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UNIQUENESS OF $P : THE LOCALLY ANALYTIC CASE 

by 

Alan ADOLPHSON 

1. INTRODUCTION. 
Let p be a prime, the field of p-adic numbers, the 

ring of p-adic integers. Every x e Zp may be written uniquely in 
the form 

(1) x = 00 
i=0 

xip1 , 

where the x.̂  are rational integers, 0^x^<p-l . Define a function 
c: Zp zp by 

<f(x) = 
1=1 
00 W (Z) = (qk) 

For any positive integer n , let c^n^ denote the composition of c? 
with itself n times. In [1] we proved : 

THEOREM 1. Let F : Zp —> be a continuous, non-vanishing func
tion satisfying for all positive integers n 

*Research supported by NSF grants MCS-7903315 and MCS-8108814(A01). 
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(2) If a G Z , <f(n) (a) = a, then P 
n-1 
i=0 

F(cp(i) (a)) = 1 . 

Then there exists a continuous, non-vanishing function G : Z —> Q 
such that for all x G Z^ , 

(3) F(x) = G(x)/G(<f»(x) ) . 

The purpose of this note is to show that if F is locally ana
lytic, the G may be taken to be locally analytic also. Our method 
of proof may be used to give a simpler proof of theorem 1. More 
precisely, our construction of G from F produces a locally ana
lytic function if F is locally analytic and produces a continuous 
function if F is continuous. We discuss some motivation behind this 
result in Section 3. For a fuller discussion of motivation, see [1] 
and [2] . 

We would like to thank S. Sperber for several helpful discus
sions and P. Robba for pointing out a significant error in the 
original version of this paper. 

2. MAIN THEOREM. 
Let Q be a complete, algebraically closed field containing 

. For a G Q , p a positive real number, let 

D(a,p") = {x G ft||x-a| <p} . 

We shall use W (Z) to denote the union of all disks D(z,p~~) , 
P 

z G z . Clearly, Wp (Z) may be expressed as the disjoint union of 
finitely many of the indicated disks. We shall say that a function 
F on Wp(Z) is locally analytic if F can be expressed as a con
vergent power series on each of these disks, i . e . , for each z G Z , 

F(x) = 
n=0 

an(z)(x-z)n (an(z) G n) 

for al l xGD(z,p"~). 
We extend to W1(Z) as follows. Given z G z , there exists 
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a unique zQ e z, 0< zQ<p-l , sucn that z = zQ (mod p) . If 
x e W1(2), then x E D(Z,1~) for some z e 7L and we define 

(4) <p(x) = 
x-zQ 

P 
Thus <p: W^Z) —> Wp(ZS) . For p^l , Wp(Z) c W^Z) so we may res
t r ic t Cf to Wp(Z) . If x e Wp(Z) , then x e D(z,p") for some 
z e 2 , hence by (4), 

I q»(x) - z-z 
p 

i X—Z i 
i p I 

i . e . , Cp: D(z,p~) —> D( (z-zQ)/ D(z-zQ)/p, (pp)~ . Thus for p <1 , 

(5) <P : W (Z) —> VT (Z) . 
P PP 

THEOREM 2. Fix p< 1 and let F : W (2E.) —> ft be a non-vanishing, 
locally analytic function satisfying for all positive integers n 

(6) If a e Z , (p(n) (a) = a , then n-1 
i=0 

F(Cf(i) (a)) = 1 . 

Then there exists a non-vanishing, locally analytic function 
G : W (Z) —> ft such that for all x € W (2) , pp p 
(7) F(x) = G(x) /G(<jf>(x) ) . 

Remark. If F : Wp (Z) —> ft is a locally analytic function that 
does not vanish on Z^ , then there exists p' >0 (but possibly < p) 
such that F is non-vanishing on WpI(Z5) . Thus the desired function 
G exists, but may only be defined and locally analytic on Wppl(Z) . 

