Steven Sperber
 Newton polygons for general hyperkloosterman sums

Astérisque, tome 119-120 (1984), p. 267-330
http://www.numdam.org/item?id=AST_1984__119-120__267_0
© Société mathématique de France, 1984, tous droits réservés.
L'accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Article numérisé dans le cadre du programme

NEWTON POLYGONS FOR GENERAL HYPERKLOOSTERMAN SUMS

> by

Steven SPERBER*

INTRODUCTION

Let X / \mathbb{F}_{q} be affine, char $\mathbb{F}_{q}=p, f$ a regular function on X, ψ_{q} a non-trivial additive character of \mathbb{F}_{q}. We define exponential sums

$$
S_{m}(f, X, \psi)=\sum_{x \in X\left(\mathbb{F} q_{q}\right)} \psi \circ \operatorname{Tr}_{\mathbb{F}_{q}}{ }_{q / \mathbb{F}_{q}}(f(x))
$$

where $X\left(\mathbb{F}{ }_{q}{ }^{m}\right)$ denotes the $\mathbb{F} q^{m}$-rational points of X. The associated L-function is defined by

$$
L(f, X, \psi, T)=\exp \left(\sum_{m=1}^{\infty} S_{m}(f, X, \psi) T^{m} / m\right)
$$

In [4], Deligne proved that in the case of the hyperkloosterman sum $S_{m}(f, X, \psi)$, where X is the algebraic group defined over \mathbb{F}_{q} by the coordinate equation $x_{1} x_{2} \ldots x_{n+1}=1$ and where $f(x)=x_{1}+x_{2}+\ldots+x_{n+1}$, that the associated L-function $L\left(\operatorname{Kloos}_{n+1}\right)$ has the property that $L\left(\operatorname{Kloos}_{n+1}\right){ }^{(-1)^{n+1}}$ is a polynomial of degree $n+1$ having all reciprocal roots of absolute value equal to $q^{n / 2}$. In [5], under suitable hypotheses, Katz generalizes Deligne's result, proving a similar result for the L-functions associated with generalized Kloosterman sums $S_{m}(\bar{g}, Y, \psi)$ where Y is the algebraic group defined over \mathbb{F}_{q} by the equation $\quad x_{1}{ }^{b_{1}}{ }_{x_{2}}{ }_{2} \ldots x_{n+1}^{b}=1$, and where $\bar{g}(x)=\bar{\alpha}_{1} x_{1}^{k}+\bar{\alpha}_{2} x_{2}^{k}+\ldots+\bar{\alpha}_{n+1} x_{n+1}^{k}, \bar{\alpha}_{i} \in \mathbb{F}_{q}^{+}$. (In fact, Katz's result

[^0]is more general proving similar results even when the sums are twisted by multiplicative characters).

In this same work, Katz raises the question of how the Newton polygon of the L-function varies with p. In particular, if $\bar{g}(x)$ above is obtained by reduction from a global situation, say for example from $g(x) \in \mathbb{Z}\left[x_{1}, \ldots, x_{n+1}\right]$, then it makes sense to study the Newton polygon of $L\left(\bar{g}, Y, \psi_{q}, T\right)^{(-1)^{n+1}}$ as p varies. In the case of the zeta function $Z\left(X_{p}, T\right)$ of a projective non-singular variety X_{p} arising from mod p reduction of a variety X defined over some global field, the Newton polygon of $Z\left(X_{p}, T\right)$ has a well-known relation to the Hodge numbers of X. Are there analogous structures for exponential sums ? For example, in the case of hyperkloosterman sums, we proved in [7] that for $p \geqslant n+3$, the Newton polygon of
$L\left(\operatorname{Kloos}_{n+1}\right)^{(-1)^{n+1}}$ is given by the diagram with vertices

$$
\begin{equation*}
\{(0,0)\} \cup\left\{(\ell, \ell(\ell-1) / 2\}_{\ell=1}^{n+1} .\right. \tag{+}
\end{equation*}
$$

Clearly, in this case, the Newton polygon is independent of p. Katz asks whether this holds also in the case of generalized Kloosterman sums ; more precisely, he asks how the Newton polygon of $L\left(\bar{g}, Y, \psi_{q}, T\right)^{(-1)^{n+1}}$ varies as a function of $\left(p, b_{1}, \ldots, b_{n+1}\right)$ for $p \gg 0$.

In the present work, we consider the case $b_{n+1}=k=1$, which we write in the form

$$
S_{m}=\sum \psi \circ \operatorname{Tr}_{\mathbb{F}}{ }_{\underline{q} / \mathbb{F}_{q}}\left(\bar{\alpha}_{1} t_{1}+\ldots+\bar{\alpha}_{n} t_{n}+\bar{x}_{\cdot} t_{1}^{-b_{1}} \ldots t_{n}^{-b_{n}}\right)
$$

where the sum is taken over all $t=\left(t_{1}, \ldots, t_{n}\right) \in\left(\mathbb{F}_{q}^{+}\right)^{n}$. In theorem (5.46), we obtain for $p \equiv l(\bmod M),\left(M=1 . c . m .\left(b_{1}, \ldots, b_{n}\right)\right)$, a precise description of the Newton polygon of the associated L-function. In theorem (5.31), assuming only (P, M) $=1$, we show that the Newton polygon always lies over the polygon for $p \equiv 1$ (mod M). This behavior is not unlike Stickelberger's result for Gauss sums. These results are then generalized in § 6 and § 7 .

In terms of Katz's questions then, within the congruence class $p \equiv 1(\bmod M)$ the Newton polygon is independent of p. In general this diagram has vertices in the lattice $\mathbb{Z} \times \frac{1}{M} \mathbb{Z}$. However, the fact
 together with the fact that $\mathbb{Q}_{p}\left(\zeta_{p}\right)$ is totally ramified over Q_{p} of degree $p-1$ implies that this same diagram can not in general be the the Newton polygon of $L^{(-1)^{n+1}}$ when $p \neq 1(\bmod M)$. In § 8 , we analyze an example (with $M=3$) in greater detail showing (theorem 8.9) that if $p \equiv 2(\bmod 3)$, then the Newton polygon varies with p, descending as $p \longrightarrow \infty$ in the congruence classe $p \equiv 2$ (mod 3), to the Newton polygon diagram for the case of primes $p, p \equiv 1(\bmod 3)$ given by theorem (5.46).

Throughout we use Dwork's methods. We systematically replace the differential operators that arise in Dwork's theory by simpler operators which we view as perturbations. By this type approximation, we simplify the computations sufficiently to extract very precise estimates. The method also requires a good choice for the basis of the cohomology space. In § 4 , we take this opportunity to clarify the process of specialization. We note also that the present techniques eliminate the need to restrict to large p; in particular, theorem (5.46) shows that (+) is the Newton polygon for
$L\left(K^{\prime l o o s}{ }_{n+1}\right)^{(-1)^{n+1}}$ for all p, thus extending the result of [7] quoted above.

Finally, we note that it is possible to give a recipe for the Newton polygon of $L^{(-1)^{n+1}}$ when $p l(\bmod M)$ in which the ingredients for the recipe consist only of the exponents of the deformation equation at the singular point $x=0$. We believe that this indicates the possibility of using transformations of the polynomial

$$
\alpha_{1} t_{1}+\ldots+\bar{\alpha}_{n} t_{n}+x t_{1}^{-b_{1}} \ldots t_{n}^{-b_{n}}
$$

the singular fibers of the resulting transforms ; and p-adic analytic continuation to describe analytically the reciprocal zeros of $L^{(-1)^{n+1}}$.

We tank N. Katz for his suggestions concerning this work, and B. Dwork and Y. Sibuya for some helpful discussions. We would also like to thank Princeton University for its hospitality while some of the work was completed.

S. SPERBER

Let Ω be an algebraically closed field of characteristic zero complete under the extension | | of the p-adic valuation of Q. We will also use the additive form "ord" of the valuation, normalized so that ord $p=1$; if $q=p^{r}$, then "ord ${ }_{q}$ " will denote the valuation normalized so that ord ${ }_{q}=1$. Let \mathbb{N} denote the non-negative integers, and let \mathbb{N}^{+}denote the natural numbers. Let $a=\left(a_{1}, \ldots, a_{n}\right) \in\left(\mathbb{N}^{+}\right)^{n}$. We assume

$$
a_{1} \geqslant a_{2} \geqslant \cdots \geqslant a_{n}>0
$$

Let $M=$ l.c.m. $\left(a_{1}, a_{2}, \ldots, a_{n}\right) ; N=\sum_{i=1}^{n} a_{i}+1$.

1. DEFINITIONS. Let Ω_{0} be a finite extension of $Q_{p}\left(\zeta_{p}\right)$ where ζ_{p} is a primitive $p^{\text {th }}$ root of 1 ; let O_{O} be the ring of integers of Ω_{0}. Let $\tau \in \operatorname{Gal}\left(\Omega_{\mathrm{O}} / \mathrm{Q}_{\mathrm{p}}\left(\zeta_{\mathrm{p}}\right)\right)$ denote the Frobenius automorphism. For $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{Z}^{n}, \gamma \in \mathbb{N}, m \in \mathbb{N}^{+}$, define

$$
\left\{\begin{array}{l}
\sum(\alpha)=\sum_{i=1}^{n} \alpha_{i}, \tag{1.1}\\
s(\alpha)=\max \left\{0, \frac{-\alpha_{1}}{a_{1}}, \ldots, \frac{-\alpha_{n}}{a_{n}}\right\} \\
w(\alpha)=\sum(\alpha)+N s(\alpha), \\
w_{m}(\alpha ; \gamma)=\sum(\alpha)+N \gamma m^{-1} M^{-1}
\end{array}\right.
$$

Let t_{1}, \ldots, t_{n}, Y be indeterminates ; let $b, c \in \mathbb{R}, b \geqslant 0$. Define

$$
\begin{align*}
L_{m}(b, c)= & \left\{\sum_{(\alpha ; \gamma) \in S_{m}} A(\alpha ; \gamma) t^{\alpha} Y^{\gamma} \mid A(\alpha ; \gamma) \in \Omega_{O},\right. \tag{1.2}\\
& \text { ordA(} \left.A ; \gamma)>c+w_{m}(\alpha ; \gamma) b\right\}
\end{align*}
$$

where the index set S_{m} is given by

$$
\begin{equation*}
\mathrm{S}_{\mathrm{m}}=\left\{(\alpha ; \gamma) \in \mathbb{Z}^{\mathrm{m}} \times \mathbb{N} \mid \gamma>\operatorname{mMs}(\alpha)\right\} \tag{1.3}
\end{equation*}
$$

and where t^{α} denotes $t_{1}^{\alpha}{ }_{1} t_{2}^{\alpha} \ldots t_{n}^{\alpha}$.

Let
(1.4)

$$
\left\{\begin{array}{l}
L_{m}(b)=\cup \cup \cup \in \mathbb{R} L_{m}(b, c) \\
R_{m}(b, c)=\Omega_{O}[[Y]] \cap L_{m}(b, c), \\
R_{m}(b)=\underset{c \in \mathbb{R}}{\cup} R_{m}(b, c)=L_{m}(b) \cap \Omega_{O}[[Y]]
\end{array}\right.
$$

Define

$$
\begin{equation*}
f(Y, t)=\sum_{i=1}^{n} c_{i} t_{i}+Y t^{-a} \tag{1.5}
\end{equation*}
$$

Let $\left\{\gamma_{j}\right\}_{j=0}^{\infty} \subset \Phi_{p}\left(\zeta_{p}\right)$ be a sequence of elements with the estimates
(1.6)

$$
\left\{\begin{array}{l}
\text { ord } \gamma_{0}=1 /(p-1) \\
\text { ord } \gamma_{j} \geqslant \frac{p^{j+1}}{p-1}-(j+1)
\end{array}\right.
$$

In terms of these constants, we write
(1.7)

$$
\left\{\begin{array}{l}
\hat{H}(Y, t)=\gamma_{O} \cdot f(Y, t), \\
H(Y, t)=\hat{H}(Y, t)+\sum_{\ell=1}^{\infty} \gamma_{\ell} \cdot f^{\tau^{\ell}\left(Y^{P^{\ell}}, t^{P^{\ell}}\right),} \\
\hat{F}(Y, t)=\exp H(Y, t), \\
E_{i}=t_{i} \frac{\partial}{\partial t_{i}}, \\
\left.\hat{H}_{i}^{(m)}\left(=\hat{H}_{i}\left(Y^{m M}, t\right)\right)=E_{i} \hat{H}^{(M M}, t\right), \\
H_{i}^{(m)}\left(=H_{i}\left(Y^{M M}, t\right)\right)=E_{i} H\left(Y^{m M}, t\right), \\
D_{i}^{(m)}=E_{i}+H_{i}^{(m)} .
\end{array}\right.
$$

We note that

$$
\begin{equation*}
\hat{H}_{i}^{(m)}=\gamma_{O}\left(c_{i} t_{i}-a_{i} Y^{m M} t^{-a}\right) \in L_{m}(b,-e) \tag{1.8}
\end{equation*}
$$

where $e=b-\frac{1}{p-1}$, and

$$
\begin{equation*}
H_{i}^{(m)} \in L_{m}(b,-e) \tag{1.8}
\end{equation*}
$$

provided $\frac{p}{p-l} \geqslant b$.

