Astérisque

ALAN ADOLPHSON Uniqueness of Γ_p : the locally analytic case

Astérisque, tome 119-120 (1984), p. 9-15

<http://www.numdam.org/item?id=AST_1984__119-120__9_0>

© Société mathématique de France, 1984, tous droits réservés.

L'accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Société Mathématique de France Astérisque 119-120 (1984) p. 9-15

UNIQUENESS OF Γ_{p} : THE LOCALLY ANALYTIC CASE

by

Alan ADOLPHSON*

1. INTRODUCTION.

Let p be a prime, \mathbb{Q}_p the field of $p\text{-adic numbers}, \, {\bm z}_p$ the ring of p-adic integers. Every $\, x \in {\bm z}_p\,$ may be written uniquely in the form

(1)
$$x = \sum_{i=0}^{\infty} x_i p^i ,$$

where the x_i are rational integers, $0 \leqslant x_i \leqslant p{-}1$. Define a function $\phi: \, \bm{z}_p \, \longrightarrow \, \bm{z}_p \,$ by

$$\varphi(\mathbf{x}) = \sum_{i=1}^{\infty} \mathbf{x}_i \mathbf{p}^{i-1}$$

For any positive integer n, let $\varphi^{(n)}$ denote the composition of φ with itself n times. In [1] we proved :

THEOREM 1. Let $F : \mathbf{Z}_p \longrightarrow \mathbb{Q}_p$ be a continuous, non-vanishing function satisfying for all positive integers n

*Research supported by NSF grants MCS-7903315 and MCS-8108814(A01).

A. ADOLPHSON

(2) If $a \in \mathbb{Z}_p$, $\varphi^{(n)}(a) = a$, then $\prod_{i=0}^{n-1} F(\varphi^{(i)}(a)) = 1$.

 $\begin{array}{ll} \underline{ \mbox{Then there exists a continuous, non-vanishing function}}_{{\rm Such that for all}} $ {\rm G}: {\rm Z}_p \longrightarrow {\rm Q}_p $ \\ \underline{ \mbox{such that for all}}_p $ {\rm X} \in {\rm Z}_p $, $ \end{array}$

(3)
$$F(x) = G(x)/G(\varphi(x))$$

The purpose of this note is to show that if F is locally analytic, the G may be taken to be locally analytic also. Our method of proof may be used to give a simpler proof of theorem 1. More precisely, our construction of G from F produces a locally analytic function if F is locally analytic and produces a continuous function if F is continuous. We discuss some motivation behind this result in Section 3. For a fuller discussion of motivation, see [1] and [2].

We would like to thank S. Sperber for several helpful discussions and P. Robba for pointing out a significant error in the original version of this paper.

2. MAIN THEOREM.

Let Ω be a complete, algebraically closed field containing Q_n . For $a \in \Omega$, ρ a positive real number, let

$$D(a,\rho^{-}) = \{x \in \Omega \mid |x-a| < \rho\}$$

We shall use $W_{\rho}(\mathbf{Z})$ to denote the union of all disks $D(z,\rho^{-})$, $z \in \mathbf{Z}$. Clearly, $W_{\rho}(\mathbf{Z})$ may be expressed as the disjoint union of finitely many of the indicated disks. We shall say that a function F on $W_{\rho}(\mathbf{Z})$ is locally analytic if F can be expressed as a convergent power series on each of these disks, i.e., for each $z \in \mathbf{Z}$,

$$F(x) = \sum_{n=0}^{\infty} a_n(z) (x-z)^n \qquad (a_n(z) \in \Omega)$$

for all $x \in D(z, \rho)$.

We extend φ to $W_1(\mathbf{Z})$ as follows. Given $z \in \mathbf{Z}$, there exists

a unique $z_0 \in \mathbb{Z}$, $0 \le z_0 \le p-1$, such that $z \equiv z_0 \pmod{p}$. If $x \in W_1(\mathbb{Z})$, then $x \in D(z, 1^-)$ for some $z \in \mathbb{Z}$ and we define

