> (0 ; n)

*
ii) let (yin) € CA(A) N T Y . There exist a sequence

, T.)} in A, a sequence {(yA,O ; 0, Tﬁ)} in A , and

{(yn,trl Y n

n
a sequence {cn} in I1R' such that :
(Y ’ t HE Tn) _—_ﬁ_—> (Y,O H OIO)
(y', O H Ol Tl"l) ‘—n_> (YIO H 0,0)

> (O;n)

The sequence {(yn, tyiocy Ny cp Tn)} satisfies the condition of

the proposition. |}

. ok *
Now let 1 denote the projection from TYX = TYX\\Y to Y, and let

p and W be the natural associated maps :

"
H

* o % * ok
- R—
TY<p TYXTYX = >TTYX x T X
Y TYX

Using the same notations as for Proposition 1.2.1. and a similar

proof, we obtain :

*
Proposition 1.2.2. : Let A be a conic subset in T X. Then :

(yin) € p w'"1 C,, (A) <==> there exists a sequence

{lypr ty # ngy 1)} in A which satisfies (1.2.5) and also

17
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(1.2.6) !Tn| @ 0 °

*
Remark that if we identify X with the diagonal of X x X and T X

*
with TX(X x X) by the first projection, we get a natural projection:

w TTX —> T X

This projection p may also been described as the projection

* . * . o %
T X xTX -> T X associated to m : T X > X.
X
Definition 1.2.3. : For a pair (A1,A2) of two conic subsets of
*
T X we set :
~ _ * a
Ay v A, = T X NCA, A
A, *a, = pw—1C(A1 sk Byl )
© T X T X
*
Corollary 1.2.4. : Let A1 and A, be two conic subsets of T X.
Then
a) (x;8) ¢ A1 ¥ A2 <==> there exist sequences {(xn;gn)} in A1
[ ] .
and {(x};£')} in A, such that
i — v L
xn > x , Xl'l > X En+£ n>€
(1.2.7)
- [
l2q = =yl gl ——> 0
b) (x,&) ¢ A1 4 A, <==> there exist sequences {(xn,gn)} in A1
and {(xé;&ﬂ)} in A, which satisfy (1.2.7) and also
(1.2.8) |£n| et
et f ; Y —> X Dbe a map of class Ca ,0 > 2 , A a conic subset

*
of T X. We may consider Y as a closed subset of Y x X by the

18
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graph map. Let p and w be the maps naturally associated to the

embadding Y &> Y x X.

Definition 1.2.5. : Let f : Y —> X beamap of class c® ,
*

o > 2, and let A be a conic subset of T X. One sets

:# * *

f A) = %

(A) TY N CTY(YXX)(TYY X A)

5,/1: - *

bid A) = .

o (B) oW CT§(YXX)(TYY X A)
Proposition 1.2.6. : In the situation of Definition 1.2.5., let

(y) (resp. (x)) be a system of local coordinates on Y (resp. X),

* *
(yim) (resp. (x;&)) the associated coordinates on T Y (resp. T X).

Then

i) (y;mn) e f7%(A) <==> there exists a sequence {(yn;(xn;gn))}ig

Y x A such that

y >y X > f(y) ,

n n n n

(1.2.9)

t
£y )& —> 0 Ix, - £y )] el —

ii) (yrn) € fz#(A) <==> there exists a sequence {(yn;(xn;in))}ig

Y x A which satisfies (1.2.9) and also

(1.2.10) le, | -

The proof follows immediately from Proposition 1.2.1. .

Remark that if f 1is an embedding, we find by Proposition 1.2.1.

and 1.2.2.

7@ = Ty noc, (a)

19
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# B}
£7@ = ow 'C,, (a)

Remark 1.2.7.: i) Let A1 and Az be two closed conic subset of

* *
T X, and assume (A1 AZ) N U =¢@ , for an open subset U of T X.

8 +>

Then we find

+>

(A1 A2)0U=(A1+A2)0U

(Recall that A, + B, = {(x,£1+£2) ; (x,£1) € A1, (x,gz) € AZ})’

. " a * ~ _
In particular if A1(1 A2 C_TXX , then A1 + A2 = A1 + A2

*
Similarly if A 1is a conic closed set in T X such that

*
fz%(A) NV =¢g , for an open set V of T Y , then

A nv=pow @AV

1

* - *
In particular if TYX N ®© (A) is contained in Y X TXX , then
X

£7 () = p 7 (A).

ii) Let g : 2 —>Y and f : Y —> X be two
*
maps of class Ca, o > 2. Let A be a conic subset of T X. Assume

f is smooth. Then

(1.2.11) g7 (7 @) = (£ .« )7 (a)

1.2.3. Now we recall the notion of conormal to a subset S (cf.

Kashiwara-Schapira [2 ]). For a subset S of X, the strict normal
cone is
(1.2.12) N(S) = TX\C(X\S,S)

This is an open convex cone in TX and by the definition N, (S)
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contains a vector 6 if and only if there exists (for a choice of
local coordinates in a neighborhood of x) an open cone T contai-

ning & anda neighborhood U of x such that :
unNn (snu) +T)c s

*
The "conormal cone to S", denoted N (S), is the polar set to N(S) :

* *
N (S) = {6 e T X ; <v,0> %0 Vv € NX(S)}
(1.2.13)
* *
) = U N (S)
xeX

*
This is a closed convex cone in T X which contains X. Remark

that :
NX(S) =T X <=>x ¢ clos(S) or x e Int(S)
N_(S) = @ <==> N.(S) = T.X
X b X
NX(S) @ <===> N;(S) is a proper cone (a cone is

called proper if it contains no line).

§1.3. Sheaves

1.3.1. In all this paper we fix a unitary ring A, and we shall
work with sheaves of A-modules. If not otherwise specified, A-module
means left A-module, but of course, if we write for example M @A N,

M 1is supposed to be a right A-module.

We write for short M ® N or Hom(M,N) instead of M ® N or

A
HomA(M,N), when there is no risk of confusion. In fact in many ques-
tions, as for the definition of the micro-support, it is equivalent

to work with sheaves of A-modules or with sheaves of Z-modules.

Let X be a topological space. We denote by D(X) the derived

category of the abelian category of sheaves of A-modules and D+(X)
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b(X) denote the full subcategories of D(X) consisting of

and D
complexes with cohomology bounded from below, and bounded cohomology,
respectively. If we need to specify A, we write D(X;A) instead of

D(X), and similarly for D+(X;A), Db(X;A).

We shall usually denote an object of D+(X) by a underlined capital

letter such as F , or G.

We denote by F[k] the object of D(X) obtained by shifting F by

k steps, and replacing the differential d by (—1)kd.

Hence HJ(F[X]) = )N (@).

We denote by F —> F' —> F" 7> ... @ distinguished triangle
in D (X).

We shall identify a sheaf F with a complex of sheaves "concentrated

in degree 0O".

We use the classical notions for derived categories and sheaf cohomo-
logy, and we refer to Godement [1], Bredon [ 1], Hartshorne 17,

Verdier Eﬂ, Iversen D].

In particular if 2 1is a closed subset of X, F a sheaf on X,

FZ(X,E) denotes the group of sections of F on X supported by 2.
We write T (X,F) or sometimes F(X) instead of FX(X,E). If Z is
locally closed in X and U 1is an open subset of X containing 2

as a closed subset, one sets T, (X,F) =T, (U,F)

For x € X, one sets Ex = lim> F(U), where U runs over the family
U

of open neighborhoods of x. We denote by T, (F) the sheaf

7 ¢

u —> (X,F) on X. If F and G are two sheaves on X we

T2au

denote by HomA(E,g) the group of sheaves homomorphisms from F to

G and by Hom, (F,G) the sheaf U > HomA(El , g‘ ), where F
U U U
and G means the restriction of these sheaves to U, (U open in X).
U
We denote by F ®A G the sheaf associated to the presheaf
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U ——> F(U) 8 G(U). 1f £ : Y —> X 1is a continuous map, and if
G is a sheaf on Y, the direct image £, G 1is the sheaf
U —> g(f—1(U)) , (U open in X). The inverse image of a sheaf F

on X, denoted f-1E , is the sheaf associated to the presheaf

Vi—> lim F(U), (V open in Y, and U runs over the family of
U>£1lv) -1

open neighborhoods of £(V) in X). The functor £ " (*) is exact.

If Y is a subspace of X, f the natural injection, on writes F

instead of f_1§

The functors FZ(X,'), FZ(-), HomA(-,°), HomA(~,') are left exact
(i.e. : left exact in each of their arguments, for Hom(*,*) and
Hom(+,+)) . Since the category of sheaves of A-modules has enough

injectives, one can define the right derived functors of the prece-

ding functors. They are denoted by IRFZ(') ’ lRFZ(X,°), lRHomA(-,'),

]REQEA("') respectively. We also set
Hy(X,+) = HUIRT, (X,*)
H;(-) = HierZ(-)
Exti(',') = Hi]RHomA(-,-)
Exty(+,+) = H RHom (,+)
The functor - @A' is right exact (in each of its arguments).

When defining its left derived functor, we shall make the assumption
that wgtd(A) 1is finite, (recall that wgfd(A), the weak global
dimension of A, is the smallest integer m ¢ IN U{«»} such that
every A-module admits a resolution of length at most m by flat
modules). In that case every F ¢ Ob(D+(X)) is isomorphic to a com-
plex F' of sheaves bounded from below such that E;i is flat for
any x, any 1. Then for G ¢ Ob(D+(X)) the isomorphism class of

F'®, G in D+(X) is independent of the choice of F' , and the
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left derived functor -+ %A- from DT(x;A) x DT (X;A) to DY (X;Z) and

from Db(X;A) X Db(X;A) to Db(X;Z) is well defined. We set
Tor® (£,G) = H (& it

Let us repeat that we shall not always write "A" 1in these formulas.

Let F ¢ Ob(D'(X)). We set
(1.3.1) supp (F) = U supp(s? (F))
J
where supp(HJ(E)) is the support of the sheaf H](E).

1.3.2. We denote by FC(X,E) the submodule of T (X,F) of sections

with compact supports in X. The functor FC(X,-) is left exact and
its derived functor is denoted ]RTC(X,-). One also sets
i i
H (X,*) = H IRT _(X,")
Now let Y and X be two locally compact spaces, £ : Y —> X a

continuous map. Recall that £ 1is proper if and only if the inverse

image of a compact set of X 1is compact in Y.

Let G be a sheaf on Y. One defines £,G , the proper direct image

of G by setting

T(u, £,6) = lim, T (£7'(U), Q)
: Z

where U 1is open in X, and where Z runs over the family of closed

subsets of f_1(U) such that f is proper on 2.

The functor f,(-) is left exact, and its derived functor is denoted

RE ().

1.3.3. Let M be an A-module. We denote by MX the constant sheaf
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on X with fiber M.

Let Z be a locally closed subset of X, j : 2 —> X the injec-
tion of Z in X. Recall that to a sheaf F on X, one can natural-

ly associate a sheaf EZ on X, such that :

(Ez)X Ex if x ¢ 2

= 0 if x ¢ Z

If 2 1is closed in X, one has :

—_—
Fo, = J3x 3

If Z 1is open in X, one has an exact sequence of sheaves on X

0O —>F, —>F

z F—"Ex\2) >0

If Z1 and Z2 are locally closed, one has :

F = (F
—Z1 N Z2 —Z1 Z2

If M is an A-module, one usually write MZ instead of (MX)Z.

Hence the notation MZ has two meanings : it can denote a sheaf on

Z, or a sheaf on X (supported by 2Z).

Remark that for any sheaf F on X :

1.3.4. Now we assume X 1is a Co—manifold of dimension n. We

denote by Wy the orientation sheaf on X. Recall that Oy is the

sheaf associated to the presheaf U —> Hom(HE(U,g@X),ZEXL and that

Wy satisfies :

i) % is locally isomorphic to @X ,
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1) ey @ wy = Zy

n

n
Hy (Zy oy

fied to X by the first projection.

iii) w ), where A is the diagonal of X x X, identi-

Let f : Y —> X be a map of c®-manifolds. One defines the rela-

tive orientation sheaf on Y, by setting

) -1
Gys;xo T oYy @ F g

We shall say that £ is a topological embedding if £f is a homeo-
morphism onto a locally closed subset of X . We shall say that £
is a topological submersion of codimension & if, locally on Y,

f 1is isomorphic to the projection 1Rn+2 — r".

Now recall the "Poincaré-Verdier duality theorem".

Theorem 1.3.1. (Verdier [1]). There exists a functor

£' . DY(X) —> D' (Y) which satisfies

i) £° 1is a right adjoint to £, , i.e. for any G ¢ Ob(Db(Y)),

F ¢ Ob(D" (X))

([

!
RHom( Rf, G, F) RHom (G, £° F) ,

ii) if £ is a topological embedding, then for F e Ob(D+(X))

! -1
£ F £ (R

(13

Tey @)

iii) if £ is a topological submersion of codimension &% , then :

£ zx = _uiy/xDz’]

and for any F ¢ Ob (D" (X)), we have a natural isomorphism :

!
£ F

in

-1 !
' r bstomy
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Since any map Y ——> X may be decomposed by the graph map as an
!
immersion followed by a submersion, one sees that f°(¢) 1is charac-

terized by the properties ii) and iii).

Corollary 1.3.2. : Let X and Y be two Co—manifolds, and let
qj (3 = 1,2) be the j-th projection on X X Y. Let F ¢ Ob(Db(X)),

G e Ob('(Y)). Then :

RT (X % Y,JRHom(qu, qég)) = IRHom (IRT _ (X, F) , IRT (¥,G))

Proof

Applying Theorem 1.3.1. to the map q,, we get

(23

- I -
RT (X % Y, RHom(q, F, q46) IRT (Y, IRHom (q,,q; ' E, G)

Put M =_RFC(X,§). Then ]qu,q;1 F is the locally constant sheaf

gY on Y, and one has

lRF(Y,lRHom(MY, G)) = IRHom (M, IRT (Y,G))
= RHom (IRT (X,F), IRT (¥,G)). []
1.3.5. Let us recall some useful formulas. Let f : Y —> X be a

continuous map. Then

RHom (£7'F, G) = IRHom(F, Rf, G)

1

Rf, RHom(f = F, G) =IRHom(F, IRf, G)

Now assume Y and X are Co—manifolds.

Then for F ¢ Ob(DP(X)), F' € Ob(D*(x))

! - [}
£' RHom (F,F') = IRHom(f 'F, £'F')

For G e Ob(dP(¥)), F e ob(d*(x))
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Rf, RHom (G, £'F) = RHom(Rf G, F)
For Ge Ob(D'(Y)), F ¢ Ob(D (X))
-1
rBre, ¢ = rE(ET PR

(for this last formula, we assumed wgld(A) < «).

Finally consider a cartesian diagram

1)
v £ > X!
g' g
Y - > X
(f.e. s ¥' =¥ X', Let G e 0b(d(¥)).
Then
! !
RE; g' (G) = g IRE,(G)
RE! g 7N@) = g RE, (G)

§1.4. An extension theorem for sheaves

1.4.1. First let us recall the so called "Mittag-Leffler condition"
(cf. Grothendieck [2]). We shall write "M-L" instead of "Mittag-

Leffler", for short.

Let (En ) be a projective system of abelian groups. One says

ne IN

that the M-L condition is satisfied if for any n e IN the decreasing

""n,p

))

sequence of sub-groups of E_, (p (

E is stationary.
n n,p p Y

p3n’

Let (E;l)n be a complex of projective systems of abelian groups,

E; the complex where Ei = lim E' . The natural maps from lim el
“‘H‘— n -(——-n n
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to E; define the morphism :

o, : HE(EL)

> lim HY (E.)
1 ~— n

n

Proposition 1.4.1. (Grothendieck [2]) Assume that for any i the

projective system (E;)n satisfies the M-L condition. Then

a) for any i, the morphism ¢i is surjective

i-1

b) assume moreover that (H (En))n satisfies the M-L condi-
tion. Then ¢i is bijective.
Proposition 1.4.2. (Kashiwara [5]) Let X be a topological space,

F e Ob(D+(X)), {Un} an increasing sequence of open subsets of X

and {Z_} a decreasing sequence of closed subsets of X. Set

n
v=U v and 2z =N z_ .
n n — n n

a) For any Kk, ¢k : HE(U;E) > lim Hg (Un ;7 F) is surjec-
n

n
tive.
b) If {H];_1(Un ; E)}n satisfies the M-L condition, then ¢, is
n
bijective.
Proof

We may assume Fk are flabby. If we denote by E; the simple complex

associated with the double complex :

k-1 ok k1
> T E ) >0 :E™) > T(U:E™ ) > ...
o I oKy L ok+1
> T(UN\Z GF ) >F(Un\zn,§ ) > T(UN\Z ;E )—> ...
o k .F) = B5(E" Kir) = i8¥%(1im &°
then Hzn(Un,g) = H'(E ) and H,(U;F) = H (;rllm E)

. k s s
Since {En}n satisfies the M-L conditions this proposition follows
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from the preceding one. []

1.4.2. The following result will be one of the main tool in this

—_

paper.
Theorem 1.4.3. (cf. Kashiwara [5]) Let {Qt}tis be a family of
open subsets of a Hausdorff space X and F € Ob(D+(X)). We assume

the following conditions

(i) o, = U
t s<t S

(ii) For t > s, Qt\\QS N supp (F) is compact

(iii) Setting 2Z_ = (\ Qt\\QS , we have for any s, t with sgt
t>s

any x e Z_\9_ , (Rl (F)), =0 .

X\Qt

Then we have the isomorphism

v

JRr(lg) Q_ i F) >R (2, ; F)

for any t.

Proof

By the same argument as in (Kashiwara [5 ]) it is sufficient to show

i k.o k
(1.4.1) lim  H™ (2 ;F) > HT(Q

t>to o)

iF)

is an isomorphism for any t, € IR and any k ¢ Z. Replacing X

with supp F we may assume from the begining that Qt\ QS is com-

pact for t > s. Let us denote by the inclusion map Qt.‘—_> X.

Je
Then (iii) implies

v}
(F) —— > IRT (F) =0
. e, E,

to [e] to

RT
X \Qt
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for any t > ty - Thus, we obtain

-1

Rigxde Bixg @ =0
o t
o
Hence for any k :
0 = B5(z, ; Rj_,j. I (F))
t ! t*-t X\Q =
[e} t
o
= 14 k .
= lim, HO (U N2 lRI‘X\Q (F))
lJDZt to
o
where U runs over a fundamental system of open neighborhoods of Zt
o
This implies
: k . K
lim, HW(UwQ_ )N Q. ; F) = H (Q i F)
—_> t t = t -
[JDZt o o
o
Since for any open U D Zt , there exists t > tO such that
o
U v Qt D Qt , we have (1.4.1). E
o
§1.5. G-topology
1.5.1. We assume that X 1is open in a (finite dimensional) real
vector space E.
Proposition 1.5.1. : Let F be a sheaf over X such that for any

convex compact set K in X, the natural map from F(X) to F(K)

is surjective. Then for any convex open set © in X we have

H'(Q ; F) =0 ¥i >0

Proof
By replacing X with § we may assume X is convex. We proceed

by induction on dim X.
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Lemma 1.5.2. : Let I = [0,1], and let F be a sheaf over I such

that the natural map F(I) —> F is surjective for any t € I.

t

Then

HI(I,F) = 0  ¥j >0

Proof of the lemma

Let j > 1, and let s belong to HJ(I;E). We shall prove s = O.

Let £ be the natural map
t, .t
1772
f ¢ HI(I;F) —> Hj([t t,];F)
t,,t = 17722 "=
1772
Set
A= {te [0,1] ; £y c(8) = o}

Then O € A, and O K t' ¢t , te A implies t' ¢ A. Moreover A

is open since we have

limg w ([0,t]:F) Hj(EO,tO_J;F_)

t>t
o

(s) = 0 for some t > t

and fO,to(s) = 0 implies fO,t °

Consider the Mayer-Vietoris sequence associated to the decomposition

[o,to] = [o,t] U [t,to] :

> Hj([o,to];g) > Hj([o,t];g) ® Hj([t,t(j;g) > Hj({t};g) =0

By applying our hypothesis we get for any j > O, ¥t, O ¢ t ( to
H-j([o,tol;g) = 13 ([0,t];F) ® Hj([t,tol;g)

Let tO = sup A. Then
Hj([:O,tO_J;]_E‘_) = Hj([t,to];g)

for any t such that O < t < t,- But ft,to(s) = 0 for
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O gty -t << 1 since limg Hj([t,to];g) = 0. Thus A = [0,1].[]
t<t
o]

End of the proof of Proposition 1.5.1.

Let F be a vector space with dim F = dim E-1, p a surjective

linear map from E to F, Y = p(X).

Y
Let K be a convex compact set in X and set p =p . First we
K
remark that

RB, (F] ) = By (El )

since (IRE*(EIK)) = IRF(B-1(y) ; El ) and 5-1(y) being isomor-

y
phic to a closed interval we may apply the preceding lemma, since the

K

map (EIK)(B—1(y)) > (Fl ). = F. is surjective by the hypothesis.

—'K'x

Now let S be a compact convex set in Y. The map

DAY 5 By (Elp)) >T(S ; By (FlL))

K

is surjective since T (Y ; $*(EIK)) =T(K ; F) and T (S ; g*(EIK))

= F(p—1(S) N K ; F), and each of this space is the image of T(X ; F).
By the induction hypothesis we obtain

HI(K ; F) = HO(Y ; py(El)) =0 ¥j > 0

K

Finally letting (Kn) be an increasing sequence of convex compact
sets in @ , with U Kn = @ and applying Proposition 1.4.2. we
n

obtain the desired vanishing of cohomology groups.[l

1.5.2. Now let G be a closed convex cone in the real (finite

dimensional) vector space E, with O € G. The G-topology over E
is the topology for which open sets { are open in the usual topology

and

33



M. KASHIWARA, P. SCHAPIRA

We say G-open or G-closed for open or closed in the G-topology.
For X in E, XG is the set X endowed with the topology induced
by the G-topology (cf. Kashiwara-Schapira [2 , §3]). We shall denote

by ¢X or ¢ the natural continuous map :

[0} : X > X

X G
We also sometimes write ¢G instead of ¢ to specify G.
Remark that X{O} =X .
Theorem 1.5.3. : Assume X G-open. Let F be a sheaf over XG.
Then we have the natural isomorphism :
v -1

F > IR¢, ¢ (F)
Proof
We set F = ¢ ' (F) .
Lemma 1.5.4. : For a convex open set U in X we have the natural
isomorphism :

A%}
F(U + G) ——> F(U)

Proof of lemma 1.5.4.

N
i) F(U + @) > F(U) 1is injective. In fact let s be a

v
section of F over U + G such that s, =0 in F_ for any xeU.

There exists a G-open set W which contains x such that sy 0

¥y € W . Thus sX+Y =0 ¥x e U, ¥y e G.

|He

Y
ii) F(U + G) > F(U) 1is surjective. A section s of
over U 1is defined by a open covering U = g Ui , and sections

s, of F over U, + G with s_ = s, ¥x € U.,. We shall show :
i = i X i,x i

X € (Ui +G) N (Uj + G) =——> Si,x = sj,x
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Let x, ¢ U; N (x+6Y, x.¢ Uj N (x + ¢4,

J
a
Xg = b oxg o+ (1—t)xj e UN(x + G). sSet :
A= {t e [0,1] ; for any k such that x, €Uy , we have Si,x=sk,x}'
We can also define A by
[ . ; -
A = (t ¢ [0,1] ; there exists k such that xte:Uk and Si,x Sk,x}’

Then A 1is open and closed and contains 1. Thus A = [0,1]. [|

Lemma 1.5.5. : We have the isomorphism

F o= ¢, ¢ ' (F)

Proof

Let U Dbe G-open and convex. Then

b, ¢ TEYO =0T @® (W = FU). [

End of the proof of Theorem 1.5.3.
1

To prove that ®RJ ¢, ¢~ (F) =0 for j > O we may assume F

y y
flabby. In that case the map F(Q) > F(K) is surjective for

Ke 2, K compact, § open, K and § convex, since

Y] N
F(Q) = F(Q+G), F(K) = lim> F (U+G)
USK
By Proposition 1.4.2. we get HJ(Q,ﬁ) =0 ¥j >0, ¥Q convex, thus

B (u,¥) = 0

' -1 .
(R ¢, ¢7 (), = l_{lJ_rg>

where U runs over the set of G-open and convex neighboroods of x.|:
As an immediate consequence we get

Corollary 1.5.6. : For any open convex subset U of X and
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F ¢ D+(XG) the natural morphism

RF (U+ G ; F) > I/ (U, 67 F)

is an isomorphism.

1.5.3. Let E be a real finite dimensional vector space.
We shall need the following result.

Proposition 1.5.7. : Let F ¢ Ob(D+(E)), let Q1 be a G-open

subset and £ a Ga-open subset of E. Assume Q1n§2ccE. Then we

have 3
F.) = 1lim_ H
x> Kody

(8 E)

1 [
s 4 j .
= l]glim> HKﬂQ,I (Q'I H 1R¢G* F)

where K runs over the set of G-closed subsets of E such that

KN Q1c§L

In particular if @ O (K+G) c«< E for any compact set K, IR¢ _,F =0

G*
implies 1R¢G*E@ = 0.

Proof

We have

= : ]
11m> HK(Q

Bl @, ; F
K

o) F)

1 7

where K rung over the set of closed subsets of Q1 contained in Q.

For such a K, K' =K + G® is closed in E, X denoting the clo-

sure of K in E.
We have

K'N Q1cﬁ2

In fact if x =y + vy e Q, , with ye K, y e G*, then

1
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Therefore

X ey + Ga'C;Q + 6 =

Since KN 91 c K'nN 91 , we have :

~ J , - 13 J
llm> HK(Q1 i F) 11m> HK'(\Q1

Q. ; F)
K K' L

where K' runs over the set of G-closed subsets such that

K'0 e, ca. []
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CHAPTER 2 - MICROLOCALIZATION

The main results of this chapter are due to Sato [}] and Sato-
Kashiwara-Kawai [1] ; (cf. also Malgrange [1] and Brylinski-

Malgrange-Verdier [1] for §.2.1.).

§2.1. Fourier-Sato transformation

For the reader's convenience we recall here the main results concer-
ning the Fourier-Sato transformation, without proofs, and we refer
to Sato-Kashiwara-Kawai [ 1], Kashiwara-Kawai [ 3], Malgrange [1 ]

and Brylinski-Malgrange-Verdier [1].

2.1.1. Let Z be a locally compact topological space, and let

+

E —> Z be a vector bundle. We shall denote by D .
conic

(E) the full
subcategory of D+(E) of complexes whose cohomology groups are
locally constant on any half-line of E. Let E* denote the dual

vector bundle of E. We denote by a4 and q, the projectiors from
E and E* onto Z and by Py and Py the projectiomns from E E E*

*
onto E and E , respectively. We set

*

P = {(x,y) e EXE ; <x,y> > 0}
Z
*
P'= {(x,y) € E ; E ; <x,y> < 0}
. +
Proposition 2.1.1. : For F ¢ Ob(Dconic(F)), we have
-1 - -1
]sz),flRl"p (p1 F) = lsz!((p1 E)P.)
Definition 2.71.2. : We set, for F ¢ Ob(D+ (E)) ,

conic

~ 1oy » -1
E - ]-sz* lRI‘P (P-] E) - lRPZ!(p1 EPI)

and call it the Fourier-Sato transform of F
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+

*
. (E 1)), we set
conic —_—

For G € Ob(D

n

1 1
9v = IRp,IRT,, (p, G) Rp,, ({py G)yp)

One can see easily

-

Iqu* F = ]qul F
v

]Rq-]! G = ]qu* G
h 2.1.3. : i) The funct T f D’ (E) to D ()
Theorem 2.1.3. : 1 e functors rom conic to conic

*
and v from D __. (E ) to D' . (E) are inverse to each other.
== e conic —= conic
ii) Let F ¢ Ob(D> (E)), F' € Ob(D" (E))
1i) Let r ¢ conic r L0 E conic
Then
RHom(F,F) = IRHom(F , F'")
iii) Let F ¢ Ob(D°_ . (E)). Then
= = conic T
RHom(F, A.) % IRHom(F~, A_,) B g IRq,, A
peALpE - oML v Bps 92 1% 2p
One can describe easily the sections of g‘ on convex sets.
*

Proposition 2.1.4. : 1) Let U be an open convex subset of E .

+
Then for F ¢ Ob(Dconic(E))

RT (U, F") = Rl o (E, E)

(Recall that U° 1is the polar set to U).

*
ii) Let A be a closed convex subset of E . Then

* ~ ~ o
RI, (B ,F7) = RI(Int (A°), F) @ wy ., [-2]

where & 1is the dimension of the fiber, and

“g/z the relative
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orientation sheaf on E.

2.1.2. Let £ : E, —> E2 be an homomorphism of vector bundles
* * *
over 2 and let £ : E2 —_—> E1 be the dual homomorphism.

+

Proposition 2.1.5. : 1) Let F ¢ Ob(Dconic(E1)). Then
* -1 . ~
(£) F = (IRE F)
.. +
ii) Let F ¢ Ob(Dconic(Ez)). Then
[N * -
(f° F) = IR(f ), (E)

Now let 2' > Z be a continuous map, E a vector bundle over Z,

h

* *
E'=2'xE . Let £ : E' —>E and g : E' —> E be the natu-
Z

ral maps associated to h

+

Proposition 2.1.6. : i) Let F ¢ Ob(Dconic(E))' Then
' n e gtE)
' g7 @),
ii) Let F e Ob(D . (E')). Then
(RELF)" = Rg,(F") ,
(IRE, F)" = Rg, ()

§2.2. Specialization

2.2.1. Let X be a real manifold of class c® (o >2), M a

submanifold i : M «=—> X the embedding of M in X. We construct

a new manifold as follows. Let X = (J Ui be an open covering, and
i

¢; = Uy > R"™ be an open embedding such that UM =¢?(ﬂﬂ2xﬂ§_2).

Set
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v, o= {(t,x) e RXRY; (ex', x") e U}
where x = (x',x") € lRQX ]Rn—l. We glue the Vi's as follows.
On Vi X (Ui n Uj), the first & components of ¢j(¢l1(tx',x“))

i

vanish when t = 0. Define wj i(t,x) = (y',v") by

(ty',y") = ¢ ¢-1(tx' x")

7 J i r

Then we identify (ti,xi) e vy and (tj,xj) € Vj if ti = tj and
Xj = ‘Pj,i(ti,xi)
Let %M be the manifold so obtained. Then we have a map p : %M —> X
given by V.l 3 (t,x) —> ¢11(tx',x"), and a map t : §M —> 1R
given by (t,x) ——> t. Hence we have a map : %M —> X X IR.

By this map, p_1(X \M) is isomorphic to (X \M) x (IR\{ol), £

(c)

is isomorphic to X for c e IR\ {0} , and t_1(O) is isomorphic to

the normal bundle T, X to M. Hereafter we identify t-1(O) with

M
TMX. Note that the multiplicative group IR\{0} acts on kM by
c(t,x',x") +——> (c_1t, cx', x")

Let  be the open set obtained as the inverse image of

R"= {c € IR,c > 0} by the projection t : %

M > IR, and let j

N
be the inclusion map  ¢<—> X . We denote by 1 (resp. m) the

M
projection from TMX (resp. T;X) to M.
Definition 2.2.1. : Let F ¢ Ob(D+(X)). One sets
v () = (R, 37 p7 B
M= * P2 x

M

and says VM(E) is the specialization of F along M.

Let us mention that vM(E) may also be obtained as follows. One
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endows (X \ M)U T\ X with its natural topology of blown-up space. This
topology induces the usual topology on X \M and on TMX, the set
X\M is open and a subset V of (X \MU T\ X is a neighborhood of

a subset Z of TMX if v TMX is a neighborhood of Z in TMX

and V () (X\ M) contains an open set U such that CM(X \U) N z2 = @.

Let k be the embedding X &—> (X \M) U TMX . Then

(2.2.1) vy (E) = URk*E)ITMX

By the definition of vM(E) one easily obtains

Proposition 2.2.1. : Let F ¢ Ob(D+(X)). Then :

+

1) vy (E) € Ob(D__ . (T X)).
ii) vy (E)[, = E[y = Rt, v, (F)
Rt, (v (E)) = i' E (= RT,(F)],) .
iii) Let v e T ,X. Then
B (v, (F)) = Lin, B (U,F)

where U runs over the family of open subsets of X such that

v ¢ CM(X \U).

iv) Let V be a conic open subset of TMX. Then

] s 1im )
HV, vy (E)) = Lin, B (0,)

where U runs over the family of open subsets of X such that

CM(X\U) nv =¢

v) Let A be a closed conic subset of TMX . Then

] _ )
HA(TMX, vM(E)) = lim

H (U,F)
z,0

>
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where Z runs over the family of closed subsets of X such that

CM(Z) C A, and U runs over the family of open neighborhoods of

M in X.

2.2.2. Let f : Y —>X Dbe a map of class c” (o > 2). Let M

(resp. N) Dbe a closed submanifold of X (resp. Y). We assume
f(N) ¢ M, and we denote by f' the map : TNY —_—> TMX . Remark that
f' is the composite of the maps: T,,Y —> N x T X —> T X.

N M M M
Proposition 2.2.2. : Let G ¢ Ob(D+(Y)). There exists a canonical

morphism :

1
IRE | vy (G) > vy (IRE, G)

If moreover f 1is transversal to M, and proper over supp(G), this

morphism is an isomorphism.

Proof

Let Py tX’ jX be the maps associated to the blowing up of M in X,

-1 + - : ' -
let QX = tX (IR') and similarly for Py tY, iy QY . Let £ deno
Y, N \ v
te the map TNY —_—D TMX, f the map YN —_— XM , £ the map
N N o
QY —_> QX r Py (resp. pY) the restriction of Py (resp. pY) to QX
(resp. QY). Consider the diagram (2.2.2) below where all the square

are cartesian :

n
¥ Q v
Y ‘ pY
(2.2.2) £ l¥' J% Jf
N
% Q X

TMX C——S~X-—> M < jx > % ~ >
by
We have :
- v-1 N -1 . vov-
vy (IRE, G) = sy RjyxPy RE,G = sy Rjys RE, Py G
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The morphism : IRjgs?f, (+) < RY} Rjy, (+) defines :

1 L=
lRf; Sy leY*pY G

w

v (IRf , G) < 2V ®¥' R, polG
M 12 X 1 RIyxPy =

n

IRE | v (G)

Now assume £ is transversal to M and proper over supp G. Then

1

n—1 . Nov—
% is proper over supp Py G , and lRJX*f'(pY G) =

' - —
1R¥!]RjY*(BY1§), hence all the morphisms are isomorphisms. |[|

Proposition 2.2.3. : Let X, Y, M, N be as precedingly. Let
F e ob(d"(X)). There are canonical morphisms
o £V F) —> v (£71 B
M N =
and
1 !
- * 1
B v (f"F) > £17 vy (F)
such that the diagram below commutes
1
£f°Z,8 a
flmoe e v E) — = > flm e v (£ F)
—X M= —M N -
£1'z '
Zp x® £ v (E)
M
£l (F) < (£
vM F 5 vN F)
Moreover if £ : Y —> X and its restriction f] : N —> M are

N
smooth, then o and B are isomorphisms.