We now distinguish for each $J \in \mathbb{Z}$, a unique vector $\sigma^{(J)} \in \mathbb{z}^{n}$ such that $\sum\left(\sigma^{(J)}\right)=J$. We employ the notation U_{i} for that element of $\mathbb{Z}^{\text {n }}$ with 1 in the $i^{\text {th }}$ position and O elsewhere. We define $\sigma^{(J)}$ inductively for $0 \geqslant J \geqslant-(N-1)$. First, define for $J \leqslant 0$,

$$
\left\{\begin{array}{l}
S(J)=\min \{s(\gamma)\}, \tag{1.9}\\
W(J)=J+N S(J),
\end{array}\right.
$$

where the minimum runs over γ such that $-\gamma \in \mathbb{N}^{n}, \sum(\gamma)=J$. Assume that $\sigma^{(K)}$ has been defined for $0 \geqslant K \geqslant J$, (where $0>J \geqslant-(N-1)$), with the properties
(i) $\mathrm{K} . \quad \sum\left(\sigma^{(\mathrm{K})}\right)=\mathrm{K}$;
(ii) $_{K} . \quad \sigma^{(K)}=\sigma^{(K+1)}-U_{\ell_{K}}$,
(1.10)
where $K<0$, and $\ell_{K} \in\{1,2, \ldots, n\}$;
(iii) $_{K} \quad s\left(\sigma^{(K)}\right)=S(K)$;
(i) $_{K} . \quad \ell_{K}$ is chosen minimally so that the above properties hold.

We will show that ℓ_{J} can be chosen so that $\sigma(J)$ and ℓ_{J} satisfy (1.10) for $K=J$. Let $\sigma(J, k)=\sigma^{(J+1)}-U_{k}$, for $k \in\{1,2, \ldots, n\}$. It suffices to prove $s(\sigma(J, k))=S(J)$ for some k. Suppose on the contrary
(*)

$$
s(\sigma(J, k))>S(J), \text { for all } k \text {. }
$$

Let $\gamma^{(J)}=\left(\gamma_{1}^{(J)}, \ldots, \gamma_{n}^{(J)}\right) \in \mathbb{Z}^{n}, \quad-\gamma^{(J)} \in \mathbb{N}^{n}, \sum\left(\gamma^{(J)}\right)=J$ and $s\left(\gamma^{(J)}\right)=S(J)$. Note that (*) implies
(**)

$$
-\gamma_{i}^{(J)} \leqslant-\sigma_{i}^{(J+1)}, \text { for all } i, \quad 1 \leqslant i \leqslant n .
$$

Otherwise, $-\gamma_{i}^{(J)} \geqslant-\sigma_{i}^{(J+1)}+1$ for some $i, 1 \leqslant i \leqslant n$. But then

$$
\frac{-\sigma_{i}^{(J, i)}}{a_{i}}=\frac{-\sigma_{i}^{(J+1)}+1}{a_{i}} \leqslant \frac{-\gamma_{i}^{(J)}}{a_{i}} \leqslant S(J) ;
$$

for $\ell \neq i$,

$$
-\frac{\sigma_{\ell}^{(J, i)}}{a_{\ell}}=-\frac{\sigma_{\ell}^{(J+1)}}{a_{\ell}} \leqslant S(J+1) \leqslant S(J) \text {. }
$$

Thus s($\left.\sigma^{(J, i)}\right)<S(J)$, contradicting (*). But summing (**) over i, leads to the contradiction $-J \leqslant-J-1$, and establishes (1.10) for $K=J$.

We have thus defined the sequence
(1.11)

$$
\left\{U_{\ell-1}, U_{\ell-2}, \cdots, U_{\ell-(N-1)}\right\} ;
$$

for $J, O>J \geqslant-(N-1)$,

$$
\sigma^{(J)}=-\sum_{i=J}^{-1} U_{\ell_{i}}
$$

Define a map
$(1.12) \quad g: \mathbb{Z}-\{O\} \longrightarrow\{1,2, \ldots, n\}$
by setting $g(i)=\ell_{i}$ for $-1 \geqslant i \geqslant-(N-1)$ and requiring periodicity $g(j)=g(j+N-1)$ for $j \leqslant-N$; then set $g(i)=\ell_{i-N}$, for $1 \leqslant i \leqslant N-l$ and $g(j)=g(j-N+1)$ for $j \geqslant N$. Then, if $J<O$, we define

$$
\begin{equation*}
\sigma^{(J)}=\sigma^{(J+1)}-U_{g(J)}=-\sum_{i=J}^{-1} U_{g(i)} ; \tag{1.13}
\end{equation*}
$$

if $J>0$,

$$
\sigma^{(J)}=\sigma^{(J-1)}+U_{g(J)}=\sum_{i=1}^{J} U_{g(i)} .
$$

Observe that with this definition

$$
\begin{equation*}
s\left(\sigma^{(J)}\right)=S(J) \quad \text { for all } J \leqslant 0 . \tag{1.14}
\end{equation*}
$$

It is convenient, as well as consistent with (l.14), to define $S(J)=0, W(J)=J$ for $J>0$. Observe also that

$$
\begin{equation*}
S(J+\lambda(N-1))=S(J)-\lambda \tag{1.15}
\end{equation*}
$$

for non-positive integers J and λ.
(1.16) DEFINITION. We call the set

$$
\Delta=\left\{\sigma^{(J)} \in \mathbb{Z}^{n} \mid J \in \mathbb{Z}\right\}
$$

the diagonal weighted by the vector $a=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in\left(\mathbf{N}^{+}\right)^{n}$.

We distinguish a certain subset of the diagonal Δ which will play an important role in the following sections. Let
$\tilde{\Delta}=\left\{\sigma^{(J)} \in \Delta \mid-N+1 \leqslant J \leqslant O\right\}$.
Let $V_{m}(b)$ be the $R_{m}(b)-s p a n$ of

$$
\begin{equation*}
\left\{Y^{\operatorname{mMS}(\mu)} t^{\sigma(\mu)} \mid \sigma^{(\mu)} \in \tilde{\Delta}\right\} \tag{1.18}
\end{equation*}
$$

and

$$
V_{m}(b, c)=V_{m}(b) \cap L_{m}(b, c)
$$

2. REDUCTION THEORY.

The purpose of this section is to prove certain explicit reduction formulas modulo the submodule $\sum_{i=1}^{n} \hat{H}_{i}^{(m)} L_{m}(b, c+e)$ of $L_{m}(b, c)$, and to prove under the hypothesis $(\mathrm{p}, \mathrm{M})=1$, that

$$
\begin{equation*}
L_{m}(b, c)=V_{m}(b, c)+\sum_{i=1}^{n} \hat{H}_{i}^{(m)} L_{m}(b, c+e) . \tag{2.1}
\end{equation*}
$$

In the next section we will prove this sum is direct.
(2.2) LEMMA (Reduction to the diagonal). Assume (P, M) $=1$. Let $\alpha \in \mathbb{Z}^{n}, \quad \sum(\alpha)=J \cdot \underline{T h e n}$

$$
t^{\alpha}=u(\alpha) t^{\sigma}(J)+\sum_{i=1}^{n} \hat{H}_{i}^{(m)}\left(\gamma_{O}^{-1} p_{i, \alpha}\right)
$$

in which $u(\alpha)$ is a unit in Ω_{0}, and $p_{i, \alpha} \in O_{0}\left[t_{1} \ldots, t_{n},\left(t_{1}, \ldots, t_{n}\right)^{-1}\right]$ has the following properties $:$ if t^{β} is a monomial of $p_{i, \alpha}$ having non-zero coefficient, then

$$
\begin{equation*}
\sum(\beta)=\sum(\alpha)-1, \tag{i}
\end{equation*}
$$

and

$$
\begin{equation*}
s(\beta) \leqslant s(\alpha) . \tag{ii}
\end{equation*}
$$

$\underline{\text { Proof }}:$ If $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right) \in \mathbb{Z}^{n}$, then
$(2.3)_{i, j} \quad t^{\alpha}=a_{i} c_{j}\left(a_{j} c_{i}\right)^{-1} t^{\alpha-U_{i}+U_{j}}+\left(a_{j} \hat{H}_{i}^{(m)}-a_{i} \hat{H}_{j}^{(m)}\right)\left(\left(\gamma_{o} a_{j} c_{i}\right)^{-1} t^{\alpha-U_{i}}\right)$.
We describe this process as shifting from i to j. We use this process in either of two cases :
(i)

$$
\begin{align*}
& \alpha_{i}>0 ; \\
& \alpha_{i} \leqslant 0, \quad \text { and } \frac{-\alpha_{i}+1}{a_{i}} \leqslant s(\alpha) . \tag{ii}
\end{align*}
$$

In both cases, we have

$$
s\left(\alpha-U_{i}\right)=s(\alpha), s\left(\alpha+U_{j}-U_{i}\right) \leqslant s(\alpha)
$$

We use the shift process (2.3) repeatedly to reduce α to the diagonal.

As long as there exists a pair of indices (i,j) with $\alpha_{i}>0$ and $\alpha_{j}<O$ then we can shift from i to j, as above. Therefore, we may and will assume that either $\alpha_{i} \geqslant 0$ for all indices i, or that $\alpha_{i} \leqslant 0$ for all indices i. We treat these cases separately. Assume first that $\alpha_{i} \geqslant 0$ for all indices i. Then whenever $\alpha_{i}>0$, we may shift to j from i, for any $j, j \neq i$, and we obtain the assertion of the lemma after a finite number of steps.

Assume next that $\alpha_{i} \leqslant O$ for all indices i. If $s(\alpha)>S(J)$ and $-\frac{\alpha_{j}}{a_{j}}=s(\alpha)$, then we claim that we can shift from i to j. Note that since $\sum(\alpha)=\sum\left(\sigma^{(J)}\right)=J$ and $\alpha \neq \sigma^{(J)}$, therefore $\alpha_{i}>\sigma_{i}^{(J)}$ for some i . Thus,

$$
\frac{-\alpha_{i}+1}{a_{i}} \leqslant \frac{-\sigma_{i}^{(J)}}{a_{i}} \leqslant S(J)<s(\alpha),
$$

so that we can shift from i to j. In a finite number of steps we can reduce $s(\alpha)$; in fact, the process continues as long as $s(\alpha)>S(J)$. Therefore assume we have reduced α to $\tilde{\alpha}=\left(\tilde{\alpha}_{1}, \ldots, \tilde{\alpha}_{n}\right)$ with. $s(\tilde{\alpha})=S(J)$. If $\tilde{\alpha} \neq \sigma^{(J)}$, then $\sum(\tilde{\alpha})=\sum\left(\sigma^{(J)}\right)$ implies that $\tilde{\alpha}_{i}>\sigma_{i}^{(J)}$ and $\tilde{\alpha}_{j}<\sigma_{j}^{(J)}$ for some pair of indices (i,j). Then

$$
\frac{-\tilde{\alpha}_{i}+1}{a_{i}} \leqslant \frac{-\sigma_{i}^{(J)}}{a_{i}} \leqslant s(j)=s(\tilde{\alpha})
$$

so we can shift from i to j. In a finite number of steps, we reduce $\tilde{\alpha}$ to $\sigma^{(J)}$ as desired.
(2.4) THEOREM. Assume $(p, M)=1: \underline{\text { Let }} \xi=\sum_{(\alpha ; \gamma) \in S_{m}} A(\alpha ; \gamma) t^{\alpha} Y^{\gamma} \in L_{m}(b, c)$. Then for each $k \in \mathbb{Z}$,

$$
\Sigma \sum_{\Sigma(\alpha)=k} \sum_{(\alpha ; \gamma) \in S_{m}} A(\alpha ; \gamma) t^{\alpha} Y^{\gamma}=a_{k}(\gamma) t^{\sigma}(k)+\sum_{i=1}^{n} \hat{H}_{i}^{(m)} n_{i}
$$

where $a_{k}(Y)=\sum_{\Sigma(\alpha)=k} u(\alpha) \sum_{(\alpha ; \gamma) \in S_{m}} A(\alpha ; \gamma) Y^{\gamma} \in R_{m}(b, c+k b), a_{k}(Y) t^{\sigma(k)} \in L_{m}(b, c)$, $\eta_{i} \in L_{m}(b, c+e), u(\alpha)$ a unit in Ω_{o}

Proof : The reduction follows from lemma (2.2) (note that Y does not appear in $a_{j} \hat{H}_{i}^{(m)}-a_{i} \hat{H}_{j}^{(m)}$ so that we may multiply (2.3) $i_{i, j}$ by Y^{γ} to reduce $Y^{\gamma} t^{\alpha}$). If $\gamma \geqslant \operatorname{mMs}(\alpha)$, then using $s(\alpha) \geqslant s(\beta)$ for any monomial t^{β} of $p_{i, \alpha}$, we see that all monomials of $Y^{\gamma} p_{i, \alpha}$ belong to S_{m}; similarly by (1.9) and (1.14), $Y^{\gamma} t^{(k)} \in S_{m}$.