Proof. For each rational integer a, 0^ a< p-1 , we shall construct 
a locally analytic function G : V7 (Z) —> ft which satisfies the 
conclusion of the theorem. Consider the map o : W (Z) —> W (Z) 
defined by 

aa(x) = a + px . 
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For each a , is an analytic right inverse to , i . e . , cp o 
is the identity on Ŵ p(Z) . Consider the infinite product 

(8) Go(x) 
i =1 

p n (1-1) (x)) -1 

We shall show that this infinite product converges uniformly on 
W (5Z) , hence G (x) is a non-vanishing, locally analytic function 
on W (Z) . For this i t suffices to show that {F(a (x))}. , con-pp a l—l 
verges uniformly to the constant function 1 on Wp̂ (Z) . 

One computes directly that 
(x) = a + pa + p2a +...+ p1 1a + pSc , 

hence (x) -a /( l-p) = p"5" (x-a/(1-p) ) . In particular, we have for 
all x e W_ (Z) PP 

(9) (x) = a + pa + p2a +...+ p1 1a m v 

But Cp(a/(l-p)) = a/(l-p) , so we have by (6) that F(a/(l-p)) = 1 . 
I t now follows from (9) and the continuity of F at a/(l-p)) that 
{F(a^ ( x ) ) c o n v e r g e s uniformly to the constant function 1 on 
V™ • 

I t remains to show that (7) holds for G = G . 'Let x e a + pW (Z) . 
For such x , aa(cp(x)) = x , i . e . , is also a left inverse to cp 
on this set. Hence for x e a + PWpp(z) 

Ga(Cf(x)) = 
i=l 

p n (1-1) (x)) -1 

= P(x)"1G (x) , 
a 

i . e . , F(x) = Ga (x)/Ga (<f(x)) . Note that Ga(cp(x)) and hence 
G (x)/G (<p(x) ) are locally analytic on w (Z) . Since 

ot ot p 
a + pZp c a + pWpp(Z) , the equality F(x) = Ga (x) /Ga (cp(x) ) for al l 
x G W (Z) follows from : 

P 
LEMMA 1. Let F1'F2 : wp (z) —> & be locally analytic functions, 
non-vanishing on TL , that coincide on a + pZ and satisfy (6) . 

P P Then F.(x) = F0(x) for al l x e W (Z) . 
1 A p 
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Proof. For n = 0 ,1 ,2 , . . . , put 
A = {x e Z I The expansion (1) satisfies x. = a for i ^ n } . n p 1 i 

oo 
We have clearly {a/(l-p)} = A c A, c A0 c . . . . Let A = u A . I t 

u 1 z n=0 n 
suffices to show (x) = F2(x) for all x e A, because the set A 
has a limit point in each of the disks that make up Wp(Z) and F̂  
and F2 are analytic on each of these disks. To show equality on 
A , i t suffices to show that and F2 coincide on each An . 
The proof is by induction on n . 

When n = 0 , we have F1(a/(l-p)) = 1 = F2(a/(l-p)) by (6) 
since <f(a/(l-p)) = a/(l-p) . Supposing that they coincide on An , 
we show they agree on An+1 also. Let x e An+i • Then 

x = xQ + xxp + ...+ xnpn + apn+1 + apn+2 +. . . . 

Define 

x(i) = (x0+...+xnpn+apn+1+...+apn+i)/(l-pn+i+1) . 

Then cf(n+i+1)(x(i)) = x(i) , so by (6) 
n+i 
j=0 

^(^3) (X(i))) = 1 = n+i 
j=0 

F2(<f(j) (x(i))) 

But for j = n+1 ,n+2, . . . ,n+i , ^ ^ ( x ^ ) e a + pZp , so by hypo
thesis F1 (cp(j) (x(l) ) ) = F2(cp(j) (x(l)) ) . By the non-vanishing of 
F. and F0 on Z , 1 2 p 

(10) n 
j=0 

F1(Cf(̂ ) (x(i))) = n 
j=0 

F2(<p(j) (x(i))) . 