(4)
$$\varphi(\mathbf{x}) = \frac{\mathbf{x} - \mathbf{z}_0}{\mathbf{p}} \ .$$

Thus $\varphi: W_1(\mathbb{Z}) \longrightarrow W_p(\mathbb{Z})$. For $\rho \leq 1$, $W_p(\mathbb{Z}) \subseteq W_1(\mathbb{Z})$ so we may restrict φ to $W_p(\mathbb{Z})$. If $x \in W_p(\mathbb{Z})$, then $x \in D(z, \rho^-)$ for some $z \in \mathbb{Z}$, hence by (4),

$$|\varphi(\mathbf{x}) - \frac{z-z_0}{p}| = |\frac{\mathbf{x}-\mathbf{z}}{p}|$$

i.e.,
$$\varphi: D(z,\rho^{-}) \longrightarrow D((z-z_{0})/D(z-z_{0})/p,(p\rho)^{-}$$
. Thus for $\rho \leq 1$,

(5)
$$\varphi: W_{\rho}(\mathbf{Z}) \longrightarrow W_{p\rho}(\mathbf{Z}).$$

THEOREM 2. Fix $\rho \leq 1$ and let $F : W_{\rho}(\mathbf{Z}) \longrightarrow \Omega$ be a non-vanishing, locally analytic function satisfying for all positive integers n

(6) If
$$a \in \mathbb{Z}_p$$
, $\varphi^{(n)}(a) = a$, then $\prod_{i=0}^{n-1} F(\varphi^{(i)}(a)) = 1$.

Then there exists a non-vanishing, locally analytic function $G: W_{p\rho}(\mathbb{Z}) \longrightarrow \Omega$ such that for all $x \in W_{\rho}(\mathbb{Z})$,

(7)
$$F(x) = G(x) / G(\varphi(x)) .$$

<u>Remark</u>. If $F : W_{\rho}(\mathbb{Z}) \longrightarrow \Omega$ is a locally analytic function that does not vanish on \mathbb{Z}_{p} , then there exists $\rho' > 0$ (but possibly $< \rho$) such that F is non-vanishing on $W_{\rho'}(\mathbb{Z})$. Thus the desired function G exists, but may only be defined and locally analytic on $W_{p,\rho'}(\mathbb{Z})$.

<u>Proof</u>. For each rational integer α , $0 \le \alpha \le p-1$, we shall construct a locally analytic function $G_{\alpha} : W_{p\rho}(\mathbf{Z}) \longrightarrow \Omega$ which satisfies the conclusion of the theorem. Consider the map $\sigma_{\alpha} : W_{p\rho}(\mathbf{Z}) \longrightarrow W_{\rho}(\mathbf{Z})$ defined by

$$\sigma_{\alpha}(\mathbf{x}) = \alpha + \mathbf{p}\mathbf{x}$$
.

For each α , σ_{α} is an analytic right inverse to φ , i.e., $\varphi \circ \sigma_{\alpha}$ is the identity on $W_{p_0}(\mathbf{Z})$. Consider the infinite product

(8)
$$G_{\alpha}(\mathbf{x}) = \prod_{i=1}^{\infty} F(\sigma_{\alpha}^{(i)}(\mathbf{x}))^{-1}$$

We shall show that this infinite product converges uniformly on $W_{p\rho}(\mathbb{Z})$, hence $G_{\alpha}(x)$ is a non-vanishing, locally analytic function on $W_{p\rho}(\mathbb{Z})$. For this it suffices to show that $\{F(\sigma_{\alpha}^{(i)}(x))\}_{i=1}^{\infty}$ converges uniformly to the constant function 1 on $W_{p\rho}(\mathbb{Z})$.

One computes directly that

$$\sigma_{\alpha}^{(i)}(x) = \alpha + p\alpha + p^{2}\alpha + \ldots + p^{i-1}\alpha + p^{i}x$$
,

hence $\sigma_{\alpha}^{(i)}(x) - \alpha/(1-p) = p^{i}(x-\alpha/(1-p))$. In particular, we have for all $x \in W_{p_{0}}(\mathbb{Z})$

(9)
$$|\sigma_{\alpha}^{(i)}(\mathbf{x}) - \frac{\alpha}{1-p}| \leq \frac{1}{p^{i}} \max\{1, p_{\rho}\}$$

But $\varphi(\alpha/(1-p)) = \alpha/(1-p)$, so we have by (6) that $F(\alpha/(1-p)) = 1$. It now follows from (9) and the continuity of F at $\alpha/(1-p)$) that $\{F(\sigma_{\alpha}^{(i)}(x))\}_{i=1}^{\infty}$ converges uniformly to the constant function 1 on $W_{p_{\alpha}}(\mathbf{Z})$.