Note that if $S_{m, k}=\left\{(\alpha ; \gamma) \in S_{m} \mid \sum(\alpha)=k\right\}$, then ord $\sum_{(\alpha ; \gamma) \in S_{m, k}} u(\alpha) A(\alpha ; \gamma) \geqslant c+k b+\gamma \mathrm{Nbm}^{-1} M^{-1}$.
Thus, $a_{k}(Y) \in R_{m}(b, c+k b)$, and $a_{k}(Y) t^{\sigma} \in L_{m}(b, c)$. Similarly, in terms of (2.2), $n_{i}=\gamma_{O}^{-1} \sum_{(\alpha ; \gamma) \in S_{m, k}} A(\alpha ; \gamma) Y^{\gamma} p_{i, \alpha}$. Thus, if we write $n_{i}=\sum_{(\beta ; \gamma) \in S_{m, k}} B_{i}(\beta ; \gamma) t^{\beta} Y^{\gamma}$, then $B_{i}(\beta ; \gamma)$ has the from

$$
B_{i}(\beta ; \gamma)=\gamma_{O}^{-1}[A(\alpha ; \gamma) \varepsilon(\alpha)
$$

in which the sum runs over $\alpha \in \mathbb{Z}^{n}$ with $\sum(\alpha)=k=\sum(\beta)+1$, (so that $\left.w_{m}(\alpha ; \gamma)=w_{m}(\beta ; \gamma)+1\right)$, and $s(\beta) \leqslant s(\alpha) \leqslant m^{-1} M^{-1} \gamma$, and in which $\varepsilon(\alpha) \in O_{O}$. Thus,

$$
\text { ord } B_{i}(\beta ; \gamma) \geqslant c+e+b w_{m}(\beta ; \gamma)
$$

and $n_{i} \in I_{m}(b, c+e)$.
To reduce along the diagonal to the set $\tilde{\Delta}$, we will need the following formulas :
(i) $\quad Y^{\gamma} t^{\sigma(k)}=a_{g(k)} C_{g(k)}^{-1} Y^{\gamma+m M_{t} \sigma^{(k-N)}}+\hat{H}_{g(k)}^{(m)}\left(\gamma_{O}^{-1} C_{g(k)}^{-1} Y_{t}^{\gamma}{ }^{(k-1)}\right)$, if $k>0$;
(ii) $Y^{\gamma} t^{\sigma}{ }^{(k)}=c_{g(k+N)} a_{g(k+N)}^{-1} Y^{\gamma-m M_{t} \sigma^{(k+N)}}-\hat{H}_{g(k+N)}^{(m)}\left(\gamma_{O}^{-1} a_{g(k+N)}^{-1} Y^{\gamma-M m_{t}^{\sigma}}{ }^{(k+N-1)}\right)$,

$$
\text { if } k \leqslant-N \text {. }
$$

(2.6) LEMMA (Reduction along the diagonal). Assume (p, M) $=1$. Let $(\alpha ; \gamma) \in S_{m}, \underline{\text { with }} \alpha=\sigma^{(k)} \in \Delta, \sum(\alpha)=\sum\left(\sigma^{(k)}\right)=k . \quad$ Let $k=N \tau+\mu$ with $-\mathrm{N}<\mu \leqslant \mathrm{O}$. Then

$$
Y^{\gamma_{t}}{ }^{(k)}=\omega(k) Y^{\gamma+\tau m M_{t}{ }^{(\mu)}}+\sum_{i=1}^{n} \hat{H}_{i}^{(m)}\left(\gamma_{O}^{-1} p_{i, \alpha, \gamma}\right),
$$

in which $\omega(k)$ is a unit in 0_{0}. Furthermore, for
$k>0, p_{i, \alpha, \gamma} \in Y^{\gamma} O_{O}\left[Y, t_{1}, \ldots, t_{n}\right]$ such that if $Y^{\nu} t^{\beta}$ is a monomial term of $p_{i, \alpha, \gamma}$ having a non-zero coefficient, then
(i) $\beta \in \Delta$;
(ii) $\sum(\beta)=\sum(\alpha)-\lambda N-1$ for some $\lambda, O \leqslant \lambda<\tau$, and $v=\gamma+\lambda \mathrm{mM}$, (thus $\mathrm{w}_{\mathrm{m}}(\beta ; v)=\mathrm{w}_{\mathrm{m}}(\alpha ; \gamma)-1$) ;
(iii) $s(\beta)=s(\alpha)=0$.

For $k \leqslant-N, p_{i, \alpha, \gamma}$ is a polynomial with coefficients in 0_{0} in the variables $Y, t_{1}^{-1}, \ldots, t_{n}^{-l}$ such that if $Y^{\nu} t^{\beta}$ is a monomial term of $p_{i, \alpha, \gamma}$ having non-zero coefficient then
(i) $\beta \in \Delta$,
(ii) $\sum(\beta)=\sum(\alpha)+\lambda N-1$, for some $\lambda, 1 \leqslant \lambda \leqslant|\tau|$, and $\nu=\gamma-\lambda m M$, (thus $\left.\mathrm{w}_{\mathrm{m}}(\beta ; \nu)=\mathrm{w}_{\mathrm{m}}(\alpha ; \gamma)-1\right)$,
(iii) $s(\beta)=S(k+\lambda-1)-\lambda \leqslant s(\alpha)-\lambda$.

Proof : This is an immediate consequence of the reduction formulas (2.5). Note that if $k \leqslant-N$ we can verify (iii) as follows. Since $\beta \in \Delta$,

$$
\begin{aligned}
s(\beta) & =S(k+\lambda N-1) \\
& =S(k+\lambda-1+\lambda(N-1)) \\
& =S(k+\lambda-1)-\lambda \\
& \leqslant s(\alpha)-\lambda
\end{aligned}
$$

by periodicity (1.12).
(2.7) THEOREM. Assume $(\mathrm{P}, \mathrm{M})=1$. Let $\xi=\sum_{\alpha \in \Delta} A(\alpha ; \gamma) Y^{\gamma} t^{\alpha} \in L_{m}(b, c)$.

Then

$$
\xi=\sum_{\sigma} \sum_{(\mu)} \in \tilde{\Delta}^{\mathrm{b}_{\mu}(\mathrm{Y}) t^{\sigma(\mathrm{u})}+\sum_{i=1}^{\mathrm{n}} \hat{H}_{i}^{(m)} \zeta_{i} .}
$$

where

Proof : In fact, if we define τ_{α} for each $\alpha \in \Delta$ by $\sum(\alpha)=N \tau_{\alpha}+\mu$ (with $-N+1 \leqslant \mu \leqslant 0$), then $b_{\mu}(Y)=\sum_{\nu \geqslant \operatorname{mMS}(\mu)} b_{\mu}(\nu) Y^{\nu}$, where
(*)

$$
\mathrm{b}_{\mu}(\nu)=\sum_{\gamma+\tau} \sum_{\alpha M=\nu} A(\alpha ; \gamma) \omega\left(\sum(\alpha)\right)
$$

Since $\gamma \geqslant 0, \gamma+\tau_{\alpha} \mathrm{mM} \longrightarrow+\infty$ as $\tau_{\alpha} \longrightarrow \infty$. Since
$S(\alpha)=S\left(N \tau_{\alpha}+\mu\right)=S\left(\mu+\tau_{\alpha}\right)-\tau_{\alpha} \geqslant S\left(\sigma^{(\mu)}\right)-\tau_{\alpha}$ for $\tau_{\alpha}<0$,
$\gamma+\tau_{\alpha} \mathrm{mM} \longrightarrow+\infty$ for $(\alpha ; \gamma) \in S_{m}, \alpha \in \Delta$, as $\tau_{\alpha} \longrightarrow-\infty$. Thus the sum in (*) is finite. Thus

$$
\begin{aligned}
\operatorname{ord} b_{\mu}(\nu) & \geqslant \inf _{\gamma+\tau}^{\operatorname{mM}=v} \\
& \geqslant c+\operatorname{bw}_{m}(\sigma(\mu) ; v)
\end{aligned}
$$

Hence $\sum_{\sigma} \sum^{(\mu)} \in \tilde{\Delta} b_{\mu}(Y) t^{\sigma(\mu)} \in V_{m}(\mathrm{~b}, \mathrm{c})$.
Let $\zeta_{i}=\sum c_{i}(\beta ; v) t^{\beta} Y^{\nu}$, in which $\beta \in \Delta,(\beta ; \nu) \in S_{m}$. By the lemma, $\zeta_{i}=\sum_{O \geqslant \mu \geqslant-N+1} \zeta_{i, u}$, where

$$
\zeta_{i, \mu}=\gamma_{O}^{-1} \sum_{\Sigma(\alpha) \equiv \mu(\bmod N)} A(\alpha ; \gamma) p_{i, \alpha, \gamma} .
$$

Thus
(**) $\quad C_{i}(\beta)=\gamma_{O}^{-1} \sum A(\alpha ; \gamma) \varepsilon(\alpha)$
where $\varepsilon(\alpha) \in O_{O}$. In the case $\sum(\beta)>0$, the sum runs over $\alpha \in \Delta$, $(\alpha ; \gamma) \in S_{m}, \quad \sum(\alpha)=N \tau_{\alpha}+\mu=\sum(\beta)+\lambda N+1$ and $\nu=\gamma+\lambda m M$ for some $\lambda, 0<\lambda<\tau_{\alpha}$. Since γ and λ are both non-negative, the sum in (**) is finite. Furthermore since $w_{m}(\beta ; v)=w_{m}(\alpha ; \gamma)-1$,

$$
\text { ord } c_{i}(\beta) \geqslant c+e+b w_{m}(\beta ; v)
$$

On the other hand, if $\sum(\beta) \leqslant 0$, then the sum in (**) runs over $\alpha \in \Delta,(\alpha ; \gamma) \in S_{m}, \quad \sum(\alpha)=N \tau_{\alpha}+\mu=\sum(\beta)-\lambda N+1$ and $\nu=\gamma-\lambda m M$ for some $\lambda, \alpha \leqslant \lambda \leqslant\left|\tau_{\alpha}\right|$. Since $v=\gamma-\lambda m M \geqslant\left(s(\alpha)+\tau_{\alpha}\right) \mathrm{mM}$, and $s(\alpha)+\tau_{\alpha} \longrightarrow+\infty$ as $\sum(\alpha) \longrightarrow-\infty$, the sum in $(* *)$ is finite in this case also. Again $w_{m}(\beta ; v)=w_{m}(\alpha ; \gamma)-1$, implies the desired estimate

$$
\text { ord } c_{i}(\beta) \geqslant c+e+b w_{m}(\beta ; v)
$$

so that $\zeta_{i} \in L_{m}(b, c+e)$ as desired.

Combining theorems (2.4) and (2.7) we have (2.1) in the following precise form.
(2.8) THEOREM. Assume $(p, M)=1$. Then

$$
L_{m}(b, c)=V_{m}(b, c)+\sum_{i=1}^{n} \hat{H}_{i}^{(m)} L_{m}(b, c+e)
$$

In fact, if $\xi=\sum_{(\alpha ; \gamma) \in S_{m}} A(\alpha ; \gamma) Y^{\gamma} t^{\alpha} \in L_{m}(b, c)$, then

$$
\xi=\hat{v}+\sum_{i=1}^{n} \hat{H}_{i}^{(m)} \hat{\zeta}_{i}
$$

where $\hat{\zeta}_{i} \in L_{m}(b, c+e), \hat{v}=\sum_{-N+1 \leqslant v \leqslant O} v_{v}(Y) t^{\sigma(v)} \in V_{m}(b, c)$ Explicitly, $v_{v}(Y)=\sum_{\delta \geqslant m M s(v)} v_{v}(\delta) Y^{\delta}$, where

$$
\mathrm{v}_{v}(\delta)=\sum \mathrm{A}(\alpha ; \gamma) \mathrm{u}(\alpha) \omega\left(\sum(\alpha)\right)
$$

in which the sum runs over $(\alpha ; \gamma) \in S_{m}, \quad \sum(\alpha)=N \tau_{\alpha}+\nu, \quad \gamma+\tau_{\alpha} m M=\delta$, and $u(\alpha)$ and $\omega\left(\sum(\alpha)\right)$ are units.
3. DIRECTNESS OF SUM.