Proof
Consider the diagram (2.2.2). We have :

£y Er = e T s TR BT E 2 ST T TRy BT E
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and

Hence o 1is given by the morphism

-1 . . -1
BT Ry () ——> RiETT()
Similarly we have
£ty (F) = £'0 s7 Ry, po F
- M= T x TIx*Px
! B T v e SR R ¥ B, v
vN(f F) = Sy Riyx Py £°F = sy Rigs f py E

R R
= sy PRIy Py F

- ! ! -
The morphism s ! %"(-) > f£'° sX1(-) gives g. The commutativity

Y

follows immediately.

If Y —> X and N —> M are smooth, then %' is smooth. There-
fore £ Ry, F —> Rj,E¥ ' F and s_' Pt Fr—s £t E
ore Iy« E Jyx F an v F sy F

are isomorphisms, and hence so are a and 8 . []

§3. Sato's microlocalization

2.3.1. Let X be a manifold of class C% (a > 2), M a submanifold,

i : Me&—> X the embedding of M in X.

Definition 2.3.1. : Let F ¢ Ob(D'(X)). One sets

uM(E) = (vM(E))

and says uM(E) is the (Sato's) microlocalization of F along M.

Applying Propositioms 2.2.1. and 2.1.4. one gets

(F) ¢ Ob(D" (TyX))

Proposition 2.3.2. : 1) conic

HM
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123

! ~
ii) uM(E)lM = 1°F ( 1RFM(§)|M)= R, by (F)

n

=1 !
R,y (F) i'rbita.
*
iii) Let p € TMX . Then

J = 1i j
H (uM(g))p = l_zr_n H; (F)

where 2 runs over the family of closed subsets of X such that

CM(Z)ﬂ(p) c {ve (TyX) ; <v,p> > 0} U {0}

m(p)

*
iv) Let U be a convex open subset of T X . Then

M
H (U, (F)) = lim_ HI (V,F)
A VIR === Hg Vel
z,V
where (Z,V) runs over the family of closed subsets Z of X and

open subsets V of X such that

vAM =T, Cy(z) v

*
v) Let Z be a closed convex subset of TMX. Then :

j p* B Y
Hz (X, B) = Ling £700,0) @ wy

where U runs over the family of open subsets of X such that

CM(X\ U) nint z° = ¢ , and & = codim M.
Applying Proposition 2.3.2. with 2 = M , we get

Corollary 2.3.3. : There exists a distinguished triangle in p*(x)

Fly @ wyxt]

—> IRT,, (F) > R, wy (F) > ...

Remark that if we denote by j the embedding M > X, we have :
- . .l
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2.3.2. Let £ : Y —>X and let NC£Y
be as in §2.2.2. . We denote by w and p
* * *
Y xT X to TX and T Y respectively,
X *
on N ﬁ TMX :
* N T*X
T.Y <——ro X >
N P M M w
Proposition 2.3.4. : Let G ¢ ob (D' (¥)).
morphism :
R, 7! By () ——> py (IR £,

If moreover { 1is transversal to M and

, M X with

f(N) < M,

the natural maps from

as well as the induced maps

T, X

There exists a canonical

Q) .

proper over

morphism is an isomorphism.

supp (G) , this

Proof
Apply Propositions 2.2.2., 2.1.5. and 2.1.6. . []
Proposition 2.3.5. Let F ¢ Ob(D+(X)). There are canonical
morphisms and a commutative diagram :
-1 !
% !
Ro, v w,®) Btz >u (£ Bz
l o
R ! !
0x @ uy(F) < uy (£7 F)

Moreover if Y —> X and N > M are smooth, all these mor-
phisms are isomorphisms.
Proof
Apply Propositions 2.2.3., 2.1.5. and 2.1.6. . 'D
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§3.1. Equivalent definitions for SS(F)

3.17.17. Let E be a real finite dimensional vector space, X an

open set in E, F ¢ ob(d" (x)).

*

Theorem 3.1.1. : Let p = (xO ; EO) e T X. Then for any a ,
1 L& ag® or a =w , the following conditions are equivalent.

(1)a There exists an open neighborhood U of p such that for

any x, € X, any real function £ of class c” , defined in a neigh-

borhood of X4 with f(x1) =0, df(x1) e U, we have :
URF{X;f(X)ZO}(E))X1= o]
(2) There exist a proper closed convex cone G in E , with

0¢ G, and F' ¢ Ob(D'(E)) such that

(a) G \{o} < {y ; <Y,go> < 0}

n

(b) F'

F. for a neighborhood U of x
8} U

() IR9,F' =0

[e]

(3) There exist a neighborhood U of X an € > 0 and a

proper closed convex cone G with O € G, satisfying the condition

(a) of (2) such that if we set

H = {x; =X £O> > -}, L = {x P<X=X £O> = -¢}

we have

IRT(H N (x+G) ; F) =

> RT(L N (x+G) ; F)

for all x ¢ U.
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Proof
If EO = O the three conditions are equivalent to F =0 in a
neighborhood of X Assume EO # 0

(2) =—=> (1)a' We may assume F = F' and X = E. We set
U = X x Int g ¢ For any function £ with f(x1) =0, df(x1) e U,
there exists a G-open set & such that © and {x ; f(x) < 0O}
coincide on a neighborhood of x Moreover when Q' runs over a

system of

G-neighborhoods of

1

x '\ Q forms a system of neigh-

1 ’

borhoods of X in X\ Q 1in the usual topology. Thus we obtain
(mr{x;f(x)zo}(g))x1 = IRT (X\ ) (]R¢G*F)X1 =0
3) > (2) We may assume X 1s G-open and U <« H\L. Let
QO and Q1 be two G-open sets such that QO c.Q1, X € Int(Q1\ QO),

2, \ @ _ceU. We have
1 o

(3.1.1) IRT(x +

G) N H; F) RI((x+ G) ; F.)

H
and similarly with H replaced by L.
From (3.1.1), we get
(3.1.2) (1R¢G* EH \L) =0
)
G
Applying Theorem 1.5.3. , we obtain
R¢., IRT (F ) = IRT Roé. ., F
G 2\, =H\L 2,6\ %06 G* =H\L
-1
= IRT Ro.y ¢ Ro., F
Q1G\QOG G G G H\L
- -1
= IRogx ]RFQ1\€ZO o Roge Fy\
= 0
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m, = (3). We may assume £ = (1,0,...,0) and x = 0.
Set x = (x1,x'), X' = (xz,...,xn). We take € > O small enough and

define H and L as in (3). We take 6 > O small enough and set

G = {x ; Xy < =8|x'"|}

We take a G-open subset Q1 such that O ¢ 91 , and

@, n H  x ¢ cu.

Now, we shall show :

N

(3.1.3) IRT (H N (x+G) ; F) > RI'(L N (x+G) ; F)

for any x ¢ Q1 N H.

For a e 2, N H, we shall construct a family {Qt(a)}telR+ such that:

(i) Qt(a) C a + Int G

(ii) Qt(a) NAL=+(a+1IntG)NL
(ii1) 2 (a) = SL<Jt 2, (a)

(iv) Qt(a) has a real analytic smooth boundary

(3.1.4)% (v) Zt(a) = (;:L (Qs(a)‘\Qt(a)) N H , is contained in
aﬂt(a) and the conormal of Qt(a) at Zt(a) is contained

in U.

wvi) (U o a)nHE=(a+1Intc NH
t>o t

(vii) (M 2.(@)) NH =1L N (a + Int G)

t>o

For example, it is enough to take €, (a) = {x ; x, < a

£ 1 and

1

2 2 2,2
(8% |x'-a'|® - (e+a,)”)
(x, - a,)% > 62(|x' - a'[z !

) A )}

+
Vé + (52|x'—a'|2 - (e+a1)2)2
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Now, by setting ﬁt(a) = Qt(a) U ((a + Int G) \ H), we shall show
n
(3.1.5) IRT (a+ Int G ; F) ———> IRT (¥ _(a); F)

for any t.

Letting j be the embedding a + Int G <——> X , and applying

Theorem 1.4.3. it is enough to show

1

(IR,3" E)y= 0 for any yz:ZS(a)\ ﬁt(a) for s ¢ t

IRT
X\&t(a)

Since ZS(a) \Bt(a) C_Zt(a), we may assume Yy € Zt(a) \5t(a).

If y belongs to Irnt H = H\L, then this a consequence of (1).

Now we assume Yy € Zt(a) N L =LNS3(a + Int G). Then since

lRl"X\Qt(a) (E)y = IRTy \ (a+Int G)

(I:;)y =0
by (1),

.- ~
]RFX\Qt(a)UR]*j E)y =0

On the other hand

(a + Int G) \Qt(a) is the disjoint union of ((a + Int G)\Bt(a))

and (a + Int G) \(Qt(a) U H)

Hence URj*j—1E)y is a direct summand of

IRT
X\at(a)

1R URj*j-1§)y and hence this vanishes.

T
X\Qt(a)

This shows (3.1.5) for any t, and hence we have

v

)

(3.1.6) IR ((a+ Int G) N H ; F| SIRT(H_(a) NH ; F

H

= Rr(Q (@A) N H ; E|

Now, we shall show, for any x ¢ 91 N H

Y

(3.1.7) RI ((x+G) N H ; F|.)

>IRT ((x+G)OL ; Fl)

H H
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Set v = (1,0,...,0). Then (x + pv + Int G) N H, (p > 0) form a
neighborhood system of (x+G) N H (in H) and Qt(x + pv) N L
(p >0, t > 0) form a neighborhood system of (x+G) N L (in H).

Thus (3.1.7) follows from (3.1.6). []

Definition 3.1.2. : Let X be a real manifold of class c®

(1<ag® or a=uw), FeoOb(D(X)).

i) The micro-support of F , denoted SS(F) 1is the subset of

*
T X defined by :

p ¢ SS(F) < > condition (1)a of Theorem3.1.1. is satisfied.

ii) Let u : F —> F' be a morphism in D+(X) and let A be

*
a conic subset of T X. We say that u is an isomorphism on A if

u 1is embedded in a distinguished triangle F EETRES F' —> F" >

puil +1

with SS(F") N A = ¢

ii) is equivalent to saying that there is an open conic neighborhood
Q@ of A such that for X, € X and any c® function £ on X with

df(x1) e Q , f(x1) = 0 , we have

v L}
(RE (o) (B)) > (RT (g0 (B9,

1 1

3.1.2. It follows immediately from the definition that SS(F) is a
* *

closed conic set in T X, and SS(F) N TXX = supp (F)

Moreover if we have a distinguished triangle in D+(X) as precedin-

gly, then we have the "triangular inequalities"

SS(F) ¢ SS(F') Y SS(F")
(3.1.8)
(SS(E') \ SS(E")) U (SS(F") \ SS(F')) < SS(F)
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3.1.3. Examples : Let Y

culate the micro-support of

inequalities" and the exact

C

> By\z

Here X = IR

1) Y

i
=
sl
n
n

>
=

1

2) Y = {xe IR ; x

{(x,8); x

1

SS (ay)

3) More generally let

at 0 in IR". Then

o) n ss(aj) = G

4) Y={X€]Rn;x1>

be a locally closed set in X. To cal-

the sheaf A we apply the "triangular

Y

sequence associated to a closed set Z

> By >Bypng 20

= 2 after 4) and ¢§&' = (£2,...,€ ).

{(x,8) e TRY ; £ =0},
o},

1 >/Olg:0} U{(Xlg)7X1:Ol €1>/OI €|=O}

G be a closed convex cone with vertex

e}

0},

SS (Ay) ={(x,£&); x,%0, £E=0rU{(x,&); X120, £, 0, &' =0}

5) Y={x€lR2;x1 x, % 0}
-1 _ 2
m (0) O ss(ay) = {£ e RY; £, &, < O}
6) Y={X€1R2;x1>,0, x2>,o,x;éo}
rle)nss@ay) = (£ e B £ g0lULE € ®Y; £, < O}
7) Y = {x ¢ 1R2; X, > 0, X, >0}

i
-

™ (0) A ss(a,) =

3
1

) =

8) Y = {x ¢ 1R2; xX: >

I
-

m (0) N ss(a,

9) Y = {(x1,x2) ; O <

»" 1) N ss (B,) -

(¢ c ®*; £, %0, &, ¢ 0}

xg}

£ e ®%; g, » 0}

x, & x%} with o > 1
17N 2

(¢e B £, =0, £, <0}
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3.1.4. Example : Let (X, @k) be a complex manifold and let :Tﬁ
be a coherent Module over the sheaf g}x of holomorphic differential

operators on X. Then we shall prove in Chapter 10 that

ss (R Hom , (G, B,)) = char (H])
___ébx X

*
where char (ff{) denotes the characteristic variety of ff{{ in T X.

§3.2. Propagation theorems

3.2.1. Let E be a real finite dimensional vector space, X an

open subset of E

Proposition 3.2.1. : Let V be an open set in X, and let G be

a closed convex proper cone in E, with 1Int G # ¢ . Let

F ¢ Ob(D+(X)), and assume SS(F) N (V x Int G°%) = ¢g. Let X, €V,

EO e Int G°% , ¢ > 0 and set QO = {x ; <X=X_, £O> < -c}. Then for

any G-open set 91 , With QOC;Q c QOL)V we have

1

(1R¢, (IRT'y \QO(E)))|Q1 =0

where ¢ is the map X —> XG

Proof

It is enough to show that 1RT (Q, IRT (F)) = 0 for any closed pro-

X\QO

per convex cone G' properly containing G and any G'-open subset
% such that Q\\QQ C.Q1. Hence we may assume from the beginning

SS(E) N (v x G°@ \{0}) = ¢. In order to see that IR¢, (IRT =0,

xa, E) 191
it is sufficient to show that for any G-open subset  with §<:Q1,

1R¢*1RTX\QO(E)]Q = 0. Therefore we may assume 91 \ro:V. Then by
extending F to an object of D+(E) we may assume X = E. For

X1 € 91 we set

U(E,X1) = {x ; d(x,x1 + G) < g}
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We remark that the function d(x,x1+G) is C1 on X \(x1+G), and

its differential d(d(x,x1+G)) belongs to c°® on this set.

Let

W ={selR2;s1<t}U{s;s

2 2 2
. 2<O}U{s,s1<e,s2< e—t,(s1—e) +(sz—e+t) > (e-t)“}
for O < t < ¢
We set
Q(x) = <x-x_, & > + c (then 42 = ¢ ¢ Goa)
[e) O [¢]
Ve = Ix g @(x,x,46), 2(x)) Wt}

and choose ¢ small enough such that U(e,x1) is contained in Q1.

We may apply Theorem 1.4.3. to the family (Vt)o<t<a and we obtain :

n

1RT(U(E,X1) (8] QO 7 F) lRF(Vt; F)

thus

n

lRF(U(E,x1) ; IRT (F)) IRT (Vt;lP.F (F))

X\QO X\S‘ZO

and taking the inductive limit for t > O

IRT (U (e,x,) i IRT (F)) = IRT ((x,+G)); IRT (F))

X\QO X\QO

Now we prove that for x in Q1 we have in fact

IRT ((x+G)) ; lRFX\QO(E)) =0

Choose Yy e Int(G) and set

e = X + ty

I = {t >0 ; IRT((x +G); IRT (F)) = 0}

X\QO

Then I 1is non empty since X, € QO for t >> 0.
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Let tO = inf I.

Let € > O such that Ul(e, Xy ) is contained in 91 , and let
o

t > 5 such that t € I and
Xeo + G cUle, %) c Ule, x¢y)

= 1R

| /e

We have, setting (F) =

r
X\QO

IRT(U(e, % ) 5 B) —————> RI((x¢_+G); F)
[¢]

RT (U (e, %) ; F) =0

Thus ts belongs to I.

If tO would be strictly positive, we find t > O, t < to’ e >0

such that :
X, + G c Ule, xto) < Ule, xt) ¢Q1
We get :

R (U(e, %) ; ¥) —————> RI((x_+ G) ; E)

IRT(U(e, x¢ ) 7 F) =0

and hence t € I. Thus tO = 0, which achieves the proof. [I

3.2.2. Let Y be a Ca—manifold, X =Y x E where E 1is a finite

dimensional vector space. Let G be a (not necessarily proper) clo-

sed convex cone with O € G. We set XG =Y x EG and denote by ¢

the continuous map X —> XG'
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Proposition 3.2.2. : a) For F ¢ Ob(D+(X)), SS(F) is contained in

* -
T X x (E x ¢ if and only if the morphism ¢ 1chp*g —> F is an

isomorphism.

b) For F ¢ Ob(D+(X)), ¢_11R¢*E —> F 1is an isomorphism on

*
TY x (E x Int G°%).

Proof
We may assume Y is affine. By replacing G with {0} x G , we may

assume X = E from the beginning.
Assuming first ¢_11R¢*§ ¢ F we shall show SS(F) < X x co2.

For EO 4 G°? there exists a proper convex closed cone G' such
that G' \{O}<:{Y,<Y,£O> <0} and G' + G = X. Then for any G'-open

non empty convex subset Q of X, we have :

RT(2;F) = IRT(Q+G; F) = IRT(X; F)

This implies that for any pair of two convex G'-open subsets roﬂ1

with Q,l \ QOCCX v

R, 4 IRT

which implies SS(F) N (X x {£ }) = ¢ .

Conversely assume SS(F) ¢ X x G°? . In order to prove the isomor-
phism ¢-11R¢*E = F it is sufficient to show that for any relative-

ly compact open convex subset § of X, the restriction morphism :

RT(Q+ G ; F)

> IRT(2; F)

is an isomorphism.

By Proposition 1.4.2. it is enough to prove that for any relatively

compact open convex subset Q' of X, Q'D>Q, we have :
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WRT(Q'A(Q + G) ; F) = IRT(Q; F)

Let &~ be the set of open convex subsets V of Q' N (2 + G) such

that v 2 Q and 1IR[(V; F) > IRI'(Q; F) 1is an isomorphism. It

is easy to see that &~ is inductively ordered.

Let V be a maximal element of ¢~ . We shall show that

V=0"N(Q + G) by contradiction.

Assume there exists X, € Q' N (2 + G), X g V.

Lemma 3.2.3. : Let U be an open convex subset and X, € X . Let

S be the cone generated by {u - x  ; ue U}, s' =5 ({0} and

\U is

be the interior of the convex hull of U y {x_}. Then U,

locally closed with respect to the S'-topology.

Proof of Lemma 3.2.3.

a) We have

a
1)

{(1—t)xo +u;ueU,O0<tg 1}

Set

(@
1]

{(1-t)xo +tu; ue U, O<t})=x_+8

Then U, is S'-open. Set

Uy = {(1—t)xo +tu; ue U, 1<t}

Then U3 is also S'-open . Hence it is sufficient to show that

U2\ U3 = U1\ U. Since we have :

UcU1c;U2
U c.‘.U3 CU2
UZC_U1 UU3

it is enough to show U1 4l U3 c U . For x € U1 N U3 we may write
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= (1-t = (1-
x (I-t)x_ + tu (1-s)x_ + sv

for 0 < tg 1, 1< s, u,v e U. Then we have (s-t)x= (s-1)tu+ (1-t)sv,

thus x e U . []

Endof the proof of Proposition 3.2.2.

By the Lemma, if we denote by V' the interior of the convex hull

of V U {xo} and by G' the closed cone generated by {v - Xg i

v € V} and O, then V'\V is locally G'-closed. On the other

a groa

hand we have Int G'> Yy for some Y & G . Hence N c°% < {o}.

This implies by Proposition 3.2.1.

Réo 4 IRTG o (E) [0 = O
Thus we obtain V' € (¢~ , which contradicts the choice of V.
b) Let q>'1JR¢*g -——>F —>F' —7

be a distinguished triangle. By applying the functor 1R¢, we obtain

RR¢,F'= 0, which implies SS(F') N X x Int ¢°% = ¢ . []
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§4.1. Proper direct images and inverse images for smooth maps

4.1.1. Let Y and X be two manifolds of class C% (a > 1), £ a
map from Y to X, p ana w the natural associated maps from

* * *
Y XxTX to TY and T X, respectively.
X

Proposition 4.1.1. : Let G ¢ Ob(D+(Y)) and assume f is proper

on supp (G). Then
i) SS(IRf,(G)) « Tp ™| (SS(G))

ii) if £ is a closed immersion the equality holds in a).

Proof
i) It is enough to show that fo any function ¢ defined on a
neighborhood of x € X such that ¢(x) = 0 and such that

(6 o £)(y) # SS(G) ¥y € £ '(x) we have

(IRT JURE, (6))), =0

{x: ¢ (x)30
But

(RT (4 o0y (RE,(G))) = (IRE, (IRT 1y o004 (),

-1
IRT (£ (x) 5 IRT (0 0oy (G))

=0

ii) We may assume that Y and X are vector spaces an f is
linear. Suppose p ¢ SS(IRf, (G)) and take H, L, G, U which satisfy
condition (3) of Theorem 3.1.1. for the sheaf 1Rf,G on X. Then

for x e UNY

IRT (H N (x+G) ; IRf,G) = IRT (LN(x+G) ; IRf,G)
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1

but
IRI'(H N (x+G) ; IRf,G) = IRT((YNH) n (x+G N Y)
IRT (L N (x+G) ; IRE£,G) = IRT((YNL) N (x+G NY)
thus p ¢ SS(G). I:
Remark Even when f is finite on supp(G) the inclusion in a)
may be strict. For example take X =Y = 1R, f(x) = and G = éY
* -
Then T{O}X is contained into wp 1(SS(_Q)), but 1Rf,(G) = éX .
4.1.2 Let us study inverse images in the smooth case.
Proposition 4.1.2. Assume f : ¥ —> X 1is smooth.
i) Let F e Ob(D'(X)). Then
-1 _ -1
SS(f ' (F)) = pw ' (SS(F))
ii) Let G ¢ Ob(D+(Y)). Then all the Hj(g) are locally cons-
tant on the fibers of f if and only if SS(Q) is contained in
*
o(Y x T X).
X
Proof
i) First we prove the inclusion
-1 =1
Ss(f (F)) c p® (SS(F))
We may assume Y = an>< lRQ, X = an, f being the projection
(x,y) m> x
- . -1
Take p = (x_,y, i & :n,) & ow (SS(E)). If n  # 0 we take velR
with <vyn > < O and set G = {(0,tv) ; t > 0}. For € > O
arbitrary, set
H = {(x,y) 5 <y,n> > -€}
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L = {(X,Y) H <Y,ﬂo> = "'5}

For any 2z € Int(H)

n

RT (H0(2+G) ; £ ' (F)) = RT(LN(z+G) ; £ (F))

since f'-1(§)|(z + R(O,v)) 1S a constant sheaf.

Now agsume n - = o, (xo;io) ¢ SS(F). There exist H, L, G, U which
satisfy condition (3) of Theorem 3.1.1. for the sheaf F on X.

-1

Set G = G x {0}. Then for any =z ¢ £ (U)

n

RE(£7 () N (z+8) ; £71(F)) = RT (BN (£(z) + G) ; F)

n

R (ETT@) ) (z+&) ; £ (@) = RI(LA(E(z) + G) ; F)

To prove the converse inclusion we use condition (1)a of Theorem
3.1.1. and remark that for a function ¢ on X and x € X we

have

_ -1
(IRT }(E))X— (IRT }(f (E)))y

{$30 {$£50

for any y € Y such that £f(y) = x.

ii) Let G be a sheaf on Y, locally constant on the fibers of
f : then locally on Y, G = f_1(£) for a sheaf F on X , and
SS (G) C,pw-1(T*X) by 1i). To prove the converse we may assume
Y = X x E, where E 1is a vector space, f being the projection on

X . Then we apply Proposition 3.2.2. with G = E . (]

§4.2. Tensor product and Hom(s,*)

4.2.1. Let X and Y be two manifolds, q1 and q, the projec-

tionsfrom X x Y to X and Y, respectively.

If F 1is a sheaf of right A-modules over X and G a sheaf of
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left A-modules over Y, the sheaf q;1g ] q;1§ is well defined as

a sheaf of Z-modules (A-modules if A is commutative).

Proposition 4.2.1. : Assume wgld(A) < @ . Let F e Ob(D (X)) ,

G e Ob(D'(Y)). Then

-1

ss(a; £ B q

G) &« SS(F) x SS(G)
Proof
We may assume X and Y are vector spaces. Let (xo,yo;Eo,no)
*
e T (X xY) , and assume for example (xo;go) ¢ SS(F). Take H, L, U,
G satisfying condition (3) of Theorem 3.1.1. for the sheaf F on

X and set & =G x {0}.

For =z = (x,y) € U x Y we have

RT ((HxY) O (z +&) ;

|

|
= (=
@
It

IRT (H N(x+G) ; F B G,)

1@
1}

IRI((LxY) O (z+8) ; 1Rr<me+G);g&gy)

Now it is enough to remark, for a compact set K in X

RI(K; F B 6,) = RI(K; E) B &, - O
4.2.2. Proposition 4.2.2. : Let F ¢ 0b(D°(X)), G ¢ Ob(d'(Y)).
Then

ss(RHom(q]' F , a5 €)) < (5S(F))? x s5(a)
Proof

We assume that X and Y are vector spaces.

We have, by the Poincaré duality formula (Corollary 1.3.2.)

J'F. q3'6) = Rhom(IRT_ (X;F),IRT (¥;G)) [-din X]

RT (X* Y ; IRHom (g

64



FUNCTORIAL PROPERTIES OF MICRO-SUPPORTS 1

a
Let (x,,¥5 i —E€5sng) ¢ (SS(E))™ x SS(G)
i) (yO ; no) ¢ SS(G) . The proof is similar to that of Proposi-
tion 4.2.1. : take H, L, U, G satisfying condition (3) of Theorem

3.1.1. for the sheaf G on Y and set ¢ = {0} x G. For

z = (x,y) € X x U we have
3 by -1 =1
H (IRT ((Xx H) N(z +G) ; Rmm«% F ,ng)ﬂ
= lim, H? RHom (IRT_(W; F), IRT(HN(y+G) ; G))  [-dim X] ¥j ,
W X
and a similar formula with H replaced by L, which achieves the

proof in that case.

ii) (xo ; EO) ¢ SS(F) . Take G satisfying condition (2) of

Theorem 3.1.1. for the sheaf F on X .

We may assume 1R¢., (F)= O . By the Poincaré duality formula it is

G*
enough to show that for any Ga—open sets @ and Q' in X with

Q'c® and Q\Q'cc X , we have
LI ~ .
lRl"c(Q ; F) o= JRFC(Q, F)

We may assume § N (K+G)cc X for any compact K of X . We have

n

IRT_(2; F) IRT (X F)

9]

and similarly with Q' instead of {. Thus it is enough to show

IRFC(X; Fy,) = lRFC(X; EQ) or equivalently 1RFC(X; =0

Q' Fovar!

Since the support of EQ \qr is compact, lRFC(X; EQ \Q,)

IRT (X ; EQ \Q')' On the other hand Proposition 1.5.7. implies
lR‘bG* (.F_Q) = ]-RCPG* (EQI) =0
Hence we obtain :

IRT(X; Fo) = IRI(X; E,,) = O

Q')
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and the result follows. [

4.2.3. The preceding results permit to give a complement to Propo-

sition 3.2.2. .
Let E be a vector space, G a closed convex proper cone in E ,
X a G-open subset of E , ¢ the natural map X —> XG .

Proposition 4.2.3. : Let F e Ob(D (X)), F' = ¢_11R¢*E. Let xeX

and assume that for a compact neighborhood K of x, (K+G) Nsupp(F)

*
is compact. Let § € E such that (x+G; &) N SS(F) = ¢ . Then

(x;E) ¢ SS(F').

Proof

Consider the maps

where qj is the j-th projection, and
s(y,x) = x-y

Set

b o3 |

E" = ]RS*(CI;1§ 2

G

First we shall show that F" is isomorphic to F' in a neighborhood
of x.

Let L Dbe a convex compact set contained in K. Then

1

IRT(L,E") = RI(s"'L; q; 2y B a5'F)

1

mr((s”an;‘G); ay' F)
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IRT (q2(5—1L n qfc) iF)

IRT (L+G;F)

IRT (L;E')

Now we have :

SS(E") < {(x,8) ;1 y, (y,x+y) ; -£,E) € SS(A;) xSS(F)}

and the result follows. [ |

§4.3. Direct images for open immersion

=
.
w

.1. Let us begin by the "non characteristic" case

Proposition 4.3.1. : Let & be an open set in X, Jj the injec-

tion O &—> X and let X, € . Let F ¢ Ob(D+(X)). We assume

* a
SS(F) NN, (2)° < {0}

o
Then
. -1 * -1
SS(IRj,I (E)) AT (x ) g N (Q) +(SS(E)nT (x)).
o
Proof
* *
We may assume that X is a vector space. If N Q) = TX X , then the
o * o
proposition is trivial. Hence we may assume that NX () 1is a clo-
o
sed proper convex cone.
* -
Let £, ¢ N_ (@) + (SS(F) N 7 ' (x_)) ; then by the hypothesis

O

* - -
M, (8¢ RE) 0 (ss()® 017 (x ) (o}

and there exists a closed proper convex cone K such that

* -
NXO(Q) + 1R £ c Int(K) y {0}

k% 0 (s N7 (x)) < {0}
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Let G Dbe the polar cone to K

This is a closed convex proper cone with non empty interior, which
satisfies
GcoN_ (2) U {0}
[}
G c. {y ; <y ., g0><o} v {0}
¢ nassE) N lx)) e o)
Hence there exists an open neighborhood U of X such that

e

(U * 6% A SS(E) ¢ TyX

uNnNQe =0NQ" , for a G-open set Q'

thus we may assume  1is G-open.

Take Q = {x ; X=X, £ > < -c} , where ¢ > O 1is small enough so
that QO U U 1is a G-open neighborhood of X We know by Proposi-
tion 3.2.1. that for any G-open set Q1 such that QOC:Q1ch1uIJ
we have

(IR¢, IRT 9, (E)) Ig21 =0

This achieves the proof since, {Q being G-open, IR¢, and le*j-1

commute. [

Proposition 4.3.2. : Let Q, j, Xgr F be as in Proposition 4.3.1.

We assume

SS(E) N N, (2) ¢ {0}
O

Then

Txoen @+ ssEnr ! x))
(@] X —_ (@]

SS(RY 3 (E)) N
° o
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Proof
We proceed as for Proposition 4.3.1. .

Let Eo A N; (Q)a + (SS(F) N n—1(xo)). We may find a closed convex
o
proper cone G, a neighborhood U of X such that

Gc iy ; <y,g;> <0}y {0}
U x 6% N sS(E) € Tyx

a
and we may assume § G -open.

By Proposition 3.2.1. there exist G-open subsets QO and 91 such

that :

QO C 91 ’

91 \ QO is a neighborhood of Xy

1R¢*]RFQ1\Q (F) = 0

o)
Set F' = L!Rl“Q \ 0 (F). By replacing @ , we may assume QN(K+G) € C X
1" o

for any compact K of X. Then we can apply Proposition 1.5.7. and
obtain

R¢,Fy = O

Since F' 1is isomorphic to F on a neighborhood of Xy wWe obtain

(xo,io) A SS(EQ).

Recall that F, = ®j5TNE) . [
Corollary 4.3.3. : Let Z be a closed subset of X, x € 32 and
* * *
assume N _(z) # T_X . Let F e Ob(D'(X)) such that SS(F)AN_(z)c{o).

Then IRT, (F) = O.

Proof

We have SS(IRT, (F)) N M x) ¢ ss(F) + N:{(Z)a
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*
Since (SS(F) + N;(Z)a) N NX(Z) < {0} , there exists a closed convex
* *
cone K such that (SS(F) + NX(Z)a) N K c {0} and NX(Z)c:IntK(){O}.

Hence if we set G = KOO we may assume 2Z 1is G-closed, and hence

there exist G-open subsets Qo c;Q1 such that x ¢ Int(Q1 \ QO) ,

and 1R¢G*1RF (]RFZ(EIQ )) = 0. Moreover the family {2 N 2z} forms
1

91\QO
a neighborhood system of x when § runs over the G-open neighbor-

hoods of x . []

4.3.2. Now we study the general case.

Theorem 4.3.4. : Let X be a manifold of class Ca, a > 2 , 2 an

open set in X , j the open embedding { <—> X. Let Es:Ob(D+(Q)).

Then
a) SS(IRj, (F))cSS(F) + N (Q)

b) SS(IRj,(E)) ¢ SS(F) + N (2)

Proof

We may assume X 1is a vector space.

~ *
Let (x, ;€ ) ¢ SS(F) + N (Q)

We may assume SO # 0, X, € 3 thus (xo;go) g SS(F) .

*

Since (XO;EO) does not belong to Nx () we may assume  G-open,
o

for a closed convex proper cone G such that Int(G) # ¢ and €O A .

Let v € Int(G), s >0, t > 0, with 1+t <y,£o> > 0, <EO,Y> < 0. Set:

H, = {x ; <x=x_ o4 E> > -s}
S - £
Q {x ; x-t(kx Xoor B>+ s)y € Q}
Then
Qt,s N HS C 9

1
Qt,SﬂHscﬂt,,S O < t'gt
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(Lt) Qt,s)an =Qan

For x ¢ Hs , 1f we set :

y = x t(<x - Xor EO> + s)Y

£ =n -t <n,¥> &

we have

* *
(x28) € NX(Qt,S) <==> (y;n) ¢ Ny(Q)

Now we shall prove that there existsan open neighborhood U x W of
(XO,EO), € > 0, such that if we set US =U0UnNn Hs we have for

0O<t<e ,O0<s <ce

-

i) SS(F) AN (R, %A (U)o}
+ Frn t,s am s <

i) (SSIE) + N (2, ) 0 (U  x W) = ¢

If i) or ii) is false we find sequences {tn}, {sn},{xn},{in},{Cn}

such that
P
tn 5 > 0, sn I > 0, tn > 0, srl > 0, xn oy > xO
*
€, €N, (2 s ) \ {0}
n n’"n
< .
(xn,Cn) € SS(F)
Y
En to,=¢ En , En > EO where
. ¢ = O or c¢c =1 (c =0 for i), ¢ =1 for 1ii)).
. *
We define (yn;nn) e N () by
Yn = ¥, 7 tn(<xn_xo’£o> * sn)Y
€nh = Ny =ty <NyeY> €y
and we set
Pp =t t Ny =°¢ En Tty <ngey> &y

We have
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Y>>0, <E Y>> <0, <gn,v> <0

In,| ¢ c' <n,y> for some c' >0
c"\pn] > - <p,,y> for some c" >0
> - cC <%n,y> - tn <nn,y> <£O,y>
> e l<ngy> | I<e >

£\%

c" t_|n_| for some c"™ > O
n'''n

-1
l

. -1
thus Innl([pn )t is bounded, and |nn|(‘pn| )Ixn—ynl ——> O.
ince converges to this contradicts the hypothe-
Sinc pn/lpn| g Eo/|£o| yp
sis.
Now let j denote the injection @ «—> X , and set for s
t,s t,s
fixed, O < s < ¢
_F_t = lRJt,s*(_F_lQ )
t,s
By Proposition 4.3.1.
SS(F,) N (U x W) = @

Hence there exist a closed proper cone G' and G'-open subsets

Q, € Q1 such that G' < {y ; <Y,€O> < 0} y {0} and

HS ) Int(Q1 \Qo) > Xy v with 1R¢G,*1R (Et) =0 ¥t > 0. Thus

T
Q1\Qo
we obtain JR@G,*IRTQ1\QO (le*E) = O by Proposition 1.4.2.

