Alan Adolphson
 Uniqueness of Γ_{p} : the locally analytic case

Astérisque, tome 119-120 (1984), p. 9-15
http://www.numdam.org/item?id=AST_1984__119-120__9_0
© Société mathématique de France, 1984, tous droits réservés.
L'accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

$\mathcal{N u m d a m}^{\prime}$

Article numérisé dans le cadre du programme

UNIQUENESS OF $\Gamma_{p}:$ THE LOCALLY ANALYTIC CASE

by

Alan ADOLPHSON*

1. INTRODUCTION.

Let p be a prime, \mathbb{Q}_{p} the field of p-adic numbers, Z_{p} the ring of p-adic integers. Every $x \in z_{p}$ may be written uniquely in the form
(1)

$$
x=\sum_{i=0}^{\infty} x_{i} p^{i},
$$

where the x_{i} are rational integers, $0 \leqslant x_{i} \leqslant p-1$. Define a function $\varphi: \mathbb{Z}_{p} \longrightarrow \mathbf{Z}_{p}$ by

$$
\varphi(x)=\sum_{i=1}^{\infty} x_{i} p^{i-1}
$$

For any positive integer n, let $\varphi^{(n)}$ denote the composition of φ with itself n times. In [l] we proved :

THEOREM 1. Let $F: \mathbb{Z}_{p} \rightarrow \mathbb{Q}_{p}$ be a continuous, non-vanishing function satisfying for all positive integers n

[^0]
A. ADOLPHSON

(2) If $a \in \mathbb{Z}_{p}, \varphi^{(n)}(a)=a$, then $\prod_{i=0}^{n-1} F\left(\varphi^{(i)}(a)\right)=1$.

Then there exists a continuous, non-vanishing function $G: \mathbb{Z}_{p} \rightarrow \mathbb{Q}_{p}$ such that for all $x \in \mathbb{Z}_{p}$,

$$
\begin{equation*}
F(x)=G(x) / G(\varphi(x)) \tag{3}
\end{equation*}
$$

The purpose of this note is to show that if F is locally analytic, the G may be taken to be locally analytic also. Our method of proof may be used to give a simpler proof of theorem l. More precisely, our construction of G from F produces a locally analytic function if F is locally analytic and produces a continuous function if F is continuous. We discuss some motivation behind this result in Section 3. For a fuller discussion of motivation, see [l] and [2].

We would like to thank S. Sperber for several helpful discussions and P. Robba for pointing out a significant error in the original version of this paper.

2. MAIN THEOREM.

Let Ω be a complete, algebraically closed field containing Q_{p}. For $a \in \Omega, \rho$ a positive real number, let

$$
D\left(a, \rho^{-}\right)=\{x \in \Omega| | x-a \mid<\rho\}
$$

We shall use $W_{\rho}(\mathbb{Z})$ to denote the union of all disks $D\left(z, \rho^{-}\right)$, $z \in \mathbb{Z}$. Clearly, $W_{\rho}(\mathbb{Z})$ may be expressed as the disjoint union of finitely many of the indicated disks. We shall say that a function F on $W_{\rho}(\mathbb{Z})$ is locally analytic if F can be expressed as a convergent power series on each of these disks, i.e., for each $z \in \mathbb{Z}$,

$$
F(x)=\sum_{n=0}^{\infty} a_{n}(z)(x-z)^{n} \quad\left(a_{n}(z) \in \Omega\right)
$$

for all $x \in D\left(z, \rho^{-}\right)$.
We extend φ to $W_{1}(\mathbb{Z})$ as follows. Given $z \in \mathbb{Z}$, there exists
a unique $z_{O} \in \mathbb{Z}, 0 \leqslant z_{O} \leqslant p-1$, such that $z \equiv z_{O}(\bmod p)$. If $x \in W_{1}(\mathbb{Z})$, then $x \in D\left(z, 1^{-}\right)$for some $z \in \mathbb{Z}$ and we define

$$
\begin{equation*}
\varphi(x)=\frac{x-z_{0}}{p} \tag{4}
\end{equation*}
$$

Thus $\varphi: W_{1}(\mathbb{Z}) \longrightarrow W_{p}(\mathbb{Z})$. For $\rho \leqslant 1, W_{\rho}(\mathbb{Z}) \subseteq W_{1}(\mathbb{Z})$ so we may restrict φ to $W_{\rho}(\mathbb{Z})$. If $x \in W_{\rho}(\mathbf{z})$, then $x \in D\left(z, \rho^{-}\right)$for some $z \in \mathbb{Z}$, hence by (4),

$$
\left|\varphi(x)-\frac{z-z_{0}}{p}\right|=\left|\frac{x-z}{p}\right|
$$

i.e., $\varphi: D\left(z, \rho^{-}\right) \longrightarrow D\left(\left(z-z_{O}\right) / D\left(z-z_{O}\right) / p,(p \rho)^{-}\right.$. Thus for $\rho \leq 1$,

$$
\begin{equation*}
\varphi: w_{\rho}(z) \longrightarrow w_{p \rho}(z) . \tag{5}
\end{equation*}
$$