It remains to show that (7) holds for $G = G_{\alpha}$. Let $x \in \alpha + pW_{p_{\beta}}(\mathbb{Z})$. For such x, $\sigma_{\alpha}(\varphi(x)) = x$, i.e., σ_{α} is also a left inverse to φ on this set. Hence for $x \in \alpha + pW_{p_{\alpha}}(\mathbb{Z})$

$$G_{\alpha}(\varphi(\mathbf{x})) = \prod_{i=1}^{\infty} F(\sigma_{\alpha}^{(i-1)}(\mathbf{x}))^{-1}$$
$$= F(\mathbf{x})^{-1}G_{\alpha}(\mathbf{x}),$$

i.e., $F(x) = G_{\alpha}(x)/G_{\alpha}(\varphi(x))$. Note that $G_{\alpha}(\varphi(x))$ and hence $G_{\alpha}(x)/G_{\alpha}(\varphi(x))$ are locally analytic on $W_{\rho}(\mathbf{Z})$. Since $\alpha + p\mathbf{Z}_{\mathbf{p}} \subseteq \alpha + pW_{\mathbf{p}\rho}(\mathbf{Z})$, the equality $F(x) = G_{\alpha}(x)/G_{\alpha}(\varphi(x))$ for all $x \in W_{\alpha}(\mathbf{Z})$ follows from :

 <u>Proof.</u> For n = 0, 1, 2, ..., put

When n=0, we have $F_1(\alpha/(1-p)) = 1 = F_2(\alpha/(1-p))$ by (6) since $\varphi(\alpha/(1-p)) = \alpha/(1-p)$. Supposing that they coincide on A_n , we show they agree on A_{n+1} also. Let $x \in A_{n+1}$. Then

$$x = x_0 + x_1 p + \ldots + x_n p^n + \alpha p^{n+1} + \alpha p^{n+2} + \ldots$$

Define

$$x^{(i)} = (x_0 + \ldots + x_n p^n + \alpha p^{n+1} + \ldots + \alpha p^{n+i}) / (1-p^{n+i+1})$$

Then $\varphi^{(n+i+1)}(x^{(i)}) = x^{(i)}$, so by (6) n+i (i) (i) n+i

$$\prod_{\substack{n=1\\j=0}}^{n+1} F_1(\varphi^{(j)}(x^{(i)})) = 1 = \prod_{\substack{j=0\\j=0}}^{n+1} F_2(\varphi^{(j)}(x^{(i)})) .$$

But for $j = n+1, n+2, \ldots, n+i$, $\varphi^{(j)}(x^{(i)}) \in \alpha + p\mathbf{Z}_p$, so by hypothesis $F_1(\varphi^{(j)}(x^{(i)})) = F_2(\varphi^{(j)}(x^{(i)}))$. By the non-vanishing of F_1 and F_2 on \mathbf{Z}_p ,

(10)
$$\prod_{j=0}^{n} F_{1}(\varphi^{(j)}(x^{(i)})) = \prod_{j=0}^{n} F_{2}(\varphi^{(j)}(x^{(i)}))$$

For j = 1, 2, ..., n, put

$$y^{(j)} = x_j + x_{j+1}p + \ldots + x_np^{n-j} + \alpha p^{n-j+1} + \alpha p^{n-j+2} + \ldots$$

Then $\lim_{i \to \infty} \varphi^{(j)}(x^{(i)}) = y^{(j)}$, $\lim_{i \to \infty} x^{(i)} = x$, so by (10) and the continuity of F_1, F_2

$$F_{1}(x) = \begin{bmatrix} n \\ \pi \end{bmatrix} F_{1}(y^{(j)}) = F_{2}(x) = \begin{bmatrix} n \\ \pi \end{bmatrix} F_{2}(y^{(j)}) .$$

But $y^{(j)} \in A_{n-j+1} \subseteq A_n$ for j = 1, 2, ..., n, so by the induction hypothesis and the non-vanishing of F_1 and F_2 on \mathbb{Z}_p we conclude $F_1(x) = F_2(x)$. Q.E.D.