The proof of b) 1is similar with the help of Proposition 4.3.2.

instead of Proposition 4.3.1. . []

Corollary 4.3.5. : Let @ be open in X , j the injection

. —> X and assume that Y = 90 1is a Cz—hypersurface, Q locally
on one_side of 9f}. Let F ¢ Ob(D+(Q)). Then

SS(IRj, (F) [y) € C 4 (SS(F)) N T'Y
TYX
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Proof
Set G = (JRj*E)IY and let i be the injection Y &——> X.

We have a distinguished triangle :

Rj, E > R F > Ri, G +1 >
thus by applying Theorem 4. 3.4.
* *
SS(IRi, G) & C(SS(F), TYX) N TX
Since 1 1is a closed immersion
SS(IRi, G) = T(p ' (SS(G))
which achieves the proof. [

Remark 4.3.6. : The micro-support is invariant by C1—transforma-

~ *
tions on X, but <« + ¢ and C , () N TYX are not invariant by
TYX
C1-transformations. This means that Theorem 4.3.4. and Corollary

4.3.5. are not the best possible results.

§4.4. Direct images for non proper maps

4.4.1. Let f be amap from Y to X, and let G € Ob(D+(Y)).

Theorem 4.4.1. : Assume that there exists a family (Ys)s>o of

open subsets of Y such that

p— * *
Uy =y, U v =v .0 v, c% n) #1'y
S s " oT<s T s ' tss © s )y s ? y

for any vyey,

ii) £ 4is proper over Ys N supp (G) for all s,

s * a * *
iii) N o(¥y) N (SS(G) + p(¥Y X T X)) < T Y
X
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(resp. N*(Y ) N (SS(G) + p(Y x T*X)) C.T*Y)).
S — X Y

Let iS be the open embedding Y,e=—>y. Then
1) REL(G) = R(£,1), (i'(G)) for any s > O

(resp. IRf,(G) = IR(f, i ), (il (G)) for any s > O)

2) SS(IRF,(G)) c T ' (SS(G))
(resp. SS(IR,(G)) < Wp ' (SS(G)))
Proof

Since the assertion about £

, can be proved similarly we shall pro-

ve only the assertion about f,.

First, we assume f 1is smooth.

Let x € X, and let W be a relatively compact open neighborhood
of x in X. Let j Dbe the ambedding f_1(w) —> Y .

1

IRT (W; IRE_, (i (G))) = RF (£ (W)AY_; G) = IR (¥_ ; IRj, (37'G))

We remark that

SS(Ri,(371G)) € sS(G) & p(¥ x T7%)
X

*
and th. set on the right hand side is nothing but SS(G) +p(Y;2T X).
Thus by the hypothesis

c=1 _
]RFY\YS(]R]*(j (9)))I3Ys-o

and we may apply Proposition 1.4.3. to the family YS to obtain

Yo ;o) <— ®r(eT ) ;G .

RT(Y_n £

We get, by applying Proposition 4.1.1. and Theorem 4.3.4.

SS(RE_, (6)) c mp ' (S8() % N (v,))
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but hypothesis iii) implies

- -~ * -
o7l (ss(6) F N (¥ ) < 07! 88 (8)
To treat the general case, we decompose f by ¥ —> ¥ x X —> X,
where %(y) = (y,f(x)) . Set § = le*g . Then by Proposition 4.1.1.
we have
y * t.,
SS(G) = {(y,x;n,&) e T (¥YxX); x=£(y),(y:in+ £'(y)+&)eSS(G)}
Thus

N * * *
SS(G) + Y x T X ¢ SS(G) + (Y x T X) x T X
- X

* * *
and since N (Ys x X) =N (YS) x TXX , we see that the hypotheses of

the Theorem are still satisfied for 8 on Y x X , for the family
fyg = xko . [J
4.4.2. We shall also need a "microlocal" version of the direct

image theorem.

Theorem 4.4.2. : Let X and Y be two manifolds, and let f be

the projection X x Y > X and h the projection

*
T (X x Y) > (T*X) x Y. Let Q be an open subset of T*X and
let F e Ob(D'(X x Y)). Assume

(4.4.1) h(ss(F)) N (2 x Y) is proper over Q

Then we have
i) SS(RE,F) N S c wo ' (SS(F))

ii) SS(RE,F) N Q< wo™ ' (SS(E))

> IRf, (F) is an isomorphism on Q

iii) IRf, (F)
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*
Here w and p denote as usual the natural maps from Y x T X

* *
to T X and T (Y x X) respectively.

Proof
By a closed embedding of Y in an,we may assume Y = R™. Ssince

Y 1is isomorphic to the open ball in JRn, we may assume Y 1is the

open ball of Y' = R™. Let j denote the embedding X xY —> XxY',
and let g denote the projection XxY' —> X. Then we have
REfL,F = IRg, IRj F

o
1

Setting Z = X x 3Y , and applying Theorem 4.3.4. we get

*

8S (IRj,F) \SS(F) € T, (X » Y') + SS(F)

* ~
55 (IRj, F) \ SS(F) CZTZ(X x Y') + Ss(F)
. * -~

SS((le*E)Z) CTZ(X x ¥Y') + SS(F)

Hence it is sufficient to show :
_'] * ~

(4.4.2) wp (TZ(X xY') +8S(F))ynN Q = ¢
For a compact subset K of © , (K x ¥Y) 1 h(SS(F)) is compact.

*
Hence Tm(SS(F) 1 K x T Y) 1is a compact set. Therefore

T(SS(F) N K x T'Y) N 2 = ¢ which implies (4.4.2). []
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§5.1. Fourier-Sato transformation

5.1.1. Let T : E—> Z be a real finite dimensional vector

bundle over the manifold Z. We have already defined in Chapter 2

+

+ . .
conic(E) of D (E), consisting of complexes

the full subcategory D
whose cohomology groups are locally constant on the orbits of the

action of 1R+.

*
Let us denote by SE the canonical hypersurface of T E , the cha-
racteristic variety of the Euler field on E. 1In a system of coor-
dinates (z,x) on E, (x being the fiber coordinates), (z,x ; C,&)

*
on TE,

(5.1.1) S = {lz,x 5 2,8) 5 <x,8> = 0}
Proposition 5.1.1. : Let F e Ob(D'(E)). Then :

FeoOb(D . (B)) <=> SS(F) c S
Proof

It is sufficient to prove this equivalence outside the zero section
of E. Then ﬁ/]R+ is a manifold and we may apply Proposition 4.1.2.

ii). Then one only has to check the equality :

n
n

E. ]

* . + .
(5.1.2) T (E/IRT) % | E
E/IRY E

* * *
Let p and w be the maps from E x T Z to T E and T Z respec-
Z

tively, associated to the projection T : E—> 172 . We may
* *
identify T Z to a subset of T E by the embeddings :

* * *
T Z <—>E ; T Z GB—> T E
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+

Now if F € Ob (D )
= conic

(E)), SS(F) is homogeneous with respect to the

action of 1R+ on E, and we have :

(5.1.3) ' ss(E) = Tz N ss(F)

+

Proposition 5.1.2. : Let F € Ob(D .
—_— = conic

(E)). Then :

i) SS(R1,(F)) & T 2 N SS(F)

ii) ss(lrt,(F)) ¢ 7%z (N SS (F)

iii) SS(RT,(F|.)) e @ | SS(F|.)
E E

Vss(r|.)
E

iv) SS(IRT,(F|.)) ¢ Wp
E

Proof
Let (z,x) be a system of coordinates, (x) denoting the fiber coor-

dinates. Then the Proposition is a particular case of Theorem 4.4.1.

when taking Y. = {(z,x) ; |x|] < s} for i) or ii) and
-1 s . —
Y, = {(z,x) ; s <|x| < s} for iii) and iv). []
5.1.2. Before studying relations beetwen conic sheaves on E , and

*
conic sheaves on E , the dual vector bundle to E, remark the

following.
*
Let GE : T E —> IR be the principal symbol of the Euler vector
*
field. We have the canonical homomorphism 1 E —> TE of vector

*
bundles over E (where 1 E is the sub-bundle of TE consisting
of vector fields which project to zero in TZ). Taking its dual, we

* * % *
obtain ¢E : TE—>T1TE —>E .

*
We denote by Wy the canonical 1-form on T E.

* * %
Proposition 5.1.3. : i) There exists a unique map @E t:T E—>TE

*
such that wp - dBE = ®EwE* and that the composition
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* ¢E * % *
T E >TE > E is  ¢g
ii) eE* ° QE = - 6E
* *‘ . *
iii) ¢E* ° ®E = a , where a is the automorphism of T E

induced by the antipodal map of E.

Proof

Take a coordinate system 2z of 2z, (z,x) of E,(z,x ; ¢,§) of
* * * %
TE, (z,y) of E and (z,y ; ¢,n) of TE such that the

*
canonical pairing of E and E is given by <x,y> =1 xj yj and

wg = <g,dz> + <&,dx> , Wpx = <z,dz> + <n,dy> . Then eE = <x,£> and

GE* = <y,n> . The map ¢E is given by (z,x ; g,&) —> (z;&).

Now, we have wg deE = <g,dz> - <x,d&> . Hence @E : (z,x ; C,8)

—> (z,& ; ¢,-x) satisfies the desired condition. The uniqueness

of ®E follows from the definition of the cotangent bundle. ii)

follows from this formula.

Since QE* is given by (z,y ; ¢,n) +——> (z,n ; ¢, -y), we have
Opx o ®plz,x ; 7,8) = (z, -x ;¢, -£), which shows 1iii). []
Remark : @E is a symplectic transformation (i.e. preserves du)

but not a homogeneous symplectic tranformation.

+

5.1.3. Let F € Ob(D (E)), and let EA be its Fourier-Sato

conic
transform.
* * %k
Theorem 5.1.4. : With the identification of T E and T E by
®E , we have
SS(F) = SS(E")
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Proof
By the Fourier inversion formula, it is enough to prove the inclusion

SS(EA) C SS(F). We choose coordinates as in Proposition 5.1.3. .
First we evaluate (SS(F')) N {(z,y ; ¢,n) ; y # 0, n # O}.

* -
Let P = {(z,x,y) ¢ E 2 E ; <x,y> » 0} .Since HU%(N 12) is a conic

X *
sheaf on E ; B considered as a vector bundle over E , we can apply

Proposition 5.1.2. :

Ss(F') C{(z,y ; t,n); (z,%x,y;i 0,6,n) € SS RT, (Tr_1E)with x=0, & =0}

Now, by Theorem 4.3.4. we have :

ss I, (1 'E)ess(n 'E) + R d<x,y> .

Hence, if (z,0,y ; £,0,n) ¢ SS IRT, ("'F) with y #0, n # 0, then

there exist sequences {(zn,xn ; Cn,in)} € SS(F), {(Xé,yn)} and {Cn}

. o . .
Cn > O such that X _H—> o, x5 -E—> o, z, _H_> 2, ¥, —H—> e
I - I _ [ R I
Ch 5> Cr Ch c, ¥, 5> 0, —c x! ——> n and cnlxn Xn| > O.
Thus Cn¥n _H—> -n ., and c, —H—> © ., We have (zn,cnxn; Cn’
-1 -1 . ,
<, En) € SS(F) and =N Sn wH—> y. This shows (z, -n ; C,y) € SS(F).

To calculate SS({A) at points (z,y ; ¢,n) where y =0 or n =0

we remark with Malgrange [ 1] that

~ ~ _
(E® Z)p® Zigy) = B Zy5)0 Zp[~1]
~ N * *
Since SS(F"® @{O} ® Z]R) = SS(F7) x T{O}IR*/: TlRlR (Propositions4.1.1.

and 4.1.2.) the result follows. []

§5.2. Specialization and microlocalization

5.2.1. Let X be a manifold of class Ca , o>

> 2 , Y a submanifold.

*

* *
We identify T TYX and T TY

* %
X by ¢T X and we identify T TYX
Y
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x
and T , T X by -H.

TYX

Theorem 5.2.1. : Let F ¢ Ob(D'(X)). Then

i) SS(vy(F)) €C , (SS(F))
TYX

ii) 8S(ny(F)) = SS(vy(F))
1ii)  Supp (uy (E))ESS () N TyX

iv) Ss(Ely) < 'Y N C, (SS(F))
T.,X
Y
v) SS((RI,(F))]y) < T"Y N C , (SS(E))

TYX

Proof
Let us first assume i). Then ii) follows from Theorem 5.1.4.,

iii) follows from ii) and iv) and v) follow from Proposition 5.1.2.

since

Fl, = RT,(,(F)

(RT,(F)) [y = IRm, u, (F)
where 1 (resp. m) denotesthe projection TYX —> Y (resp.
T;X ——> Y). Now we prove 1i).

We take a system of local coordinates (y,t) on X with

Y = {t = 0} and a coordinate s on IR. We set as in §2.2.

N
X = {(s,y,t) € IR xX}
and define

N
p : X

> X by pl(s,y,t) = (y,st)

N

We identify T,X with the set {(s,y,t) ; s =0} of X

N
Let © = {(s,y,t) € X ; s >0} and let j be the injection

N
Q e&——> X
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Then

vy (F) = (Rj, (37 'p7" ©)ly

We know that

ss(37'p! (F))c{(s,y,t; <t,t>,n,s1) ; (y,st;in,t) € SS(F)}

= {(s,y,t ; o,n,7) ; (y,st ; sn,7) € SS(F) , so = <t,t>} .
Then applying Corollary 4.3.5. :

1

S .
SS(IRj,j 'p (g))ITYX)C{(yO,tO,nO,TO).
I {(s.hy st i0 m 1} cssE e (E))
n“n"n’ "n’"’'n" 'n = !
Sn _H—> 0, Sn %n _E_> 0, Yy _H_> Yo tn —E_> to !
"n T > "or Tn "n > To}
n n
= {lygr tg 7 ngr 10) 5 Ay, €5 Ny T )le SS(E)
+ n n
s € R vy 57> Yor & w2 0 My TH O Ty TR To
1 n N _
"S—r; (tnl ﬂn) > (tO' T]O) ’ <t 7 TO> = O}
v Qv
(we have set t_ = s _t_, n_ = s.n and used the fact that
n nn n n
s 0 =<t_,T_>).
nn n n
Thus SS (v, (F)) is contained in C , (SS(E)). []
TYX

5.2.2. By applying Theorem 5.2.1. iv) to the diagonal of X x X ,

together with Propositions 4.2.1. and 4.2.2. we get

Theorem 5.2.2. : Let F ¢ Ob(D (X)), G e Ob(D'(X)).
i) Assume wgld (A) < . Then

SS(F Pég) C SS(F) + ss(G)

ii) Assume F ¢ Ob(Db(X)). Then
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SS (IRHom (F,G)) < SS (F)® % Ss(G)

§5.3. 1Inverse images

5.3.1. Let f : Y —> X be a map of class Ca, o > 2 , and let

* * *
p and T be the associated maps from Y § TX to TY and T X

respectively.

*
Definition 5.3.1. : Let V be a subset of T Y, A a closed

*
conic subset of T X .

i) We say that  1is non characteristic for A on V if

Fmnv-o

ii) We say that £ 1is non characteristic for A if f 1is non

*
characteristic on T Y.

iii) Let F ¢ Ob(D+(X)). We say that f 1is non characteristic

for F on V 1if £ 1is non characteristic for SS(F) on V.

Remark that if f 1is non characteristic for A on V, then the

map p : 0_1(V) n 6-1(A) —> V is proper.

Remark also that f is non characteristic for A if and only if
*

*
XX (recall that T_X 1is the kernel of p 1in

_1 *
T (AN TX CY ; T v

*
Y x T X).
X

5.3.2. : Let F e Ob(D'(X)).

Proposition 5.3.2. : One has :

i) ss(£7 ') c £7

(SS (F))

i) ss(e' F) < £7 (ss(E))
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*
Assume f non characteristic for F on an open set Ve« T Y.

Then

ii1) ss(£7V F) AV ¢ 0w (SS(E))

iv) sS(EP F) NV cou (sS(F))

- 1 !
v) the morphism f ! F % £ Zy > £° F is an isomorphism

on V.

In particular if f is non characteristic for F , then

- ! 1

£ F Bt Z,—> f° F 1is an isomorphism.

Proof

By Remark 1.2.7. we may decompose f by the graph map as an

immersion followed by a submersion. If f 1is a submersion the
result follows from Proposition 4.1.2. and if £f 1is an immersion,
assertions i) - iv) follow from Theorem 5.2.1. and Remark 1.2.7.
Hence it remains to prove v) when f is an embedding. We remark

that :

Ry by (F)

i”
h
|

"
h

!
H
=
H
N

JRT!! u,, (F)

Y '= - = =X

Hence we have a distinguished triangle :

- ! .
el m,—> £ E— R, (n (B)],, ) >

TYX

Applying Thecorem 5.2.1., Proposition 5.1.2. and Proposition 1.2.2.

+1

we get the result. []

Remark 5.3.3. : It is not possible to weaken the hypothesis in
Proposition 5.3.2. by assuming only that p 1is proper over
p_1(v)(\ o SS(F), as shown by the following example. Let X = IR

with coordinates (x,y), ¥ = {(x,y) ; x =0}, Z = {(x,y) ; x = yz},
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v = {(ym) e T*Y ;i n>0}, F = Q, - Then f_1(§) = g{o} , but
o NssEN NPT W) = 9.

§5.4. Comparison of inverse images and microlocalization

5.4.1. We come back to the situation of Proposition 2.3.5. .

Theorem 5.4.1. : Let f : Y —>X be amap from Y to X,

F e ob(* (X)), and let N and M be submanifolds of Y and X

*
respectively with £f(N) &~ M. Let U be an open subset of TNY .

We assume H

1

1 el AT! (SSE) Y X TX
- X

ii) £ is non characteristic for F on U
C s -1 * * . .
iii) w : p (U) \ N ﬁ TMX —_> TMX is non characteristic for
C , (SS(F)).
T, X

M
Then we have isomorphismson U

5.4.1) oG ') B stzyl 2 (o v w(F) BTz )
-2 .\ = —X‘U_ ! Hm = SNx TrX ‘
M M U
_.‘] |
 (Rp,T  p,(F) B o'z . %)
* M — —N;;TMX 1U
1 1
5.4.2 f°F = (IR ) F
( ) (g (£ E)) 5 (Rp, @ uM(_)))U
!
= (Rpy @ uM(E))IU
Proof
The condition ii) implies that p_1(U)(\ m-1(SS(E)) —> U 1is a

proper map, hence IRp, and 1Rp, coiIncide in (5.4.1) and (5.4.2).

By Proposition 5.3.2., hypothesis ii) implies that

- ] !
f 15 % f° Z, —> f'F 1is an isomorphism on U, which gives the

X
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isomorphism :

- !
TELE VIR T O N T € )
J U
Similarly, iii) implies
- A 1
o] Hy (F) & ! Z , =T uy(E)
T, X
M
Thus (5.4.1) and (5.4.2) are equivalent.
Following Proposition 2.2.3. , we shall consider the diagram
s j B
Y Y Y
T Y > ¥ < 2y > Y
£ £ ¥ f‘
s j B
-~ X v > S X
T, X > Xy < QX > X

Then, as we have seen in the proof of Proposition 2.2.3., we have

-1 _ -1 -1 L=
£ vy (E) = sy L Rjyx Py (F)
-1 -1 L =11
If we have a distinguished triangle
1 Y . -1 =1 L
B Ry By (F) > Riga T By (B) —> H —5—> ...

then supp (H) C:TNY , and we obtain a distinguished triangle

-1
> SY (E) '——;1——->

=1
£
£ Y (E)

-1
m > vN f (E)

In order to prove Theorem 5.4.1., it is sufficient to show that &,

the Fourier-Sato transform of o , is an isomorphism on U :

-1 ! ! N
Rp, W uM(F) & IRHom (f _@X,US @NKZT X

Q>

-1
) > uy (£ F)
By Theorem 5.1.4. this is equivalent to saying that o is an

86



FUNCTORIAL PROPERTIES OF MICRO-SUPPORTS II

- * % * . A
isomorphism on ¢T1Y(U), where ¢TNY : T TNY > T TNY is defined
N

in Proposition 5.1.3. . This is again equivalent to saying that A

. -1
is an isomorphism at any point above ¢T Y(U).

N
Now we consider the diagram :
! -1, V=1 B s V=1
£z, 0 ¥ IRI 4By (F) > ¥Ry apy (F)
1
£ ggx® A R
¥
! . -1 -1 Y . -1
£'z, 8 JRJY*}‘ py (F) —L——> Rjy & By (F)

Hence it is sufficient to show that B and Yy are isomorphisms on

-1

¢ (U)
Ty ¥

Now we shall take a local coordinate system (xo,yo) on X,

(x,,y;) on Y, such that M = {(xo,yo) R S 0} and

N = {(x1,y1) Poxy o= 0}. Then gx(t,xo,yo) = (tx .y )

SY(t,x1,y1) =(tx1,y1), and if we write f(x1,y1) = (g(x1,y1) ,
h(x1,y1)) and set g(tx1,y1) =t 3(t,x1,y1), h(tx1,y1) = g(t,x1,y1),

then %‘ is given by
Y Y
%' : (tlx-l Iy") > (g(trX-I,Y1) ’ h(tIX1IY1))

We denote by (xo,yo ; Eo’ no) and (x.',y1 ; 51,n1) the coordinates
* *
on T X and T Y, respectively, and by (t,xo,yo ; T,Eo,no) and

* *
(t,x1,y1 ; T,£1,n1) the coordinates on T %M, and T % respecti-

N
vely.

Let us choose p = (O,y? ; E?,O) in U. We shall show that 8 and
Y are isomorphisms at 8 = (0, O, y? ; ro,g?,o). The calculation
for B and Yy being almost similar, we shall only prove the result

for B.
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If B 1is not an isomorphism at B , then by Proposition 5.3.2.,
%' is not non characteristic for SS(leX*g;1(E)) at g. Hence,

o
there exist a sequence {(tﬂ,x?,y?)} in Y. and a sequence

N
n n _n . . -1
; rn,go,no)} in 8S(IRjyxp, (F)) such that

n
{(tn,XO,YO

[ n n (0)
(tn’x1 Iy1) > (Or O, Y1)

n
(5.4.3)
~.n _n o
(Lnrxolyo) n > (Or OI f(ol Y1))
N , .n _n .n n , .n _n, n o
(5.4.4) Th * 9 (B X,y e + ht(tn,x1,y1)no T T
n ' n n n A% f n n n o]
gx1(tn’x1’y1)'go By (EpeXqeyy) g n > &
(5.4.5)
v v Jnon n Y y LJnoon n
9y1(tnrx1ry1)-go + hy1(tnrx1ry1)-ﬂo ——‘E——> (0]
n n
(5.4.6) It b+ legl + Ingl —5—>
By (5.4.4) and (5.4.6) we get
n n
(5.4.7) legl + Ingl @
First we shall assume tn > 0. Then
n _n n ,n _n v=-1
(thrXorYy i Tgrbgimg) € SS(py (E))
n _n n n
hence (tnxo,yo ; go, tnno) € SS(F).
We have
n n, _ /v n hY n v n 1Y n (e}
(af) €.t nJ) = (gx1.Eo + hx1.no, gy1-€o + hy1-no) —> (£7,0)
n _n o
(tnXo’yo) = f(O,y1)
Since f is non characteristic for SS(F) on U, |£O[ and
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itnn2| are bounded . Hence :

ol

(5.4.8) Ino

n

e (22, £l ———> @ No), then (0,9 ¥R e ss@in e @),

o
N
By the condition i) , ng = O . Therefore

n
(5.4.9) |tnno| —5—> ©
n = 1 n n -
Assume n%/f n| = > ng - Then _;HT(tnXo’no) 5 > (O,no) by
o o
(5.4.8), which implies
¢} — 3
(5.4.10) (£0,y0) ;¥ 5 <n, 22> e C, (SS(F))
1 (¢} o an -
T,.X
M
. n . n
(since [£O| is bounded, we may assume §_ —/—> %O)
By the condition iii), ﬁy (0,0,y?).ﬁo is different from zero.

1
On the other hand, condition (5.4.5) implies

m , .n .n, ,n % , .n _n, n
gY1(tn’x1’y1)’go//| n| ¥ hy1(tn,x1,y1).n?/1 n’ n > ©
o "o

Since ]52[ is bounded we obtain gy1(0,0,y?).ﬁo = 0, which is a

contradiction.

Now let us assume tn = 0.

. n.n _, n,n n .oVl
Since (O,xo,yO : To,go,no) € SS(leX*pX (F)), Theorem 4.3.4.

guarantes the existence of a double sequence

n,m n,m n,m .n,m _n,m . |
{(tn,ml ° ryo 7 TO lgo rno )} in SS (px (_E:)) such that
n,m n,m, n,m ,n,m n,m n . _n, _n_,n _n
(tn,m’xo Yo i To ’go Mo ) m (tn’Xo’yo’ To’go’no)
and thm is positive. Hence one can choose a subsequence which
4
satisfies (5.4.3), (5.4.5), (5.4.7) and the same reasoning gives us

the contradiction. []

89



M. KASHIWARA, P. SCHAPIRA

Corollary 5.4.2. : Let £,Y,X,N,M,U,F be as in Theorem 5.4.1.,

and assume the same conditions i), ii), iii). Then if M is trans-

*
versal to f (i.e. : f 1is non characteristic for TMX), and

N = £7'M, then

n

=1
Ro, T ° py(F)

-1
u (£ (F))
N -y U

* *
Note that is this case, p 1is an isomorphism from Y x TMX to TNY.
X

Remark 5.4.3. : When £ is smooth then ii) is automatically sa-
tisfied. When £ : N —> M 1is smooth, i) and iii) are automati-

N
cally satisfied.

§5.5. The functor phom(e+,*)

5.5.1. Let f be a map of class c® (o > 2) from Y to X. We

*
denote as usual by p and W the associated maps from Y XT X to
* * * *
TY and T X respectively. We shall identify T X (resp. T Y)

* *
with TA (X x X) (resp. TA (Y xY)) by the first projection where AX
X Y

(resp. AY) is the diagonal of XXX (resp. Y xY). We denote by A
* *
the graph of f in X xY and identify TA(X xY) with S!QT X. Thus

we have the maps

*

*
p (XXY) ——> TAX(X x X)

*
TAY(Y X Y) <—E— T

We denote by qj (3 = 1,2) the Jj-th projection defined on X X Y.

We shall consider the diagram

Y Y f1 > X x Y f2 > X x X
v U U
AY == A £ > AX

where the square on the right-hand side is cartesian, and A is

transversal to fj
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Definition 5.5.1. : i) Let G e Ob(D°(¥)), FE € Ob(D'(X)). We set :

phom(G —> F) ]Rggg(q;1 G, q: F)

¥
ii) Let G e 0b(D'(¥)), F ¢ Ob(D°(X)) . We set

phom (F —> G) IRHom (g ' F , g, ©)

Ha

iii) When Y = X and f is the identity, F ¢ Ob(D' (X)),

G € Ob(Db(X)), we set

phom (G,F) = phom(G —> F)
Remark that
(5.5.1) supp phom(G —> F) < @ (SS(E)) () o ' (SS (a))
(5.5.2) supp phom(F <— G) & 7! (SS(F)) N o T(ss (G))

In particular when X =Y

(5.5.3) supp phom(F , G) « SS(F) N SS(G)

*
Let 7m denote the canonical projection from TA(X X Y) to A

n
I

Proposition 5.5.2. : We have canonical isomorphisms

R7, phom(G —> F) = lRHom(g,flg)

Rm, phom(F <— G) ]RHom(f‘1£,§)

In particulay when Y = X ,

IRm, vhom(G, F) = IRHom(G, F)

Proof

We have

— ! -
IRm, Ko lRHom(q21g, qi F) = 1Rq2*1RFA]RHom(q21§, q!

1 B
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- i
= IRq,+ IRHom ( (q21§)A,]RFA(q1'g))

- IRHom (G, £' F)

Similarly
-1 ! -1 !
Ry, Ha lRHom(q1 F, q, G) = quz*]RHom((q1 E)A,IRFA(ng})
_ -1
= IRHom (IRq, , ((g, E),), G)
= RHom (£ F, G) . (]
Proposition 5.5.3. : Let Y be a closed submanifold of X. Then
whom (A, F) = wu (F) .
Proof
Let f Dbe the injection Y <——> X. We have
=1 ! - L
U»AX lRHom(qZ éY r 9y F) = uAX ]-sz*fz q1 F
— ! !
FORT, My Fyap
o !
= U'A (q-] E)
2 kg (F)
by applying Propositions 2.3.4. and 2.3.5. . E
, !
5.5.2. We shall compare the functors phom(G,F), phom(G, £  F),
whom (£71F, G), etc
Proposition 5.5.4. : In the situation of Definition 5.5.1. we

assume f is proper on supp G . Then

R

a) phom(IRf,G,F) = IRw, phom(G —> F)

b) phom(F,IRE, G}

"

IRW, phom(F <— G)

92



FUNCTORIAL PROPERTIES OF MICRO-SUPPORTS 11

Proof

- !
o ].RHom(qz1 Rf, G, g, F)

a) uhom(IRf G,F)
) X

-1 !
o IRHom (R, 4, G,d; F)

-1 !
uAX IRf ,» IRHom (g, G , q; F)

It remains to apply Proposition 2.3.4..

IRHom (¢ F, g IRf, G)

b) uhom(E, Rf,G)? = u,
X
= IRHom (g 'F , RE.,q. G)
Pa, TRy 2 WEgxdy 2
_ -1 !
= uAX lsz*]RHom(q1 F, q, G)
and we apply Proposition 2.3.4.
Proposition 5.5.5. : In the situation of Definition 5.5.1., we

assume that £ 1is non characteristic for F on UNSS(G), where U

*
is an open subset of T Y. Then we have

n

!
phom (G, f£° E)’ Rp, phom (G —> E)'
U U

n

uhom(f_1g, g)' IRp, phom(F <— g)l
U U

Proof
! - 1 -
Since f{ lRHom(q21§, qi F) = lRHom(q21§, q; f! F) and f1 is non

characteristic on U, we can apply Theorem 5.4.1. to obtain

]RHom(q;1 G, q! £ F)

-1 1 _
Ro, u, RHOm(q, G ,qq F) = 1

"
AY
This shows the first isomorphism. In order to prove the second one,

we apply the same theorem to lRHom(q;1§, qé G) .

Corollary 5.5.6. : In the situation of Definition 5.5.1. assume

i) £ is smooth
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ii) £ 1is proper on supp (G)

*
Then we have natural isomorphisms on T X

- !
a) p hom(Rf G,F) = 1Rw, p L p hom(G,f F)

113

Rw, p hom(G —> F)

113

b) u hom(F, IRf, G) = IRw, p | u hom(f 'F,G)

[

IRw, u hom(F <— G)

Corollary 5.5.7. : In the situation of Definition 5.5.1., assume :

(i) £ is an embedding

(ii) £ is non characteristic for F on U NSS(G) where U

*
is an open subset of T Y.

Then we have natural isomorphisms:
1 -
a) uphom(G, f'E)‘ * 1Rp, T L uhom(lRf|§,§)‘
8] . U
b) uhom(f_1g,§)‘ = IRp,w | uhom (F, IRE,G) |
U U

5.5.3. We shall calculate the stalk of phom(F,G).

Proposition 5.5.8. : Assume X 1is a vector space. Let
*
Feobd(X)), Gecob(d (x)), and let (x,iE,) € T X. Then
3 | = 1im. gJ . -1
H uhom(g,g)(xo;go) élg>H ]RF(U,lRHom(¢G RoxEyr G))

where U runs over the family of open neighborhoods of Xy v and G

runs over the family of closed convex proper cones such that

(5.5.4) G c{y € X ; <Y E> < o} U {0}

Here denotes the continuous map X —> X ..

bg G
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Proof

Let G be a closed proper convex cone of X. Set

(5.5.5) ZG={(x,x') e X xX; x'-x ¢ G}

Then

3 e wd -1 !
H uhom(g,g)(x i) lim_H lRFZ (Ux v, 1RHom(q2 F, a4 G))

o’7o u,v, G
where U and V run over the family of open neighborhoods of X0

and G runs over the family of cones satisfying (5.5.4).
Then we have

-1 ! . -1 !
IRl'z (UXV, IRHom(q, F, qyG)) = IR['(UxV, IRHom((q, F)zg, q; G)

n

IRT (U, RHom (IRq,,, (a, F), + G))
: G

where denotes the projection X xV ——> X. Hence it remains

9y
to prove that for a relatively compact open subset V of X, we

have

-1
(5.5.6) Ra,y, (9, E)ZG

104

-1
0g RégxEy
Let K be a compact convex subset of X. Then

RT (K, 03 Rogx E_) = IRI((K4G)AT ; F)
v

n

IRT (q,, (KXV) N 2,7 F)

el

n

IRT ((Kx V) O 27 q}‘E)

n

BRI (KT 7 (a; F)y )
G

n

IRT (K} Rq, g+ (d, ' F) ;)
G

Moreover we have similar formulas with V replaced by dV. Then

(5.5.6) follows by considering the distinguished triangles
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F, > F > Fouy =572 ---
\
and
Raqy, () > Raygu (1) ——> Rdqpys () =77
Corollary 5.5.9. : Let K be a closed convex subset of X, and

let F ¢ 0b(D'(X)). Let (x,18,) ¢ SS(Ag). Then :

j - 14 j
H” phom (A, ;F) . = lim_ H” IRT a (U; F)
K (x 7€) 0.6 (R+GH) nU =

where U runs over the family of open neighborhoods of X, G over

the family of closed proper convex cones satisfying (5.5.4) and

G = -G .

Proof

We may assume Eo # O . Then

Kcix ; <x=x_, E0> 2

o >, 0}

Let G be a closed convex proper cone satisfying (5.5.4). We may

find an open neighborhood U of X, such that

KNG = K A(U +G) .