Let A be an arbitrary noetherian unique factorization domain in which c_{i} and a_{i} are units for all i. We have in mind the two cases $A=O_{0}$ and $A=\mathbb{F}_{q}$. Let $R=A\left[Y, t_{1}, \ldots, t_{n}, Y^{m M_{t}}{ }^{-a}\right]$, and $h_{i}^{(m)}=t_{i}-\varepsilon_{i} Y^{m M_{t}}{ }^{-a}$ where ε_{i} is a unit in A for every $i, i=1,2, \ldots, n$.
(3.1) THEOREM. The sequence $\left\{h_{i}^{(m)}\right\}_{i=1}^{n}$ in any order forms an R-sequence in R.

Proof : Let I be a proper subset of $\{1,2, \ldots, n\}$ and define the ideal of R

$$
c_{I}=\left(\ldots, h_{i}^{(m)} \ldots\right)_{i \in I}
$$

It suffices to show $h_{k}^{(m)}$ is not contained in any associated prime ideal of $C \mathscr{E}_{I}$ for $k \notin I$. For, if so, then

$$
\left(c r_{I}: h_{k}^{(m)}\right)=q_{I}
$$

We may assume by relabeling that $I=\{1, \ldots, j\}$, in which case
 $k=1$ is trivial). Let $S=A\left[Y, t_{1}, t_{j+1}, \ldots, t_{n}, Y^{m M_{t}}{ }^{-b}\right]$ where

$$
t^{-b}=t_{1}^{-b_{1}} t_{j+1}^{-b} b_{j+1} \ldots t_{n}^{-b_{j}}
$$

with $b_{1}=\sum_{\ell=1}^{j} a_{\ell}, b_{\ell}=a_{\ell}$ for $j+1 \leqslant \ell \leqslant n$. Then the homomorphism $\theta_{1}: R \rightarrow S$ defined by $\theta_{1}\left(t_{\ell}\right)=\varepsilon_{\ell} \varepsilon_{1}^{-1} t_{1}$, for $1 \leqslant \ell \leqslant j, \theta_{1}\left(t_{\ell}\right)=t_{\ell}$, for $\ell>j$, and $\theta_{1}(Y)=Y$, induces an isomorphism of rings

$$
R / C q_{j} \xrightarrow{\bar{\theta}_{1}} s / \mathscr{L}
$$

where $\mathscr{L}=\left(t_{1}-\varepsilon_{O} Y^{m M_{t}}{ }^{-b}\right)$ is a principal ideal, and $\varepsilon_{0}=\varepsilon_{1}^{b_{1}-a_{1}+1} \varepsilon_{2}^{-a_{2}} \ldots \varepsilon_{j}^{-a_{j}} \quad$ is a unit in A. Let $U=A\left[Y, t_{1}, t_{j+1}, \ldots, t_{n}, t_{n+1}\right]$. Then the homomorphism $\theta_{2}: U \longrightarrow S$ defined by $\theta_{2}\left(t_{\ell}\right)=t_{\ell}$ for $\ell \neq n+1, \theta_{2}(Y)=Y, \theta_{2}\left(t_{n+1}\right)=Y^{m M_{t}}-b$ induces an isomorphism of rings

$$
U / \Sigma \xrightarrow{\bar{\theta}_{2}} s / \mathscr{L}
$$

where $โ=\left(t_{1}-\varepsilon_{0} t_{n+1}, t_{n+1} t^{b}-Y^{m M}\right)$. Let $P=A\left[Y, t_{1}, t_{j+1}, \ldots, t_{n}\right]$. Then the homomorphism $\theta_{3}: U \longrightarrow P$ defined by $\theta_{3}\left(t_{l}\right)=t_{l}$, for $\ell \neq n+1, \theta_{3}(Y)=y, \theta_{3}\left(t_{n+1}\right)=\varepsilon_{0}^{-1} t_{1}$ induces an isomorphism of rings

$$
\mathrm{U} / \mathrm{L} \xrightarrow{\bar{\theta}_{3}} \mathrm{P} / \mathrm{\Sigma}^{2}
$$

where $\quad^{\prime}=\left(t_{1} t^{b}-\varepsilon_{0} Y^{m M}\right)$. Thus $h_{j+1}^{(m)}$ is not in any associated prime of a_{j} in R if and only if $\bar{\theta}_{3} \bar{\theta}_{2}^{-1} \bar{\theta}_{1}\left(\bar{h}_{j+1}^{(m)}\right)=\bar{t}_{j+1}-\bar{\varepsilon}_{j+1} \bar{\varepsilon}_{o}^{-1} \bar{t}_{1}$ is not in any associated prime of O in $P / A^{\text {. }}$. This in turn holds if and only if $t_{j+1}-\varepsilon_{j+1} \varepsilon_{O}^{-1} t_{1}$ is not in any associated prime of \square^{r} in P, a u.f.d. Let

$$
t_{1} t^{b}-\varepsilon_{0} Y^{m M}=\varepsilon \prod_{i=1}^{\ell} p_{i}(t, Y)^{r_{i}}
$$

be the factorization into relatively prime factors in P, ε a unit in $\mathrm{P}, \mathrm{r}_{\mathrm{i}}>0$. Then the ideals $\left(\mathrm{p}_{\mathrm{i}}(\mathrm{t}, \mathrm{Y})\right)$ are the associated prime of F^{-} in P. Suppose

$$
t_{j+1}-\varepsilon_{j+1} \varepsilon_{o}^{-1} t_{1} \in\left(p_{i}(t, Y)\right) \text { for some } i
$$

Then since $t_{j+1}-\varepsilon_{j+1} \varepsilon_{o}^{-1} t_{1}$ is clearly irreducible,

$$
t_{j+1}-\varepsilon_{j+1} \varepsilon_{o}^{-1} t_{1}=\varepsilon^{\prime} P_{i}(t, Y)
$$

where ε ' is a unit in P. Thus there is a polynomial $f(t, Y) \in P$ such that

$$
\left(t_{j+1}-\varepsilon_{j+1} \varepsilon_{O}^{-1} t_{1}\right) f(t, Y)=t_{1} t^{b}-\varepsilon_{O} Y^{m M}
$$

Specializing $t_{j+1} \longrightarrow \varepsilon_{j+1} \varepsilon_{o}^{-1} t_{1}$ in both sides yields a contradiction.

Let $W_{m}=\Omega\left[Y, t_{1}, \ldots, t_{n}, Y^{m M_{t}}{ }^{-a}\right], \quad q_{m}=\left(H_{1}^{(m)}, \ldots, H_{n}^{(m)}\right)$. For $k \in m^{-1} M^{-1} N$, let $W_{m}^{(k)}$ be the finite dimensional Ω-subspace of W_{m} spanned by monomials $Y^{\gamma} t^{\alpha}$ satisfying $(\alpha ; \gamma) \in S_{m}$ and $w_{m}\left(Y^{\gamma} t^{\alpha}\right)=k$. Let

$$
\begin{align*}
& c_{m}^{(k)}=c_{m} \cap w_{m}^{(k)} \tag{3.2}\\
& v_{m}^{(k)}=v_{m}(b) \cap w_{m}^{(k)} .
\end{align*}
$$

We claim :
(3.3)

$$
o_{\mathrm{m}}^{(\mathrm{k})} \oplus \mathrm{V}_{\mathrm{m}}^{(\mathrm{k})}=\mathrm{W}_{\mathrm{m}}^{(\mathrm{k})}
$$

Without the assertion of directness, the claim is a corollary of the results of the previous section. To see directness, we note more generally :
(3.4) THEOREM.

$$
V_{m}(b) \cap \sum_{i=1}^{n} \hat{H}_{i}^{(m)} L_{m}(b)=0
$$

Proof : Assume $v(Y, t) \in V_{m}(b)$ and $v(Y, t)=\sum_{i=1}^{n} \hat{H}_{i}^{(m)} \zeta_{i}$ with $\zeta_{i} \in L_{m}(b)$. Then ζ_{i} converges for
$(Y, t) \in\left\{\right.$ ord $t_{i}>-b$; ord $Y^{m M}-\sum_{i=1}^{n} a_{i}$ ord $\left.t_{i}>-b\right\}=G_{m}(b)$.
In particular, consider
(*)

$$
t^{a} v(y, t)=t^{a} \sum_{i=1}^{n} \hat{H}_{i}^{(m)} \zeta_{i}
$$

and set $t_{i}=\left(c_{i} a_{1}\right)^{-1} a_{i} c_{1} t_{1}$.
Set Y equal to a unit u in Ω that does not trivialize the left side of (*), which then becomes a non-trivial polynomial in t_{1} of degree at most $N-1$. However, the right side converges and in fact vanishes for each of the N distinct roots $t_{1} \in \Omega$ of

As consequence, both side of (*) vanish identically.
Using these results and the argument of $1, \S 3$ we obtain the following results
(3.5) THEOREM. Assume $(p, M)=1, \frac{p}{p-1} \geqslant b$.

$$
L_{m}(b, c)=V_{m}(b, c)+\sum_{i=1}^{n} H_{i}^{(m)} L_{m}(b, c+e) .
$$

(3.6) THEOREM. Assume $(p, M)=1, \frac{p}{p-1} \geqslant b$.

$$
V_{m}(b) \cap \sum_{i=1}^{n} H_{i}^{(m)} L_{m}(b)=(0)
$$

(3.7) THEOREM. Assume $(p, M)=1, \frac{p}{p} \geqslant b>\frac{1}{p-1}$.

$$
L_{m}(b, c)=V_{m}(b, c)+\sum_{i=1}^{n} D_{i}^{(m)} L_{m}(b, c+e)
$$

In fact, if $\xi \in L_{m}(b, c)$, and

$$
\xi=\tilde{v}+\sum_{i=1}^{n} H_{i}^{(m)} \tilde{\zeta}_{i}
$$

with $\tilde{v} \in V_{m}(b, c), \tilde{\zeta}_{i} \in L_{m}(b, c+e)$ as in (3.5), then we may express

$$
\xi=v+\sum_{i=1}^{n} D_{i}^{(m)} \zeta_{i}
$$

with $v \in V_{m}(b, c), \zeta_{i} \in L_{m}(b, c+e), \tilde{v}-v \in V_{m}(b, c+e), \tilde{\zeta}_{i}-\zeta_{i} \in L_{m}(b, c+2 e)$.
(3.8) THEOREM. Assume $(p, M)=1, \frac{p}{p-1} \geqslant b>\frac{1}{p-1}$.

Let $A \subseteq\{1,2, \ldots n\}$. If $\left\{\zeta_{i}\right\}_{i} A \subseteq L_{m}(b)$ satisfy

$$
\sum_{i \in A} D_{i}^{(m)} \zeta_{i}=0
$$

then there exists a skew-symmetric set $\left\{\eta_{i j}\right\}{ }_{i, j \in A} \subseteq L_{m}(b)$ indexed by A such that

$$
\zeta_{i}=\sum_{j \in A} D_{j}^{(m)} \eta_{i j}
$$

(3.9) THEOREM. Assume $(p, M)=1, \frac{p}{p-1} \geqslant b>\frac{1}{p-1}$. Then

$$
V_{m}(b) \cap \sum_{i=1}^{n} D_{i}^{(m)} L_{m}(b)=(0)
$$

We wish to compare reduction modulo the submodule
$\sum_{i=1}^{n} H_{i}^{(m)} L_{m}(b, c+e)$ (respectively, the submodule $\sum_{i=1}^{n} D_{i}^{(m)} L_{m}(b, c+e)$) with
reduction modulo $\sum_{i=1}^{n} \hat{H}_{i}^{(m)} L_{m}(b, c+e)$ studied in section 2 . We now specialize our considerations to the case $b=p /(p-1), e=1$.
(3.10) LEMMA. The following relation holds

$$
\hat{H}_{i}^{(m)}=H_{i}^{(m)} G_{i}^{(m)}+\Gamma_{i}^{(m)}
$$

where $r_{i}^{(m)} \in L_{m}\left(\frac{p}{p-1}, 0\right), G_{i}^{(m)} \in L_{m}\left(\frac{p}{p-1}\right)$ is invertible and both $G_{i}^{(m)}$ and $G_{i}^{(m)^{-1}}$ belong to $L_{m}\left(\frac{p}{p-1}, 0\right)$.