THEOREM 2. Fix $\rho \leqslant 1$ and let $F: W_{\rho}(\mathbb{Z}) \longrightarrow \Omega$ be a non-vanishing, locally analytic function satisfying for all positive integers n
(6) If $a \in \mathbb{Z}_{p}, \varphi^{(n)}(a)=a$, then $\prod_{i=0}^{n-1} F\left(\varphi^{(i)}(a)\right)=1$.

Then there exists a non-vanishing, locally analytic function $\mathrm{G}: \mathrm{W}_{\mathrm{p} \rho}(\mathbb{Z}) \longrightarrow \Omega$ such that for all $\mathrm{x} \in \mathrm{W}_{\rho}(\mathbb{Z})$,

$$
\begin{equation*}
F(x)=G(x) / G(\varphi(x)) \tag{7}
\end{equation*}
$$

Remark. If $F: W_{\rho}(\mathbb{Z}) \longrightarrow \Omega$ is a locally analytic function that does not vanish on \mathbb{z}_{p}, then there exists $\rho^{\prime}>0$ (but possibly < ρ) such that F is non-vanishing on $W_{\rho}(\mathbb{Z})$. Thus the desired function G exists, but may only be defined and locally analytic on $W_{p \rho}(\mathbb{Z})$.

Proof. For each rational integer $\alpha, 0 \leqslant \alpha \leqslant p-1$, we shall construct a locally analytic function $G_{\alpha}: W_{p \rho}(\mathbb{Z}) \longrightarrow \Omega$ which satisfies the conclusion of the theorem. Consider the map $\sigma_{\alpha}: W_{p \rho}(\mathbb{Z}) \longrightarrow W_{p}(\mathbb{Z})$ defined by

$$
\sigma_{\alpha}(x)=\alpha+p x .
$$

A. ADOLPHSON

For each α, σ_{α} is an analytic right inverse to φ, i.e., $\varphi \rho_{\alpha} \sigma_{\alpha}$ is the identity on $W_{p_{\rho}}(z)$. Consider the infinite product

$$
\begin{equation*}
G_{\alpha}(x)=\prod_{i=1}^{\infty} F\left(\sigma_{\alpha}^{(i)}(x)\right)^{-1} \tag{8}
\end{equation*}
$$

We shall show that this infinite product converges uniformly on $W_{p \rho}(\mathbb{Z})$, hence $G_{\alpha}(x)$ is a non-vanishing, locally analytic function on $W_{p \rho}(\mathbb{Z})$. For this it suffices to show that $\left\{F\left(\sigma_{\alpha}^{(i)}(x)\right)\right\}_{i=1}^{\infty}$ converges uniformly to the constant function l on $W_{p_{\rho}}(\mathbb{Z})$.

One computes directly that

$$
\sigma_{\alpha}^{(i)}(x)=\alpha+p_{\alpha}+p_{\alpha}^{2}+\ldots+p^{i-1} \alpha+p^{i} x,
$$

hence $\sigma_{\alpha}^{(i)}(x)-\alpha /(1-p)=p^{i}(x-\alpha /(1-p))$. In particular, we have for all $x \in W_{p \rho}(\mathbb{Z})$

$$
\begin{equation*}
\left|\sigma_{\alpha}^{(i)}(x)-\frac{\alpha}{1-p}\right| \leqslant \frac{]}{p^{i}} \max \{1, p \rho\} \tag{9}
\end{equation*}
$$

But $\varphi(\alpha /(1-p))=\alpha /(1-p)$, so we have by (6) that $F(\alpha /(1-p))=1$. It now follows from (9) and the continuity of F at $\alpha /(1-p)$) that $\left\{F\left(\sigma_{\alpha}^{(i)}(x)\right)\right\}_{i=1}^{\infty}$ converges uniformly to the constant function l on $W_{p \rho}(\mathbb{Z})$.