Then

1 -1

(07" WRogeBy )| = (07 RoguA)| -
U U
Finally we remark that K being convex and compact

_‘] -
(5.5.7) ¢ RO, Ayp = Ap.ca

This completes the proof. []
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§5.6. Cohomologically constructible sheaves

5.6.1. First recall the following about ind-objectsand pro-objects.

Let C be a category {XX’ fx u} an inductive system, i.e.
1

fA,u : Xu _ XX ;B KA
n 3 n - 3 =
Then llm> XA = X iff
(DI B SNNERS o > X s.t. fyefy = wg
2) ] A, and g : X > Xy s.t. £, og =Idy
o o
X g > X>\
o
N £
1d "o
X
and WA ju > A, Ao s.t.
X, ———> X
A £y
g
£ o
By A £
HoA
X
"
e.g. : assume C additive
then "lim " X, =0 iff W\ Ju > r s.t. fux = 0.
The similar remark holds for "lim" by reversing the arrows.

5.6.2. 1In order to compare the functors IRHom(+,+) and -% +  we

introduce:
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Definition 5.6.1. : For F ¢ Ob(Db(X)) we say that F is cohomo-

logically constructible if the following conditions are satisfied.

i) For any x ¢ X , "lim{ IRT (U; F) is represented bya perfect
Uax

complex (i.e. : a bounded complex of projective A-modules of finite

rank).

ii) For any x ¢ X , "lim" lRFC(U; F) 1is represented by a
23X

perfect complex.

Here U ranges over a system of neighborhoods of x

This definition is slightly different from that of Verdier [1].

The following proposition is immediate.

Proposition 5.6.2. : i) If F ¢ Ob(Db(X)) is cohomologically

constructible, then lRHom(E,éX) is also cohomologically construc-

tible, F +———> IRHom(IRHom (F, éx), éx) is an isomorphism,

and SS (IRHom (F,A,)) = SS(F)7.
ii) If F ¢ Ob(Db(X)) is cohomologically constructible, then
for G ¢ ob((D*(¥)) we have

Riom (q; ' F, a;'6) = q;' Reon(r,a) B q)'c

where qj is the j-th projection from X xY , (j = 1,2).

proposition 5.6.3. : Let F € 0b(D”(X)), G & 0b(D'(X)).

If F is cohomologically constructible, then

Rm, phom(F,G) = IRHom(F,Ay) B G

Proof

Let j : X&——> X x X be the diagonal inclusion and qj the j-th
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projection from XXX (j=1,2). Then we have by Proposition 2.3.2. :

- - 1 !
R, phom (F,G) = 3 ' JRHom(q21E, q,6G) LIER Zyxx

On the other hand we have :

;™1 IRHom (g2 F,q' G) = 37 (g7 RHom(F,A.)® p. G)

il

L
]RHom(E,éX)% G B IRHOM (3 * Zy, o Zy)

Corollary 5.6.4. : Assume F 1is cohomologically constructible.

Then the morphism lRHom(E,éx)g G > IRHom (F,G) is an isomorphism

* a -~
on T X \(SS(F)" + 85(G)).

Proof
. ok
Let us denote by 7 the projection from T X to X. We have a dis-

tinguished diagram

IRm , phom (F,G) —> IRm, phom (F,G) —> IRm, whom (F,G)|., = L
: T X

Since SS(phom(F,G)) is contained into C (85(G), SS(F)) by
T X
Theorem 5.2.1. the result follows from Proposition 5.1.2. and

Corollary 1.2.4.

Corollary 5.6.5. : If F 1is cohomologically constructible and

*
SS(F)¥NSS(G) € T X , then

RRHom(F,A,) ® G = IRHom(F,G).

X

§5.7. Micro-support and support of the microlocalization

5.7.1. Let X be a manifold of class c® , @ > 2, Y a submanifold.

*
In general the inclusion supp(uY(E)) < SS(F) N TYX is strict.

However
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Theorem 5.7.1. : Let Y be a submanifold of X and let

F ¢ Ob(D'(X)). Then
TX (| SS(F) = supp(ky (F)) U (SSEIXNT) N Tyx)

Proof

*
We may assume X and Y affine. Let (xo;go) € TYX with

(xo;go) £ supp(uY(E)) and (xo;go) ¢ SS(F)|X \Y. We shall prove that

(xo;io) ¢ SS(F). There exists a neighborhood U of X, and a

closed convex proper cone G with non empty interior such that
i) <g_,6 \ol> < o
ii) x e U\NY , <&, g\Mol> <0 ==> (x;&) ¢ SS(F)

iii) x e UnY, <&, g\Mol> <0 => (x;8) ¢ supp (uy (F))
Let H be the half-space

H = {x ; <x=x_, £ > < -al

with a > 0 , a << 1
Take X, € U, |x1—xo| << 1 , and set
91 = X, + Int (G)
2, = {x ¢ Q, 1 (x+G) N Y = gl

To prove that (xO;EO) does not belong to SS(F) we shall show

R F) =0

AT
Let Q Dbe a G-open set, with Q1 NHcCcO C Qz. Then
IRT (& ; F) =0 since (IR¢q, IRT

Q\H
(Proposition 2.3.2.) that

X\H(E))lﬂz = 0 . Now recall
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BI(@,nY) xInt %% ; u (F)) = éir;> H) (V;F)

4

where V 1is open, 2 1is closed in V, and :

voa,. ny

a ,
CY(Z) C (G +Y) /Y (in TYX)

oy
Let G be a closed proper convex cone contained into 1Int Gu{o},
such that assertion i), ii) and iii) are still satisfied with ’(\f.
Y
instead of G. We may ask 2 D (V N (Y + Ga)), and thus we may

assume

(QZU Q, NY))cv C_Q1 , V G-open

1

z+6 Nv =1z

N
that is Vv \Z is G-open .

Then
HJ;]\Z\H(V\Z;E) = 0 ¥,
Lin, HW: E) = 0 v,

and since HAV =H N (V\32)
lim uJ (V;F) =0 ¥,

T V\H =

and it remains to remark that ii) implies

]RI‘Q1\V(Q1;E) = 0
tor any ?;—open set V such that (91 NnY) Yy Qz c Vv CQ1

This proves one of the inclusion of the theorem, and the other one

is proved in Theorem 5.2.1. . D
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*
5.7.2. Remark : One could have expected to have TYX N ss(r) =

supp(uY(E)), but the following example shows that such a result is

false in general.

Take X = lR2 with coordinates (x,y), Y = {(x,y) ; x = O} ,

z=1{(xy) ;i x>0, -x<ygx}, F=¢, .
Then uY(E) =0 , but :
sS(F) m n  ({0}) = {(&,n) ; E+n 3 O, E-n 3 O}

At the same time this shows that we cannot replace in the statement

of Theorem 5.2.1. i) the inclusion by an equality.
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§6.1. The category D+(X;Q)

6.1.1. We shall use the same terminology for localization of

categories as Hartshorne [1 , §3].

In particular, for a multiplicative system S of a category C,

the localization CS is defined as follows

Ob (Cg) = Ob(C)
for X,Y € Ob(C), Hom. (X,Y) = {(f,s,X,) ; s ¢ Hom,(X,,X)},
Cq 1 c'™

s belongs to S, f ¢ HomC(X1,Y)} / v  where (f,s,X1)N (st',X{)

if there exists a commutative diagram with ss, = s's{ € S
X2
L}
1 [g N
£ ‘ £ .
X1 > Y < X1
Sl

T

Now let C be a triangulated category and N a collection of

objects of C. We call N a null system if it satisfies the follo-

wing axioms (N1) - (N3)

(N1) 0O e N

(N,) X e N if and only if x[1] e N

(N3) Let X —> X' —> X" e R be a distinguished triangle.

If X', X e N then X" & N.
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et S be a collection of arrows f : X' —> X which is embedded
into a distinguished triangle

X' £ > X > X"

I > ...

with X" ¢ N . Then S 1is a multiplicative system and we can define
CS, which we shall denote by CN. The following lemma is immediate.

Lemma 6.1.1. : CN has a structure of triangulated category and

the natural transformation Q : C —> CN is a morphism of triangu-

lated categories which satisfies

i) 9(X) =0 for any X & N

ii) any functor F :C ——> D of triangulated categories such

that F(X) = O for any X ¢ N factors uniquely through Q

6.1.2. Now let X be a real manifold, and let Q be a subset of
*
T X . Let N(R) be the collection of objects F of D+(X) such

that SS(F) ) Q = @. We write D'(X; Q) for D' (X) For

N(R)"
*

peTX wewrite D (X; p) instead of D'(X; {p}) (cf. Brynlinski

[2] for a similar construction in the framework of &-constructi-

.k
ble sheaves, when Q =T X). In §5.5. we defined the functor

*
phom (F,G) from Db(X)o « DT (X) to DY (T X). We know by Theorem

5.2.1. and Proposition 4.2.2. that if F € N(Q) or G e N(R) then
phom (F,G) = 0. Thus uphom(F,G) q can be considered as a functor

°xpd'(x;0) to DY(Q).

Q
from Db(X; Q)
Now we have (Proposition 5.5.2)

*
H? (T X ; phom(F,G)) = Hom (F,G)

Thus we obtain an homomorphism

Hom (F,G) > H° (2, whom (F,G))

Dt (X;9)
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In general this morphism is not an isomorphism, but we have :

*
Proposition 6.1.2. : For any p € T X , the natural morphism :

Hom (F,G)

> H° (uhom (F,G))
D" (X;p) b

is an isomorphism.

Proof
If p e T;X, there is nothing to prove. Now assume X 1is a vector
space and p = (xo;go) € i*X. We keep the notations of Proposition
5.5.8. . Then :

o o o . -1
H uhom(z,g)p = $12> H (IRT (V7IRHOm (¢ o IR$ .y F, 1 G) ) )

Now Proposition 3.2.2. implies :

-1,
qbG 'IRQ)G* EV

. . . . +
is an isomorphism in D (X ; p).

This proves the injectivity of the morphism in Proposition 6.1.2.

In fact let u e Hom _ (F,G) which vanishes in Ho(uhom(z,g)) .
D" (X) P
Then there exist V, G such that the composite :
6" "1Re ., F > G
G G*—v u —iv

vanishes.

The surjectivity is similarly proven. D

§6.2. Study of sheaves in a neighborhood of an involutive manifold

6.2.1. Let X be a manifold of class Ca, o >»2 , Y a submanifold,

and denote by j : Y&—> X the embedding of Y in X .
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*
Proposition 6.2.1. : Let p e TYX and let F ¢ Ob(D+(X)). Assume

SS(F) ﬂ_1(Y) in a neighborhood of p. Then there exists

G e Ob(D'(Y)) such that F = IRj,G in D' (X; p).
Proof

* o %
If p Dbelongs to TXX there is nothing to prove. Assume p € TYX‘
By induction on the codimension of Y in X we may assume Y is

a hypersurface. Let {f = 0} be an equation of Y, with X, € Y,

p = df (x ). Set 2" = {x ; £(x) §$ 0} , and let i (resp. i') be the

injection QT &——> X (resp. Qfe— X). Applying Theorem 4.3.4.

we find p ¢1Ri iV F . Hence IRT (F)2 F in D (X; p), and we
* = {f30} = =
7

may assume from the beginning that supp(F) < {f 3 O}. Since

EQ+ = lRi;i'_1(E), we find again by Theorem 4.3.4. that p¢ SS(§Q+).

Thus F 1is isomorphic to EY in D+(X,p). Finally we remark that
|
EY J*] (EY)‘ D

n

*
Proposition 6.2.2. : Let Y be a submanifold of X , p € TYX ’

*
F e Ob(D+(X)) and assume SS(F) C TYX in a neighborhood of p.

Then there exists a complex M' of A-modules such that F is

isomorphic to g; in p*(x ; p).

Proof

By Proposition 6.2.1. , F = IRj,G in D' (X; p).

*
Hence Proposition 4.1.1. b) implies SS(G) TYY , and we can apply

Proposition 4.1.2. . E

6.2.2. Now let f : Y —> X be a smooth map of manifolds of class

* *
c® (a > 2). We identify Y X T X to a submanifold of T Y.
X

*
Proposition 6.2.3. : Let pe Y *x T X and let G e Ob(D'(¥)).
opo Let o and let G
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*
Assume SS(G) is contained in Y x T X in a neighborhood of p.
- - X

£ @ inpT(vip).

iR

Then there exists F ¢ ob(D* (X)) such that G

Proof
We may assume Y = an, X = an-1, f denoting the projection

' v = . 3 = ' =
(xg,x") /—=> (x'), and p = (0; & ) , with §&_ (0, gl). If £,=0

the result has already been proved (Proposition 4.1.2.), thus we
assume EO # O.

Let G be a closed convex proper cone such that ¢°? is a neigh-

(@)

*
borhood of § and that (U x Goa) N SS(F) 1is contained in Y X T X
- X

for a neighborhood U of O.

Let ¢ be the natural map from Y to YG and let H be the half
space {x ; <x,£o> > -e}. Then F' = ¢—1 1R¢*(EH) is isomorphic to

F in D+(Y:p) by Proposition 3.2.2.

- *
Now SS(Fy) N (Ux 6°%) is contained in YxXT X since
- X

* -~ * * ~ *
(¥ xTx) +N @M% cyxTx and ((SS(E)\ (Ux6®Y)) + 8 (1)) N
X X
(U x {go}) = @ . If we choose ¢ and G°? small enough we get by
*
Propositions 3.2.2. and 4.2.3. that SS(F') is contained in Y x T X.
- X

It remains to apply Proposition 4.1.2. . D

§6.3. Contact transformations

In this section we shall assume for the sake of simplicity that A

is commutative and wgfd(A) 1is finite.

6.3.1. Let X and Y be two manifolds of class c® (a > 2). We

denote by qj the j-th projection from X x Y , and by pj the

* * *
j-th projection from T (XxY) =T X x T Y. We set p? = Pj

where a is the anti-podal map. If 2 is a third manifold, we also

o a ’

use the notation q; 3 to denote the (i,j)-th projection. For
’
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example q43 is the projection from X x Y x Z to X x Z.
*
Proposition 6.3.1. : Let QX be an open conic subset of T X,

K e Ob(Db(XX Y)). Assume

(6.3.1) The projection : SS(K) N p?_1(QX) e QX is proper.

Then we have :
a) For G ¢ Ob (D" (Y)), set :
F, = 1Rq1!1RHom(5,q;1§)

= IRq,, IRHom (X, q;g)

|
I

Then F > F is an isomorphism in D+(X; QX) , and

=1 -2

SS(E,) N 9y ¢ p2(SS(X) O p; (S5(8)))

b) If furthermore K 1is cohomologically constructible, then

we have the isomorphisms in D+(X; QX)

F, = IRq,, (IRHom (K, ) 8 ole)

1 Ayxy

- -1
= ]Rq1*(lRHom (X, —A—XXY) % d5 G)

Proof

First we shall show

* -1 _ a, .* -1
Txxss@)n\p1(Qw-wsg)+ggms@nnp1(Q

X )

+>

a
(SS (K) <

(6.3.2)

(5S(K)2 3 T.XxSS(G)) N p, () =@
1 X £ 1 %x

8 +»>

In fact if we choose coordinate systems on X and Y , and if

*
(x,y ; &,n) are the coordinates on T (XXY) , then

(,yiEm) € (8S(K)F 3 Tux x8S(G)) N ;! (2y)

X
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iff there exist sequences {(xn,yn;gn,nn)} in Ss(x)? and

Lyl ng)} in 8S(G) such that (x_ .,y ) —4> (x,¥), y| —> v,

LI —_ ! .
gn —E_> £, n,tM. R/ >N, lnn[[yn yn] 5 >0 . By the assumption
(6.3.1), lnn[ is bounded, and thus [nﬁ] is bounded, which proves

(6.3.2).

Now we can apply Theorem 4.4.2. to 1RHom(§,q51g) which proves a),

and b) follows from Corollary 5.6.4. and Theorem 4.4.2. . D
Remark 6.3.2. : By replacing IRHom(K,*) with 5,% LI

. a .
lRHom(K'éxxy) % with 1RHom (1RHom (K, éX,Y)’ ), and Py with Pqs

we have a similar result, that we do not repeat.

* *
Now let QX and QY be two conic open subsets of T X and T Y

respectively, and let K ¢ Ob(Db(XXY)).
Consider the conditions

] (@) N SS(K) € b, (2y)

(6.3.3)(le) .
Py (8y) N SS(K) 1is proper over 2y

and let ox be the functor from D' (Y) to D (X) given by

G > 1Rq1* IRHom (K, qég)

Then if K satisfies (6.3.3)(le), sends N(QY) into N(QX),

'K
so that by taking the quotient we may associate to ¢ a well defi-

K
ned functor, that we still denote QK , from D+(Y; QY) to

+
D (X; QX)

o : D (Y ; Qy) —> pY(x; @

K )

X

Remark that @K depends only on the image of X in Db(X X Y ;

« 1Y), that is i 'ox i b 3 x ot
, s if K' 2K in D (X XY ; QO x T Y) then

- X

Q

o, = o .

K

I= o
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Similarly, let L ¢ Ob(D®(Xx ¥)) satisfying the following condition:

-1 a-1
p, (y) N ss() c Py (8y)
(6’3‘4)(X,Y) <

_‘I X
L P, (QY) N Ss (L) is proper over QY

Then we define the functor wL

by setting, for F ¢ Ob(D+(X))

v (E) = Rq,, (L B 7' F)

L

*
Now let 2 Dbe another manifold, and QZ a conic open set in T Z.

Consider the diagram

X x Y x X
912 f9y 3223
+
X x Y X *_ 2 Y x g7
q11 & 3 1‘32
£y 22
X Y z

Let K, e Ob(D°(X x ¥)), K, ¢ 0b(D°(¥ x 2)).

1 2

Proposition 6.3.3. : Assume 51 satisfies (6.3.3)(X Y) and 52

satisfies (6'3’3)(Y,Z) . Set :
_ -1 -1 -1 -1
Ky = ®apy, (@K B apy k) or ey ap;x,# o)k
Then K satisfies (6'3'3)(X,Z) , and

P ot =0
21 =2 £3

similarly if we replace condition (6.3.3) by condition (6.3.4), we

find that 53 satisfies (6'3'4)(X,Z) and
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y o ¥ = ¥
kK, ° 'K Ky

Proof
The proof that 53 satisfies (6.3.3) is a direct application of

the preceding results.

Now let F e Ob(D'(2))

! !
@51 °ng(g‘) = 1Rq1*1RHom(§1,q2]Rq1* lRHom(KZ,ng))
] ]
= IRq,, IRHom (K, , IRq ;4,4 IRHOm(K,, q,F))
_ -1 -1 : !
= IRq,, IRq, ., RHom (q . K, & g2 K., q', q) F))
dox g3 WEOMI4 589 © dp3857 993 93 2
= 1Rq,, IRHom ( (IRq (q—1 K & q—1 K,) q! F))
2% T—— 1317712 =41 23=2""42 =
Remark that
-1 -1 -1 -1
Rq, 5, (@)%, B @)} Ky) —> Ray (@i K, B o)) Ky
gives an isomorphism in Db(X X 7 ; Q; X QZ)
The proof for ¥,  is similar. []
=3
Theorem 6.3.4. : Let A be a closed Lagrangean manifold in

Q; X QY , and let K belong to Ob(Db(X>< Y)). Assume

a
(6.3.5) Py ¢ A > QX and p, : iy > QY
are diffeomorphisms
a-1 -1
(6.3.6) P (QX) N Ss(K) ¢ A and P, (QY) N SS(K) < A
(6.3.7) K is cohomologically constructible

(6.3.8) A, ——> uhom(K,K)

11
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Then @K and Vg are quasi-inverse to each other and give an

equivalence of categories between D+(X ; QX) and D' (Y ; QY).
Proof

We set

(6.3.9) DK = IRHom (K, A, )

Applying Proposition 5.6.2. and 6.3.1. we find that DK satisfies

condition (6.3.3)(Y X) and
7

+ +
D(X;QX) >D(Y;QY)

Let us keep the notations of Proposition 6.3.3. with 2 = X , and
let

-1
ds3

|2
1

bk B q;, k

and

=

= 1Rq13*ﬁ

Then we have :

Note that

. -1 ! . + L oAy m® * * *
N = N' 5= IRHom(q,;K, q;,K) in D' (Xx¥xX; QuxT YXT X T XXT vXQ,)

by Corollary 5.6.4. .

K) in

- !
Hence M is isomorphic to M' = 1Rq13*1RHom(q2;§, 917

+ a * * a
D (X x X ; QY X TXQYTX % QX) by Theorem 4.4.2.

Consider the diagram
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AL XA &—— > (X x YY) x (Y x X)

X Y

AN

AN

S1 N
q R *
a, e 12 P

d13

AX > X XY

Applying Proposition 2.3.4. we get :

N
By, M') = 1Rg.,u (N")
AX 1 AXXY
n * *
where ¢ is the natural map from T (Xxyxx) to T, (XxX).
1 AXXY AX
On the other hand we have
! -1, t_. -1 !
3j lRHom(s2 5,515) = E{Hom(q23§,q12§)
Applying Theorem 5.4.1. we find that M (M') is the direct image
X
- 1
of (IRHom(s lK,s'K)) = phom(K,K). Thus we obtain
byxb, =R S 282 Sr2
A v u, (M") . If we denote by i the canonical map
—Qa AX 02
X X
A > M', then u, (i) 1is an isomorphism on 02 . since
2a, By X
a * * . . . . :
SS(M') N (QX x T X) C_TA (XxX) , i 1is an isomorphism in
A
DT (xxx ; 0%xT¥X). This shows ¢, ~ ¢ , = ¢ = 1Id from
Pk ' Mo M T Ay
pY(x;90,) to DT(X;0) *
’ X o ’ X .
The proof for wﬁ o @K is similar . []

6.3.2. We can now "extend" contact transformations to sheaves.

Theorem 6.3.5. : Let QX and QY be two conic open sets in T*X

* . :
and T Y respectively, ¢ a contact transformation from QY to QX.

For each Ay € QY there exists a conic open neighborhood Q& of
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AY , and K ¢ Ob(Db(Xx Y)) such that K satisfies the conditions

a

(6.3.1) on ¢(Q)) x Qé , and @K induces an eguivalence of

(x,v) 2 Y
+

categories between D (Y ; Q;) and D+(X ;¢(Q;)) for all conic

" 1
open set QY < QY.

Proof

It is well-known that ¢ may be locally obtained as the composite
¢l ° ¢2 of two contact transformations such that if Ai is the
Lagrangean manifold associated to the graph of ¢i , then Ai is
the conormal bundle to a hypersurface (i = 1,2). Applying Proposi-
tion 6.3.3. we may assume from the beginning that A , the image of
the graph of ¢ by the anti-podal map on T*X , 1is the conormal

bundle to a hypersurface S of XxY.

By replacing X and Y with small balls, we take A as K

S
Then all the conditions in Theorem 6.3.4. are satisfied . D
Remark 6.3.6. : The extention ¢ of ¢ to the category

K

D+(Y; QY) is essentially unique. In fact assume ¢ is the identity
on a connected open set QX C_T*X. Then we find a bounded complex of

projective A-modules M such that o =0 . Let be the func-

¢
M, M

tor on D' (X) defined by
(F) = Hom(M, F)

Then @ = ¢

’
MA M

D+(X; QX) onto itself.

and ¢M is an equivalence of categories from

Let us denote by Db({pt}) the derived category of the category of

bounded complexes of A-modules, and let us denote by $M the func-

tor Hom(M,+) from Db({pt}) to itself. We shall prove that $M

is an equivalence of categories. For that purpose choose a submani-
*

fold S of X and X ¢ QX such that X ¢ T;X. Set A = TSX, and
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consider the full subcategory DK(X; A) consisting of objects F

of D°(X; ) with SS(E) € A . Consider the functor ¥ from

Db({pt}) to D?(X; A) which associatesthe sheaf ES to the A-mo-

dule N. By Proposition 6.2.2. , this functor is an equivalence of
. . v _ . .
categories. Since wso ¢M = ¢M ° ws and ¢M induces an equicalence
Y
of categories from Dﬁ(X; A) onto itself, we find that ¢M is an

equivalence of categories.

Definition 6.3.7. : In the situation of Theorem 6.3.5. we say that
@K is an extended contact transformation above ¢ .
Remark 6.3.8. : Since @K is essentially unique, we do not use

the terminology "quantized contact transformation" in this context.

In Chapter 11, when ¢ 1is a complex contact transformation (X and
Y are then complex manifolds), we shall construct (non unique) iso-
morphisms from & ( 6&) to Cﬁx (in pY(x; Ay)) . and we keep the

term of "quantization" to the choice of such an isomorphism.

6.3.3. We shall study the action of extended contact transformations

on microlocalization.

Theorem 6.3.9. : Let QX and QY be two conic open sets of T*X
and ™y respectively, A a Lagrangean manifold in Q; X QY . Let
K belong to Ob(Db(XX Y)). We make the assumptions (6.3.5), (6.3.6),
(6.3.7) and (6.3.8) of Theorem 6.3.4. . Then for F ¢ Ob(Db(X))

and G ¢ Ob(D+(Y)) we have :

(6.3.10) ¢*uhom(w§(§), G) = phom(F, ¢5(§))

Here ¢ 1is the contact transformation pi ° (pg1 ) from QY to QX.

iy
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Proof

Consider the diagram

A, X YE———> X x X X Y ¢;———~———> XX XxYxY

TN

TN

HzHom(qzlg , q! ¢ (G))

vhom (F, <I>5(_G_)) = 2 %€

v
AX

-1 -1 !
uAX RHom(q, "F, IRq,,, IRHom(q,3K, q3G))

_ -1 -1 !
= My, 1Rdypy IRHomlay B b ;3% 050

_ -1 -1 !
= Py by uyREom(a)'F 8 a3, a30)

Here we have denoted by q; or qij the 1i-th or the (i,j)-th

projection from X x X X Y, or X X X, or X x Y, and by P, the

(X x X x ¥) to TX (X x X) and we have
X

. . *
natural projection from T
AXXY

applied Proposition 2.3.4.
By the hypotheses on K, the diagonal embedding Jj from X x X X Y
*

into X x X X ¥ x Y is non characteristic on T X x QX x T'Y for

the sheaf :

- -1 -1 !
E 3z RHom(q, F b d,3K, q,6)

Q,
Hh

(here we kept the notation g, , or g to denote the projections

i ij

from X X X x Y X Y). Moreover :
o -1 -1 !
J°'E = lRHom(ql F & q2351 q39.)

Thus by applying Corollary 5.4.2. we get that vwhom(F, QK(Q)) is

juid Qx
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the direct image of 1 (E) by the projection from
by*by 02xn xn3xq
X XYY
F (XXXXYxY) to T& (XxX). Similarly, we find that
By*by By

vhom (Y, (F),G) is the direct image of (E). Then it is
K=""="1g by*by

Y
enough to remark that supp(uA %A (E)) a is contained
Xy 02xq x0dxq
X X Y Y

in A . E
Corollary 6.3.10. : Under the hypotheses of Theorem 6.3.9. let

= = :
A e A, XX = pl(k), AY = pZ(A). Then :

Hom (F, ¢,(G)) = Hom W, (F),G)
¥ (X2 ) K ph(viny) F

That its, QK and wk are adjoint one to each other.

Proof

Apply Theorems 6.3.9. and 6.1.2. . []

Corollary 6.3.11. : 1In the situation of Theorem 6.3.4., let

G € Ob(D+(Y)) and G' e Ob(Db(Y)). Then we have a natural isomor-
phism of sheaves on QX
¢*uhom(§',§) ~ uhom(@K(G'),QK(G))

Similarly for F ¢ Ob(Db(X)) and F' ¢ Ob(D+(X)), we have a natural

isomorphism of sheaves on 2y

whom (4, (F), 4, (F')) = ¢~ uhom(F,F")

Proof

Apply Theorem 6.3.4. and 6.3.9. . []

Remark 6.3.12. : We may generalize Theorem 6.3.5. by considering
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the following geometrical situation, already studied by
V. Guillemin and S. Sternberg [1 | in the framework of Fourier

distributions.

*
Let A Dbe a Lagrangean manifold in T (X x Y), X ¢ A , and assume
p? is an immersion on A at A (thus P, is a submersion). Let
. . . * X
V be the involutive manifold of T X, the image of A N U by p?,

where U 1is a sufficiently small neighborhood of A . We introduce

D$(X; AX) the full subcategory of D+(X; AX) consisting of those
F e Ob(D'(X;),)) such that SS(F)c V.
Then one can find K e Ob(Db(X x Y)) satisfying (6'3'3)(X Y) such
that :
= + - + -
op = D (Y Ay) > Dy (X5 Ay)

is an equivalence of categories.

For the proof, assume first V regular involutive. By performing
a contact transformation on T*X (and applying Theorem 6.3.5.),

* * *
we may assume X = X' x Z, V = T X' x TZZ , AN = A'" x T_Z , where

Z
* * .
A' is a Lagrangean manifold in T X' x T Y. Let AX' be the image
. *_ + . e e L s
of AX in T X'. Then DV(X, AX) =~ D (X'; AX,) by Proposition

6.2.3. , and the result follows from Theorem 6.3.5. applied to

Me T x v).

In the general case we use the "trick of the dummy variable". Let

t be a coordinate on 1R. Replacing A by A x ™ (Rx 1), we find

A1R

+
that ¢K is an equivalence of categories from D (Y x Hz;(XY,(O,dt)»
to DF « (X xXIR; (AX,(O,dt)))thus an eguivalence of categories from

VxT 1R
D" (YxIR; (A, (0,dt))) to D (X x R; (

* *
YT oy R VxT o) R

AX,(O,dt))). But

+
those two categories are respectively equivalent to D (Y ; A,) and

Y

D&(X; AX) by Proposition 6.2.1. .
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§6.4. Involutivity of the micro-support

6.4.1. Using contact transformations we are now able to prove the

involutivity of micro-supports.

Theorem 6.4.1. : Let X Dbe a manifold of class Ca, a > 2 and

let F ¢ Ob(D+(X)). Then SS(F) is involutive. More precisely,

*
let £ be a Cl-function defined on some open set U of T X , and

assume that U N SS(F) is contained in {f = O}. Then SS(F) N U

is a union of integral curves of Hf.

Proof
Let V = {f = 0} . We may assume V is smooth (there is nothing to
prove at points in a neighborhood of which V 1is not smooth). We

h F
know that SS(F b @{O})

we may assume from the beginning V regular involutive.

= SS(F) x T?O}H{. Thus replacing F by
Iy
£8 Z,

We consider F as a complex of sheaves of Z-modules. Then a

contact transformation reduces the problem to the case where X=ﬂRn,

n > 2 , with coordinates (xl,...,xn) and SS(F) is contained in
the set {(x,&) ; 5n = 0} in a neighborhood U of (0; dxl) ,

(i.e. : £ = &n). Then the result follows from Proposition 6.2.3. []
Remark 6.4.2. : Let Z be a locally closed set in X. Then

SS(@Z) is involutive. When Z 1is closed, an interesting set in
X is associated to 2 by J.M. Bony (1], and a weak form of
the involutivity theorem has been proved by Bony, then refined by
J. SjOstrand [1]. But we emphasize that this set defined by Bony
is in general strictly smaller than SS(@Z), since it may be not

closed, and its closure non involutive in the sense of Theorem 6.4.l..
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§7.1. 1Index for three Lagrangean planes

We shall recall the definition and main properties of the Maslov
index associated to a triplet of Lagrangean planes in a symplectic
vector space (cf. Lion-Vergne [ 1] for proofs and details, and

cf. also Maslov [1], HSrmander [ 2], Leray [2]).

7.1.1. Let (E,0) be a real symplectic vector space (o 1is a non

degenerate skew symmetric bilinear form on the finite dimensional

vector space E). For a linear subspace p of E we set :

o ={x e E ; o(x,p) = O}

L

1L L _ 1 i P i
) + ) =0, Np, and (olnpz) =6t o,

We have (p =0, (0o fy
If o*cp (resp. o oo, ot = p) , p is called involutive (resp.
isotropic, Lagrangean). For an isotropic space p , the space gL/p

is endowed with a natural structure of symplectic vector space. For

AC E weset 2° = ((An ¢") + p)/p. Then :
1 1
(= 0Py .
Definition 7.1.1. : Let {Al,kz,x3} be a triplet of Lagrangean
planes of E. We define TE(AI,AZ,A3) as the signature of the
quadratic form Q on Al ® AZ ® A3 defined by Q(xl,xz,x3)
o(xl,x2) + o(xz,x3) + o(x3,xl), for (xl,xz,x3) € Al ® kz [} A3.

Here the signature means the difference of the number of positive

eigenvalues and that of negative eigenvalues.

If there is no fear of confusion we write =t for g o
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Proposition 7.1.2. : 1) T(Al,xz,x3) is alternating with respect

to permutations of the triplet txl,xz,x3} .

ii) (Cocycle condition). For a gquadruplet {Al,xz,x3,x4} of

Lagrangean planes we have :

T(AZ,A3,A4)— T(Al,k3,k4)4-T(X1,A2,A4)— T(Al,Az,X3) =0

iii) If o 1is a subspace contained in (Aln AZ) + (A2r3A3) +

(A3 N Al) we have :
= SR BN o
TE(Al,AZ,A3) = TEp(A1,A2,A3)

In particular if AN (A2+A3) C:(Al N Az) + (Al N A3), then

T(Al,AZ,A3) =0
iv) If {AI,AZ,A3} moves continuously so that dim(Ain Aj)
(i,j = 1,2,3) remains unchanged, then T(Al,AZ,A3) is constant.
1 . . .
V) T(KI,AZ,A3) =5 dim E + dlm(Al(\Az) + d1m(>\2 N A3) +

dim()\3 8] Al) mod 2 Z .

More generally for a set of Lagrangean planes {Al,...,XN} (N > 4)

we define :

T(Al,...,AN) = E T(Al,Xi,Ai+l)

Then by the cocycle condition we have :

Proposition 7.1.3. : 1) T(Al,...,AN) = T(AZ,...,AN,AI) =

T(AN,A cesAL)

N-1'" 1

) =

i

ii)  t(x ces A ) (where A =x,) ,

N+1 1

o=

1’ N . TGy

for any Lagrangean plane u.

iii) If {Al,...,AN} moves continuously so that dlm(xin Ai+l)

is unchanged (1 ¢ i ¢ N), then r(xl,...,AN) remains constant.
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Example 7.1.4. : Take E = {(x,£) € IR"x IR"} with
o((x,8),(x'",£")) = <&,x'> - <¢',x> . Then we have

t({g=0}, {x=0}, {BE=Ax}) =sgn(AtB)

t . .
where A and B are n X n matrices such that A™B is symmetric

and that (A,B) has rank n. In this case {(x,£); BE =Aax} = {(x,&);

x =th, £ = Az for some z e 1R"}.
Proposition 7.1.5. : Assume A, ) A, = {0} . Then E is the direct
sum E = A1 @ XZ . Let us denote by P4 (resp. pz) the projection
on A1 (resp. Az), and consider the quadratic form q on A3

q: X+r—> O(p1 (x), pz(X))
we have : T(A1,A2,A3) = -sgn g

§.7.2. Pure sheaves

7.2.1. Let X be a differentiable manifold of class c%, a > 2.

For any ©p ¢ T*X the tangent space TpT*X has a canonical struc-
ture of symplectic vector space. We denote by Ao(p) the Lagrangean
plane Tpﬂ_1ﬂ(p). For a Lagrangean manifold A of T*X we denote
by AA(p) the tangent space to A at p. Then for a Lagrangean
plane u transversal to Ao(p) and AA(p), e"‘/:iTO\O(pL)VHp)’“”4

is the cocycle used to construct the Maslov bundle over A (Maslov

[17], H6rmander [2 ]).