Proof : By definition, $\hat{H}_{i}^{(m)}=\gamma_{O}\left(c_{i} t_{i}-a_{i} Y^{m M_{t}}{ }^{-a}\right)$ with $a_{i} \in N^{*}$, $c_{i} \in \Omega_{0}, c_{i}^{q}=c_{i}$. Thus

$$
\begin{aligned}
H_{i}^{(m)}= & \sum_{\ell=0}^{\infty} p^{\ell} \gamma_{\ell}\left(c_{i}^{\tau^{\ell}} t_{i}^{p^{\ell}}-a_{i}^{\tau} Y^{m M p^{\ell}} t^{-a p^{\ell}}\right) . \\
= & \sum_{\ell=0}^{\infty} p^{\ell} \gamma_{\ell}\left(\left(c_{i} t_{i}\right)^{\left.p^{\ell}-\left(a_{i} Y^{m M_{t}}-a\right)^{\ell}\right)}\right. \\
& +\sum_{\ell=1}^{\infty} p^{\ell} r_{\ell}\left(a_{i}^{\tau}-a_{i}^{p^{\ell}}\right) Y^{m M p^{\ell}} t^{-a p^{\ell}} .
\end{aligned}
$$

Consider

$$
\begin{aligned}
& \tilde{\Gamma}_{i}^{(m)}=\sum_{\ell=1}^{\infty} p^{\ell} \gamma_{\ell}\left(a_{i}^{\tau^{\ell}}-a_{i}^{p^{\ell}}\right) Y^{m M p^{\ell}} t^{-a p^{\ell}}, \\
& \tilde{G}_{i}^{(m)}=1+\sum_{\ell=1}^{\infty} \gamma_{O}^{-1} \gamma_{\ell} p^{\ell} \sum_{j=0}^{p^{\ell}-1}\left(c_{i} t_{i}\right)^{j}\left(a_{i} Y^{m M_{t}-a}\right)^{p^{\ell}-j-1} .
\end{aligned}
$$

Using the fact $a_{i} \in \mathbb{Z}_{p}$, we get p divides $a_{i}^{\tau^{\ell}}-a_{i}^{p^{\ell}}$ so that $\tilde{\Gamma}_{i}^{(m)} \in L_{m}\left(\frac{p}{p-1}, 0\right) . \operatorname{Similarly} \tilde{G}_{i}^{(m)} \in L_{m}\left(\frac{p}{p-1}, 0\right)$.

Finally we note that a series of the form

$$
\lambda=1-\sum_{W_{m}(\alpha ; \gamma)>0} c(\alpha ; \gamma) Y^{\gamma} t^{\alpha} \in L_{m}(b, 0)
$$

is a unit in $L_{m}(b)$, with $\lambda^{-1} \in L_{m}(b, 0)$, for the series

$$
\sum_{j=0}^{\infty}\left(\sum_{w_{m}(\alpha ; \gamma)>0} c(\alpha ; \gamma) Y^{\gamma} t^{\alpha}\right)^{j}
$$

is defined, belongs to $L_{m}(b, O)$, and is an inverse to λ in $L_{m}(b)$. This shows that $H_{i}^{(m)}=\hat{H}_{i}^{(m)} \tilde{G}_{i}^{(m)}+\tilde{\Gamma}_{i}^{(m)}$. The lemma follows by solving for $\hat{H}_{i}^{(m)}$ in terms of $H_{i}^{(m)}$.
(3.14) THEOREM. Let $\xi \in L_{\mathrm{m}}\left(\frac{\mathrm{p}}{\mathrm{p}-1}, \mathrm{c}\right)$. Then ξ may be expressed by (2.8) in the form

$$
\xi=\hat{v}+\sum_{i=1}^{n} \hat{H}_{i}^{(m)} \hat{\zeta}_{i}
$$

with $\hat{v} \in V_{m}\left(\frac{p}{p-1}, c\right), \hat{\zeta}_{i} \in L_{m}\left(\frac{p}{p-1}, c+1\right)$, and ξ may also be expressed by (3.5) in the form

$$
\xi=\tilde{v}+\sum_{i=1}^{n} H_{i}^{(m)} \tilde{\zeta}_{i}
$$

with $\tilde{v} \in V_{m}\left(\frac{p}{p-1}, c\right), \tilde{\zeta}_{i} \in L_{m}\left(\frac{p}{p-1}, c+1\right)$. Then

$$
\hat{v}-\tilde{v} \in V_{m}\left(\frac{p}{p-1}, c+1\right)
$$

Furthermore $\hat{\zeta}_{i}$ and $\tilde{\zeta}_{i}$ may be chosen so that

$$
\tilde{\zeta}_{i}-G_{i}^{(m)} \hat{\zeta}_{i} \in L_{m}\left(\frac{p}{p-1}, c+2\right)
$$

Proof : (Cf. [1, lemma (3.6)]). Assume $\xi^{(\ell)} \in L_{m}\left(\frac{p}{p-1}, C+\ell\right) . B Y(2.8)$, we may write

$$
\xi^{(\ell)}=\hat{v}^{(\ell)}+\sum_{i=1}^{n} \hat{H}_{i}^{(m)} \hat{\zeta}_{i}^{(\ell)}
$$

with $\hat{v}^{(\ell)} \in V_{m}\left(\frac{p}{p-1}, c+\ell\right), \hat{\zeta}_{i}^{(\ell)} \in L_{m}\left(\frac{p}{p-1}, c+\ell+1\right)$.

Then by (3.10),

$$
\begin{equation*}
\xi^{(\ell)}=\hat{v}^{(\ell)}+\sum_{i=1}^{n} H_{i}^{(m)}\left(G_{i}^{(m)} \hat{\zeta}_{i}^{(\ell)}\right)+\xi^{(\ell+1)} \tag{3.15}
\end{equation*}
$$

where $\xi^{(\ell+1)}=\sum_{i=1}^{n} \Gamma_{i}^{(m)} \hat{\zeta}_{i}^{(\ell)} \in L_{m}(b, c+\ell+1)$.

Summing (3.15) from $\ell=0$ to $\ell=K$ and letting $K \rightarrow \infty$ we obtain the result.

Combining the above result (3.14) with (3.7) we get the following result.
(3.16) THEOREM. Assume $(p, M)=1$ Let $\xi \in L_{m}\left(\frac{p}{p-1}, c\right)$ be expressed by (2.8) as

$$
\xi=\hat{v}+\sum_{i=1}^{n} \hat{H}_{i}^{(m)} \hat{\zeta}_{i}
$$

with $\hat{v} \in V_{m}\left(\frac{p}{p-1}, c\right), \hat{\zeta}_{i} \in L_{m}\left(\frac{p}{p-1}, c+1\right)$ and by (3.7) as

$$
\xi=v+\sum_{i=1}^{n} D_{i}^{(m)} \zeta_{i}
$$

with $v \in V_{m}\left(\frac{p}{p-1}, c\right), \zeta_{i} \in L_{m}\left(\frac{p}{p-1}, c+1\right)$. Then

$$
v-\hat{v} \in V_{m}\left(\frac{p}{p-1}, c+1\right)
$$

and ζ_{i} and $\hat{\zeta}_{i}$ may be chosen so that

$$
\zeta_{i}-G_{i}^{(m)} \hat{\zeta}_{i} \in L_{m}\left(\frac{p}{p-1}, c+2\right)
$$

4. SPECIALIZATION.

The previous sections establish the cohomology in the "generic" case. In order to draw arithmetic consequences concerning generalized hyperkloosterman sums, we will need to specialize $L_{m}(b, c)$ by setting $Y \rightarrow y$ where $y \in \Omega^{*}$ satisfies ord $y>-N^{\prime} M^{-1} m^{-1}$.
(4.1) DEFINITIONS. Assume $x \in \Omega_{O}^{*}$, ord $x>-N b$. Define
(i) $L(x, b, c)=\left\{\sum_{\alpha \in \mathbb{Z}^{n}} A(\alpha) t^{\alpha} \mid A(\alpha) \in \Omega_{0}, \operatorname{ordA}(\alpha) \geqslant c+w(\alpha) b+s(\alpha)\right.$ ord $\left.x\right\}$;
(ii) $L(x, b)=\underset{c \in \mathbb{R}}{\cup} L(x, b, c)$;

$$
\begin{aligned}
& \text { (iii) } \hat{H}_{i, x}=\hat{H}_{i}(x, t) ; H_{i, x}=H_{i}(x, t) ; \\
& \text { (iv) } D_{i, x}=E_{i}+H_{i, x} ; \\
& \text { (v) } V=\Omega_{O}-\operatorname{span} \text { of }\left\{t^{\sigma}{ }^{(u)} \mid \sigma(u) \in \tilde{\Delta}\right\} \\
& \text { (vi) } V(x, b, c)=V \cap L(x, b, c) .
\end{aligned}
$$

Given $x \in \Omega_{0}^{*}$, ord $x^{m}>-N b$, we fix $y \in \Omega^{*}$ with $y^{M}=x$. Let $V_{m}(b, c)^{\prime}, L_{m}(b)^{\prime}, R_{m}(b)^{\prime}, L(x, b, c)^{\prime}, V(x, b, c) ', L(x, b)^{\prime}, V^{\prime}, ~ b e$ defined exactly as their unprimed counterpart but where the coefficients are allowed to lie in $\Omega_{0}^{\prime}=\Omega_{O}(y)$.

We then define an Ω_{0}^{\prime}-linear specialization map S_{y} (by sending $y \longrightarrow y$) on various of the space of §§ l-3 having targets as follows :

$$
\begin{array}{ll}
\left.s_{y}\right|_{L_{m}(b, c)^{\prime}}: & L_{m}(b, c)^{\prime} \longrightarrow L\left(x^{m}, b, c\right)^{\prime} \\
\left.s_{y}\right|_{L_{m}(b)^{\prime}}: & : L_{m}(b)^{\prime} \longrightarrow L\left(x^{m}, b\right)^{\prime}
\end{array}
$$

$$
\begin{align*}
& \mathrm{S}_{Y_{R_{m}}(b)^{\prime}}: R_{m}(b)^{\prime} \longrightarrow \Omega_{O}^{\prime} \tag{4.2}\\
& \left.S_{Y}\right|_{V_{m}(b)^{\prime}}: V_{m}(b)^{\prime} \longrightarrow V^{\prime} \\
& \sum_{i=1}^{n} D_{i}^{(m)} L_{m}(b)^{\prime} \longrightarrow \sum_{i=1}^{n} D_{i, x^{m}} L\left(x^{m}, b\right)^{\prime}
\end{align*}
$$

we can also define an Ω_{0}^{\prime}-linear section ℓ_{y} by sending

$$
\begin{equation*}
\ell_{y}: \sum_{\alpha \in \mathbb{Z}^{n}} A(\alpha) t^{\alpha} \longrightarrow \sum_{\alpha \in \mathbb{Z}^{n}} \frac{A(\alpha) \mathrm{Y}^{\mathrm{mMs}(\alpha)} t^{\alpha}}{x^{\mathrm{ms}(\alpha)}} . \tag{4.3}
\end{equation*}
$$

Clearly $S_{y}{ }^{\circ}{ }_{y}=1$ in the above cases so that the maps S_{y} in (4.2) are all surjective. The following result describes the kernel of the map S_{y}.
(4.4) THEOREM . Let x and y be as above. Then
$\left.\operatorname{ker} S_{y}\right|_{L_{m}(b, c)^{\prime}}=(Y-y) I_{m}(b, c-o r d y)^{\prime}$. Thus $\left.\operatorname{ker} S_{y}\right|_{L_{m}(b)}=(Y-y) L_{m}(b)^{\prime}$, $\left.\operatorname{ker} S_{y^{\prime}}\right|_{R_{m}(b)^{\prime}}=(Y-y) R_{m}(b)^{\prime}$, and $\left.\operatorname{ker} S_{Y}\right|_{V_{m}(b)^{\prime}}=(Y-y) V_{m}(b)^{\prime}$.

Proof $:$ Let $\xi=\sum_{(\alpha ; \gamma) \in S_{m}} A(\alpha ; \gamma) Y^{\gamma} t^{\alpha} \in L_{m}(b, c)^{\prime}$ and assume $S_{Y}(\xi)=0$. For each $\alpha \in \mathbb{Z}^{n}$, we must have

$$
\sum_{\gamma \geqslant m \mathrm{MS}(\alpha)} A(\alpha ; \gamma) y^{\gamma}=0 .
$$

Since $y \neq 0$, we may divide by $y^{m M s(\alpha)}$, so that

$$
\sum_{\gamma \geqslant 0} A(\alpha ; \gamma+m M s(\alpha)) y^{\gamma}=0 .
$$

Thus,

$$
\begin{aligned}
\xi & =\sum_{\alpha \in \mathbb{Z}^{n}}\left(\sum_{\gamma \geqslant 0} A(\alpha ; \gamma+m M s(\alpha))\left(Y^{\gamma}-y^{\gamma}\right)\right) Y^{m M s(\alpha)} t^{\alpha} \\
& =(Y-Y) \cdot \sum_{\alpha \in \mathbb{Z}^{n}}\left(\sum_{\gamma \geqslant 0} A(\alpha ; \gamma+m M s(\alpha)) \sum_{\lambda=0}^{\gamma-1} Y^{\lambda} y^{\gamma-1-\lambda}\right) Y^{m M s(\alpha)} t^{\alpha}
\end{aligned}
$$

and one checks easily that the second factor on the right belongs to $L_{m}(b, c \text {-ordy })^{\prime}$, since $\mathrm{NbM}^{-1} \mathrm{~m}^{-1}+$ ordy >0.