It remains to show that (7) holds for $G=G_{\alpha}$. Let $x \in \alpha+p W_{p \rho}(\mathbb{Z})$. For such $x, \sigma_{\alpha}(\varphi(x))=x$, i.e., σ_{α} is also a left inverse to φ on this set. Hence for $x \in \alpha+\mathrm{pW}_{\mathrm{p} \rho}(\mathrm{Z})$

$$
\begin{aligned}
G_{\alpha}(\varphi(x)) & =\prod_{i=1}^{\infty} F\left(\sigma_{\alpha}^{(i-1)}(x)\right)^{-1} \\
& =F(x)^{-1} G_{\alpha}(x)
\end{aligned}
$$

i.e., $F(x)=G_{\alpha}(x) / G_{\alpha}(\varphi(x))$. Note that $G_{\alpha}(\varphi(x))$ and hence $G_{\alpha}(x) / G_{\alpha}(\varphi(x))$ are locally analytic on $W_{\rho}(\mathbb{Z})$. Since $\alpha+\mathrm{p}_{\mathrm{p}} \subseteq \alpha+\mathrm{pW}_{\mathrm{p} \rho}(\mathbf{z})$, the equality $F(\mathrm{x})=\mathrm{G}_{\alpha}(\mathrm{x}) / \mathrm{G}_{\alpha}(\varphi(\mathrm{x}))$ for all $x \in W_{\rho}(\mathbb{Z})$ follows from :

LEMMA 1. Let $F_{1}, F_{2}: W_{\rho}(\mathbb{Z}) \rightarrow \Omega$ be locally analytic functions, non-vanishing on \mathbb{Z}_{p}, that coincide on $\alpha+\mathbb{Z}_{p}$ and satisfy (6). Then $F_{1}(x)=F_{2}(x)$ for all $x \in W_{\rho}(\mathbb{Z})$.

UNIQUENESS OF Γ_{p}

Proof. For $n=0,1,2, \ldots$ put
$A_{n}=\left\{x \in \mathbb{Z}_{p} \mid\right.$ The expansion (1) satisfies $X_{i}=\alpha$ for $\left.i \geqslant n\right\}$. We have clearly $\{\alpha /(1-p)\}=A_{0} \subset A_{1} \subset A_{2} \subset \ldots$. Let $A=\bigcup_{n=0}^{\infty} A_{n}$. It suffices to show $F_{1}(x)=F_{2}(x)$ for all $x \in A$, because the set A has a limit point in each of the disks that make up $W_{\rho}(\mathbb{Z})$ and F_{1} and F_{2} are analytic on each of these disks. To show equality on A, it suffices to show that F_{1} and F_{2} coincide on each A_{n}. The proof is by induction on n.

When $n=0$, we have $F_{1}(\alpha /(1-p))=1=F_{2}(\alpha /(1-p))$ by (6) since $\varphi(\alpha /(1-p))=\alpha /(1-p)$. Supposing that they coincide on A_{n}, we show they agree on A_{n+1} also. Let $x \in A_{n+1}$. Then

$$
x=x_{0}+x_{1} p+\ldots+x_{n} p^{n}+\alpha p^{n+1}+\alpha p^{n+2}+\ldots
$$

Define

$$
x^{(i)}=\left(x_{0}+\ldots+x_{n} p^{n}+\alpha p^{n+1}+\ldots+\alpha p^{n+i}\right) /\left(1-p^{n+i+1}\right)
$$

Then

$$
\begin{aligned}
& \varphi^{(n+i+1)}\left(x^{(i)}\right)=x^{(i)} \text {, so by (6) } \\
& \quad \underset{j=1}{n+i} F_{1}\left(\varphi^{(j)}\left(x^{(i)}\right)\right)=1=\prod_{j=0}^{n+i} F_{2}\left(\varphi^{(j)}\left(x^{(i)}\right)\right)
\end{aligned}
$$

But for $j=n+1, n+2, \ldots, n+i, \varphi^{(j)}\left(x^{(i)}\right) \in \alpha+p_{p}$, so by hypothesis $F_{1}\left(\varphi^{(j)}\left(x^{(i)}\right)\right)=F_{2}\left(\varphi^{(j)}\left(x^{(i)}\right)\right)$. By the non-vanishing of F_{1} and F_{2} on Z_{p},
(10)

$$
\prod_{j=0}^{n} F_{1}\left(\varphi^{(j)}\left(x^{(i)}\right)\right)=\prod_{j=0}^{n} F_{2}\left(\varphi^{(j)}\left(x^{(i)}\right)\right)
$$

For $j=1,2, \ldots, n$, put

$$
y^{(j)}=x_{j}+x_{j+1} p+\ldots+x_{n} p^{n-j}+\alpha p^{n-j+1}+\alpha p^{n-j+2}+\ldots
$$

Then $\lim _{i \rightarrow \infty} \varphi^{(j)}\left(x^{(i)}\right)=y^{(j)}, \lim _{i \rightarrow \infty} x^{(i)}=x$, so by (10) and the continuity of $\mathrm{F}_{1}, \mathrm{~F}_{2}$

$$
F_{1}(x) \prod_{j=1}^{n} F_{1}\left(y^{(j)}\right)=F_{2}(x) \prod_{j=1}^{n} F_{2}\left(y^{(j)}\right)
$$

A. ADOLPHSON

But $y^{(j)} \in A_{n-j+1} \subseteq A_{n}$ for $j=1,2, \ldots n$, so by the induction hypothesis and the non-vanishing of F_{1} and F_{2} on \mathbb{Z}_{p} we conclude $F_{1}(x)=F_{2}(x)$. Q.E.D.