*
For a real valued function ¢ on X, we define Y, <« T X by

¢

Y¢ = {(x; dd(x)) ; x € X}

For p ¢ Y¢ we denote by K¢(p) the tangent space to Y¢ at p.

Remark that X¢(p) N p) = {0}. Notice that Yy is Lagrangean but
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not homogeneous.

Definition 7.2.1. : We say that ¢ is transversal to A at p
if ¢(m(p)) = O and if Y¢ and A intersect transversally at p.
Lemma 7.2.2. : Let Y be a submanifold of X and let ¢ be

* *
transversal to TYX at pe TYX . Then there exists a local coordi-

nate system (x1,...,x2) of Y around w(p) such that

i) m(p) =0

2
ii) 6| = I a. x> with a. #0 ¥5 , and
iii) T(XA(p), Ao(p), A¢(p)) = # {3 ;aj >0}-#1{73 ;aj <0}
Proof

Let us take a local coordinate system (X1""’Xn) of X such

that @(p) =0 and Y = {x ; Xj =0 for 3 > %}. Let (51,...,€n)
*
be the corresponding fiber coordinates of T X. Then Y¢ is defi-
ned by
3¢
£, = 22
X ..
J Xy
3%
Hence TP(Y¢) = {(X,E) H Ej =]§ W (O) Xk} and
3 k
*
TpTYX = {(x,8) ; X35 = O ¥j >, & =0 ¥k 2}
*
Then Tp(Y¢)(\ Tp(TYX) = {0} 1is equivalent to the non degeneracy

. 2
of the matrix (9 ¢/3Xj3Xk(O))1$j,ksg'

By Morse's lemma we may assume, after a change of coordinates

(X,,+..,X_) that ¢ = I a. x? , with a. # O.
1 n Yy g I3 J

Assertion i1ii) is obtained by an immediate calculation . D
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*

Lemma 7.2.3. : Let Y be a submanifold of X , A = TYX ;9 a

c" function transversal to A at p e A . Then we have for a

complex of A-modules Mo

. k-pdimy- %T(xo(p),xA(p>,A¢(p))

K ) .
Hiio(x30 My)pp) = 8 M)

Proof

on Y as in the preceding

We may choose coordinates (x1,...,x2)

lemma. Then we have

J(RY ;w0

k . Cx
H{X7¢(X))O}(MY)ﬂ(p) =Hp a.x230
B4
eI
where q = =# {j ; aj < 0} . On the other hand we have

TGP, Xy Py Ay (R)) =q- (R-q) =2q-dimY. []

*
Lemma 7.2.4. : Let A be a Lagrangean submanifold of T X , p a

point of A, F ¢ Ob(D+(X)). We assume that SS(F) < A on a neigh-

borhood of p. Let ¢ be a function transversal to A at p and

Hi

j be a number such that j

T(dim X + dim(\_(p) A A, (p))Imod Z .

J+T4 /2
Then H1T900501 Er p)

Ty = Tg ), Ay (P, A¢(p)).

does not depend on ¢ , where

Proof
Let S be a manifold and let ¢S(x) be a Ca—function on SxX
such that ¢S is transversal to A at p(s) for s e S.

We shall show first that for any integer k

(7.2.1) H%¢SZO}(E)W(P(S)) is locally constant with respect to s.

Let g : S x X

> X be the projection and let
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Y = {(s,x) ; ¢4 (x) = 0l €« s x X
*
z = {(s,m(p(s));dd_(r(p(s))));se S}c:TY(SX X)
We have
(7.2.2)  H] (F) =19 (u (g 'F )
cer {¢SZO} ='m(p(s)) Y n{s}xx = (s)xx ap (m(p(s))
and
_‘l _'] *
(7.2.3) SS(uY(g F)) c C (ssf{a 'F)) < C 4 (TSSX/\)
Ty (8xX) Ty (8xX)
Since T;(SXX)(N(T;S x N) = 1R+Z, and the intersection is transver-
sal,
* * *
C (TgS x A) =T (T, (5xX))
TY(SXX) IR Z

and this implies uY(g—1(§))|Z has locally constant cohomologies.

. . _ . J -1
Since the right-hand side of (7.2.2) equals H (uY(g F)h¢sﬁﬂp(sn)
by Theorem 5.4.1. we get (7.2.1).

Now let ¢ and ¢' be two functions transversal to A at p, and
let us prove
J+ %T¢ J+ lr¢,
Hig20} (g)ﬂ(p) - H{¢'zo} (E)ﬂ(p)

We choose two families ¢s and ¢; transversal to A at p(s)
such that ¢O = ¢, ¢5 = ¢'. Let A' Dbe the set of points of A
around which the projection from A to X has constant rank. Then
A' is an open dense subset of A and, locally on A' , it is the

conormal bundle to a submanifold Y of X.

Hence by Proposition 6.2.2. F is microlocally isomorphic to M, .

By applying the preceding lemma if k + % T¢ = 0 mod Z :
s
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1 1
k+ 57T k+ =71
7 g _ 2 ¢4
H (F) = H (F)
~'m(p(s)) ! ='m(p(s))
{o >0} o230}
for pils) € A'.
Applying (7.2.1) we obtain
1 1
k+ 5t k+ 51, ,
{630} TP {¢'30} TP

Now we have

T¢S - T%: T (AO (p(s)), Ay (p(s)) ,AAS(p(S)))-T(AO(p(s)),AA (p(s)) ,A¢S.(p(S)))

=14y (p(S)),>\¢S(p(S)),>\o(p(S)),>\¢é(P(S)))

Since A, (p(s)) and A¢.(p(s)) are transversal to Ao(p(s)) and
s

¢

S

AA(p(s)), this is locally constant with respect to s (Proposition

7.1.3) and we get T¢s -1 . =Ty T Ty O

*
Definition 7.2.5. : Let A be a Lagrangean submanifold of T X,

peld , Fe ob (D" (X)). We assume SS(F) ¢ A in a neighborhood of

p. if for a real function ¢ transversal to A at p and an

A-module M

3j . _ . 15, 1
H{¢;O}(E )n(p) =M for j=-d +7d1mX +§T(>\O(p),}\A(p),)\¢(p))

= O otherwise

then we say that F is pure with shift d of type M at p (along

A). If moreover M is a free A-module of rank one, we say that F

is a simple sheaf at p with shift 4.

—_

Remark : We have 4 = 5 dim(ko(p) N AA(p)) mod Z .
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Examples 7.2.6. : 1) For a submanifold Y of X , éY is simple

with shift % codim Y (on T;X).

ii) If F is with shift d then F[k] 4is with shift d+k.

iii) Take X IR, 2 =1{x;x >0}, U={x;x < O0}.

Then éz (resp. éU) is simple with shift % (resp. - %) at (0;dx).

iv) Take X = 1R2, Z = {(x,y) ; x >0, —x3/2 <y < x3/2}

I

A= Gy Em) 50> 0,y = -(26/30)°, x = (20/30)° , F = a,

Then SS(F) c A U T;X , and F is simple with shift + 1/2 (£€>0),

0O (6=0), - 1/2 (£<0) along X .

Remark 7.2.7. : Let wu(s) be a Lagrangean plane of Tp(s)T*X

such that p(s) ¢ A and wu(s) depends continuously on s and
that wu(s) 1is transversal to Ao(p(s)) and AA(p(s)). If F is
pure of type M with shift d(s) at p(s), then F is pure of

type M with shift d(s') at p(s') where

(72.4)d(SW-d(Q:=%(T00(p(9),AA(p(Q),u(Q)-T(AO(p(SW,AAQN§)),U(§)))

In fact denote by d“(s,s') the right-hand side, and choose an
other Lagrangean family v (s). Then du(s,s') - dv(s,s') is locally
constant and vanishes for s = s'. Thus it is zero, which proves

that the right-hand side of (7.2.4) does not depend on the choice of

u(s), and the remark follows.

7.2.2. The two next statements are proved by similar arguments as
for Lemma 7.2.4., by reducing to the case where the Lagrangean mani-

fold is the conormal bundle to a submanifold of X.

. *
Proposition 7.2.8. : Let A be a Lagrangean manifold in T X ,
Db

peh, FeOb(D(X)). Assume F pure of type M with shift 4
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along A at p and assume ExtJ(M,A) =0 for Jj # 0 . Then
IRHom(F,A) is pure of type Hom(M,A) with shift -d along 22
at p.

. . *
Proposition 7.2,9. : Let Aj be a Lagrangean manifold in T Xj ,

P e A; , and let F o« Ob(D+(Xj)) pure of type M, with shift d,

along Aj at pj (j = 1,2). Denote by qj the j-th projection on

a) Assume wgtd(A) finite and Torj(Ml,Mz) =0 for J #O0

Then qzlgl & q;lgz is pure of type Ml ® M2 with shift dl+-d2

along A, x A, at (p,,p,).

b) Assume Ext)(M M) = O for 3 £0 and F, ¢ Ob(Db(Xl)).

1
Then lRHom(qugl, qglgz) is pure of type Hom(Ml,Mz) with shift

a a
d2 dl along Al x A2 at (pl, pz).

§7.3. Operations on pure sheaves

7.3.1. Let f be amap from Y to X , p and & the associated

* * * . .
maps from Y § T X to TY and T X respectively. First we study

direct images of pure sheaves.

Theorem 7.3.1. : Let A be a Lagrangean submanifold of T*Y ,

pe Y x T*X , G ¢ Ob(D+(Y)), and assume
X s and assume

i) £ is proper over supp(G)

ii) p is transversal to A at p , and p_l(A) is isomorphic

to a manifold Ao of T*X by the map @

iii) o '(sse) N v lwp ¢ (p)

iv) G 1is pure of type M with shift d along A at p(p).

Then Ao =T p_l(A) is Lagrangean and lRf*(g) is pure of type M
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with shift d' along AO at w(p) , where :

d'-d=3(dimx = din¥) - 3 T (0 (1)), 2, (0 (B)), p & 10 (@(P))))

(we have written o g1 AO(U(P)) instead of

do (p)dw (p) " (@(P)) (A, (B(P))) -

Proof

Remark first that Ao is Lagrangean since

o™ iy =771 () o7 ()

o7 (wy) [0 ()

=0

and AO being isotropic in T Y is Lagrangean since

dim Ao = dim A - (dim ¥ - dim X) = dim X.

Let Yo € Y be the projection of p(p) and X, = f(yo) the pro-

jection of w(p). Let us take a function ¢ on X transversal to

Ao at w(p) . Then ¢' = ¢ o £ 1is transversal to A at p(p).

Hence we have :

|
=
Hh
(o]
Lo}
u
fl
o

j
H{¢'ao}(§)yo

where J_ = -d + 3 dim ¥ + 3 tO_((p), A, (0 ()4, (o ().
On the other hand 1iii) implies
(@), =0 for yc f'l(xo) - 1y,)
thus

Bl o) (RE,(G), = W%'ao}‘g)yo

o
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and it remains to show :

(7.3.1 O (o), A (e (BN A (o (BN =T (P)) Ao (@) 4 0 5 L (A (T (9))))

= T(XO(U(p)),XAO(U(p)),%¢(U(p)))

We set

=T (r*y)

o (p)

W o= T (Y x TFX)

by = (@), wy =4, (e (p))
A= e (e))

Then (7.3.1) is a consequence of the following lemma.

Lemma 7.3.2. : Let (El, o,) and (EZ’ 02) be two symplectic

1

vector spaces and let v be a Lagrangean plane of (El ® Ez,c) ’

with o = o0, © (—02)

1
Let ) be a Lagrangean plane of E, and let My and My be
Lagrangean planes of E,. Let pj be the projection from v to
oo v -1 Vo -1 " -1, ,
Ej (3 1,2). Set A Py Py (M)y i =Py Py (M) s wi=P,yPy (wy)
Then we have
TE (AluirUé) = TE (X',MIIUZ)'TE (UIIUIIUZ)
1 2 2

Proof
Remark first that for any subspace o of El we have
pzp;l(a*) = (pzpzl(a)f'. In particular if o is Lagrangean, so
is p,p; (a)

popy (o).

- -1 " o L

Set o = p,p, (O . Then Wl o= (uynoet) + oo
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We have :

) -— " ] _ 1 n L ”n
TEz(K '“1’“2) rEz(ul,ul,uz)——TEz(A ,ul,ul)+rE2(A ,ulruz).

Since A' and u! contain p and up = u"p, 1. (A',u,,uY) = 0 by
1 1 1 E2 1 1

Proposition 7.1.2.

') = plp;l(ul) it is enough to show :

Since plpgl(u1

Tm (A,ui,ué) = g (A',ul,uz)
1 2
if u e ot = p, (W) .

Now by setting 1= 1 we have

EIQE2
] [] - ] = ] ] []
TEI(A,ulluz) TEZ(A '“1’“2) TOABA, W] B, e, “2)
Thus by the cochain property it will follow from
(7.3.2) (v, A & \' , ”i ® ui) =0 (i =1,2)

(7.3.3) (v, ui &y, u, @ “2) =0

Now (7.3.2) follows from v+ (A ® ') = v + A and
(u! ®u,) N (v +12) «(u! ®u,)nv] +ulnr by Proposition 7.1.2.
i i i i i
iii).
The second inclusion is proved as follows : if x e X , we v ,
v ' -
and w + X € wi o Wy o then pz(w) € uy hence pl(w) e M - There

X ! ! .
fore x ¢ N vl and w € vy ® uy

(7.3.3.) follows from (7.3.2) and pzpzlui =My o D

7.3.2. Now we study inverse images of pure sheaves.

*
Theorem 7.3.3. : Let A be a Lagrangean submanifold of T X ,

pe¥xA, Fe Ob(D+(X)), and assume :
X = ang assuinc

i) f is non characteristic for F (cf. Definition 5.3.1.).
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ii) @ is transversal to A at p and 7Y (n)  is isomorphic

to a manifold AO of T*Y by the map o.
C s _ -1 -1
iii) © (8S(F)) N o “o(p) c {p}

iv) F 1is pure of type M with shift d along A at w(p).

Then AO =p ar_l(A) is Lagrangean and f_l(g) is pure of type M

with shift d along A, at o (p).

Proof

By the induction on the codimension of Y , we may assume from the
beginning that Y is a hypersurface of X . When p belongs to
the zero section, the proposition is immediate, and hence, we may

* .
assume p e T X . Now, we shall take a local coordinate system

(t,x) = (t,x ,X ) of X such that Y 1is given by t = 0 and

ERERE N
p is given by (t,x; 1,&) = (0,0 ;O,EO), where (t,x; t,&) 1is the
coordinates of T*X associated with (t,x). We shall take a func-

tion ¢ (x) transversal to AO at p(p) and a function vy (x) such

that ¢ (0) = dX Y (0) = O and Hess Y (0) >> O.
For O < a , §, we set

¢ (t,x) = a(¢(x) + sp(x)) - t

a,s
We shall show first :

(7.3.4) (Y +IR ™ dlt]) N SS(F) N {t # 0} = &
a,s

on O < |t] << 1, |x| <<1, for 0<a=<<1, |6 | <<1.
If this were false, there would exist sequences {(tn,xn)}, {an},

{Gn}, {on}, a > 0O, 8§ >0, o_ >0 such that

» Ao (x )+ 6 dy(x)) e SS(E)

and t_,x

>0 , tn #0 .
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Since tn > 0 or tn < O, we may assume tn > 0.

Since d¢(xn) + Gndw(xn) converges to &, iii) and i) imply

T = -2a—lt -0
n n

7> O. On the other hand, we have

n n
-1 . .
|tn1//|Tn| SN //2|an t |, which tends to 0. Hence if we take

c_ > O such that cn(pn—p) converges to a non zero vector

n
(%,Q; ?,E) which belongs to TpA, then © = O. By ii), (%;E) is
a non zero vector bel i t T A .

non zer e elonging to o(p) Mo

On the other hand cn(xn;d¢(xn)—go) converges to (gfm), which

contradicts the transversality of ¢

This shows (7.3.4).

a*

- ] _ .2 B )
Sset 2z, = {(t,x) ; ¢a,0 = ag (x) t“ » 0} and Za,é,e ={(t,x) ;
¢a,6 > et} for O < g << a, § << 1.
Then {Za\ Za,ﬁ,s}e>o forms a neighborhood system of (0,0) in 2
For o > O, set 2(a) = {(t,x) ; [t] & a}.

Then for O <€ << a, & << 1 and O < a, N*(Za N Z(a)) ,

* * R
N (Za N Za'6,€ N Z(a)) and N (Za,d,s N Z(a)) are disjoint from

SS(F) N i*x on their boundary sets. Thus

IRT (X ; F)
(z,n2())\ (2 N Za,é,e(\ Z (o)) =

does not depend on «a
Hence by taking the projective limit with respect to o , we obtain:

v

IRT (X; F) < IRT (Y ;IRI (F))

Za\za,é,e

By taking the inductive limit with respect to ¢ we obtain

Z_'="0 ]RFZOY
a

(IRT,(F))  for O<a=<«1
On the other hand, Corollary 5.3.3. implies H{rY(E) = EYEdJ.

Thus, by setting ¢a = ap - t2
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3j .+l
Hixs e (0300 ElY) o =B (¢, ) so_ (t,3030) Po

The last term vanishes except for j+1= -di—% dimX-+%T(Ao(p),AA(p),

A¢ (p)) and the remaining term is M.

a
Hence it is sufficient to show, by setting P, = o (p)

(7.3.5) r(Ao(po),AAo(po),A¢(po)) = t(Ao(p),AAo(p),k¢a(p))- 1

Now, we have A, (p) = {(t,x ; 7,8) ; -2t = at , (x7&) ¢ (po)}.

A
o
We have :

(7.3.6) T(Ao(po),AA (p.) /A (po)) = T(Ao(p),AA(p),A¢(p)x {t=01})

= T(&D(p),XA(p),A (p)) + T(AA(p),K¢(p) x {t=o}, A¢ (p))

a a

(p)).
¢a

¢

+

r(k¢(p) x {t=0}, Ao(p), A

In (7.3.6), the last term vanishes because py = {t=x=¢ =0} c:xo(p)

and A" (p) = (A (p) x {t=o"
¢, ¢

Now, set v = {t =1 =0, (X,8) ¢ Ay (p) 3

a

Then by identifying vl/v with the (t,x)-space ,

Ty (R), 2, (p) x (=0}, A, (p)) =t (P)", (t=o}, {-2t=at}).

a
By the assumption, AA(p)v is different from {t = O} , and we can

write it 1 = ct for some c.
Then t((t = ct), (£t = 0),(-2t = ar)) = -1 for O < a << 1 .

Thus we obtain (7.3.5). []

7.3.3. Finally we study the functors Hom(+,+) and - &- .

Corollary 7.3.4. : We assume A commutative. Let q; and a,

be the projections from X x Y to X and Y respectively, P,
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. . * * * * *
and p2 the projections from T (XxY)=T XxTY toT Xand T Y res-

pectively, and set p? = pj ° a . Let N be a Lagrangean submani-

a Lagrangean submanifold of ™y , P e A,

fold of T (xxY) , A,

_ _.a b
and set py = P,(P), Py = p;(pP). Let K e Ob(D" (X x Y)),
F e Ob(D+(Y)), and assume

o

i) P, is transversal to A at p and p; AY) n A is
A

isomorphic tb a submanifold AX of *x by p?.

ii) K 1is pure of type M with shift d along A at p.

iii) F is pure of type N with shift 4d' along AY at Py-

iv) The projection a, is proper over supp K N q;l(supp F).

v D ey 0 Ss®) c (p)

*

vi) (SS(K) x SS(F)) N (T;x x T'V) € Ty

TY
borhood of nx(px).

X x T?Y on a neigh-

vii) Extd(M,N) = 0 for 3§ # O.

Then we have

qul*]Rﬂom(g,q;lE) is pure of type Hom(M,N)

with shift d'-d - % dim Y + % T along AX at py where

-
i

a
: T(Ao(p), AA(p), Ao(px) x AAy(pY))

a-1
T(AO(pY), pz(kA(p) N p, Xo(px)), RAy(pY))

Proof

Let us denote by r, and r, the projections (X xY)x ¥ —>XxY

and (XxY) x Y —> Y and let A be the diagonal X x ¥ x Y of
Y

XxYxY

We have
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IRHom (K, q;lg) =1RFA]RHom(rIl§, r;lg) ® gy[dim Y]

The condition vi) permits us to apply Proposition 5.3.2. and we get :

-1

2 )

RHom (K, qglg‘_) =]RHom(rIl§, r
A

Applying Proposition 7.2.9. and 7.3.3. we find that IRHom(K, q;lg)

is pure of type Hom(M,N) with shift d'-d along I at p

o ’

where :

Py = (Pyr0), K={(x,y s &,m+n") 5 G,y €,n) € A%, (y,n)eh,).

[¢]

Therefore one can apply Proposition 7.3.1. to obtain that
]qu* IRHom (K, q'z-lg) is pure of type Hom(M,N) with shift

v_ag-1 g _1
d d 2d1mY 2r,where

p— x *
T = T(Ao(po), Ak(po), XO(pX) TTYY)

Set x,(p) =, , x _(p) A r A, (py) = A ; we get by
A A Aa Aa /\YY AY

applying Proposition 7.1.2. with o = T(T¥(X x ¥ x ¥) x (Y x Y)

YxY Y

T = 1() (p)xxo(pY), XX A, A (pX)XT(T;Y x Y))

a *
FTOGE Ay L g Ay A (Ry) X TG (Y X D))

* a
F OGN XAy Ao ey XTI (YD), () g (py))

Here the first and the last termsvanish by i) and 1iii) of Propo-
sition 7.1.2. The middle term is equal, by applying the same propo-

sition with p = {0} x {0} x >‘A to
Y

a a
T (P, AAa(p), Ao (Py) % AAa(pY))
Y

137



M. KASHIWARA, P. SCHAPIRA

—_ _ a
= -t (), A, (P), A (Py) x xAY(pY)) O

Corollary 7.3.5. : We assume A commutative and wgrd(A) finite.

Let 4,,9,/PysPys Ay Ay, Py Pys Py and E Dbe as in Corollary

7.3.4. and let K ¢ Ob(D (X x Y)). We make the assumptions i), iii),

iv), vi) of Corollary 7.3.4. and also :

ii)' K is pure of type M with shift -d along A% at p2.

v

(py) N 8S(K) ¢ {p7}
vii)' Torj(M,N) =0 for j#O.

Then we have

Rq,, (K & qzlg) is pure of type M ® N with shift
a' - d—-l dim Yi—l T along A at p,, where 1 1is the same
2 2 _— X — X
as in Corollary 7.3.4.

§7.4. Contact transformations

7.4.1. We can use pure sheaves in order to perform contact trans-

formations for sheaves.

Let ¢ be a contact transformation between two conic open sets

QX C;T*X and QY c_T*Y , and let A Dbe the image of the graph of
¢ by the anti-podal map in *X. Let p e A, px==p?(p) e Qyr

Py = P,(P) e Qg .

Let XK belong to Ob(Db(X x Y)), satisfying hypothesis (6.3.6)

of Theorem 6.3.4. .

Theorem 7.4.1. : 1In the preceding situation, assume K is a

simple sheaf along A . Then @K is an equivalence of categories.
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Proof
This is an immediate application of Proposition 6.3.3. and the
*
results of §7.3., since if M 1is a simple sheaf along T, (XxX), then
- X

M is microlocally equivalent to A, [d], for some shift d . []
X

Corollary 7.4.2. : 1In the situation of Theorem 6.3.4. let N

(resp. M) be a submanifold of Y (resp. X) and assume that ¢

. * *
interchanges TNY N QY and TMX N QX

Let pe A, py = pi(p), Py = P,(p), and assume K is a simple

sheaf on A at p. Then for G e Ob(D+(Y)) we have in a neigh-

borhood of Py

iy (2 (G)) = o, (g (G)) [d]

where the shift d 1is calculated as follows

d =5%(dim M - dim N + dim X + 1) - 4d°'

N~

where d' 1is the shift of K along A at p and 1t 1is given by :

_ *
T =10,(py) » ¢ (A (py), XAY(pY))

* , . * * " *
Here ¢ (Ao(px)) is the image of Ao(px) by ¢ : TPXT X >prT Y,
¥
and AY = TNY
Proof
First we remark that we have an isomorphism of sheaves on QX
uhom(¢5(§N) , <I>§(§)) = ¢, whom(A,G)
In fact this follows from Theorem 6.3.9. . Now we apply Proposition
5.5.3. and remark that ¢K(§N) is a simple sheaf along T;X of
shift % codim M + d by Corollary 7.3.4. . Hence ¢K(§N) is

microlocally isomorphic to éM[ﬂ] - [

139






CHAPTER 8 - APPLICATION 1 : CONSTRUCTIBLE SHEAVES

§8.1. Stratifications and Lagrangean sets

8.1.1. Let X be a manifold of class c° , o > 2. Recall that a

stratification (X ) ~of X is a partition X = LJ X~ such that:
oA
i) the family (Xa) is locally finite ,

ii) each Xa is a smooth (locally closed) manifold

’

iii) for each pair (a,8) such that X 0 XE is non empty, X

is contained in ig. (One says that X, dominates X~ and writes
X< XB)’

Such a stratification is a Whitney stratification if moreover

iv) for all pairs (a«,B) such that X c XE b (X, XB) satisfies

the conditions a) and b) of Witney (cf. Whitney [1],[ 2]).

8.1.2. Let us recall somme results of Kashiwara [ 2][5] and
Kashiwara-Schapira [2]. For the reader's convenience we repeat

some proofs.

Definition 8.1.1. : Let A be a conic subset of T*X. A locally

closed subset Y of X 1is called flat at y ¢ Y with respect to

A if for any p ¢ n-l(Y)

cn, n‘lm)p e v e TpT*x; <v,w(p)> < O}

Lemma 8.1.2. : If a submanifold Y is flat with respect to A

then = 1(Y) N A T;X .

141



M. KASHIWARA, P. SCHAPIRA

Proot

Take a point p in A N "_1(Y). Then C(A,n_l(Y)) contains
Tp(n-l(Y)). Hence w(p) = O on Tp(n_l(Y)). This is equivalent to
saying that p belongs to sz - [0

Proposition 8.1.3. : Suppose that X 1is an open set in lRN and

that a subset Y 1is flat with respect to a conic set A in *x

at a point X Then there exists € > O such that (x; x-y) does

not belong to A for x e X , y ¢ Y satisfying ]x—xO], ly—xo|< €,
X # Y.
Proof

We shall prove the Proposition by contradiction.

If the Proposition is false, then there are sequences {xn} and

{yn}, X

n € X, Y, € Y which converge to X such that {(xn; xn—yn)}

is contained in A and X, # Y- Let {cn} be a sequence with

cn > O, such that cn(xn—yn) tends to v # O. Then {(xn; Cn(xn_%qn}
is a sequence in A which converges to p = (x_; V) and

ﬂyn ;cn(xn~yn))} is a sequence in n-l(Y) which converges to p.
Since cn((xn; cn(xn—yn))- (yn; cn(xn—yn))) converges to (v,0),

o

(v,0) Dbelongs to C(A,n_ Y)). Thus :

<(v,0), w(p)> = <v,v>

which is a contradiction. []

Proposition 8.1.4. : Let X = UJ Xa be a stratification of
- [+

Whitney. Then A = T; X 1is a closed subset and each stratum X,
a a

is flat with respect to A.
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Proof

Let {(xn;gn)} be a sequence in T; X which converges to (x7g).
o
*

We shall prove that (x;¢) belongs to TX X for B such that XB
B8
contains x. By the condition of Whitney, if TX Xa converges to a
n
plane 1 ¢ TXX , then 1 contains TXXB . Therefore the orthogonal
(T* X) converges to +t% which is contained in (T* X) _. This
X X X X
o n B8
implies (x7&) € T; X . Let us show th at XB is flat with respect
8
to TX¥ X . Let x be a point in X, , p = (x;&) a point in n_l(x)

X
o

B8

and g a point in Cp(T; X, nnl(XB)). Then there are sequences
a

. * R . -1 . +
{(xnrgn)} in TXQX , {(yn,nn)} in w (XB)' {cn} in R such
that cn(xn-yn; &n—nn) converges to q = (v; w) and that (xn;gn)

and (yn;nn) converge to p. Suppose that TX Xu converges to a
n

plane 1 in TXX . Then by the condition of Whitney, 1t contains v

and TXXB . Since & is contained in 1t we have
<q, w(p)> = <v, &> =0 . D
Remark 8.1.5. : Conversely if A 1is closed and if each Xa is

flat with respect to A , then X = U Xa is a Whitney stratifi-
o

cation.

§8.2. IR-constructible sheaves

8.2.1. We assume X real analytic, and we shall use the theory of

subanalytic sets of H. Hironaka [1]. Here subanalytic sets are

always locally closed.

Recall that a stratification X = U Xa is said to be IR-analytic
¢}

if each Xu is subanalytic in X .
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Definition 8.2.1. : Let A be a conic subanalytic set in *x.

We say that A 1is isotropic if there is a dense open smooth subma-

nifold A'« A such that w{A. = 0. We say that A is Lagrangean

if it is both isotropic and involutive (in the sense of Theorem 6.4.1) .

Proposition 8.2.2. : Let A be a conic subanalytic isotropic set

: * . . . . .
in T X , V a conic subanalytic subset of A . Then V is isotropic.

Proof

We may find a Whitney stratification A = Hg Aa such that V is a
union of strata. We have to prove that for each o , w|Aa = 0, and
we may argue by induction on the codimension cf the strata since

h, C T implies TF T*x «x h, < * %X by the Whitney conditions. il

§ A A
8 m¥*x a

Proposition 8.2.3. (cf. Kashiwara-Schapira [ 2]) : Let A be a

closed conic subanalytic isotropic set in T X. Then there exists a

Whitney IR-analytic stratification X = l_JXDL such that A is con-
o

. . *
tained in U T, X .
Qo Xu

Proof

Let S

m(A). Then S is subanalytic since A 1is conic. There

exists a Whitney stratification A = L_J N of A,S = \_] SB and
ael Bed

amap T : I > J such that "(Aa)c Sr(a) and Aa > Sr(a) is
smooth (i.e. of maximal rank).
We have the inclusion Aa C T; X
T (o)

In fact we may choose coordinates (Xl""’xn) = (x',x") (where

[J— = v n . LI
X (xl,...,xp)) such that ST(G) {((x',x") ; x O}. Then
wl, =1 = g£"dx" is zero on A_ and the linear forms

m (ST(OL)) a
dxp+l”"’dxn being linearly independant on ST(a) are also linearly

independant on Aa since n|Aa is smooth. Thus ¢" = O on Aa
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which gives the inclusion and achieves the proof. D

Proposition 8.2.4. : Let V be a conic closed involutive subset

in X , and A = (J #, a locally finite union of locally closed
ael
smooth connected Lagrangean subanalytic manifolds of 7*X. Assume

V < A. Then there exists a subset J <« I such that V = (]} AB .
Red

Proof

By the involutivity of VvV , v N Aa is open and closed in Aa . Let

J =1{8 ¢ I ; AB c Vi, A= U AB . Then V\A' is contained in
Bed
Eg 8 A . Take a filtration {W;} , ; 4.y sSuch that ‘{ W, = Ega A,
and W, \ W, , 1is an i-dimensional manifold (W_, = @) . We shall
show V \A'C'_W_1 by induction on 1i. Assume Wi D (VNA'). Then for
pe W, \W, 4 there exist two functions f and g such that
{f,gl(p) # O and fl = g‘ = 0. If pe V\A', then V \A' con-
W, W.
i i
tains the integral path through p of H £ which contradicts the

vanishing of g on V\A'. Thus we may proceed by induction and

conclude that V\A'=¢g . []

8.2.2. Now let F e Ob(D' (X)).

Definition 8.2.5. : We say that F is weakly IR-constructible if :

i) there exists a Whitney IR-analytic stratification X = LJXQ
a

such that for all 3j , all o , the sheaves HJ(E)|X are locally
o

constant (on Xa).

One says that F is IR-constructible if F 1is weakly IR-construc-

tible and moreover :

i1) F ¢ 0b(DP(X)), and for all x e X , F

Fy is quasi-isomorphic

to a bounded complex of finitely generated projective A-modules.
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Remark : The category of IR-constructible sheaves is studied in

Kashiwara [7.

Theorem 8.2.6. : Let F ¢ Ob(D+(X)). The following conditions are

equivalent :

a) F 1is weakly IR-constructible

b) SS(F) 1is contained in a closed conic subanalytic isotropic

c) SS(F) 1is a closed conic subanalytic Lagrangean set in ™.

Proof

a)

> c). Let X = LJ Xa be a Whitney IR-analytic stratifi-
a

cation such that HJ(E)IX is locally constant, and let us prove
(¢}

that SS(F) is contained in | T§ X. By the definition of SS(F)
o o

it is sufficient to show that for any x e Xu and a C%-function

f defined in a neighborhood of x such that d(le ) (x) # O, and
o

f(x) = 0, we have

(BP0, E)), = O

If we take a submanifold Y of f_l(O) transversal to Xu at x,
with dim Y + dim Xa = dim X, we have a topological isomorphism

(Thom [1])

(X, {XB}, XOt’ X) = (YXXQ'{YnXB) an}l XU,' X)

such that ¢ and ¢ denoting the projections from X = Y x X to
Y and X  respectively, then f = (le ) oy and F=¢ " (F')

o
for F' e Ob(D+(Y)). Thus we have for any J

J = g '
(H{f;O}(E))X = H{fZO}n Xu(lRw* ¢ E')y

= 0
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Thus Ss(F) C.L)T§ X , and we apply Proposition 8.2.4. and Theorem
o

a
6.4.1. to get «c).

b) > a). Assume SS(F)c A , where A 1is a closed conic

subanalytic isotropic set in T*X . Applying Proposition 8.2.3. we

find a Whitney 1R-analytic stratification X = U Xa such that
o

*
X

HJ(E)IX is a locally constant sheaf by the following lemma.
a

SS(F) is contained in LJ T, X . Then for all j and o ,
o a

Lemma 8.2.7. : Let Y be a submanifold of X, flat with respect

to SS(F). Then HJ(E)IY is locally constant.