By (3.8), the operators $D_{i}^{(m)}$ form an R-sequence (in any order) on the $R_{m}(b)$-module $L_{m}(b)$. We recall the following standard result on Koszul complexes [8, Ch. 8, theorem 7].
(4.5) Let E be an R-module, $\left\{\delta_{j}\right\}_{j=1}^{s}$ central elements of R. If δ_{i} is not a zero divisor on $E / \sum_{j=1}^{i-1} \delta_{j} E$, then $H_{\mu}\left(\left\{\delta_{j}\right\}_{j=1}^{s} \mid E\right)=0$ for all $\mu>0$.

In particular, setting $R=R_{m}(b), E=L_{m}(b), \delta_{j}=D_{j}^{(m)}$, this implies the following result.
(4.6) THEOREM. Assume $(p, M)=1, \frac{p}{p-1} \geqslant b>\frac{1}{p-1}$.

Then

$H_{\mu}\left(\left\{D_{j}^{(m)}\right\}_{j=1}^{n} \mid L_{m}(b)\right)=0$
$\underline{\text { for }} \mu>0 . \quad\left(\underline{\text { Similarly }} H_{\mu}\left(\left\{D_{j}^{(m)}\right\} \mid L_{m}(b)^{\prime}\right)=0 \quad \underline{\text { for }} \mu>0\right)$.
Set $\delta_{n+1}=Y-y$.
(4.7) LEMMA. Assume $(p, M)=1, \frac{p}{p-1} \geqslant b>\frac{1}{p-1}$. Then $\delta_{n+1}=y-y$ is not a zero divisor on $L_{m}(b)^{\prime} / \sum_{i=1}^{n} D_{i}^{(m)} L_{m}(b)^{\prime}$.

Proof : Assume
(*)

$$
(Y-y) \xi=\sum_{i=1}^{n} D_{i}^{(m)} \zeta_{i}
$$

where $\xi \in L_{m}(b, c)^{\prime}, \zeta_{i} \in L(b) '$. Then by (3.7)
(**)

$$
\xi=v+\sum_{i=1}^{n} D_{i}^{(m)} n_{i}
$$

where $v \in V_{m}(b, c)^{\prime} . \eta_{i} \in L_{m}(b, c+e)^{\prime}$. Thus (*), (**), and (3.9)
imply that $\mathrm{v}=\mathrm{O}$ which completes the proof of the lemma. \quad.
As a consequence of the lemma and (4.5) we obtain :
(4.8) THEOREM. Assume $(p, M)=1, \frac{p}{p-1} \geqslant b>\frac{1}{p-1}$.

Then $H_{\mu}\left(\left\{\delta_{j}\right\}_{j=1}^{n+1} \mid L_{m}(b)^{\prime}\right)=0 \quad$ for,$\mu>0$, where $\delta_{j}=D_{j}^{(m)}$ for $1 \leqslant j \leqslant n$ and $\delta_{n+1}=Y-y$.

We recall the following result [8, Ch. 8, theorem 4] on Koszul complexes :
(4.9) Let E be an R-module, $\left\{\delta_{j}\right\}_{j=1}^{\mathbf{S}}$ central elements of R. If δ_{s} is not a zero divisor on E then there is an isomorphism of R-modules

$$
H_{\mu}\left(\left\{\delta_{i}\right\}_{i=1}^{s} \mid E\right) \cong H_{\mu}\left(\left\{\delta_{i}\right\}_{i=1}^{S-1} \mid E / \delta_{\mathbf{s}} E\right)
$$

for all $\mu \geqslant 0$.

It is an immediate corollary of (4.3) and (4.4) that
$L_{m}(b)^{\prime} /(Y-y) L_{m}(b)^{\prime} \cong L\left(x^{m}, b\right)^{\prime} \quad$ (where $y^{M}=x$)
and thus there is an isomorphism over Ω_{0}^{\prime} for all $\mu \geqslant 0$, (4.10) $\quad H_{\mu}\left(\left\{\delta_{i}\right\}_{i=1}^{n} \mid L_{m}(b)^{\prime} / \delta_{n+1} L_{m}(b)^{\prime}\right) \xlongequal{\cong} H_{\mu}\left(\left\{D_{i, x^{m}}\right\}_{i=1}^{n} \mid L\left(x^{m}, b\right)^{\prime}\right) \quad$. Combining (4.8), (4.9) and (4.10) yields
(4.11) THEOREM. Assume $(p, M)=1, \frac{p}{p-1} \geqslant b>\frac{1}{p-1}, x \in \Omega_{O}$, ord $x^{m}>-N b$. Then

$$
H_{\mu}\left(\left\{D_{i, x^{m}}\right\}_{i=1}^{n} \mid L\left(x^{m}, b\right)^{\prime}\right)=0
$$

for $\mu>0, m \geqslant 1$.

It remains to examine $H_{O}=L\left(x^{m}, b\right)^{\prime} / \sum_{i=1}^{n} D i, x^{m^{L}\left(x^{m}, b\right)^{\prime} \text {, of the }}$ specialized complex, which by (4.9) and (4.10) is isomorphic as an Ω_{0}^{\prime} - vector space to $L_{m}(b)^{\prime} /\left((Y-y) L_{m}(b)^{\prime}+\sum_{i=1}^{n} D_{i}^{(m)} L_{m}(b)^{\prime}\right)$.
(4.12) THEOREM. Assume $(p, M)=1, \frac{p}{p-1} \geqslant b>\frac{1}{p-1}$.

Let $V_{O}^{\prime}=\Omega_{O}^{\prime}-\underline{\operatorname{span} \text { of }}\left\{\left.Y^{m M s(\mu)} t^{\sigma(\mu)}\right|_{\sigma}{ }^{(\mu)} \in \tilde{\Delta}\right\}$.
Then

$$
L_{m}(b)^{\prime}=V_{O}^{\prime} \oplus\left\{\sum_{i=1}^{n} D_{i}^{(m)} L_{m}(b)^{\prime}+(Y-y) L_{m}(b)^{\prime}\right\}
$$

Proof : Let $\xi \in L_{m}(b)^{\prime}$. Then by (3.7),

$$
\xi=v+\sum_{i=1}^{n} D_{i}^{(m)} \zeta_{i}
$$

where $v \in V_{m}(b)^{\prime}, \zeta_{i} \in L_{m}(b)^{\prime}$. Since

$$
v=\sum_{-N+1 \leqslant \mu \leqslant 0} a_{\mu}(Y) Y^{\operatorname{mMS}(\mu)} t^{\sigma}(\mu)
$$

with $a_{\mu}(Y) \in R_{m}(b)^{\prime}$, we obtain as in (4.4)

$$
v=\sum_{-N+1 \leqslant \mu \leqslant O} a_{\mu}(y) Y^{\operatorname{mMS}(\mu)_{t}}{ }^{(\mu)}+\delta
$$

with $\delta \in \operatorname{Ker} S_{y} \cap V_{m}(b)^{\prime}=(Y-y) V_{m}(b)^{\prime}$. This establishes everything except for the directness of the sum above. Assume $v_{0} \in V_{O}^{\prime}$

$$
v_{O}=\sum_{-N+1 \leqslant \mu \leqslant 0} a_{\mu} Y^{m M S(\mu)} t^{\sigma(\mu)}=\sum_{i=1}^{n} D_{i}^{(m)} \zeta_{i}+(Y-y) \eta
$$

with $\zeta_{i}, \eta \in L_{m}(b)$ '. By (3.7), we have

$$
n=v+\sum_{i=1}^{n} D_{i}^{(m)} \eta_{i}
$$

with $v \in V_{m}(b)^{\prime}, \eta_{i} \in L_{m}(b)^{\prime}$. Using directness of the sum (3.9), we have

$$
\sum_{-N+1 \leqslant \mu \leqslant 0} a_{\mu} Y^{\operatorname{mMS}(\mu)} t^{\sigma(\mu)}=(Y-y) v
$$

Applying S_{y} to both sides, and recalling $y \neq 0$, we get $a_{\mu}=0$ for all $-N+1 \leqslant \mu \leqslant O$ so that $\mathrm{v}_{\mathrm{O}}=0$.

We summarize the above results in terms of the specialized Koszul complex.
(4.13) THEOREM. Assume $(p, M)=1, \frac{p}{p-1} \geqslant b>\frac{1}{p-1}$. Assume $x \in \Omega_{0}^{*}$, ord $x>-N b$. Then

$$
L(x, b, c)=V(x, b, c) \oplus \sum_{i=1}^{n} D_{i, x} L(x, b, c,+e)
$$

so that

$$
H_{O}\left(\left\{D_{i, x}\right\}_{i=1}^{n} \mid L(x, b)\right) \cong \operatorname{span}_{\Omega_{O}}\left\{t^{\sigma(\mu)} \mid \sigma(\mu) \in \tilde{\Delta}\right\}
$$

(as vector spaces over Ω_{0}).
Furthermore, $\quad H_{\mu}\left(\left\{D_{i, x}\right\}_{i=1}^{n} \mid L(x, b)\right)=0$, for $\mu \geqslant 1$.

Proof : We emphasize that the above assertion has Ω_{0} (not Ω_{0}^{\prime}) as the field of definition. First of all, we have already observed that $H_{\mu}\left(\left\{D_{i, x}\right\}_{i=1}^{n} \mid L(x, b)^{\prime}\right)=0$ for $\mu \geqslant l$, so that the last assertion fol-

S. SPERBER

lows from

$$
\begin{equation*}
H_{\mu}\left(\left\{D_{i, x}\right\}_{i=1}^{n} \mid L(x, b)^{\prime}\right)=H_{\mu}\left(\left\{D_{i, x}\right\}_{i=1}^{n} \mid L(x, b)\right) \Omega_{\Omega_{0}}^{\Omega_{0}^{\prime}} \tag{4.14}
\end{equation*}
$$

and the fact that $H_{\mu}\left(\left\{D_{i, x}\right\}_{i=1}^{n} \mid L(x, b)\right) \quad$ is a vector space over Ω_{0}. For the first assertion, we note that from (4.12) we can conclude

$$
\begin{equation*}
L(x, b, c)^{\prime}=V(x, b, c)^{\prime} \oplus\left(\sum_{i=1}^{n} D_{i, x^{L}}(x, b, c+e)^{\prime}\right) \tag{4.15}
\end{equation*}
$$

Let $\left\{\eta_{i}\right\}_{i=1}^{K}$ be a basis for $\Omega_{0}^{\prime} / \Omega_{0}$ with $\eta_{1}=1,\left\{\eta_{i}\right\} \subseteq 0_{0}^{\prime}$ (=ring of integers of Ω_{0}^{\prime}), and the property that if

$$
\omega=\sum \omega_{i} \eta_{i}, \quad \omega_{i} \in \Omega_{O}
$$

then ord $\omega_{1} \geqslant$ ord ω. For example, if $e\left(\Omega_{j}^{\prime} / \Omega_{0}\right)=s, f\left(\Omega_{0}^{\prime} / \Omega_{0}\right)=f$ π^{\prime} a uniformizer for $\Omega_{0}^{\prime},\left\{\bar{\zeta}_{1}, \bar{\zeta}_{2}, \ldots, \bar{\zeta}_{f}\right\}$ a basis for $\bar{\Omega}_{0} / \bar{\Omega}_{O}$, with $\bar{\zeta}_{1}=\overline{1}^{\prime} \zeta_{1}=1, \zeta_{i}$ an arbitrary lifting of $\bar{\zeta}_{i}$ for $i \neq 1$, then as is well-known $\left\{\zeta_{i}\left(\pi^{\prime}\right)^{j}\right\}_{i=1, \ldots, f ;} j=1,2, \ldots, s$ is a basis for $\Omega_{j}^{\prime} / \Omega_{0}$. But then if

$$
\omega=\sum_{i=1}^{f}\left(\sum_{j=1}^{S} \omega_{i j}\left(\pi^{\prime}\right)^{j}\right) \zeta_{i}
$$

we obtain from the linear independence of the $\bar{\zeta}_{i}$'s that ord $\left.\omega=\underset{i}{\inf } \operatorname{ord}\left(\sum_{j=1}^{S} \omega_{i j}\left(\pi^{\prime}\right)^{j}\right)\right\}$. From the fact that π^{\prime} is a uniformizer for Ω_{0}^{\prime} and $e\left(\Omega_{0}^{\prime} / \Omega_{0}\right)=s$, we obtain

$$
\operatorname{ord}\left(\sum_{j=1}^{S} \omega_{i j}\left(\pi^{\prime}\right)^{j}\right)=\inf _{l \leqslant j \leqslant s} \operatorname{ord}\left(\omega_{i j}\left(\pi^{\prime}\right)^{j}\right)
$$