For j = l , 2 , . . . , n , put 

y (^ = x. + xj + 1p + ...+ xnpn^ + apn^ + 1 + apn"^2 

Then lim Cp(j)(x(l)) = y(j) , lim x(l) = x , so by (10) and the 
continuity of F.̂  , F2 

Fx (x) n 
j=l 

F1(y(j)) = F2(x) n 
j -1 

F2(y(j)) . 
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But yvj; G An-j+l — An for J = l ,2 , . . .n , so by the induction 
hypothesis and the non-vanishing of F1 and F2 on Z^ we con
clude F1(x) = F2(x) . Q.E.D. 

Since A is dense in ZŜ  one has the following version of 
lemma 1 for continuous functions : 

LEMMA 1' . Let Fi'F2 : Zp —> fl be continuous, non-vanishing func
tions that coincide on a + pz^ and satisfy (6). Then F1(x) =F2(x) 
for al l x G Z_ .  p 

If F is any continuous, non-vanishing function on Z^ satis
fying F(a/(l-p)) = 1 , the argument used in the proof of theorem 2 
shows that the function Ga(x) defined by (8) is continuous and 
non-vanishing on Zp and satisfies F(x) = Ga (x) /Ga (<f (x) ) for 
x G a + pZ . Theorem 1 then follows immediately from lemma l 1 . 

3. EXAMPLE. 
es_1 -s -1 For s = 1,2,.. . , put pg = p , where eg =1-p (s+l+(p-l) ), 

and put p = 1 . Not that for s = 1,2,...,«>, 

W (Z) = 
P« 

D-l 
a=0 

D(a,p~) , 

For each s , s = 1 , 2 , B a l d a s s a r r i [2] contructs a non-vanis
hing locally analytic function rD g on Wp (Z) . In particular 
r = r , Morita's p-adic gamma function. Baldassarri shows there D, l p , 
is a constant Js e Q, ord Ys = (p-1) , such that if we define for 
x G D(a,p~) 

W (Z) = W (Z) = W (Z) =W (Z) = 

then 

(11) gf(a,7r) = 
f-1 

i=0 
?D,s(-<?(i)(-a)) ' 
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where -a = j/( l-p^) (j e 2 , 0< j <p^-l) and gf(a,7r) is the Gauss 
sum defined by [2, equation (0.1)] . Note that the set of rational 
numbers -a just described is exactly the set of fixed points of 
cf(f). 

If s < s' , then W (2) c W (2) . By (11), the ratio 
ps "~ ps' 

F ei(x) = r (x)/r ei(x) is a non-vanishing, locally analytic s,s u,s u,s 
function on Wp (2) satisfying for each non-negative integer f 

(12) If a e 2 , <p(f 5 (-a) =-a, then 
f-1 
1=0 

Fs,s'<- (i)<-*)) - 1 • 

A simple change of variable in theorem 2 shows that there exists 
a non-vanishing, locally analytic function G , on W (2) such 

s/s PPS 
that for all x e W (2) , 

ps 
?D,S(X) =?D, s ' ( x )Gs f s 'W/Gs , s ' ( - ^x ) ) • 

I t should be possible to compute Gg gl explicitly. 

REFERENCES 

[1 ] A. ADOLPHSON, "Uniqueness of $p in the Gross-Koblitz formula 
for Gauss sums". Trans. Amer. Math. Soc. (to appear). 

[2 ] F. BALDASSARRI, "Higher p-adic gamma functions and Dwork coho-
mology", Asterisque (to appear). 

[3] B. DWORK, "A note on the p-adic gamma function", (preprint). 

Alan ADOLPHSON 
Department of Mathematics 
Oklahoma State University 
Stillwater, Oklahoma 74078 

15 