Proof
Let (Xl""’xn) be a system of local coordinates on X such that

Y is linear, and let Y, € Y.

We have seen (Proposition 8.1.3.) that there exists € > O such

that
(8.2.1) (x;x-y) iSS@)foran,er,|x1bI<s,Iyyo|<m X#Yy
Let U (y) = {x; |x-y| < r}. In order to prove that ElX is local-

[¢]
ly constant it is enough to show the isomorphism

v

(8.2.2) RM(U_(y_) 5 F) > RC (U (y) 5 F)

for y e Y, o > O, [y—yo| + p < e. In fact then we get

] . . 14 J . = yJ
H(U_(y ) i E) = lim HY(U (y) ;F) = H (E)y
p>0
for ye ¥ N Ue(yo), any Jj e Z .
Set o, = Ut€+(l_t)p(tyo+ (1-t)y). Then e, =0, (yo) r 9 = Up (y),
and it is easy to check that {Qt}Ostsl is an increasing sequence

and that :
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Q = LJ 9] O < t < <1
to t<t t
o
2. =N « 1>t >0
ts e © ©
o
Moreover :
IRT (F) | = 0
X\ 0 |aﬂt

by (8.2.1) and the definition of the micro-support. Then (8.2.2)

follows from Theorem 1.4.3. . D

Remark 8.2.8. : Assume F 1is IR-constructible on X. Let K be
a compact subanalytic set in X. Then IRl (K,F) is isomorphic to a

bounded complex of finitely generated projective A-modules.

Remark 8.2.9. : IR-constructible complexes are cohomologically

constructible in the sense of §5.6. .

§8.3. Functorial properties of IR-constructible sheaves

8.3.1. We shall study in this section the functorial properties of
constructible sheaves, using Theorem 8.2.6. . Of course many results
are already wellknown (cf. Goreski-Mac Pherson [ 1] for a review on

this subject).

All manifolds we consider here are real analytic.

b
IR-c

IR-constructible complexes.

We denote by D (X) the subcategory of Db(X) consisting of

8.3.2. Let f be a map from Y to X, p and @ the natural

* *
associated maps from Y x T*X to T Y and T X, respectively.
X
Proposition 8.3.1. : Let G ¢ Ob(Dﬁk—c(Y)) and assume f is

proper on supp G . Then Rf (G) e Ob(D?R_C(X)) .
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Proof
We know by Proposition 4.1.1. that SS(lRf*(g)) is contained in

Up_l (ss(G)) and this last set is subanalytic since @ is proper,
and it is isotropic in T*X since ur_l(wx) = pul(wy) and p_l(wY)

vanishes on p_l(ss(g)). Thus H?f*(g) is weakly constructible and
the finiteness properties are proved using Remark 8.2.8. by standard

arguments. D

Remarl 8.3.2. : In the same line if we consider Theorem 4.4.1. and
assume G 1is IR-constructible, we find that :Rf*(g) (resp. Rf (G))

is IR-constructible.

Proposition 8.3.3. : Let F c Ob(DD__ (X)). Then £ '(¥) and £'(F)

b
belong to Ob(DlR_c(Y)).

Proof
We may reduce the problem to the case where f is an immersion.

Then it is a consequence of Remark 8.3.2. and the following

Proposition 8.3.4. : Assume Y C X. Let F ¢ Ob(D?R_C(X)). Then

vy (E) € Ob(DY (T X)) and uy(F) ¢ Ob(DY__ (TEX)).

Proof

We know by (Kashiwara-Schapira [2 Theorem 10.5.2.]) that C *(SS@m
TyX

is a closed subanalytic isotropic set in T*T*X. Thus wu,(F) is

Y Y

weakly constructible, and the finiteness properties follow from

Remark 8.2.8. . The proof for vY(F) is the same. E

Proposition 8.3.5. : Let E be a vector bundle, F ¢ Ob(DER_C(E))
and assume F is conic. Then F" the Fourier-Sato transform of F
b *

Rkedongs to .
belongs to Ob]R—c(E ))
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This follows from Theorem 5.1.4. . []

Remark : In the complex case, Proposition 8.3.5. has already been

proved by B. Malgrange [ 1] and J.L. Brylinski [2 ].

Proposition 8.3.6. : Assume A commutative and let F and

Q

belong to Ob(D?R—c(X))'
a) RHom(F,G) ¢ Ob(0D__ (x))

b) Assume moreover wgtd(A) finite .

b
Then F ¥ G e ob(dd %))

§8.4. Contact transformations

8.4.1. Assume X real analytic. Let p ¢ T*X. We construct the
triangulated category D?R_C(X;p) exactly as for D+(X;p),starting
b

. . +
with DlR_c(X) instead of D (X).

Let ¢ be a real analytic contact transformation between anopen set U

of T*X and an open set V of Y. Let peU, g = ¢(p).

Proposition 8.4.1. : Let @K be an extended contact transformation
above ¢ (cf. §6). Then QK defines an equivalence of categories
from DY, (X!/p) to D TQ'q)

_— 1R-c ' —_— R,c TP

Proof

In the construction of contact transformations in §6.3. we may take for
K' an IR-constructible sheaf. Then the Proposition follows from

the results of Chapter 6 and Chapter 8, §3. . []

Remark 8.4.2. : 1In the complex case a similar result has been

obtained by J.L. Brylinski E2] assuming X projective, and
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Laumon E1].

C-constructible sheaves

8.5.1.
often confuse

that a set Z

lytic. A C-stratification of X

manifolds.

is an

a (C-analytic stratification. We

b
larly to DJR_C
and by 2 Re w

"]JR-isotropic"

[ee]
w
N

Definition 8.5.

In this section

A C-

IR -constructible

Let F

X will denote a complex manifold. We shall
X and XH{, the real underlying manifold. To specify

is complex analytic we shall say that Z 1is (C-ana-
is a stratification by complex
constructible (resp. weakly @-constructible) sheaf
(resp. weakly 1R-constructible) sheaf along

define the category Db

G—C(X) simi-
(X). We denote by w the canonical 1-form on T*X,
= w the canonical 1-form on T*Xuz. The meaning of

or "@C-isotropic", etc ... is the obvious one.

stable for the

e Ob(D"(X)).
1. We say that F is monodromic if SS(F) is
action of €~ on ™x .

Theorem 8.5.2.

The following conditions are equivalent.

weakly @-constructible

weakly IR-constructible and monodromic .

a) F is
b) F 1is
c) Ss(F)

lytic subset of T*X

is contained in a closed conic IR-isotropic subana-

stable by the action of ¢ .

d) Ss(F)

=> C)

is a closed conic (C-analytic Lagrangean subset of

as in the proof of Theorem 8.2.6.
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d) > a) : as in the proof of Theorem 8.2.6. since the

analogous to Proposition 8.2.3. is true if we replace in its sta-

tement "subanalytic" by "C-analytic" (cf. Kashiwara [2]).

d) > b) : is obvious .

b) > ¢) by Theorem 8.2.6. .

It remains to prove c) > d), and it will follow from Theorem

8.2.6. and the next Proposition.

Proposition 8.5.3. : Let AO be a closed 1R-isotropic subanaly-

tic subset of % , stable by the action of ¢* and let A be a

closed 1R-involutive subanalytic subset contained in AO. Then

A is complex analytic.

Proof

Let A' be the non-singular locus of A . Then A' is a real ana-
lytic manifold of dimension 2n and is open in Ao . Hence for any
pe A", TpA':) T Hm . For v ¢ TpT*X, we have <Redw,HmA v> = <w,V>.

Therefore N U O, thus du = O , and hence

P
T A' = V=1 T_A'.
P P

T A'+/=1 T_A'
p P

This shows that A' is complex analytic. Now, we shall show that
A = clos A' 1is complex analytic. Let S' be the set of points p
in S = A\A' such that S 1is a real analytic manifold of real
dimension 2n-1 on a neighborhood of p and (A',S) satisfies
the condition of Whitney on a neighborhood of p. We shall show

first that A is complex analytic on a neighborhood of §S'.

For p e S' and a sequence {pn} in A' which tends to p such

that T_ A' tends to a plane 1 ¢ T (T*X), we have T S' ¢« 1 .
Py p P

Since TpS’ is not a complex vector space we have
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TpS' + /-1 TpS' = 1 . Therefore

(8.5.1) dima:(TpS‘ + /-1 TpS') =n

for any point p in S'.

This implies that, for any p € S', there exists a complex manifold

SE with complex dimension n such that SG‘D S' on a neighborhood
of p. Hence S' 1is a real hypersurface of S(E
Now we shall show that A' is contained in Sc on a neighborhood
of p. We take a local coordinate system (Zl""'ZZn)= (z',z"),
where z' = (Zl""'zn)’ such that

c 1 " | J— . 1 " | - " —

s° = {(z',2z") ;z'=0} ; S={(z',2") ;z'=0, y(z") =0}

. * * * _* . . " o "
Since T,, T'X x S C Ty T X, the projection ¢ : (z',2") +—> (2")
T*X S

is finite on A on a neighborhood of p, and is a local isomorphism
on A'.

Since ¢(S) = {z ¢ " ; v(z") = 0}, in order to see that A'C;Sm ,

we may assume :

Ao (zoe @2 5 y(z") > 0)

2n |

without loss of generality. Then setting U = {z ¢ C y(z") > o} ,

é:A" N ¢—1(U) > U 1is an unramified covering and hence for any

holomorphic function u defined on a neighborhood of p

u (z') = ) u(q)™

n

is a holomorphic function in 2z' ¢ C defined on U.

If u c " O , then u can be continued to U , so that u =0,
m m
S ¢ (S)
because W'n¢'1¢(s)<:s¢ . Hence we have u. = 0. Since this holds
for any m , u = O . Therefore A' 1is an open subset of Sc.
A|
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Since Sm is Lagrangean, the involutivity of A implies A o Sc
on a neighborhood of p.
Thus we have S' = @, and the real dimension of S is less than or

equal to 2(n-1). By the extension theorem for complex analytic sub-

sets, L' is complex analytic. D

§8.6. Direct imagesof (C-constructible sheaves for non proper maps

8.6.1. Let Y be another complex manifold, £f a holomorphic map

from Y to X. As an immediate application of Theorem 8.5.2. and

Remark 8.3.2. we get

Proposition 8.6.1. : Let (Ys)s>o be a family of subanalytic
IR

open subsets in Y7, let G ¢ Ob(Dg"C(Y)) and assume :

— * *
Hy=Uyvy, Uy =xy, Ny Y, NY(v.) # T'Y for any
kSJ S r<s r S tss tC s’ "y s 7 y

y € ¥, any s.

ii) £ 1is proper over Ys ) supp(G) for all s .

i11) N¥(Y) O (SS(G) + o (Y x T*X)) < TXy
s = X Y

Then ]Rf*(g) and IRf 6 (G) are @-constructible and moreover :

SS(IRE, () c @ o~ ' (SS(G))

SS(IRE, (6)) € @ o~ " (SS(8))

8.6.2. The hypotheses of Proposition 8.6.1. are "locally" always

satisfied when dim X = 1. More precisely

Proposition 8.6.2. : Let f : Y > X be a holomorphic map, with

dim X = 1, and let G ¢ Ob(Dg_c(Y)). Let x € X and let K be a

compact subset of f_l(x). Then there exist open neighborhoods U

of x , V of K, with V le_l(U), such that, denoting by fV the
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restriction of f to V, f, : V

v > U, Rf,(G) and Rf, (G)

V!

are C-<onstructible and moreover

SS(IRf,,(G)) < T o ' (SS(G))

SS(Rf,, () T o '(SS(8))

Proof

> Y x X

By decomposing f into Y > X , we may assume from

the beginning that Y =2 x X , and f 1is the projection.

We set S = sSS(G) , ZO = f “(x).
Let A = T*Zo ncec, (S). Since we know that C * (S) 1is isotro-
T, Y T, Y
Z Z

* % o o

pic in T'T, X (Kashiwara-Schapira [2, §10]), we obtain by
o

Lemma 8.2.2. that A is isotropic in T*ZO .
Lemma 8.6.3. : The image of ZO § (S + p(Y x T*X)) by the projec-
zemma ©.5.9 1he image ol X DYy the projec

* - . .
> T ZO coincides with A.

tion 2 _ x T*Y
Llon oy

Proof
We shall take a local coordinate system (z,t) of Z x X =Y and

* A :
(z,t;¢z,7) of T Y. Then it is enough to show that if a sequence

{(zn,t A

n ,Tn)} in S satisfies (zn,tn;gn) = (zo,to,zo), then

n

[t ]t -t | - > 0.
n n o n
If this is not true, there is a holomorphic map
(z(X), t(x), (X)), ©()x)) ¢ S defined on {x; O < |A] < 1} such

that when XA tends to O we have :
s -r .
z(x) —> zZ g (x) —> Lot t(A)-tO'vx , T(A)vA 7, with sgr.

Since S 1is Lagrangean

(), F oz + oy AL _ o
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dt(A)

Therefore 1 (X) an

is bounded, which contradicts s < r. C

Lemma 8.6.4. : Let Z be a real analytic manifold and let

¢ : 2 >R be a proper map. Then, for any closed conic subanaly-
tic isotropic subset A in ™2 , ¢({x;de(x) e A}) is a discrete
set of IR.

Proof

Otherwise, there exists a real analytic path x(t) such that
d¢(x(t)) € A and ¢ (x(t)) 1is not constant. Since A 1is isotropic,

we have é% ¢ (x(t)) = O. This is a contradiction. E
We resume the proof of Proposition 8.6.2. .

Let us take a positive valued real analytic function ¢ on ZO \ K

such that Zz ={z e Z ; ¢(z) < s}UK 1is relatively compact in Zg

for any s > O. By the preceding lemma there exists O<sl<sz<s3<s4

such that d¢(z) g A if s, < ¢(z) < s

1 4°

s
We shall show that V = f l(U) N 203 x X satisfies the conditions

of Proposition 8.6.1. for a sufficient small neighborhood U of x.
We argue by contradiction.

If this is not true, there exists a sequence {( ,xn)}c§f= Z x X such

z
n

*
that (zn,xn; d¢(zn),0) eS + p(Y ; T X) and 2, 5 247 ¥, T4 > X
with s, < ¢(zo) < S5.
Hence by Lemma 8.6.3. (zo;d¢(zo)) belongs to A , which is a

contradiction. [

Remark : This proposition is not true if dim X # 1. The above proof

breaks because Lemma 8.6.3. does not hold if dim X # 1.
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Remark : In fact, Proposition 8.6.2. is already known (cf. Lé |1
Sabbah [Z_I who prove it using results of Hironaka in LZ] ).
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CHAPTER 9 - APPLICATION 2 : REGULAR HOLONOMIC MODULES

§9.1. Preliminaries

9.1.1. 1In this chapter, using the Riemann - Hilbert correspondence
(cf. Kashiwara [6],[ 7], Mebkhout [ 2],[3]) and more precisely,

the functor TH of Kashiwara (loc. cit.), we shall translate our
results on (C-constructible sheaves to results on regular holonomic

Modules (cf. Kashiwara-Kawai [6]).

9.1.2. Let X be a complex manifold of dimension n , (9% (resp.

QX) the sheaf on X of holomorphic functions (resp. holomorphic

n-forms) .
The following sheaves have been defined by Sato-Kashiwara-Kawai [1].

Let Z Dbe a complex submanifold of X of codimension d. One sets:
R _
(9.1.1) Chlx = b, (O [d]

Remark that this complex is concentrated in degree zero. Its res-

triction to the zero section , RI', () [d] 1is also denoted by B;|X'
Let M be a real analytic manifold such that X 1is a complexifi-

cation of M. The sheaf of Sato's microfunctions is defined by :
(9.1.2) Cy = uy( Oy & wy [n]

It is concentrated in degree zero, and its restriction to the zero
section, iRFM((ﬁk) ® wM[n] is the sheaf of Sato's hyperfunctions,
and is denoted by BM'

Now let Y be another complex manifold, f : Y

> X a holomorphic
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map. We identify Y with the graph of f in YxX and Y x T¥x
X

Y

. *
with T, (Y x X). Hence the natural maps p and w from Y><T*X to
X
*
T*Y and T X respectively are associated to the first and the

. . * * * .
second projection on T (YxX) = T Y x T X respectively. We denote

by P, and P, these projections. We denote by qj the j-th

projection (j =1,2) on Y xX.
One sets :
IR _ AR -1
>y —> x - Cy|yxx ®—1 4 U
(9.1.3) qa, 6&
. IR _ IR -1 a
x «— v~ Cylyx ® 0 Y
a" Oy

When f is the identity one sets :

(9.1.4) ER = &8,

The sheaf <§i§ on ™% is naturally endowed with a structure of

a unitary Ring, and the sheaves CM and C?ﬁx (

nifold of X) are naturally left éfﬁz—modules. Moreover the sheaf

Z a complex subma-

IR -1 IR _ -1 IR )
éY s x has a natural structure of (p é‘Y , © éx ) bimo-

dule, and the sheaf ,’>1(R< a structure of (v ! &R 71 é]R)-
— Y X Y
bimodule.
* * x
Let y be themap : T X > T X/C . Then one sets :
o =1 : IR
(9.1.5) Es = R (&)

This is the Ring of "infinite order microdifferential operators". It
contains the important subring é?X of "finite order microdifferen-

tial operators", but we do not recall the construction of éfx here.

The sheaves CZ|X P By g CZ|X ’ 2§Y __, x 1 are similarly

defined.
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Identifying X with T*X , we have :

X
(9.1.6) é‘)]f‘ .« = On ’ v = D3
TXX TXX
(9.1.7) é‘x | o = QDX
| T X

where ﬁ); (resp. g)x) is the Ring of infinite (resp. finite)

order differential operators. Moreover

(9.1.8) Dy« - &y .yl -0, o £ D,

*
| Y)x(TXX Y
X
If 7ﬂ is a coherent Q)X—module, its characteristic variety, deno-

ted char (] ), satisfies

(9.1.9) char (Tfl) = supp( é?x ® )
n_la'Dx

= supp ( éfiR® n—l ?H)
Dy

The last equality follows from the fact that é?ga is faithfully
flat over (%X (cf. Chapter 10 below). Recall that é%x is flat
over 1 1 &)X.

Although we shall note use it here, it may be useful to notice that
the functor uhom(:, 6&) allows us to construct new sheaves of

microfunctions.

As an example consider the sheaf C | of Kataoka [1] [2]. One
M| X
may recover it as follows.

Let M be a real analytic manifold of dimension n such that X
is a complexification of M, and let ¢ be a real analytic function
on M, with d¢ # O on the set {¢ = 0}. Let M+=={xe:M ; 0(x) >0},

Then

CM+]X = uhom(Cy., 5&)@ Wy [n]
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(use Proposition 5.5.8. to compare with Kataoka's definition). For

further developments, cf. also Kaneko [ 1], Oaku [1 ].

9.1.3. Let Diff(X) be the category of left g)x-modules. We deno-

te by D(A)X) its derived category, by D+( g)x) the full subca-

tegory consisting of complexes with cohomology bounded from below ,
b

by Dcoh(x) the full subcategory consisting of complexes with boun-
b

ded and coherent cohomologies and finally by Dr (X) the full

h
subcategory consisting of complexes with bounded and regular holono-

mic cohomologies.

We shall keep the same notations for the categories constructed with

right Q)X—modules, since there will have no risk of confusion.

9.1.4. Now assume X 1is a real analytic manifold. Let i be a

complexification of X. We denote by C%X = ( C7N)| the sheaf of
X |X
real analytic functions on X, by QX = (Q ) ® Wy the sheaf of
X |x
real analytic densities, g)x = ( g)k)} the sheaf of finite order
X
real analytic differential operators, etc ... . We also use the

sheaf A}% of L. Schwartz's distributions.

If X 1is a complex manifold, we denote by XJR the real underlying

manifold, and X the anti-holomorphic manifold associated to X.

The diagonal embedding xRe L xx% identify X x X with a

complexification of XlR.

Of course when X is complex,one shall not confuse the sheaf QDX

with the sheaf J) R ¢ OF Oy with @ 1R for example.
X X

9.1.5. On a real analytic manifold X, we denote by IR-C(X) the

category of IR-constructible sheaves on X, with base ring .
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Then the derived category Db(Hl—C(X)) is equivalent to Di{—c(x)’

(cf. Kashiwara [7]).

§9.2. Review on the Riemann-Hilbert correspondence

9.2.1. First we recall the main properties of the functor of

"cohomology with moderate growth" constructed in Kashiwara [7].

Theorem 9.2.1. : Let X be a real analytic manifold. There exists

a contravariant functor, denoted TH, from IR-C(X) to Diff(X)

such that

i) TH is exact

v

ii) TH(QX) = JDX the sheaf of Schwartz distributions on X

iii) if Zz 1is a closed subanalytic subset of X and

F ¢ Ob(R-C(X)) ,

TH(E,) (TH(F))

Ty

iv) let £ : Y > X be a real analytic map, and let

b
G e Ob(Dpp_ (¥)).

Assume f is proper on supp G . Then still denoting by TH the

functor from D?R_C(X) to D+(3)X) obtained by passing to the

derived categories, we have

JRf!(@X <—y {% TH(G)) = TH(IRf, G)
Y
Corollary 9.2.2. : With the same hypotheses and notations as in
Theorem 4.4.7., assuming moreover YS subanalytic, we have
1Rf!(@X <_Yg TH(G)) = TH(Rf, G) ,
Y
(resp.
JRf*(é)x<_Y% TH(G)) = TH(RE, G)).
Y
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Proof

We keep the notations of Theorem 4.4.1. . Thus is denotes the

injection YS‘L——~> Y , and fs = is o f. Applying Theorem 9.2.1. we

get :

‘ e Sl
RE (D, % TH(Ri_, i ' G)) =TH(Rf, Ri_, i ' G)

Y

Y

By Theorem 4.4.1. the right-hand side is isomorphic to TH(Hlf* G) .

On the other hand we have

HRE, (D, ., ¥ mHE) = Lin BRER_ (D, B THG)
1 —Y A = > * = X<—=Y
a s Y D
Y s Y
= lim HRe (D § tac )
e X<¥ g v
S Y s
In fact there are natural morphisms :
Dy _y  tue ) >RI_ (& Y ) > D Y tac )
Y, % Y Yo, Yo 7Y
Y s S Y Y s'

for s' > s such that Y_, D Ys' Similarly we have

>Ri_, it G el
S s - -

Y . * 4
S

G

S

" [, v v
for s" > s' » s such that Ys“ D Ys and Ys, jo} YS

Therefore we obtain

HRE, (B,

. =1
% TH(]RlS* J.S

Y

TH(G)) = lim HRE (D )

b
=Y ¢ - X<—=Y
&Y s

The other case is similarly proved. D
9.2.2. Recall the "reconstruction theorem" of Kashiwara [6],[7].

(cf. also Mebkhout [1],[2], [3] for another approach of the Riemann-

Hilbert correspondence) .

Theorem 9.2.3. : Let X be a complex manifold. Then the functors
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b
sol Drh(@x) ——> D

X
and

L x)

R-H : DCE—C r

F +——— RHomg, (g_, TH(F))
X X

are well defined, and inverse of each other

§9.3. Microlocal Riemann-Hilbert correspondence

9.3.1. We may microlocalize the construction in Theorem 9.2.3. by

using the functor vhom(-,-)

Proposition 9.3.1. : Let F ¢ D]&):__C(X) and “ffl= R-H(F) (and
hence “mw = ,@; ® MM = IRHom (F, (;"X)) . Then we have :
X
whom(E, O, )= &3 ® 1 W7 = X e o '
‘IT_luO; Tr—l&)X
Proof

We shall not write n ! for short.
Let qj be the Jj-th projection from X x X to X (j =1,2).

By the definition of é)];R we get

88 o M- 07T b
SDX QX

On the other hand (Kashiwara-Kawal [6], Mebkhout [4])

(o,n) _ -1 -1
O™ B = a0 art iy b )
X ] X

=a; O, @ qgllRHom(E,(IX) [n]

Therefore we have, by Proposition 5.6.2.
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Ex ot - v, (a5 RHom(F, &) @ a;' @,) [2n]

]

-1 !
w, (IRHom(q," F, q; O))

The last term equals, by the definition , uhom(F, 6&) - U

Remark 9.3.2. : When restricting the isomorphism of Proposition
9.3.1. to the zero section of T*X we recover a result of

Z. Mebkhout [4].

Corollary 9.3.3. : 1In the situation of Theorem 9.2.3. we have

SS(E) e char(@(g))

Proof

Let M = R-H(F). We know by Kashiwara [ 5] that SS(IR Hom ¢ (1 G
X

is contained in char( M ). The converse inclusion follows from
Proposition 9.3.1. . []
Remark 9.3.4. : We shall generalize this Corollary in Chapter 10.

Let us notice that a related result to Corollary 9.3.3. with the
notion of "vanishing cycle" replacing that of micro-support, was

already known, (cf. Deligne [ 1], Brylinski [ 1], Kashiwara [ 5]).

9.3.2. Let Y and X be complex manifolds, f a holomorphic map

from Y to X.

b

Proposition 9.3.3. : For F ¢ DDR-C

have the following isomorphisms.

(i) If f is an immersion, and f 1is non characteristic for

*
F on an open subset U of T X
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uhom(f_1§, Oy)ly=Ro Dy _ x% o ! uhom (£, G)) |y
X

(ii) If f 1is smooth and suppG is proper over X , then

whom (Rf G, &) = Ry (D, ., B 07! whom(g, #,)) [dimy- dinx]
Y

Proof

(i) We have

-1 -1
Dy s x b o7 uhom(r, @y) =w  whom(F, Dy o B )
Dy Dy

Since D B &, = IRE, O, , it is enough to apply Corolla-
Y —>X ) X Y
X

(ii) In this case, we have

Dy vy % Oy = £ €y [dim x - dim ¥] .

Y
Hence (ii) follows immediately from Corollary 5.5.6. . E
§9.4. Direct images of regular holonomic Modules for non proper maps

9.4.1. Let Y and X be complex manifolds, f a holomorphic map

from Y to X. Recall that for a right Q}Y—module % the direct

image of Il (or the proper direct image of 77 ) 1is the complexe of

right Q&—modules given by

[ n = RL(ME O, )
£ DY
pr
)(_ gt R, (1 b Dy 5 x)
£ @Y

These functors extend naturally to Dgoh(g)y).
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9.4.2. We shall "translate" the results of §8.6. to regular holono-

mic Modules.

Theorem 9.4.1. : Let 9/ be a right regular holonomic Q}Y—module

(or more generally an object of D?h( H)Y)). We make the assumptions

of Proposition 8.6.1. with supp(G) replaced by supp( ¥/ ) and

SS(G) by char(7 ). Then
i) { ‘ =j CH 1y ) J
J £ “ £ f Yy

and these complexes belong to Ob(DSh(Q> )).

X
ii) char()f ) ¢ mo ! (char 7])
£
Py e
char() H)cwp (char ¥{)
1) Rre (U B @y - (f H) B o
Dy £ @X
pr
RE (CH B @ = (I M8 o
6DY £ oDY
Proof
Set

9 = ]RHOm@Y( f[ ’ QY)
Then G ¢ Ob(Db (Y)) and
- C-c

H= o % TH@G) e o [@im Y
T & [aim ¥]
Y

Xl %Y@Y - Riom(G, €,) [dim ¥]

Moreover we know by Corollary 9.3.3. that

char (#{ ) = SS(G)
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Now we get

TH(G)) [dim Y]

S———
H
@
2
®
AN
1
&
h
*
)
&=
o)
@

RE, (D Bt [aim Y]

YlR

L]
-a b TE(RE G [dim Y]
@ .
pr
by applying Corllary 9.2.2. (and similarly for [ vﬁ ) .
f

By Proposition 8.6.1., IRf,(G) is (&-constructible. Thus i) , ii)

and iii) follow from the reconstruction Theorem 9.2.3. and
IRf, IRHOm (G,C,) [2dim Y] = IRHom(IRf, G,C,) [2dim X]

IRE | IRHom (G, L) [2dim ¥] = IRHom (IRf, G,C,) [2dim X] . []

By the proof of Proposition 8.6.2. we get

Corollary 9.4.2. : Let f : Y —> X be a holomorphic map, with

dim X = 1, and “H a regular holonomic J)Y—module. Let x ¢ X and

K be a compact subset of f_1(x). Then there exist open neighbor-

hoods U of x, V of K, with Vc:f_l(U), such that denoting by
r

f, + V—> U the restriction of f to V, ( H and P ﬁ?

v - J £ £

\% \Y
belong to Ob(D?h( Q)U)), and conclusions ii) and iii) of Theorem

9.4.1. are satisfied, with £ replaced by f

v*
Remark 9.4.3. : The assumptions of Theorem 9.4.1. are clearly
satisfied when f 1is proper on supp ! . This case was first

treaded by Kashiwara [ 3] (assuming moreover that f 1is projective)
then by Laumon [1]. Another case where the assumptions are satis-

fied, is the case where Y 1is a vector bundle on X, and 7 is
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"conic", that is when <char( “f]) is contained in the hypersurface
*
SY < T Y canonically associated to the vector bundle structure,

(S is defined in Chapter 5, §1.).

Y

Remark 9.4.4. : The relation between direct images of holonomic
Modules and integration of ramified holomorphic functions is explai-

ned by Pham [ 1], where some examples are discussed.

Remark 9.4.5. : A non proper direct image theorem for general

coherent differential Modules is proved by Houzel-Schapira [1].

§9.5. Perverse sheaves and pure sheaves

9.5.1. Let X be a complex manifold, F ¢ Ob(Dg_c(X)). We do not
recall here the definition of perversity, and refer to Goreski-

Mac Pherson E1 ], but we use the fact (which may be taken as a defi-
nition here) that F is perverse if and only if, in the Riemann-
Hilbert correspondence, R-H(F) is a complex concentrated in degree

. b
O in Ob(D ( JDX)).

*
Lemma 9.5.1. : Let A be a complex Lagrangean manifold in T X,

F € ob(D'(X)). Assume F 1is pure at any point p € A. Then the

shift of F 1is locally constant on A

Proof

With the same notations as in Remark 7.2.7. it is enough to show
T (P(s)) A, (p(s)),u(s))=t (A (p(s'), A, (p(s'),u(s"))

We may assume that p(s) 1is a complex Lagrangean plane. Then the
lemma follows from the following remark : let (E,0) be a complex
symplectic vector space, (EIR,OIR) the real underlying symplectic

vector space (i.e. : GlR(x,y)= o(x,y) + o(x,y)). Then for a triplet
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of complex Lagrangean planes x1, 12, A3, we have rElR(A1,A2,A3)= o,
since denoting par I the multiplication by /=1 on ElR,we have
O'IROI =-O]R. D
Theorem 9.5.2. : Let X be a complex manifold, F ¢ Ob(Dg_C(X))
and let A = SS(F). Then the following conditions are equivalent

a) F 1is a perverse sheaf.

b) At any point of the non singular locus Areg of A,
F 1is pure with shift zero.
Proof
We set “ffl= R-H(F). Consider

ayy Bl(HM) =0 3 #0
It is equivalent to

] -1 .
a"y B GRr e w (M, =0 340
-1
T X
where A' 1is the set of points of Areg where the projection
on X has constant rank.
R -1 . .
Now we have %X ] m '711 = phom (F, ﬁx), and in a neighborhood
D
X *

of pe A", we have A = TYX , for a submanifold Y c X.
Hence F = g; , microlocally at p, for a complex M~ of vector
spaces.
Let d be the complex codimension of Y . We have in a neighborhood
of p

phom(E, Oy) = @ Hom (59 ("), by () [3]
j
= 0 Hom(nl (M), cylx [
j

. R
(since by the definition CYIX = 1y (O) [d])
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Thus a") is equivalent to

b') Bl M) =0 for 3 # d and this is clearly equivalent

to b) . [
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In all this chapter, X will denote a complex manifold. We keep the

notations of §9.1. concerning the sheaves C7X ’ j)x ' cgk ’

IR
Z?X , etc ... .

§10.1. Characteristic variety of gDX—modules

10.1.1. Some results of this section will be generalized later on
(§10.4), but the proofs concerning j)x—modules are more elementary

than that concerning é)]f—modules.

b . .
10.1.2. Let “H] e Ob (D}, ( &)X)). Locally on X , TH is quasi-

isomorphic to a bounded complex 'Tﬁ‘:

.. <

N N
N o p
(10.1.1) 0 < gDX <P éDX < 0

o
where the Pj's are matrices of differential operators acting on

the right.

We set :
(10.1.2) " = ®mHom, (TH, Do)
———A)X X

IR _ R -1
(10.1.3) M= = é‘x ?1@ L7
m X
We denote by char(ﬂﬂ ) the characteristic variety of a coherent

Db

g)x—module, and for e Ob( coh

( Q)x)) we set

char (1) = U char@d ()
3

(Recall that the characteristic variety of a coherent J)X-module
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*
“H] is the support in T X of gr (M), where gr(“H]) is the
graded Module obtained by endowing “?H with a good filtration and

taking the associated graded Module).

We have
*
(10.1.4) char () = char( M)
and
char (*})) = supp éx ® p! )
n_1Q)
X
(cf. Bidrk [1] for example).
Moreover the Ring <§iR is faithfully flat over égx : this is

proved exactly as for 2%; (cf. Sato-Kashiwara-Kawafl [1,Chapter i1,
§3.4.]) by the division theorem in 6%;3 (cf. Kashiwara-Schapira

E2,§€] or Aoki-Kashiwara-Kawai [1 ]). Hence we get

(10.1.5) char () = supp &)

10.1.3. We shall prove

b
Theorem 10.1.1. : Let e ob(D7 . ( ©y)). Then

char (1) = SS(]RM&DX(W’ Ey))

Proof
i) First we prove the inclusion of the micro-support in
char (M ). Of course one may reduce the proof to the case where

is a coherent Q)X—module.

Let (xo;éo) ¢ char (). Let ¢ Dbe a real C1—function with
®(xo) = 0, d¢(xo) = EO. Using classical results on spectral sequen-

ces, it is enough to prove

3 k _ .
(10.1.6) Ex_téax(ﬂ’n,H{q)ao}(@’x))xo =0 ¥j %0, ¥k 0.
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Then, using a standard argument, we may reduce the proof of (10.1.6)
to the case where ﬂﬂ = QDX //g)XP , for a differential operator P

with G(P)(xo;go) # 0 , o0(P) denoting the principal symbol of P.