Since A is dense in ${\rm Z}_{\rm p}$ one has the following version of lemma 1 for continuous functions :

LEMMA 1'. Let $F_1, F_2 : \mathbb{Z}_p \longrightarrow \Omega$ be continuous, non-vanishing functions that coincide on $\alpha + p\mathbb{Z}_p$ and satisfy (6). Then $F_1(x) = F_2(x)$ for all $x \in \mathbb{Z}_p$.

If F is any continuous, non-vanishing function on \mathbb{Z}_p satisfying $F(\alpha/(1-p)) = 1$, the argument used in the proof of theorem 2 shows that the function $G_{\alpha}(x)$ defined by (8) is continuous and non-vanishing on \mathbb{Z}_p and satisfies $F(x) = G_{\alpha}(x)/G_{\alpha}(\varphi(x))$ for $x \in \alpha + p\mathbb{Z}_p$. Theorem 1 then follows immediately from lemma 1'.

3. EXAMPLE.

For $s = 1, 2, ..., put \rho_s = p^s$, where $e_s = 1-p^{-s}(s+1+(p-1)^{-1})$, and put $\rho_{\infty} = 1$. Not that for $s = 1, 2, ..., \infty$,

$$W_{\rho_{\mathbf{S}}}(\mathbf{Z}) = \bigcup_{\alpha \neq \mathbf{O}} \mathbb{D}(\alpha, \rho_{\mathbf{S}})$$

For each s, s = 1,2,..., ∞ , Baldassarri [2] contructs a non-vanishing locally analytic function $\Gamma_{D,s}$ on $W_{\rho_s}(\mathbb{Z})$. In particular $\Gamma_{D,1} = \Gamma_p$, Morita's p-adic gamma function. Baldassarri shows there is a constant $\gamma_s \in \Omega$, ord $\gamma_s = (p-1)^{-1}$, such that if we define for $x \in D(\alpha, \rho_s)$

$$\tilde{\Gamma}_{D,s}(x) = \gamma_s^{p-1-\alpha}\Gamma_{D,s}(x)$$
,

then

(11)
$$g_{f}(a,\pi) = \prod_{i=0}^{f-1} \tilde{r}_{D,s}(-\varphi^{(i)}(-a)),$$

where $-a = j/(1-p^{f})$ ($j \in \mathbb{Z}$, $0 \le j \le p^{f}-1$) and $g_{f}(a,\pi)$ is the Gauss sum defined by [2, equation (0.1)]. Note that the set of rational numbers -a just described is exactly the set of fixed points of $\varphi^{(f)}$.

If s < s', then $W_{\rho_s}(\mathbf{Z}) \subseteq W_{\rho_s'}(\mathbf{Z})$. By (11), the ratio $F_{s,s'}(x) = \tilde{r}_{D,s}(x)/\tilde{r}_{D,s'}(x)$ is a non-vanishing, locally analytic function on $W_{\rho_s}(\mathbf{Z})$ satisfying for each non-negative integer f

(12) If
$$a \in \mathbb{Z}_p$$
, $\varphi^{(f)}(-a) = -a$, then $\prod_{i=0}^{f-1} F_{s,s'}(-i)(-a) = 1$.

A simple change of variable in theorem 2 shows that there exists a non-vanishing, locally analytic function $G_{s,s}$, on $W_{p\rho_s}(\mathbb{Z})$ such that for all $x \in W_{\rho_s}(\mathbb{Z})$,

$$\tilde{\Gamma}_{D,s}(x) = \tilde{\Gamma}_{D,s'}(x)G_{s,s'}(x) / G_{s,s'}(-\varphi(-x))$$
.

It should be possible to compute G_{s.s'} explicitly.

REFERENCES

- A. ADOLPHSON, "Uniqueness of r in the Gross-Koblitz formula for Gauss sums", Trans. Amer. Math. Soc. (to appear).
- [2] F. BALDASSARRI, "Higher p-adic gamma functions and Dwork cohomology", Asterisque (to appear).
- [3] B. DWORK, "A note on the p-adic gamma function", (preprint).

Alan ADOLPHSON Department of Mathematics Oklahoma State University Stillwater, Oklahoma 74078