Since A is dense in \mathbb{Z}_{p} one has the following version of lemma 1 for continuous functions :

LEMMA l^{\prime}. Let $F_{1}, F_{2}: \mathbf{z}_{p} \rightarrow \Omega$ be continuous, non-vanishing functions that coincide on $\alpha+\mathrm{p}_{\mathrm{p}}$ and satisfy (6). Then $F_{1}(x)=F_{2}(x)$ for all $x \in \mathbb{z}_{p}$.

If F is any continuous, non-vanishing function on \mathbb{Z}_{p} satisfying $F(\alpha /(1-p))=1$, the argument used in the proof of theorem 2 shows that the function $G_{\alpha}(x)$ defined by (8) is continuous and non-vanishing on \mathbb{Z}_{p} and satisfies $F(x)=G_{\alpha}(x) / G_{\alpha}(\varphi(x))$ for $x \in \alpha+p_{p} \mathbf{p}_{p}$. Theorem 1 then follows immediately from lemma l^{\prime}.

3. EXAMPLE.

For $s=1,2, \ldots$, put $\rho_{s}=p^{e_{s}-1}$, where $e_{s}=1-p^{-s}\left(s+1+(p-1)^{-1}\right)$, and put $\rho_{\infty}=1$. Not that for $s=1,2, \ldots, \infty$,

$$
W_{\rho_{S}}(\mathbb{Z})=\bigcup_{\alpha=0}^{p-1} D\left(\alpha, \rho_{s}^{-}\right)
$$

For each $s, s=1,2, \ldots, \infty$, Baldassarri [2] contructs a non-vanishing locally analytic function $\Gamma_{D, s}$ on $W_{\rho_{S}}(\mathbb{Z})$. In particular $\Gamma_{D, l}=\Gamma_{p}$, Morita's p-adic gamma function. Baldassarri shows there is a constant $\gamma_{s} \in \Omega$, ord $\gamma_{s}=(p-1)^{-1}$, such that if we define for $x \in D\left(\alpha, \rho_{s}^{-}\right)$

$$
\tilde{\Gamma}_{D, s}(x)=\gamma_{s}^{p-1-\alpha} \Gamma_{D, s}(x)
$$

then
(11)

$$
g_{f}(a, \pi)=\prod_{i=0}^{f-1}{\underset{\Gamma}{D, s}}^{\left.\tilde{\Gamma}^{\left(-\varphi^{(i)}\right.}(-a)\right), ~}
$$

where $-a=j /\left(1-p^{f}\right)\left(j \in z, 0 \leqslant j \leqslant p^{f}-1\right)$ and $g_{f}(a, \pi)$ is the Gauss sum defined by $[2$, equation (0.1)]. Note that the set of rational numbers -a just described is exactly the set of fixed points of $\varphi^{(f)}$.

If $s<s^{\prime}$, then $W_{\rho_{S}}(\mathbb{Z}) \subseteq W_{\rho_{S^{\prime}}}(\mathbb{Z})$. By (ll), the ratio
$F_{S, s^{\prime}}(x)=\tilde{\Gamma}_{D, S}(x) / \tilde{\Gamma}_{D, s^{\prime}}(x)$ is a non-vanishing, locally analytic function on $W_{\rho_{S}}(\mathbb{Z})$ satisfying for each non-negative integer f (12) If $a \in \mathbb{Z}_{p}, \varphi^{(f)}(-a)=-a$, then $\prod_{i=0}^{f-1} F_{S, S^{\prime}}(-(i)(-a))=1$. A simple change of variable in theorem 2 shows that there exists a non-vanishing, locally analytic function $G_{s, s}$, on $W_{p \rho}(\mathbb{Z})$ such that for all $x \in W_{\rho_{S}}(\mathbb{Z})$,

$$
\tilde{\Gamma}_{D, s}(x)=\tilde{\Gamma}_{D, s},(x) G_{s, s^{\prime}}(x) / G_{s, s},(-\varphi(-x))
$$

It should be possible to compute $G_{s, s}$ explicitly.

REFERENCES

[1] A. ADOLPHSON, "Uniqueness of Γ_{p} in the Gross-Koblitz formula for Gauss sums", Trans. Amer. Math. Soc. (to appear).
[2] F. BALDASSARRI, "Higher p-adic gamma functions and Dwork cohomology", Asterisque (to appear).
[3] B. DWORK, "A note on the p-adic gamma function", (preprint).

Alan ADOLPHSON
Department of Mathematics Oklahoma State University Stillwater, Oklahoma 74078

[^0]: *Research supported by NSF grants MCS-7903315 and MCS-8108814(AO1).