If EO = 0, the result is clear. Assume EO # O. By the Cauchy-

Kowalewski theorem the sequence
P
(10.1.7) o —> @X —_ @X - (9;(—>o

is exact, C?i denoting the sheaf of holomorphic solutions of the
equation Pu = 0. Hence @'i is quasi-isomorphic to ]RHomm (M, @X).
X

We shall prove :

. P
(10.1.8) (x /8 ) ¢ ss( (?X)

Applying the functor ]RF{¢xj(°) to the exact sequence (10.1.7)
it is clear that (10.1.8) will imply (10.1.6).

n

To prove (10.1.8) we may assume X is open in &, X, = o,
EO = (1,0,...,0). Let us denote by =z = (21,...,zn) the coordinates
on En , with 2z = (z1,z') and set

H=1{z¢a"; Re zy > - e}

L=1{z¢a"; Re z, = - e}

G=1{zed"; Imz, =0, -Re z, > 8|z'|}

1

By the refined Cauchy-Kowalewski theorem (Leray [1]), there exists
€ >0 , § >0 and an open neighborhood V of O such that for any
x € V, the restriction morphism induces a quasi-isomorphism from the

complex

¢}

> Oyg ((x+G) N H) ——> y ((x+6) N H) >0

to the complex

o

> @X((x+G)nL) 5—> <9X((x+c)n L) —> 0O
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n

Since C7X(K) IRT (K, C?k) for any convex compact set K , we

obtain

n

IRT ((x+G) 0 B, @5) = R’ ((x+6)n L, O})

Applying Theorem 3.1.1. we get (10.1.6).

ii) Let us prove the converse inclusion.
Let Z Dbe another complex manifold, and let Py be the projection

* *
T (Xx2) —> T X. First we prove

Lemma 10.1.2. : We have
P, (ssmgggax(‘?ﬂ, Oyxg)) © SS(IR@JDX(W’ )

Proof of Lemma 10.1.2.

We represent “W] by a bounded complex of free g]x-modules as in

(10.1.1).

Let K and L be convex compact subsets of X and Z respecti-

vely, and let u'(K) and u.(K x L) denote the complexes

N N
o <
0 > @’X(K) (Po)> > ﬁX(K) > 0
and
NO Np
0 > Oy, (K<L) 5] > ... > Oy (KXL) >0

whose cohomology groups calculate H.(IRF(K;IRHomm (1, C9k))) and
X

H (lRF(KXL;JRHom4%<(ﬁn , C?XXZ))) respectively.

Let K1 and K2 be two convex compact subsets of X with K1c:K2
and assume that the restriction mapping C?(Kz) —_ C?(K1) indu-
ces a quasi-isomorphism o (K2) —ETI§> a (K1).

Let L be a closed ball in 2 . Then ﬁXXZ(Kjx L) = @*X(Kj) 8 @Z (L),

(3 = 1,2), where + &+ denotes the topological tensor product of
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the nuclear spaces (Grothendieck , [1]). By Lemma 10.1.3. below we
obtain a quasi-isomorphism a.(K2><L) = oa'(KTX L) and it remains
to use criteria (3) of Theorem 3.1.1. . E

Lemma 10.1.3. : Let E° and F  be two bounded complexes of

nuclear D-F-spaces, u a linear continuous morphism from E to F

which induces for all J € Z an isomorphism HJ(E.) E H](F.).

Let G be a nuclear D-F-space and let u ® 1 be the morphism from

. LEEPN

EE®G to F & G associated to wu. Then for all j ¢ Z,u ® 1

induces an isomorphism HJ(E' & Gg) = HJ(F. 3G) .

Proof of Lemma 10.17. 3.

By considering the mapping cone of u we may reduce the lemma to
the case where F‘ = O. Then it is well known that in this situaticn,

the functor +8&G 1is exact (Grothendieck [1 ]) .l

End of the proof of Theorem 10.1.1.

We have :

char ( fH) = char( ﬂﬂ*)= supp ( TH*HS
= supp I, lRHﬂ:DX(cm’ @XXX)

where A denotes the diagonal of X x X. Then one applies Theorem

5.2.1. and Lemma 10.1.2. . []

Remark 10.1.4. : i) The inclusion of the micro-support in the
characteristic variety may also be obtained by noticing that if

_ . R
p = (XO,EO), then égx,p

, (cf. Kashiwara [5]).

operates on  (IRT ;4 C?k)) where

$(xg) =0, Ab(x) = £

ii) When replacing C?X by various sheaves of g]x—modules or

E;X—modules, and the characteristic variety by suitable "micro-
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characteristic varieties" one can extend the inclusion * 2> * of
Theorem 10.1.1. (cf. Kashiwara-Schapira [1],[ 2], Laurent [1],

Monteiro-Fernandes [1], Schapira [2] and Theorem 10.5.1. below).

§10.2. Characteristic variety of the induced systems

10.2.1. Let Y be a complex submanifold of X . Recall that the
sheaf Dy _, = Oy gxgbx
re of a ( Q)Y, g)x)—bimodule. Let H#{ be a coherent §

is naturally endowed with a structu-
X-module, or
more generally an object of p° (D)

coh X'

We set :
(10.2.1) me: o= Dy o, B =0, 8 M
Y > X QX Yﬁx

In general the cohomology groups Hj(‘?ng) are no more coherent
over Q)Y , but locally they are a union of an increasing sequence

of coherent Q)Y—modules.

We shall also consider the algebraic cohomology groups lRF[Y](7ﬁ)

with their structure of left ®_-modules (Kashiwara [aT).

X
Finally we set
(10.2.2) me o= RNy o MU
éDX
Theorem 10.2.1. : Let Qe Ob(DEOh(ﬂ)X)) and assume

a) %Yﬂ e 0b (D5 (D))
b) N° ® (RTrA (M) = R (D, 8 <t )
X Dy y] Y X@X
Then

char(VHIg) c T*Y nc ., (Char(ﬂY]))

TYX
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Proof
*
Since char (f]]) = char( Y) ) we have by Theorem 10.1.1.
(10.2.3) char () = ss (@, & )
Set
F-a, b i
QX
Then
F = Q %w \mm
X

Let us calculate 1IR[',(F) :

"
o]

IRT, (E) = 0, %w T, (7N7)

Since

RE e () = Ry o B Oy by [-4]
[v] X < YQY Y >CDX

with & = codimc(Y) , we obtain

_ < ]]‘ -
Ry () = Sy % 5Dx <— Y% My (2]
Y
]l -
-0, 8 ¥ 27
Dy
Thus :
char (D) = (ss(mry, ()
and it remains to apply Theorem 5.2.1. . D

Remark : The proof of Theorem 10.2.1. replaces the proof of Theorem 3

of Kashiwara-Schapira [4] which was not correct.
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10.2.2. The hypotheses of Theorem 10.2.71. are satisfied for regular

holonomic Modules (Kashiwara-Kawai [6 |). Hence we get

Corollary 10.2.2. : 1i) Let I be a regular holonomic system on X.

Then

char (M3 < 7'y nc , (char (1))

TYX

ii) Let‘?ﬂ and 1| be two regular holonomic systems on X. Then :

char (T & 1 ) « char (fN) * char (‘H)
X

(The structure of left gbx—module of ﬂﬂ‘%‘cﬁ is explained in

- X
Kashiwara [4] ; cf. also Bernstein [1]).

Remark 10.2.3. : An exact formula for the restriction of the
characteristic cycle of regular holonomic Modules is obtained by

Sabbah [1].

§=1 be holomorphic functions on X, Aj e €

and let fH be the left ﬁ)x—module

10.2. 3. : Let (fj)

*5
f.
3)

IR=R

1

(10.2.4) M= R
J

that is, ﬁﬂ = Q}X/ﬂr where I 1is the left Ideal of sections P
of Q)X which satisfy P(I fjj) = 0 generically.

J
Let us recall the result of Kashiwara-Schapira [3].

*
Define the subset Z of T X as follows

) 3

(x38) € Z <==> there exists a sequence {(x_, 1¢5¢0’p

a.
2 P J.P
(10.2.5) in Xx( such that

> x,3 a, df. —>f,a. f (x) —>0 ¥,k
p P T, % g p) 8 ay o ) 5 J
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Corollary 10.2.4. : We_have

char (M) c 2

For the proof one introduces the left Q)chg—module ﬁj generated

2 A
by I (t., + f.(x)) J. Then :
3=1 J J

char(:”) C {(x,t;? aj(dfj(x)+dtj)); aj(tj+fj(x))=0 for any j,ajt:E}

and we apply Corollary 10.2.2., since

- %xaji
M= 200y Fygoyr M)

Remark 10.2.5. : The result we obtain in Corollary 10.2.4. has to
be compared to that of Kashiwara-Kawai [ 5] ; cf. also Iagolnitzer

[1] for another approach.

Remark 10.2.6. : When Y 1is a (singular) hypersurface and
g )
= H[Y]( 6&), an exact formule for char(T{) has been obtained

(cf. L&-Mebkhout [ 1], Sato-Kashiwara-Kimura-Oshima [1]).

AL
§10.3. Singular support of I (fj+io) J
J

10.3.1. We shall calculate the singular support (i.e. : the "ana-
A
lytic wave front set") of hyperfunctions of the type H(fj+io) J
J
We refer to Kashiwara-Kawal [5j or Lebeau [é] for another approach

to this problem.

Let M be a real analytic manifold, X its complexification,

n = dim M.

The sheaf CM of Sato's microfunctions is defined by
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Cy = Hy (O ® w,ln]

*
and its restriction to M, the zero section of TMX is the sheaf BM

of Sato's hyperfunctions (cf. Chapter 9, §1).

If u 1is a hyperfunction on M, we denote by sp(u) the section of

*
CM it defines all over TMX, and by SS(u) the support of sp(u).

10.3.2. Let N be a submanifold of M, of codimension d , ¥ <« X

* * *
its complexification. Let A = TYX and AH{= TYX g TMX . Then A is

*
a complex Lagrangean manifold in T X , and it is the complexifica-
IR

* — *
tion of the purely imaginary Lagrangean manifold A of TMX =/-1 T M.
The manifold A is endowed with the sheaf (Chapter 9, §1)

clR

v|x = Myl Oy [d

and one may define the "second microlocalization" by replacing the
sheaf ch on X by the sheaf Céﬁx on A (cf. Laurent [:1],

Kashiwara-Kawai [ 3], Kashiwara-Laurent [1]).

One defines :

2 _ IR

cy = uA]R(CYlX) ® _C.U_N[n]

B2 = wr _(cR ) 8 o [0] = R&Y,cC?
A R YX =N - L\

*
> T X.

N * *
where 7w 1is the projection T lR(T X)
A

There exists an injective natural homomorphism

T T C >————>C2
M 1R A
A

The morphism T 1is obtained as follows. There are natural morphisms

gy

> QN and

oy > wyl[d] , which define

iy (Oy) @ wy —> e (Oy) 8 w [d] — u,(O)) & w [d]
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then
n (Oy) @ QM[HJ > IRT uY(@X) ® @N[n+d] .
T, X
M
Let fj(y) (1¢j<r) be real analytic functions on N , with Inlszo

on N. Assume M = IRX N , and let t be a coordinate on IR (we also

write t for its complexification on ).

Let u Dbe the hyperfunction on M defined as the boundary value of

r Az
the holomorphic function I (t + fj(y)) 3 from Im(t + fj(x)) >0
j=1

A
and let v be the hyperfunction on N given by v =1 (fj(v)+io) J
J

Then 71(sp(u)) admits an asymptotic expansion (Kashiwara-Kawail [3])

T(sp(u)) = I (t + io)u (log t + io)k v

k,u k,n

and sp(v) 1is the coefficient of (t + io)o(log t + 10)°. Thus
*
(10.3.1) supp (sp v) € TyY N supp (1 (sp(u)))

We shall estimate this set.
Let @ ={(t,y) e € x Y =X ; Im(t + fj(y)) >0 for j =1,...,r}.

A
Then I (t + fj(y)) J gefines a homomorphism
J

g > Oy

Since §© is a tube over M , we have a canonical morphism

e

—> 1y (L) & gy [n]

and sp(u) 1is the image of 1 ¢ € by

S]

> 1y (@) @ wy,[n] > uy (Oy) 8 wy,[n]

Consider the commutative diagram
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1]

by (@) @ wyln] | g ——> ]R?T’*UAIR ny (@) @ wy [n+1]

uM(@'X) ® QM[n]l - -—>]R'1¥*u R”Y(gx) ® QN[n+l]
A A

Hence we have
(10.3.2) supp (T (sp(u))) < supp “AH{“Y(QQ)

and we obtain by Theorem 5.2.1.

(10.3.3) SS (v) CT;Y(\ c ., (ss(.)
=0

T X

Y
If we set . = ((t,y) ; Im(t + F.(y)) > O}, then C.=¢C. &...8c_ .

3 j e~ = =0
Hence by Theorem 5.2.2. we have
SS(QQ) c {(t,y ; 1 g aj(dt + dfj(y)) ; aj > 0
Im(t + fj(y)) > 0, aj Im(t + fj(y)) = 0}

then we can state, replacing N by M and Y by X for conve-

nience

Theorem 10.3.1. : Let fj (1 £ j £ r) be real analytic functions

on the real manifold M, such that Im fj > 0. Let X be a comple-

xification of M . We have

(£.(x) + i0) ) e U 2

SS( I
j 2 g v
where J ranges over subsets of {1,...,r} and
2y = ((x; i) e /=1t s T;X ; there exists a sequence
3 ; J J
{(Xp’ap)jEJ}p in X x IR such that ag > 0, X, > X,
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b aj df. (x_)
jed ip
al Imf, (x)

P J P

> ¢, fj(x) =0, Imfj(xp) —Imf I(x) and

e J}

>0 for any j , 3]

§10.4. Characteristic variety of {5)]? -modules

10.4.1. We briefly recall, following Kashiwara-Schapira [ 2, §3,
especially Corollary 3.2.5.], the action of é)]ER over @'X. We

n

take X = ¢ and consider a closed convex proper cone G contai-

ning O. An open set D 1is said to be G-round if (D+G) N (D+Ga) =D.

Then for a G-round open set D, the ring é(G ; D) 1is defined by :

(o,n)

é‘f(G;D) =HZD><D @xxx)

with 2 = {(x,y) ¢ X x X ; y=-X ¢ G}.

Then there exists a natural ring homomorphism

(10.4.1) &(G: D) —> T1(x1Int ¢*°; SF)
*

and for p = (xo ; go) e T X we have

(10.4.2) R = 1im &(G; D)

X,p *G,D>
where G ranges over the set of closed convex proper cones such
that G ¢ {vy ; YrEL < 0} Y {0} and D ranges over the set of

G-round open neighborhoods of X

The action of S3% on (J, is described by the following

X

Theorem 10.4.1. : Let X belong to the G-round open set D.

Then there exists a G-round open neighborhood U of X such that

for any G-open sets QO,Ql with Qo - Ql, Ql\ QO c U , we can defi-

ne naturally IRT (IR¢ ,((F,)) in the derived category of the
2\ 2 c* X

category of sheaves of left %(G ;D)-Modules defined on @

1,G*
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10.4.2. Now we consider a bounded complex M of left free

ZWG ; D)-modules of finite rank :

N N
(10.4.3) M : 0 —> &(G;p) 4 > &G;p) P

>

> 0

and we denote by /1 the complex E}I(R (3] M over Dx°2
&(G;D)
rN ®N
(10.4.4) TH: 0 —> (&) T—> ... >((‘$X)P >0

Recall that supp(°ff]) 1is the complementary in Dx G°? of the set

of points where the germ of 7/ is exact.

Let Z be another manifold. We denote by the projection

Z
X x 2 > X or TY(Xx2) > 7¥x.
Let ¢, be the continuous map X x 2 > XG x Z
Then HZF(Ql\ QO)XZ(H{¢Z* C?X><Z) is also in the derived category

of the category of é(G,D)—Modules over Ql c* Z.

Theorem 10.4.2. : Let no and Ql be two G-open sets in X with

- Oa .
QOCQI' Ql\QOcU.Iet v = Int(Ql \QO) x Int(G ). Then :

supp fif 0 v = J , (SS(IRHom Ro
Z

-1
Hom s (g;p) Mr oz IR T

« (?x N)nv
(Ql\QO) Z VAR €3/

where Z runs over the set of complex manifolds.

Proof
i) Assume Tl exact on a neighborhood W of (x i€.) € V.

We first prove

-1 -1 _
(10.4.5)  w,” (W) SS(IRHOm s .y (M, 6, JRP(QI\QO)XZIMZ* Oyug)) =0
Since M 1is exact on n;l(W) we may replace X xZ by X

Let ¢y be a real Cl—function with dw(xo) = go. We shall assume

Eo # 0, otherwise the proof is trivial.
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= . . « IR _
If we set S = {x ; v(x) » v(x))}, RI gx)xo is an Slxg,ey)
module. Moreover
_ -1
Rrg( Ty, =Rigle™ Rry o Re, G
o 1'"o o
. . . . . . IR
and this isomorphism is compatible to the map <%(G;D) > (x_,E )
o'"o
Therefore we have
-1
IRTg RHOM & oop (M, 97 RIo o Ro, (z()x
1'7o o
IR
- IRHom (& ® M, RT_(C.) )
o?i £ ) (Xo'go)(g(G;D) s X %o
o’”o
which vanishes by the assumption.
Since this holds at any point (x;&) in W , (10.4.3) follows.
ii) To prove the converse inclusion, set :
1 -—
X' = Int(Ql\Qo)
¢ the continuous map X x X' > XG x X'
_ =1
F =0 RT o\ )xX'lR¢*(@XXX')
1 o
and remark :
b (Opvx) Iy = i (B) g
(where X' is identified with the diagonal of X' x X').
Thus on V
supp (IR Hom M, EXR)) e ss (IR Hom (M,F)) O T, (x' xx")
Hom &(a;p) M+ &x Hom & (g,p) ME X
Cp1 SS (IR Hom é(G,D) (M,F))
(where Py denotes the projection from T*(X'XX') = ¥xr o« ¥y on

the first factor).

Finally we remark that
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IR, . 1R
(10.4.6) IRHom o o) (M, &y) = WHom - (Hf )
2 X
and the support of the cohomology of this last complex is the same

as the support of the cohomology of TW, because

M, &3, &3 - [

(10.4.4) M = m@gm(m@gm
X X

Corollary 10.4.3. : i) Let "] be a bounded complex of free left

Z:;F—modules of finite rank on an open set U of X . Then

supp(H]) 4is involutive in T*(XH{) (in the sense of Theorem 6.4.1.).

ii) Let W) be a coherent (?X-module on U. Then supp(H]) is

.*.
involutive in T X

Proof
. . . égMR .
The second assertion follows from the first one since x 1is

faithfully flat over é?x and any coherent éf -module is locally

X

quasi-isomorphic to a bounded complex of free <§X-modules of finite

rank.
The first assertion follows from Theorem 6.4.1. since the projection

ﬂz(S) of an involutive set in T*((Xx Z)Hz) is involutive in
* 1R

(X)) . [
Remark 10.4.4. : i) 1In Kawal [1] we see an example of a bounded
complex M of free QD;—Modules of finite rank such that
char (")) = supp( éiR ®_ M) is a real Lagrangean subset.
X

The same article implies the following : let M be a real analytic
manifold and X its complexification. Then the sheaf of microfunctions
admits locally a finite resolution by locally free é%iR—Modules of
finite rank.

ii) Of course, assertion ii) of Corollary 10.4.3. is well-known

(cf. Sato-Kashiwara-Kawal [1}).
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§10.5. Propagation theorem and Cauchy problem

10.5.1. Let X Dbe a complex manifold of dimension n , Y a real
submanifold of class C% (a > 2).
The complex uY(C%J is naturally endowed with a structure of a

left (%iR—module. In fact we may assume X 1is open in Gn, and let

be as in Theorem 10.4.1. . Set V==Int(ﬁf\90)x Int G°2.

G, D, 2y, 94
We have

B -1
(10.5.1)  u (O, = (uyleg R (g \8,) ]Rq’G*(@x)))lv

and we may apply Theorem 10.4.1.

10.5.2. Now let M and T be defined as in (10.4.3) and (10.4.4)
respectively. We know by Theorem 10.4.2. that

-1 . . .
SS (IRHom 5(G;D)(M’¢G HQF(QO\Ql)]R¢G*(C?X))) is contained in

supp7ﬂ N V . Hence we get by Theorem 5.2.1. :

Theorem 10.5.1. : Let ) be a bounded complex of free éfig-modules

of finite rank on an open set U of TX. Then

ssmaomgmfm,uyuﬁxn) c ¢, (supp (7))
T,X
X Y
Remark 10.5.2. : This theorem generalizes Theorem6.3.1. of

Kashiwara-Schapira [2] which made some assumptions on the subma-
nifold Y. When Y 1is real analytic and X is a complexification
of Y, we recover the theorem of propagation of micro-analyticity
for solutions of micro-hyperbolic systems (Kashiwara-Schapira, loc.
cit.). Let us recall that this result was first obtained for single
differential operators (for hyperfunction solutions) by Bony-Schapira
[2] then extended to single microdifferential operators by

Kashiwara-Kawai [2].
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Remark 10.5.3. : As a particular case of Theorem 10.5.1. we find :
(10.5.2) supp]RHomZ‘;]R
X

Assume now that I is defined all over % (‘MM is a bounded com-

(Houy (Oy)) < 73X N supp (M) .

plex of free g);—modules of finite rank), and assume Y 1is non
characteristic for “M| , that is, sz N supp»Tnc:T;X . Applying

Proposition 5.3.2. we obtain the isomorphism :

(10.5.3)  Riom (T, Op) |y = Riom (M, BT, (Ty) @ wy o[d])
Dy Dy '

where d = codim Y.

Remark that if Y is real analytic and X 1is a complexification
of Y, the hypothesis that Y is non characteristic is often trans-
lated as " H{ is elliptic" , and (10.5.3) asserts that the hyer-

function solutions of the system are real analytic functions.

10.5.3. One can also recover Theorem 2.3.1. of Kashiwara-Schapira
[27] on the Cauchy problem for microfunction solutions of micro-
hyperbolic systems. For sake of simplicity we shall only give the

proof for differential systems. Let f : N

> M be a map of real

analytic manifolds, and let us denote by f : Y > X a complexi-
fication of f. We denote as usual by p and @ the associated maps

*
from Y x T*X to T Y and *x respectively.
X

Let N be a coherent ﬁ)x—module, 7MY = ng X Y £t T
-.l@
f X

the induced system on Y. Assume first £ is non characteristic

1

for 1 (i.e. : Tix N - (char (M) € Y x T;X). Then one knows
X

(Kashiwara [1]) that one has a natural isomorphism :

v

-1
(10.5.4) £ IRMQX(W, ) > RHom IDY(WY’ gy
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Theorem 10.5.4. : Let V be an open subset of T;Y. Assume :

i) £ is non characteristic for ﬁr].

ii) £ is micro-hyperbolic for 4ﬂ on V, that is the map

UM H p_l(V) N N x T*X > T*X is non characteristic for
M M M
C , (char(H)).
T, X
M -1 -1 *
iii) o (M) N @ (char(‘m))CYxTMx .
X

Then the natural morphism :

_-1 -1 -1
0, © RHom _, (m “t,cy) > RHom _, (n "My Cy)

* ™ D m

X ‘;DY

is an ismorphism on V.

The sheaves CM and CN of Sato's microfunctions on M and N

respectively, are defined in Chapter 9, §1.

Proof
Let us apply Theorem 5.4.1. to the complex F gz?]RHomg) (?ﬂ,éﬁa.
X
We get :
- | -
e Btz R, v L (F) 8o lm |
Xy * M TN x T¥X|
M M 'V
We have :
f! » di .
Zy =%y I:J.m]RY - dlmlRX]
-1 . . o
T OZ L, Ry [dim N - dim M] ® g/ u
NxT X
MM
Hence :
-1 R -1 , )
uN(f F) v ® o [dlm N:| ~]Rp_*_ ) uM(F)‘V ® Oy [dlm M] .

Applying the isomorphism (10.5.4) we get the result. E

Remark 10.5.5. : 1In case Cn7 is an (%X—module, one has to use
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Theorem 3.1.2. of Bony-Schapira [3 ] instead of (10.5.4).

Remark 10.5.6. : Here again, this theorem was first obtained by
Bony-Schapira [ 2] for single differential operators, then by

Kashiwara-Kawal [2] for single microdifferential operators.

§10.6. Microlocal action of éfi? on (ﬁ&

10.6.1. Let X be an n-dimensional complex manifold, and let qj

be the j-th projection from XxX to X (j =1,2).

Lemma 10.6.1. : We have :
i, -1 o ! .
Ext)(q, Oy » a, Bg) =0 for 3 #-n

and we have canonical homomorphisms :

(on) -n, -1 !
Oxax > Ext (g, éz ca; G)
(o,n) s pxt P (g7) !

XxX (q;" 9%+ 9y %)

Here, Hom(+,+) or Ext(+,+) are taken over the ring (.

Proof
For pseudo-convex open sets U and V of X, we have, by the

Poincaré duality (Corollary 1.3.2.) :

Rr (U x V, RHom(q, 0y, q; &) = Hom(Rr_(v, &), Rr (U, &)

23

Hom (#, (V, &), 12U, &})) [n]

Now we have morphisms

(10.6.1) (0/1) (5, vy « Hgﬂh Cy)

n N (o,n)
X x X > B (U R, (G ))

X x X
> ﬁX(U)
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where the last arrow comes from the Serre duality
(o, n)
1I X x X > Oy

The map (10.6.1) being functorial in U and V , we obtain the

morphism :
(o,n -n -1 !
axXx > Ext U (ay Oy oa) Oy)

The second morphism is similarly obtained. D

By Lemma 10.6.1. , we obtain :

(o,n) -1 !
(10.6.2) %% 0] > RHom (q, @X pay Oy)
Applying the functor uA(o ) to both terms in (10.6.2) we have
Proposition 10.6.2. : There exist canonical morphisms
2 IR
¢ x > hon( Gy, &)
IR, a
(&X ) > w hom(0y,0y)

Thus we again obtain the microlocal action of &)](R on (9;( :

Corollary 10.6.3. : Let p ¢ T*X. There exists a natural morphism
of rings :
IR
X,p > Hom ( é? ’ C?%)
! D (X;p)
Proof
The morphism is defined by Propositions 10.1.2. and 6.1.2. . The

verification that this morphism is a morphism of rings is left to

the reader . D

Remark 10.6.4. : We have got another interpretation of Theorem 10.4.1.

Remark 10.6.5. : Cf. Mebkhout [4] for aconstruction similar to that
of Lemma 10.6.1.
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CHAPTER 11 - QUANTIZED CONTACT TRANSFORMATIONS FOR THE SHEAF CjX

§11.1. Construction of guantized contact transformations

11.1.1. Let X and Y be two complex manifolds with the same dimen-

sion n. We denote by a4 and q, the first and the second projec-

tion from X X Y respectively, and by Py and P, the first and
* * *

the second projection from T (XxY) = T X X T Y respectively. We

*
set p? =Py oo a, where a is the anti-podal map on T X.

Let ¢ be a holomorphic contact transformation between two conic

* *
open sets QX c T X and QY c T Y, and let A Dbe the complex conic
Lagrangean manifold associated to ¢ , obtained by taking the image

*
of the graph of ¢ by the anti-podal map on T X.

- a2 _ b
Let p € A, Py = p1(p) 3 QX, Py = pz(p) € QY. Let K eOb(D]R_C(XXY))
which satisfies
(11.1.1) K 1is a simple sheaf along A with shift O
a, -1
(p7)  (Qy) N SS(K) < A
1

P, () 0 SS(K) < A

First we shall construct a morphism

. +
> @'Y in D (Y;pY)

wK[n](@X)
We have by the definition
o -1
wK[nJ(gX) = quzz(K[:n] % a @X)

Let us take an element

(n,0)

s € Ho(uhom(g, CyXXY ))p
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Applying Proposition 6.1.2., we find that, shrinking 2, and @

if necessary, s gives a morphism in D+(X><Y ; Q;><QY):

> @(nlo)

sk XxY

Thus we get a morphism, in D+(Y;QY)

, -1
V& [n] (Oy) —> Ray, (‘7)(<QYO) 8 a)" Oy

XXy
> O,

where the last arrow comes from the Serre duality.

We shall denote the morphism from wK[n]( 6&) to so construc-

Y
ted, by a(s)

(11.1.3) a(s) = tpK[n](@X) —> &, in D+(Y:QY) )

IR

Remark that Ho(uhom(g,(g(n’o) has a structure of (éX o
"X

XxY ))p

’

1R
EgY,pY)—bi—module by Proposition 10.6.2.

Theorem 11.1.1. : There exists an s ¢ Ho(uhom(gﬂ @éz§0)”p which

satisfies the following conditions

. . . . +
(1) a(s) : wE[d](ny) _— C?& is an isomorphism in D (Y,pY).
(2) Ps = sQ (P ¢ %iﬁ , Q€ R ) gives a ring isomorphism

Py Y/Py

1R N R
: —_—D
Ox X, Py ”Y,pY
. . . . 1R R
(3) of(s) is compatible with the action of and
X,pX —_— Y,pY

on @y and O

We shall prove this result at the end of this section.
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Remark 11.1.2. : The isomorphism a(s) is not unique, but unique
up to the multiplication by an invertible microdifferential opera-

tor. This is the same as the situation encountered in the theory of
microdifferential equations (cf. Sato-Kashiwara-Kawai [1_]). We call

a(s) a quantized contact transformation above ¢

11.1.2. 1In order to prove the theorem, we shall study the composi-

tion of such morphisms.

Let X. (j = 1,2,3) be three complex manifolds of the same dimen-

sion n, Xij = Xi x Xj ' X123 = X1 X X2 x X3.

the projection from X123 to Xij’ by pij the projection from

We denote by qij

*

* *
T X123 to T Xij , by p, any of the projections from T Xij to
*
T Xi’ We denote by p?j the map obtained by composing pij with
*
the anti-podal map on T Xj.
Let K and K be objects of Db (X,,) and Db (K,,) res-
=12 =23 C-c 712 C-c =23
pectively both with shift O.
Let M.. Dbe the regular holonomic & -module associated to K.
ij Xij —13
by the Riemann-Hilbert correspondence (cf. Theorem 9.2.3.). We set :
?ﬂij = R_H(Kij)
R 1R -1
" ®X..
Thus : 1]
i3 J
_ IR
whom (K, 50 Oy ) = ]
1]
*
Now let 013 be an open subset of T X13, let U be a relatively
compact subanalytic open subset of X2 and Qz an open subset of

*
T U. Assume
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a-1 a-1 a-1 * *
Pr3 (R93) N Py, (SS(K;5)) N pyy (SS(Ky3))aT Xy XQ,xT Xy
(11.1.4) 5 and the set on the left-hand side is isomorphic to 913

a
by p13 .

Assume moreover that we have isomorphisms :

* a v a

SS(K12) NnT X x 92 —> Qz

(11.1.5)
* Qv
X

SS(K,3) N, X T X, > Q,
We set U' = X1 x U x X2
Proposition 11.1.3. : Under the assumptions (11.1.4), (11.1.5) we

have a commutative diagram in D+(Q13), and an isomorphism Y
A B
C D

A 1Rp13*(p?;1 whom (K, 5, Cyéo,n)) ® p;; uhom (K, C7§O'n)))
12 [ 23

>

N
Y

>

293
a IR (o a-1 Hu
B & Rpyy (p7 TS ™) e p3; o)) l
-1 -1 (o,n)
C : uhom(qu13*(q12§12 ] q23 523)U'[n]'@x )l
o 13 13
. lR(o n) IR (0, n)
D : el (657 ] (s;IR P53 M35 )|
2 13
(o,n)
Here @ 1 - @x ® Q}((n) and Wig(o,n)=@>§o,n) ® ]lR
3 15 g i B iy Oy J
95 Ux, i

J

Proof

n v .
We set X1223 = X12 X X23 and denote by a and q, the projec-

tions from X1223 to X12

n *
P, the projections from T X

and X respectively, and by 31 and

23

*
to T X

*
1223 and T X respectively.

12 23
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Let fﬁ12 ® <TH23 be the coherent Q)X1223-module:
e "1 =1
M. 6 HM,,= D 8, _ . @, My ® dy o)
12 23 X523 (8119%( ® qsz y I 12
12 23
We have
- A L =1 -1
(11.1.6)  IRHom, (M, 8T,y + Oy ) = a; Ky, 8 q, Ky
X 1223
1223
Hence we have a commutative diagram
Y}
A———> B
} N J
C——— 5D
v-l =1
A :p, whom(K,,, Oy ) @ p, whom(K,y @y )
12 23
v-1 R v-1 44y IR
B :py M, @ py Moy
C : phom(d ' K., © 4. K )
T Hno q £y q 1S ’
1 12 2 223 X193
IR & IR
D= My, & My
P [AVE n—
Here  INTy 6 MY = &y e (735 @ 55 M3y)
1223 =1 IR o 3-1 ¢ R
VTR T2 Py
_ R -1 5«
- &x ® T g, 8 i)
1223 -1 gy
T X
1223

Let Jj be the diagonal embedding

I 2 X923 > %4223
*
and let w and p be the associated maps from X123 XX1223T X1223
* *
to T X1223 and T X123 respectively. We have by Corollary 5.5.7. :

199



M. KASHIWARA, P. SCHAPIRA

-1 e -1
phom (3 1(Q[1 K, ®a, K5)y Oy )

23
(11.1.7) !
. -1 -1 N1 .
= IRp, ™  phom(q; Kyp ® dp Kyq, Jx O )
123
Set :
_ a1 v V=1 -1 -1
K =3 (q; K5 8 qy Ky3) =ap; Ky 8 923 %23
The restriction homomorphism CG( —> J4 5& induces :
1223 123
-1 =1 -1
(11.1.8) IRp,@ ' uphom(d, K., ® g, K,,, & ) —> phom (X, @&, )
* 1 212 2 223 X1223 X,23
Set
= D % (Fyy 6Ty
X123 77 %1223 @ i 23
1223

Then we have

MB= ro, a7 (ER B CME 8 MmE)
* X123 7> X223 g)lf 12 23
1223

and Proposition 9.3.3. implies

(11.1.9) phom (K, Oy ) = mE
123

Thus by (11.1.7) and (11.1.8) we obtain a commutative diagram

-1 =1 -
A : Rp, (p1 uhom(§12, 6§ﬁ2) ® P, uhom(523, C9k23))

-1 v=1gn R Vel o R
B : Ro,w  (py M, @ py TM53)

V-1
® q, Kyy, O ))

-1 N=1
C : IRp,w (uhom(q1 K X
1223

12
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-1 gnR 5 gpnR
D : o, @ (M, & 23

E : phom (X, &X )
123

F : <mlR
- Ao anlR
Remark that the morphism 1Rp,® 1('—?)’);[R2 ® ’W}%) —> M is

obtained by the canonical section of é‘)lf s X
123 1223

Now we shall study the direct image of <m1R by Pq3-

* *
Let w©' and p' be the maps from X123 XX13TX13 to TX13 and
*
T X123 respectively, associated to the projection 943"
Set K' = §U. (recall that U' = X, x U x X3). By (11.1.4) we have
an isomorphism :
(11.1.10) K' = K in DY(X ., i pL ol )
- 2 = 123 7 P13%h3
Moreover K' ¢ Ob(Dll)R_c(X123)) and Proposition 9.3.3. implies
Ro, (Dy b ot whom(K', Oy 1))
13 123 Dy 123
123
= uhom(IRq13*5'[n],(3X )
13
Thus :
Rw, (o’DX —x B p'_1uhom(§, (9X ))‘
13 123 6DX 123 'a,
(11.1.11) 123
= uhom(]Rq1 3*5'[1‘1] ' @X )'
13 'Q
13
Now remark that for a left gOX -module F we have
123
D b r-re &b o
13723 o, e, *2op, %2
123 2 2

Thus we obtain
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Rl o' (uhom (K @(Ono)) B Ox)|
X123 D 2 0
X, 13
(11.1.12)
= uhom (IRq, 5, K'[n] , Oy ){
13
13
(o,n,0) (n)
Here e = O ] Q
6}X123 X123 @y X
2
Set

Ky3 = Ry K

We obtain the commutative diagram

1

A : IRwip' Rp @ (B;1uhom(512,@'(o )

)® p uhom(§23, 6&

- = - < IR
B : ]RUT,:D' 11RD*CI 1(p11 Tan(O ,n) 21 m )l

C : Ro)o' phom (K, 6’(0 i O)))
X123 Q

13
D wagp' T (TMROMO)

913
E : phom(Rq, 4K’ [n], w
13 Q
13
F: Rop' (RO g Ox )|
D 2 'Q
X2 13

Now we consider the commutative diagram
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_.1 * *' *
o et (X3 Xy T Xy S> Xy Xy T Xyop3 S > T X3
13 1223
b p
* c %
X123 "x, F %3 o > T X33
wl
*
T X,
-1 x * is i hi % d by thi
Q
Then p o) (X123 X13 T X13) is isomorphic to 1237 an y is

. v v . C e \
isomorphism, b o @' , Py °T °a, Py oW oa are identified with

a a a .
Py3r Pqy and P55 respectively.