Thus ord $\omega_{1,0} \geqslant$ ord ω as required.
Now if $\xi \in L(x, b, c)$, then by (4.15), we may conclude that
(4.16)

$$
\xi=\sum_{\sigma}(\mu)_{\in \tilde{\Delta}^{2}} v_{\mu} t^{\sigma(\mu)}+\sum_{i=1}^{n} D_{i, x} \sum_{\alpha \in \mathbb{Z}} n^{A_{i}}(\alpha) t^{\alpha}
$$

where $v_{\mu}, A_{i}(\alpha) \in \Omega_{0}^{\prime}$ and ord $A_{i}(\alpha) \geqslant c+e+w(\alpha) b+s(\alpha)$ ord x. Writing

$$
v_{\mu}=\sum_{j=1}^{K} v_{\mu}^{(j)} \eta_{j}
$$

$$
A_{i}(\alpha)=\sum_{j=1}^{K} A_{i}^{(j)}(\alpha) \eta_{j}
$$

we obtain since ξ is defined over Ω_{0}
(4.17)

$$
\xi=\sum_{\sigma}^{(\mu)} \underset{\Delta}{ }{\underset{\Delta}{V}}^{(1)} t^{\sigma(\mu)}+\sum_{i=1}^{n} D_{i, x} \sum_{\alpha \in \mathbb{Z}^{n}} A_{i}^{(1)}(\alpha) t^{\alpha}
$$

Since ord $v_{\mu}^{(1)} \geqslant$ ord v_{μ}, ord $A_{i}^{(1)}(\alpha) \geqslant \operatorname{ord} A_{i}(\alpha)$ we obtain from (4.17) that

$$
L(x, b, c)=V(x, b, c)+\sum_{i=1}^{n} D_{i, x^{L}}(x, b, c+e)
$$

The directness of this sum is as immediate consequence of (4.15). We observe that (4.16) also implies

$$
\begin{equation*}
\sum_{\sigma}^{(\mu)} \in_{\triangle} v_{\mu}^{(j)} t^{\sigma(\mu)}=-\sum_{i=1}^{n} D_{i, x} \sum_{\alpha \in \mathbb{Z}^{n}} A_{i}^{(j)}(\alpha) t^{\alpha} \tag{4.18}
\end{equation*}
$$

which by directness gives that both sides of (4.18) are zero, hence we have the additional information that in the reductions (4.16) and (4.17)
(4.19)

$$
v_{\mu}=v_{\mu}^{(1)}
$$

5. FROBENIUS MAP.

Let $q=p^{r}$. In the present section, we apply the previous results to the study of the Kloosterman-like exponential sums :

$$
\begin{equation*}
S_{m}(\bar{f}(x, t))=\sum \Psi \circ T r_{F}{ }_{q} / \mathbf{F}_{q}(\bar{f}(x, \bar{t})) \tag{5.1}
\end{equation*}
$$

where $\overline{\mathrm{f}}(\overline{\mathrm{x}}, \overline{\mathrm{t}})$ is the reduction of (1.5) (with $\mathrm{Y}=\overline{\mathrm{x}}$), and where the outer sum on the right runs over $t=\left(t_{1}, t_{2}, \ldots, t_{n}\right) \in\left(\mathbb{F}_{q^{m}}^{*}\right)^{n}$; Ψ is an arbitrary non-trivial additive character of \mathbb{F}_{q}; and $\left\{\overline{C_{i}}\right\}_{i=1}^{n} \cup\{x\} \subseteq \mathbb{F}_{q}^{*}$. Let c_{i}, x denote Teichmuller liftings of \bar{c}_{i} and $\bar{x}\left(c_{i}^{q}=c_{i}, x^{q}=x\right)$. Set $\Omega_{1}=\Phi_{p}\left(\zeta_{p}\right) ; K_{r}=$ the unramified extension of Q_{p} in Ω of degree $r ; \mathcal{F}=$ the completion of the maximal unramified extension of Q_{p} in $\Omega ; \Omega_{0}=K_{r}\left(\zeta_{p}\right)$. Note $c_{i}, x \in \Omega_{o}$. We
will choose ψ special - we assume that $\psi=0 \circ \operatorname{Tr}_{\mathbf{F}_{\mathrm{q}}} / \mathbb{F}_{\mathrm{p}}$, where () is a non-trivial additive character of \mathbb{F}_{p}. However, as \bar{b} runs over $\mathbb{F}_{\mathrm{q}}^{+}$, ob runs overs the non-trivial additive characters of \mathbb{F}_{q}; since our results will be independent of the constants $\left\{\bar{c}_{i}\right\}_{i=1}^{n}$, there is no loss of generality in choosing ψ special - thus, results (5.31) and (5.46) are independent of the choice of non-trivial additive characters ψ of \mathbb{F}_{q}.

Let $E(z)=\exp \left(\sum_{j=0}^{\infty} z^{p^{j}} / p^{j}\right)$ be the Artin-Hasse exponential series ; fix $\gamma \in \mathbb{Q}_{p}\left(\zeta_{p}\right)$, ord $\gamma=1 /(p-1)$, satisfying $\sum_{j=0}^{\infty} \gamma^{p^{j} / p^{j}=0 .}$ Dwork calls the function

$$
\begin{equation*}
\Theta_{\infty}(z)=E(\gamma z) \tag{5.2}
\end{equation*}
$$

a splitting function. As a power series in z,

$$
\begin{equation*}
\theta_{\infty}(z)=\sum_{m=0}^{\infty} B_{m} z^{m} \tag{5.3}
\end{equation*}
$$

with ord $B_{m} \geqslant m /(p-1)$, for all $m \geqslant 0$; and $B_{m}=\gamma / m!$, for
$0 \leqslant m \leqslant p-1$. In terms of Θ_{∞} we define

$$
\begin{equation*}
F_{O}(Y, t)=\theta_{\infty}\left(Y t^{-a}\right){\underset{i=1}{n} \Theta_{\infty}\left(c_{i} t_{i}\right), ~, ~, ~}_{i=1} \tag{5.4}
\end{equation*}
$$

so that

$$
\begin{equation*}
F_{O}\left(Y^{m M}, t\right) \in L_{m}\left(\frac{1}{p-1}, 0\right) \tag{5.5}
\end{equation*}
$$

In terms of F_{O} we define

$$
\begin{equation*}
F(Y, t)=\prod_{j=0}^{r-1} F_{0}^{\tau}\left(Y^{P^{j}}, t^{p^{j}}\right) \tag{5.6}
\end{equation*}
$$

so that

$$
F\left(Y^{m M}, t\right) \quad L_{m}\left(\frac{p}{q(p-1)}, 0\right)
$$

We also define an $R_{1}(b)$-linear map ψ,

$$
\psi: L_{1}(b, c) \longrightarrow L_{p}(p b, c),
$$

defined on monomials by

$$
\psi\left(t^{\alpha}\right)=\left\{\begin{array}{l}
t^{\alpha / p}, \text { when } p \mid \alpha_{i}, 1 \leqslant i \leqslant n ; \tag{5.7}\\
0, \text { otherwise } ;
\end{array}\right.
$$

and extended "linearly" to arbitrary elements of $L_{1}(b, c)$. Then for $\frac{p}{p-1} \geqslant b>\frac{1}{p-1}$,

$$
\begin{equation*}
\alpha_{Y^{M}}=\psi^{r} \circ F\left(Y^{M}, t\right): L_{l}(b, c) \longrightarrow L_{q}(b, c) \tag{5.8}
\end{equation*}
$$

is an $R_{1}(b)-l i n e a r$ map. Choose $y \in \Omega$ such that $y^{M}=x$. By definition, $S_{Y} \circ \psi=\psi \circ S_{Y}$, so that

$$
\begin{equation*}
S_{Y}{ }_{Y^{M}}=\alpha_{X}{ }^{\circ} S_{Y} \tag{5.9}
\end{equation*}
$$

where $\alpha_{x}=\psi^{r} \circ F(x, t)$ acts on $L(x, b, c)$. The significance of the map α_{x} arises from the Dwork trace formula. Let

$$
\begin{equation*}
L(\bar{f}, T)=\exp \left(\sum_{m=1}^{\infty} S_{m}(\bar{f}) T^{m} / m\right) \tag{5.10}
\end{equation*}
$$

be the L-function associated with the exponential sum (5.1). Then a consequence of Dwork's trace formula is

$$
\begin{equation*}
\operatorname{det}\left(I-T \alpha_{x}\right)^{\delta^{n}}=L(\bar{f}, T)^{(-1)^{n+1}} \tag{5.11}
\end{equation*}
$$

where $\operatorname{det}\left(I-T \alpha_{x}\right)$ denotes the Fredholm determinant of the completely continous endomorphism α_{x} acting on $L(x, b)$, and where δ acts on $g(T) \in 1+T \Omega[[T]]$ by $g(T)^{\delta}=g(T) / g(q T)$.

We now fix the choice of constants (1.6), $\left\{\gamma_{j}\right\}_{j=0}^{\infty}$, by
setting

$$
\left\{\begin{array}{l}
r_{0}=\gamma \tag{5.12}\\
r_{j}=\sum_{\ell=0}^{j} r^{p^{\ell} / p^{\ell}=-\sum_{\ell=j+1}^{\infty} r^{p^{\ell} / p^{\ell}} .} ~
\end{array}\right.
$$

We recall $[1, \S 4]$ that

$$
\left\{\begin{array}{l}
F_{O}\left(Y^{M}, t\right)=\hat{F}\left(Y^{M}, t\right) / \hat{F}^{\tau}\left(Y^{M p}, t^{p}\right) ; \\
F\left(Y^{M}, t\right)=\hat{F}\left(Y^{M}, t\right) / \hat{F}\left(Y^{M q}, t^{q}\right),
\end{array}\right.
$$

where \hat{F} is given in (1.7). The following commutativity relation may then be derived

$$
\begin{equation*}
\alpha_{Y^{M}} \circ D_{i}^{(1)}=q D_{i}^{(q)} \circ \alpha_{Y^{M}} \tag{5.13}
\end{equation*}
$$

Relation (5.13) specializes via S_{y} to

$$
\begin{equation*}
\alpha_{x}{ }^{\circ D_{i, x}}=q D_{i, x} \alpha_{x} \tag{5.14}
\end{equation*}
$$

As a consequence, α_{x} acts on the Koszul complex $K\left(\left\{D_{i, x}\right\} i_{i=1}^{n} \mid L(x, b)\right)$ yielding via the results of the previous sections and $[1, \S 4]$,

$$
\begin{equation*}
\operatorname{det}\left(I-T \bar{\alpha}_{x}\right)=L(\bar{f}(\bar{x}, \bar{E}), T)^{(-1)^{n+1}} \tag{5.15}
\end{equation*}
$$

where $\bar{\alpha}_{x}$ is the map α_{x} acting on the quotient

$$
w_{x}\left(=H_{O}\left(\left\{D_{i, x}\right\}_{i=1}^{n} \mid L(x, b)\right) \Longrightarrow L(x, b) / \sum_{i=1}^{n} D_{i, x} L(x, b)\right.
$$

Note that if

$$
\left\{\begin{array}{l}
{ }_{\alpha}^{(O)}=\hat{F}^{\tau}\left(Y^{M M}, t\right)^{-1} \circ \psi \circ \hat{F}\left(Y^{M}, t\right)=\psi \circ F_{O}\left(Y^{M}, t\right) \tag{5.16}\\
\alpha_{X}^{(O)}=S_{Y} \circ \alpha{ }_{Y}^{(O)}=\hat{F}^{\tau}\left(x^{P}, t\right)^{-1} \circ \psi \circ \hat{F}(x, t)=\psi \circ F_{O}(x, t)
\end{array}\right.
$$

then $\underset{Y^{M}}{\alpha(O)}$ is an $R_{1}(b)$ linear map from $L_{l}(b)$ to $L_{p}(b)$, and $\alpha_{X}^{(O)}$ is an Ω_{0}-linear map,

$$
\left\{\begin{array}{l}
\underset{Y^{M}}{(0)}: L_{1}(b, c) \longrightarrow L_{p}(p b, c) \\
\alpha_{x}^{(O)}: L(x, b, c) \longrightarrow L\left(x^{p}, p b, c\right)
\end{array}\right.
$$

$\left(\frac{p}{p-1} \geqslant b>\frac{1}{p-1}\right)$ satisfying

$$
\left\{\begin{array}{l}
\alpha_{Y^{M}}^{(0)} \circ D_{i}^{(1)}=p_{i, \tau}^{(p)} \circ \alpha \alpha_{Y}^{(O)} \tag{5.17}\\
\alpha_{x}^{(O)} \circ D_{i, x}=p_{i, x}^{(\tau)} p^{\circ \alpha_{x}^{(0)}}
\end{array}\right.
$$

in which $D_{i, \tau}^{(m)}=E_{i}+H_{i}^{\tau}\left(Y^{M m}, t\right), D_{i, x}^{(\tau)}=E_{i}+H_{i}^{\tau}(x, t)$. Thus $\underset{Y^{M}}{(0)}$ and $\alpha_{\mathbf{x}}^{(0)}$ define obvious quotient maps
(5.18)