Hence we obtain the diagram on

— > B
(11.1.13) 1
D

. (o,n) a-1
A J—Rl313,,(p12 uhom (K, » &y . ) ® p5s uhom(K23,@’23))

13

a a-1 <R (0,n) a-1 4. R
B 1 Rpyg (7, Ty, "0 @ phry Myj)

C : uhom(]Rq13*5‘[n], © )
13

D : lRw;p'—1(¢£()X — x B ‘TI’IR)
13 123 @X
123

Finally, we remark that (11.1.5) implies

ot 1] R R(o,n)
Rwy o (‘DX13< . % ) = RpS 4, (P 2{m12 %IR P23 7023
X3 ¥y &y
123 2
This completes the proof of Proposition 11.1.3. . D
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*
Now let Qij be a conic open subset of T Xij((ij) = (12) or (23)),
* *
such that 912 T X1 X 92 and 023 c Qz x T X3.
Let sij be a section of H® (uhom(K (7(0 rl))) on Qij' We set
1]
S13 = M(sqy @ 553)

where A 1is defined in Proposition 11.1.3.

By Proposition 6.3.3. we have, with the same notations as in the

proof of Proposition 11.1.3.

(11.1.14) w513Dﬂ (@X3) = W512Dﬂ ° w523Dﬂ (6&3)

and we have morphisms :

(11.1.5) 121:“] wng[n_—] X W) 121_1’1] a-@—->(9'x1
By Proposition 6.3.3. we get :
Lemma 11.1.4. : We have :
als;3) = alsyy) e w512‘:n] (a(s,5))
11.1.3. Now we prove Theorem 11.1.1. . Since any contact transfor-

mation is the product of two contact transformations whose associa-
ted Lagrangean manifold is the conormal bundle to a hypersurface,

we may assume K is (C-constructible with shift O.

We take X, =Y, X, =X, X, =Y,

1 2 3 Ko = K Ky3 = K.

Then we choose a neighborhood & of (pY,p;), a neighborhood 923

12
of (px,pi) and an open set U in X , such that (11.1.4) and

(11.1.5) are satisfied.

Let S5 be a section of 7HJR(O m)

or (23)) :

which satisfies ((ij) = (12)
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( The morphisms
R (71]3(0“)) P ———> Ps
X, Py« UM ij
(11.1.16) 9 and
R ]R(o n)
are isomorphisms.

We know that such sections locally exist, (cf. Sato-Kashiwara-

Kawai [ 1], Kashiwara [5 ] ).

Then by Proposition 11.1.3., u(s12 ® 523) = Y(s13) gives an iso-
morphism between IRp, . (p12 ,,mlR(o /n) lR 23 TW]]R(O ) ong
& R (resp. &) . X
X X,
1 3
, ) ) (o,n)
Hence sy3 9gives an isomorphism between (uhom(K13, @X )) and
Z R (resp é )R) "
X - X
1 3
Since 513 is a simple sheaf with shift O along T (Yxy), 513 is

microlocally isomorphic to QY [:—n]. By this identification,

lR(o n) - 51R

Y X Then the

Ho(uhom(K , @(O’n))) is isomorphic to
=13 X13

multiplication on the right, and the multiplication on the left by
Sq3s are isomorphisms on %i‘R Hence Sq3 is invertible in éiR,

in a neighborhood of Py-

As «a(s,,) 1is nothing but s acting on (?Y through the morphism :

13 13

EF s won (O, G
(Y:pY)
)

(Proposition 10.6.2.), a(s,,) 1is an isomorphism. Therefore «a (s

13

has a right inverse. Taking

12

Sy, as s, a(s) has a right inverse.
Similar argument replacing X and Y, shows that o(s) has also a

left inverse. This completes the proof of Theorem 11.1.1. . D
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§11.2. Quantized contact transformations and microlocalization for
the sheaf @y

11.2.1. Let (E,c) be a complex symplectic vector space, X a

real linear subspace. One says that A 1is 1R-Lagrangeanif X is

Lagrangean in the real underlying symplectic vector space (EHEZReo).

If p 1is a complex linear subspace of E, we define as in §7.1.,

oY = {xeE; o(x,p) = O}

and if p is isotropic, we set for a real linear subspace A
W= canet) +e)/e

Remark that if A is 1R-Lagrangean, then AP s IR-Lagrangean in
the complex symplectic space (p'L /0, Op), Op denoting the image of
¢ in pt/p.

Let A Dbe an IR-Lagrangean subspace. One says that A 1is I-symplec-
tic if Im o is non degenerate on A. This is equivalent to saying
that (E, % 0) is a complexification of the real symplectic space
(A, Imo }\), or that A Ni) = {0}. Now let A be an IR-Lagrangean

subspace and consider
p =X N ix .

Then p is a (complex) isotropic subspace, and A° is R-Lagrangean
and I-symplectic in o*/p
Let Ao be a complex Lagrangean subspace of E. We define the bili-
near form Y, on AP , by setting for (u,v) ¢ AP x AP

o o o
(11.2.1) Yy (u,v) = op(u,V)
where Vv is the complex conjugate of v with respect to the

isomorphism

Cop AP = ptyp
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Lemma 11.2.1. : The bilinear form Y, on Xg is hermitian.
Moreover Y, (u,v) =0 if u or v belongs to °n Ag)m , and

the hermitian form defined by Y, on Ag/ﬁxpn AS)Q is non degene-

rate.
The proof is immediate (cf. Schapira [1 , Proposition 1.3{]). E
Let s (resp. s ) be the number of positive (resp. negative)

eigenvalues of Y, on Ag . Set

2n = dimc E

c = dinﬂR(A n Ao)

d = dimm(kn ir)

§ = dimm(k Nix n Ao)

By Lemma 11.2.1. we have

I
o
o
3
>

el

s+ s+ dimlR()\p N Ag)

1]
joi
|
Q

) 0 o _ .
Since X N AO = (AIWAOL/%Af\iA{\AO) we obtain

(11.2.2) st + s  =n-4d-c + 26

We shall denote by sgn Yy the signature of Y, on Ag , that is ,

+ -

sgn y, = s - s
Proposition 11.2.2. : Let A be an R-Lagrangean subspace of
(E,0) , p = A N ix and let ko be a complex Lagrangean subspace

of (E,0). We have

1

(11.2.3) sgn Y, = 3 (A, ixr, Xo)

Here 1t 1is the index associated to the symplectic form 2Re o
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(cf. Chapter 7, §1. for the definition of 1)

Proof
Since Y, = Y , and T(A, iXx, X)) = T(xp, ikp, Ap) , We may assume
A Ap (@] (@)

A Nix = {o}.

Let g Dbe the real gquadratic form on A

o
q(z) = olz,z) .
Then sgn Yy = % sgn q. If we write =z = x + iy, x € A, iy € ix ,
we get
q(z) = -20(x, iy)

and by Proposition 7.1.5., the signature of q is T(A,i),A ). M

11.2.2. Now let X be a complex manifold, M a real submanifold

*
of class C2. The conormal bundle TMX is clearly IR-Lagrangean

* * *
(i.e. : TpTMX is IR-Lagrangean in TpT X at each p ¢ TMX). We set

*
for p e TMX

([ E(p) = TpT*X
A (P) = T (TyX)
Ao(p) = T 1 'm(p)
(11.2.4) J 2 = dimg E(p)
c = dim, (A (PY N A () = codim M
d(p) = dimy (A, (p) N 12y (p))
g §(p) = dimp Ay (P) N iry(PIN A (P))
Definition 11.2.3. : Let p € T;X . We define the integer
s(M,p) = 3 TO (), ihy (), A_(p))

(where 1 is the Maslov index on ElR(p)).
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+
We also define the integers s  (M,p) by the relations

s"(M,p) - s M,p) = s(M,p)

S+(M,p) + s (M,p) n-c-d (p) +26 (p)

Remark that it follows from Proposition 11.2.2. that s+(M,p)

(resp. s (M,p)) is the number of positive (resp. negative) eigen-
values of the hermitian form YAM(p) on Ag(p)(p) , where

pP) = Ay(P) N ik (p).

Example 11.2.4. : Let x € M , and assume TXX = (TXM)Q . Then at
each p € T;X , AM(p) is IR-Lagrangean and I-symplectic in E(p),

and s+(M,p) = s—(M,p) = O . A particular case is obtained when M

is real analytic and X is a complexification of M.

Example 11.2.5. : Assume M 1is a complex submanifold of X . Then
in that case , Ay (p) = ik, (p), and s'(M,p) = s (M,p) = O at each
*
p € TMX .
Example 11.2.6. : Let ¢ be a real function of class C2 ,
M = {x ; ¢(x) = 0}, and assume d¢ # O on M. Let

TE M=1{veT X; <v,o_ ¢(x_)> = 0}
XO XO X o)

where ax ¢ 1is the differential of ¢ with respect to the holomor-

phic variables.

Let L¢ be the Levi form of ¢. Recall that if (x1,...,xn) is a
system of holomorphic coordinates on X, L¢ is represented by the
matrix
_ 2%
Ix, 9X. oL
1% (gd, ign)
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Proposition 11.2.7. : 1In the preceding situation, we have

s(M, 3¢ (x_)) = sgn(L )

¢
Tm M
X
o
Proof

We shall follow an argument similar to that of (Schapira [1 , Propo-

sition 1.6.]).

*

> T.X given by

Let ¢ be the morphism M x 1R M

(x,k) +——> (%, k 3¢ (x))

* *
Setting p = 8¢(xo) e T, X €T X , ¥ induces the C€-linear homomor-

M
phism
*
| . X —_—
Ve : C ®]RT(X0'1) (M x IR) > T, T X
_ * - - -1
Set AM = AM(p) = Tp TyX and xo = Ao(p) = Tp m 7 (p). Then

Im p, = AM + iAM

Now we identify T(x 1)(M><1R) with (TX M) x 1R, and we embedd
o' o

TX M into TX)(QTX X . We extend this embedding to the (€-linear
o o o
homomorphism

C®._ T M c&———>T X®T_ X
IR "x X X
(0] (o) (0]

by which € @ TX M 1is identified with the space

R,

{(a,B) € Ton ® Txoi ; <a,8¢(xo)> +<B,§¢(xo)> = 0}

We have

_'] _ — . _ — _
Vs (AO)—{(a,B,k)e TXOX$'TXOX®¢ ; a=0, <B,a¢(xo)> = 0}

wﬂ (xM)={(oc,B,k) £ TXOX® TXOX ®C ; o= B, ke IR, Re <o, 99 (x)> = o}

Hence we have an embedding
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C -1
TXoM C Yy (AO)

given by B +——> (0,8,0).

By this embedding
J(T(EM)C_)\ n (A, + ix)
Y x xo ) M M
VL TH) + 0 ar)T =
* X o M

O

Hence sgn vy, = sgn(yx o U,)
M M

For B e TM , ,((0,8) + (B,0)) € A, , and ¥, ((0,8) - (E,0)) € iX,.
Hence
(11.2.5) (v, o Ux) (B,8) = (" (@) ((0,8), (8,0))

M

Since ¥ (w) = k 3¢ and ¥ (dw)

kd 9¢ + dk 9¢, the right hand
side of (11.2.5) equals <d 3¢, (0,B) A (g,0)> that is,

<33¢, (0,8) A (8,0)>. This completes the proof. []

Theorem 11.2.8. : Let M and N be two real submanifolds of

*
class C2 of X , U and V two conic open subsets of T X, and let

¢ be a complex contact transformation from U to V. Assume that

* *
¢ sends U N TMX to von TNX. Then

i) The function s(M,p) - s(N,¢(p)) is locally constant on

*
TMX N U.

ii) Locally on U , we may quantize ¢ as an isomorphism

$ t by (O) = u () [3(dim M+s(M,p)) -5 (dim N+ 5 (N, 6 (p))]

*
where p e U N TMX .

Proof

* -
Let p € TMX NU, g=¢(p). We set Ao(p) = Tp(ﬂ 1 m(p)),
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-1 * *
= = = = = X
Ao (@) Tq(w (@), Ay = Ay ) Tp TyXr Ay = 2@ Tq T X and

we denote by ¢* the differential of ¢ at p.

Let A Dbe the Lagrangean manifold of T*(X:KX) associated to the
graph of ¢ , K a simple sheaf on A with shift O . Applying
Theorem 11.1.1. and Corollary 7.4.2. we find, locally on U, an

isomorphism :

(@, [4]

iy € 6&) = uy(Oy

Px

where

o}
Il

%(dim M - dim N) +

N+
-

A
I

*
TG @, ¢ 0GP, Agl@)

First let us prove that =1 is locally constant.

*
Let v (g) be a complex Lagrangean plane of Tq T X , transversal to
*

each of xo(q), ¢ (Ao(p)), AN(q). Then
T = Ty + Ty + Ty
where
T = TO @, ¢F 0 ), v@)
T, =TT OGP, Ag(@, vi@)
13 = t(Ag(@), A (@), vig))
Since Ao(q), ¢*(xo(p)), v (q) are complex Lagrangean, T, 2 0]

Since dim(¢*(Ao(p)) N AN(q)) and dim(Ao(q) Ia) AN(q)) are locally

constant, T and Tt

5 y are locally constant by Proposition 7.1.3.

Now we have

2(s(M,p)-s(N,q)) r(AM,iAM,AO(p)) —T(AN,iAN,AO(q))

. * .
T(ANI:L)\NI‘? (XO(P)))‘T(AerkNrko(q))

(a8 ¥ O () (@) = T O s O (BN (@)

o

1]

20 (@, 6 O @) Ay -
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The last equality follows from the fact that the isomorphism of the
multiplication by i +transforms ¢ to -0 . Hence we have found

(11.2.6) s(M,p) - s(N,q) =t

which completes the proof. []

§11.3. Applications

11.3.1. We shall give some applications to Theorem 11.2.8. .
Let M be a real submanifold of class C2 . We keep the notations

(11.2.4) . We also introduce

v(p) : the complex line of T *x generated by the Euler
(11.3.1) p
vector field.

(Recall that the Euler vector field is the image by the Hamiltonian

isomorphism of the canonical 1-form w of T*X).

Proposition 11.3.1. : Assume

(11.3.2) dimlR(AM(p) nvip)) =1

] -
Then we have H (uM(C7X))p 0 for

j ¢ [c+s (M,p)-6(p), n-s" (M,p) +6(p)]

Proof

We may find a complex Lagrangean plane Aé in T T*X such that :

p
( Aé > vi(p), dimHQ(AM(p) N Aé) = 1, and the hermitian form
11. 3.3)
Yy (p) on (Aé)O(p) has no positive eigenvalues
M
(where op(p) = AM(p) n iAM(p)). In fact let p’=(AM(p)niAM(p))+v(p).

It is enough to find a Lagrangean plane xé in o'l/o' which does

not intersect (A (p))p and such that the hermitian form vy
M Ay (P)
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has no positive eigenvalues on Aé , then to take the pull-back of

Té in Tp T*X. Similarly we may find a complex Lagrangean plane

A" such that

A" 2 v(p), dim,, (A, (pP) N A") = 1, and the hermitian form
(1.3.4)  °© ROM °

Yi (p) O (Ag)p(p) has no negative eigenvalues
Mp

Now we choose a contact transformation ¢ which interchanges Aé
(resp. A%) with Tq _— m(q). Thus ¢ interchanges (T*X,TQX,p)
and (T*X, T;X, q), for a real hypersurface N of X, with

s+(N,q) = 0 (resp. s_(N,q) = 0).

Assume we know that HJ(uN(C7X))q = 0 for

j ¢ L+s (N,q) +a, n-s" (N,q) + &]

Applying Theorem 11.2.8. we find :

Hj(uM( 3X))p=0 for j ¢4 [1+s (N,@ +a-v,n-s" (N,q) +8-7]

where
y = %(S(M,p) - s(N,q) - codim M + 1)
Let us write for short s(M), si(M), AM’ s(N), ... instead of
s(M,p), St(Mpp), XM(p), s(N,q), ... . We have
1 + 0o + s (N) —y=a+7(1+s (N) +s (N) -s(M) + c)
. + - s .
Since s (N) + s (N) = n 1 dlmm(AN N 1AN)

=n-1-d(p)

we get by Definition 11.2.3. :

1 +a+s (N) - vy

Il
Q

+ %(n +c-sM - dp))

=a+s (M +c - §(p)

Similarly :
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n"’B‘S(N)“Y=n+8+%(c—s(M)—l—s+(N)—s—(N))
=6+ 2(n-dp) +c-sm))

n+ g+ 8(p) - s (M)

Thus :
j . - +
H](uM(@X))p =0 for j £ [c+s (M)-6(p)+a,n-s" (M)+§(p)+6].
We know that for a locally closed subset Z of X , H%(C9k)x =0

for j £ [1,n] if x ¢ Int Z (for j = O this is the "analytic

extension principle" and for j > n this is a theorem of Malgrange

[2]). In particular H](“N((Qi))q =0 for j ¢ [1,n] .
Thus if we choose N such that s (N,q) = O (this is possible by
(11.3.4)) we may take o = O . Similarly if we choose s+(N,q) =0
we may take B = O, which completes the proof. E
Remark 11.3.2. : Since
* -1
M(P) 0 Ao (R) = T (T AT ()
we have :
1.3. $ = i T M + i
(11.3.5) (p) codlmm( " (p) i T“(p)M)
Hence &(p) = O 1is equivalent to saying that M is a so-called

"generic" submanifold. This is of course the case when M is a

real hypersurface.

When ¢ (p) = O, similar results to that of Proposition 11.3.1. are
well-known, and there exists an extensive literature on this subject.
Let us only quote Andreotti-Grauert [1], Naruki [1],
Baouendi-Chang-Tréves [ 1], Nacinovich [1], Sjdstrand [2 ]. When

M is real analytic, and 6 (p) = O, uM(C?X) ® Oy [kodim M] is

isomorphic to the complex of solutions of the induced Cauchy-Riemann
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system with values in the sheaf of Sato's microfunctions on V-1 "M
This follows easily from the Cauchy-Kowalewski theorem (formula
10.5.4), (cf. Kashiwara-KawaI [ 1]). In this situation, Proposition
11.3.1. follows from Sato-Kashiwara-Kawal [‘I, Chapter III, Theorem
2.3.10.]. We refer to Tajima [1 |, and the bibliography of this

paper, for more details.

Remark 11.3.3. : Let us say that M is non degenerate at p 1if:
(11.3.6) AM(p) n 1AM(p) = {0}

In this case the cohomology of uM(C7X)p is concentrated in degree

;X). Let v be the

. . o % o ¥ +
projection from TMX to the spherical cotangent bundle S;X==TMX/H1.

m=n - s+(M,p) = codim M + S_(M,p) (at p ¢ T

Let us put

Cy = Yy Hyl @X) 8 wy [n]

Since we may find a complex contact transformation which interchanges
* . .
TMX with the conormal bundle to the boundary of a strictly pseudo-

convex open set (in a neighborhood of p), we find that the sheaf

N

CM on S;X is flabby in a neighborhood of p. Using Proposition

2.3.2. it would be possible to formulate results of the type "edge

of the wedge theorem", but we do not develop this here (cf.

Martineau [1], Bros-Iagolnitzer [ 1], Bengel-Schapira [1]).
Remark that when M is real analytic (and (11.3.6) is satisfied)
quantized contact transformations for uM(C?X) where already per-

formed by Kashiwara-Kawai [4] (cf. also Boutet de Monvel [1] ,

Lebeau [1 ], Hrmander [3], Sjdstrand [1]).

11.3.2. We can also recover Proposition 1.1.2. of Sato-Kashiwara-

Kawai [ 1 Chapter II].
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Proposition 11.3.4. : Let M be a complex submanifold of complex

codimension d . Then
j _ .
B (uy () =0 for j#4d .

Proof

First let us choose p ¢ T;X. By a complex contact transformation

we may interchange (T X,p) with (T;X,q), where N is any other

*
M

complex submanifold of X. By Theorem 11.2.8. we have
“M(ax)p [codimpM] = u( @X)q [codimG:N]

Since “N((ﬁk)q [bodichJ is concentrated in degree < O (resp.

> 0) for N a submanifold of dimension O (resp. of codimension 1),
*

the results follows. The case where p ¢ TXX is easily deduced. E

11.3.3. We can also study real submanifolds which are "microlocally

weakly pseudo-convex". More precisely

Proposition 11.3.5. : Let M be a real submanifold of class C2,
*

Py € TMX . Assume (11.3.2) at Py and also :

(11.3.7) s_(M,p) - §(p) 1is locally constant in a neighbor-

hood of P,-
Set Jj, = codim M + s” (M,p) - §(p).

j _ . . .
Then H~ (yy( 6&))po =0 for j # 3, , and for j = j_, this space
is infinite dimensional.

Proof

Let ¢ be a complex contact transformation defined in a neighbor-
. * *

hood of Py such that ¢ interchanges (TMX, po) and (TNX, qo),

where N is a real submanifold. We have already noticed that
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s(M,p) - s(N,4¢(p)) 1is locally constant.

On the other hand we have :

st (M, p)+s” (M,p)-(sT (N, ¢ (p))+s (N, ¢ (p)))
= codim N - codim M + dima:()\M(p) N i)\M(p) )

- Qimg (A (6(P)) 0 1A (9 (R)) + 26(p) = 28(6(P)) -

Since dima:(AM(p)(\ iAM(p)) = dimG(AN(fb(P)) N iAN(¢(p))), we find that

(s"M,p) - 8§(p)) - (s (N,¢(p)) - 8(é(p))) 4is locally constant.

We choose the contact transformation ¢ such that N 1is a real

hypersurface, and s (N,¢(po)) = 0 . Since $§(¢(p)) = O, we find by

the hypothesis that :
s (N,q) =0

for g e T*X, in a neighborhood of q, = qs(po).

N
Then applying Proposition 11.2.7. and (H8rmander [:1 , Theorem
2.6.12.]) , we see that N is the boundary of a pseudo-convex open
set . Therefore HJ(uN( 6’X))q =0 for Jj # 1, and

. o

Jj _ . . — 1
H (uM(@X))qo =0 for j # 3o where jo—l—EES(M,p)-s(N,q)—

codimM +1] and the same calculation as for Proposition 11.3.1.

- J
shows that j_ = codim M + s” (M,p) - &(p). Finally H O(UM(@X))p .
o
lim> @(U N Q)/ @'(U) , Where X, = n(qo), @ 1is a pseudo-convex
U2x

opeg set with N as boundary, and U ranges over the family of

neighborhoods of x_ in X . []

Remark 11.3.6. : We shall extend Proposition 11.3.5. to general
systems of microdifferential equations with constant multiplicities

in our forthcoming paper [6] .

Masaki KASHIWARA Pierre SCHAPIRA
R.I.M.S. Math. C.S.P.

Kyoto University Université Paris-Nord
KYOTO 93430 VILLETANEUSE
Japon France
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normal cone (§1.2)
orientation sheaf (§1.3)

perverse sheaves (§9.5)
Poincaré-Verdier duality (§1.3)
propagation (§3.2, §10.5)
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proper direct images (§1.3 , §4.1)
pure sheaves (§7.2 , §9.5)

quantized contact transformation (§11.1)

regular holonomic Modules (§9.2 , §9.3 , §9.4)

Riemann-Hilbert correspondence (§9.2 , §9.3)

shift (§1.3 , §7.2)

simple sheaves (§7.2 , §7.3)
specialization (§2.2 , §5.2)
stratification (§8.1 , §8.5)
strict normal cone (§1.2)

support (§1.3)

weakly constructible sheaves (§8.2 , §8.5)
Whitney stratifications (§8.1 , §8.5)
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Special notations and conventions

General notations

Int(A) : interior of A
A : closure of A

{xn}n or {xn} : a sequence indexed by n ¢ IN

X > x : the sequence {x_} has a limit x

n n n

G° : the polar cone to a cone G in a real vector space (§1.))

TX : the tangent bundle to X

T : the natural projection TX > X

T*X : the cotangent bundle to X

his : the natural projection T*X > X

TYX : the normal bundle to Y in X

T?X : the conormal bundle to Y in X

T;X : the zero section of T*X, identified to X

*x = 73\ T;X

T : the restriction of 1w to T*X

a : the antipodal map on a vector bundle

Pgr W oOF simply p, T : the natural maps from Y x T*X to T*Y
and T*X respectively, naturally associated to a map
f:Y > X

wy OF w 3 the canonical 1-form on T*X (§1.1)

H : the Hamiltonian isomorphism from T*T*X to TT*x (§1.1)

XlR : the real underlying manifold to a complex manifold X

X : the anti-holomorphic manifold associated to a complex
manifold X

XG : the space X endowed with the G-topology (X contained
in a real vector space, G a closed convexe cone) (§1.5)

¢G or ¢, or ¢ : the natural map X > XG (§1.5)

C(S,V) : the normal cone of S along V in TX (§1.2)
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CV(S) :  the normal cone of S along V in TVX , (V smooth), (§1.2)
N(S) = TX\C(X \S,S), the strict normal cone to S (§1.2)

N*(S)==NO(S) : the conormal cone to S (§1.2)

S, * S, S i S, : cf. Definition 1.2.3.

faﬁ(A), fzﬁ(A) : cf. definition 1.2.5.

Wy F the orientation sheaf on X

Yyx T Yy ® f_lgx : the relative orientation sheaf associated to

f :Y > X

lim :  inductive limit
Lim : projective limit

"lim! ind-object (§5.6)

"lim" : pro-object (§5.6)

T(*,*,*) : Maslov index (§7.1)

s(M,p) : 1index associated to a real submanifold M in a complex
manifold X (§11.2)

Categories

D (X) : the derived category of the category of complexes of sheaves

of A-modules over X , (A is a fixed unitary ring)

D+(X) (resp. Db(X)) : the full subcategory of D(X) consisting of
complexes with cohomology bounded from below (resp.

bounded cohomology)

D+(X;Q): the localization of D+(X) with respect to
N(2) = {F e Ob(D'(X));SS(F)na = g} (§6.1)

D' (X;p) = D' (x; {p})

D$(x) : the full subcategory of D+(X) consisting of Ee:Ob(D+(X»
with SS(F) ¢ V

+ b +

Dw-]R-c (X) (resp. Dlr-c (X)) : the full subcategory of D (X) (resp.

Db(x)) consisting of complexes with weakly IR-construc-
tible (resp. IR-constructible) cohomology (X is a real
analytic manifold), (§8.2)

230



SPECIAL NOTATIONS AND CONVENTIONS

+ b +
Dw-m—c(x) (resp. Dm_c(x)) : the full subcategory of D (X)

(resp. Db(X)) consisting of complexes with weakly

C-constructible (resp. C-constructible) cohomology (X is

a real analytic manifold), (§8.5).
Diff (X) : the category of left ﬂ)x-modules
D(ﬁ%& : the derived category of Diff (X)

Dgoh(x) : the full subcategory of D(J)X) consisting of complexes

with bounded and coherent cohomology, (§9.1)

D?h(x) : the full subcategory of Dzoh(X) consisting of complexes
with regular holonomic cohomology

Sheaves

F, G, ... : objects of D+(X)

supp(F) = L}supp Hj(E) , where supp HJ(E) is the support of the

sheaf HI(F)

SS(F) : the micro-support of F (Definition 3.1.2)
[d] : shift in D' (X) (§1.3)

wgtd (A) : weak global dimension of A (§1.3)
r(X,F) : global sections of F supported by 2

r,(F) : sheaf of sections of F supported by Z

F ® G : tensor product sheaf

Hom(F,G) : sheaf of homomorphismsfrom F to G

Hom(F,G) : group of homomorphismsfrom F to G (= I'(X,Hom(F,G))

Fy the stalk of F at x

EZ : naturally associated to F, a sheaf such that (EZ)X==§X
for x ¢ F, (EZ)X =0, x £ Z

f*(-) : direct image

f!(-) : direct image with proper supports
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f-l(') : inverse image

Hj(-) :  Jj-th cohomology object

RF(+) : right derived functor of F(-)

L F(-) : left derived functor of F(-)

£'() : adjoint of Rf,(-)

H) (X, ) = B RT,(X,)

HJ () = B) IRT, (%)

ExtJ(-,+) = ) IRHom(-,*)

Ext)(-,-) = B} RHom(-,-)

Torj(',') = H_j( R )

F : Fourier-Sato transform of F (§2.1)

FY : inverse Fourier Sato transform of F (§2.1)
vM(-) : specialization along M (§2.2)

uM(-) : microlocalization along M (§2.3)
phom(F,G) : microlocalization of G along F (§5.5)
wK(-),®K(-):extended contact transformnations (§6.3)

Special sheaves and functors

C?X : sheaf of holomorphic functions on a complex manifold X

‘QX (resp. ﬂ);) : sheaf of finite (resp. infinite) order diffe-

rential operators on X

Qép) : sheaf of holomorphic p-forms on X
(dim X)
QX nX
BM = lRTM((9k) ® Yy Dﬂ : the sheaf of Sato's hyperfunctions on the
real analytic manifold M of dimension n

_ = . 1 . .
Cy = uM(cﬁk) ® w, [n] : the sheaf of Sato's microfunctions

IR _ -1 . . . .
é;x = “A(C9kxx ®_lé? q, QX) : the Ring of holomorphic microlocal

q2 X operators (89 .1)

; Ring of infinite order microdifferential operators (§9.1)

é)( : Ring of finite order microdifferential operators
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éY——»X’ éy;_>x,g)Y__>X,ﬂ)Y__>x : rings of microlocal or

(micro)differential infinite or finite order operators
from Y to X (§9.1)

cf. §10.4.

sheaf of real analytic functionson a real analytic mani-
fold X

sheaf of real analytic densities on a real analytic mani-
fold X

sheaf of Schwartz's distributions on a real manifold X

functor of direct images for i&-modules (§9 .4)

functor of direct images with proper supports for
Z)X—modules (§9.4)

functor of temperate homomorphisms, (§9.2)

Riemann-Hilbert functor (§9.2)

char (*f] ) : characteristic variety of Ty (§10.1)

o

ch,l
(mek

RHom (T, Ly

X

Z;iR ® Tr—lch'l

n‘lcox
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ABSTRACT

To a sheaf F on a real manifold X, we associate its micro-support,
SS(F). This is a closed conic subset of the cotangent bundle T*X,
which shall appear as being involutive, and which, roughly speaking,
describes the set of codirections on X where F and its cohomolo-
gy do not propagate.

We study the behaviour of the micro-support under the usual operations
on sheaves,and localize the derived category of sheaves on X with
respect to the micro-support. This allows us to work with sheaves
"microlocally" and in particular to give a meaning to the action of
contact transformations on sheaves. For that purpose we make a de-
tailed study of "simple sheaves" along a smooth Lagrangean manifold,
calculating their shift with the help of the Maslov index. Next, we
apply this theory to the study of real or complex analytic construc-
tible sheaves (these are the sheaves whose micro-support is Lagran-
gean), to regular holonomic Modules (including a direct image
theorem in the non proper case), and to microdifferential systems
(estimation of the characteristic variety, wave front set of

A
H(fjd-io) ], propagation theorems, including micro-hyperbolic systems,
J

etc ...) .

Finally we show that one can locally "quantize" complex contact
transformations for the sheaf C?X of holomorphic functions on a
complex manifold X, and we derive some applications of it to the
calculation of Sato's microlocalization of C%( along real submani-
folds of X .
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RESUME

=

Sur une variété réelle X , nous associons & un faisceau F son
micro-support, SS(F) . C'est un fermé conique du fibré cotangent
T*X, qui se révélera étre involutif, et qui décrit l'ensemble des
codirections de X ol F et sa cohomologie "ne se propagent pas".
Nous étudions le comportement du micro-support vis a vis des opéra-
tions usuelles sur les faisceaux et localisons la catégorie dérivée
des faisceaux sur X par rapport au micro-support. Cela nous permet
de travailler "microlocalement" avec les faisceaux, et en particulier
de donner un sens a l'action des transformations canoniques sur les
faisceaux. Pour cela nous faisons une étude détaillée des "faisceaux
simples" le long d'une variété Lagrangienne lisse, calculant leur

décallage a l'aide de 1l'indice de Maslov.

On applique ensuite cette théorie a 1'étude des faisceaux construc-
tibles analytiques réels ou complexes (ce sont les faisceaux dont
le micro-support est Lagrangien), aux systémes holonomes réguliers
(avec un théoréme d'images directes dans le cas non propre), et aux
systémes microdifférentiels (estimation de la variété caractéristi-
13

que, front d'onde de 1 (f., + io) , théorémes de propagation, en

5 3
particulier pour les systémes micro-hyperboliques, etc ...).
Finalement nous montrons que l'on peut localement "quantifier" les
transformations canoniques complexes sur le faisceau C& des fonc-
tions holomorphes sur une variété complexe X , et en déduisons
quelques applications au calcul du microlocalisé de Sato de C& le

long de sous-variétés réelles de X .

235