The following factorizations hold

Finally for $x \in \mathscr{O}\left(\zeta_{p}\right)$, ord $x \geqslant 0, \tau(x)=x^{p}$, we can define

$$
\begin{equation*}
\tau^{-1}:{\underset{x}{p}}_{w^{(\tau)}}^{\longrightarrow} w_{x} \tag{5.20}
\end{equation*}
$$

by sending $\xi=\sum_{\alpha} A(\alpha) t^{\alpha} \in L\left(x^{p}, b, c\right)$ into

$$
\tau^{-1}(\xi)=\sum_{\alpha} \tau^{-1}(A(\alpha)) t^{\alpha} \in L(x, b, c)
$$

clearly

$$
\tau^{-1}\left(\sum_{i=1}^{n}{ }_{D}(\tau) p^{L}\left(x^{p}, b\right)\right) \subset \sum_{i=1}^{n} D_{i, x^{L}}(x, b),
$$

so τ^{-1} is defined on the quotient. In the rest of this section, we fix $b=p /(p-1), e=1$. Let $x=x^{q}, q=p^{r}$; let

$$
\begin{equation*}
\bar{\alpha}_{x}^{\prime}=\tau^{-1} \circ \bar{\alpha}_{x}^{(0)}: w_{x} \longrightarrow w_{x} \tag{5.21}
\end{equation*}
$$

a τ^{-1} (semi)-linear map. Then $\bar{\alpha}_{x}^{\prime}$ is a completely continuous endomorphism of $L\left(x, \frac{p}{p-1}\right)$ over $\Omega_{1}=Q_{p}\left(\xi_{p}\right)$, and

$$
\bar{\alpha}_{x}=\left(\bar{\alpha}_{x}^{\prime}\right)^{r}
$$

Remark : The following result of Dwork [2, lemma 7.l] will be instrumental in obtaining a general lower bound for the Newton polygon of $\operatorname{det}_{\Omega_{0}}\left(I-T \bar{\alpha}_{x}\right)\left(=L(\bar{f}, T)^{\left.(-1)^{n+1}\right) \text {. } . ~ . ~}\right.$
(5.22) LEMMA (Dwork). Let $x^{q}=x, q=p^{r}$. The Newton polygon of $\operatorname{det}_{\Omega_{O}}\left(I-T \alpha_{x}\right)$ can be obtained from that of $\operatorname{det}_{\Omega_{1}}\left(I-T \bar{\alpha}_{X}^{\prime}\right)$ by reducing both ordinates and absissas by the factor $1 / r$ and interpreting the ordinates as normalized so that ord $q=1$.

We need estimates for the matrix of $\bar{\alpha}_{\mathbf{x}}^{(0)}$. Observe that

$$
\begin{equation*}
\mathrm{Y}^{M S(\mu)_{t}}{ }^{(\mu)} \in L_{1}\left(\frac{1}{\mathrm{p}-1}, \frac{-\mathrm{W}(\mu)}{\mathrm{p}-1}\right) \tag{5.23}
\end{equation*}
$$

for $\sigma(\mu) \in \Delta$, so that ${ }_{\alpha}^{(O)}\left(Y^{M S}(\mu) t^{\sigma}{ }^{(\mu)}\right) \in L_{p}\left(\frac{p}{p-1}, \frac{-W(\mu)}{p-1}\right)$, and we may write

with $\tilde{A}_{v, \mu}(Y) \in R_{p}\left(\frac{p}{p-1}, \frac{p W(\nu)-W(\mu)}{p-1}\right)$, and $\zeta_{i} \in L_{p}\left(\frac{p}{p-1}, \frac{-W(\mu)}{p-1}+1\right)$. Applying S_{y} to (5.24) and multiplying the result by $x^{-S(\mu)}$, we obtain

$$
\begin{align*}
\alpha_{x}^{(0)}\left(t^{\sigma(\mu)}\right)= & \sum_{\sigma}^{(v)} \in \tilde{\Delta}^{A_{\nu, \mu}(y)} x^{p S}(\nu)-S(\mu) t^{\sigma}(v) \tag{5.25}\\
& +\sum_{i=1}^{n} D_{i, x^{p}}^{(\tau)}\left(S_{y}\left(\zeta_{i}\right) x^{-S(\mu)}\right.
\end{align*}
$$

Note that by the results of (4.12) and particularly (4.19),

$$
\tilde{A}_{\nu, \mu}(y) x^{p S(\nu)-S(\mu)} \in \Omega_{0}
$$

so that it makes sense to write

$$
\begin{equation*}
A_{\nu, \mu}(x)=\tilde{A}_{\nu, \mu}(y) x^{p S}(\nu)-S(\mu) \tag{5.26}
\end{equation*}
$$

In particular, if $\left[\Omega_{0}^{\prime}: \Omega_{O}\right]=K$ and if $\tilde{A}_{\nu, \mu}(Y)=\sum_{j \geqslant 0} \tilde{A}_{\nu, \mu}^{(j)} Y^{j}, \tilde{A} \underset{\nu, \mu}{(j)} \in \Omega_{O}$, then for $0<\ell<K$,

$$
\sum \tilde{A}_{\nu, \mu}^{(j)} y^{j}=0,
$$

where the sum runs over $j \in \mathbb{N}, j+M(p S(v)-S(\mu)) \equiv \ell(\bmod K)$. Furthermore, by the same reason,

$$
\begin{equation*}
A_{v, \mu}(x)=\sum \tilde{A}_{v, \mu}^{(j)}{ }^{\prime} j+M(p S(v)-S(\mu)) \tag{5.27}
\end{equation*}
$$

where the sum runs over $j \in \mathbb{N}, j+M(p S(\nu)-S(\mu)) \equiv O(\bmod K) \cdot$
One obtains the matrix of $\bar{\alpha}_{x}^{\prime}$ by applying τ^{-1} to (5.25). Summarizing :
(5.28) THEOREM. Assume $(p, M)=1$.
(i) Let $x \in \Omega^{*}$, ord $x>-N /(p-1)$. Then $\bar{\alpha}_{x}^{(0)}: w_{x} \rightarrow \underset{x^{p}}{w^{(\tau)}}$ is an Ω-linear map

$$
\left.\bar{\alpha}_{x}^{(0)} \overline{\left(t^{\sigma(\mu)}\right.}\right)=\sum_{\sigma}^{(v) \in \tilde{\Delta}^{(\mu}} A_{v, \mu}(x) \overline{t^{\sigma(v)}}
$$

with matrix $A=\left(A_{v, \mu}(x)\right), A_{v, \mu}=S_{Y}\left(A_{v, \mu}(Y)\right) x^{p S}(\nu)-S(\mu)$, with respect to the bases $\left\{t^{\sigma(\mu)} \mid \sigma^{(\mu)} \in \tilde{\Delta}\right\}$ of W_{x} and $\mathscr{W}_{x^{(\tau)}}^{p}$ respectively. For ord $x>\frac{-N}{p-1}$, ord $S_{Y}\left(A_{\nu \mu}(Y)\right) \geqslant(p W(\nu)-W(\mu)) /(p-1)$.
Thus, if ord $x=0$, then

$$
\operatorname{ordA}_{v, \mu}(x) \geqslant \frac{p W(\nu)-W(\mu)}{p-1}
$$

for $\sigma^{(v)}, \sigma^{(\mu)} \in \widetilde{\Delta}$.
(ii) Let $x \in \sigma\left(\zeta_{p}\right)$, ord $x=0, \tau(x)=x^{p}$. Then $\bar{\alpha}_{x}^{\prime}: U_{x} \longrightarrow \mathscr{U}_{x}$ is a τ^{-1} (semi)-linear endomorphism

$$
\left.\left.\bar{\alpha}_{x}^{\prime} \overline{\left(t^{\sigma(\mu)}\right.}\right)=\sum_{\sigma}(v) \in \tilde{\Delta} \quad C_{v, \mu}(x) \overline{\left(t^{\sigma(v)}\right.}\right)
$$

with matrix $\alpha=\left(q_{\nu, \mu}(x)\right)$ with respect to the basis $\left\{t^{\sigma^{(\mu)}} \mid \sigma^{(\mu)} \in \tilde{\Delta}\right\}$; $C_{\nu, \mu}=\tau^{-1}\left(A_{\nu, \mu}(x)\right)$; ord $C_{v, \mu} \geqslant(p W(\nu)-W(\mu)) /(p-1)$ for $-N+1 \leqslant \mu, \nu \leqslant 0$.

We now fix an integral basis $\left\{n_{i}\right\}_{i=1}^{r}$ of Ω_{o} / Ω_{1} with the property that $\left\{\bar{n}_{i}\right\}_{i=1}^{r}$ is a basis for $\mathbb{F}_{q} / \mathbb{F}_{p}$. Then $\left\{\eta_{i}\right\}_{i=1}^{r}$ has the
property that if $\omega \in \Omega_{0}, \omega=\sum_{i=1}^{r} \alpha_{i} \eta_{i}, \alpha_{i} \in \Omega_{1}$, then ord $\omega=\underset{1 \leqslant i \leqslant r}{\inf }\left\{\right.$ ord $\left.\alpha_{i}\right\}$. Using this property, the following result is easily obtained.
(5.29) COROLLARY. Assume $(\underline{p}, \mathrm{M})=1 \cdot$ Let $x \in \Omega_{0}^{*}, x^{q}=x$. Thus $\bar{\alpha}_{x}^{\prime}: \mathscr{W}_{x} \longrightarrow \mathcal{W}_{x}$ is an Ω_{1}-linear map.

$$
\left.\left.\bar{\alpha}_{x}^{\prime}\left(n_{i} t^{\sigma(\mu)}\right)=\sum \cot (\nu, j) ;(\mu, i)\right) \overline{\left(n_{j} t^{\sigma(\nu)}\right.}\right)
$$

with matrix $\mathscr{C}^{\prime}=(\mathscr{C}(\nu, j) ;(\mu, i))$ with respect to the basis

$$
\begin{aligned}
\left\{\eta_{i} t^{\sigma^{(\mu)}} \mid-N+1\right. & \leqslant \mu \leqslant 0 ; 1 \leqslant i \leqslant r\} \text { of } \mathscr{W}_{x} \text { over } \Omega_{1} \cdot \text { The estimate } \\
& \text { ord } a((v, j) ;(\mu, i))>(p W(v)-W(\mu)) /(p-1)
\end{aligned}
$$

holds for all entries of the matrix.

We now proceed as in $[2, \S 7]$ to estimate the Newton polygon of $\operatorname{det}_{\Omega_{1}}\left(I-T \alpha_{X}^{1}\right)=1+\sum_{j=1}^{r N} d_{j} T^{j}$. Here d_{j} is (up to sign) the sum of the $j \times j$ principal minors of the matrix C^{\prime}. As a consequence,
(5.30) ord $d_{j} \geqslant \inf$ of all j-fold sums $\sum_{\ell=1}^{j} W\left(v_{\ell}\right)$ in which
$\left\{\left(\nu_{\ell}, i_{\ell}\right)\right\}_{\ell=1}^{j}$ are j distinct elements in $\{(\nu, i) \mid-N+1 \leqslant \nu \leqslant 0 ; 1 \leqslant i \leqslant r\}$.

This yields
(5.31) THEOREM. Assume $(p, M)=1 . \operatorname{Let} \tilde{H}(\bar{f}, T)=\prod_{-N+1 \leqslant \mu \leqslant O}\left(1-q^{W(\mu)} T\right)$. Then the Newton polygon of $\operatorname{det}\left(I-T \bar{\alpha}_{x}\right)\left(=L(\bar{f}, T)^{\left.(-1)^{n+1}\right) \text { lies over }}\right.$ the Newton polygon of $\tilde{H}(\bar{f}, T)$.

Thus $\tilde{H}(\bar{f}, T)$ is a type of "Hodge" polygon for this example. Note that $\tilde{H}(\bar{f}, T)$ is independent of the constants

$$
\left\{\bar{c}_{i}\right\}_{i=1}^{n} \cup\{\bar{x}\} \subseteq \mathbb{F}_{q}^{*}
$$

We will now prove that when $p \equiv 1(\bmod M)$ the Newton polygon of $L(\bar{f}, T)^{(-1)^{n+1}}$ is equal to the Newton polygon of $\tilde{H}(\bar{f}, T)$.
(5.32) THEOREM. Assume (P, M) $=1$. Write (using (2.8))

with $\hat{A}_{\nu, \mu}(Y)=\sum_{j=0}^{\infty} \hat{A}_{\nu, \mu}^{(j)} Y^{j} \in R_{p}\left(\frac{p}{p-1}, \frac{p W(\nu)-W(\mu))}{p-1}\right.$, and $\hat{\zeta}_{i} \in L_{p}\left(\frac{p}{p-1},-\frac{W(\mu)}{p-1}+1\right)$. If $\tilde{A}_{\nu, \mu}(Y)$ is given by (5.24), then

$$
\hat{\mathrm{A}}_{\nu, \mu}(\mathrm{Y})-\tilde{A}_{\nu, \mu}(\mathrm{Y}) \in \mathrm{R}_{\mathrm{p}}\left(\frac{\mathrm{p}}{\mathrm{p}-1}, \frac{\mathrm{pW}(\nu)-\mathrm{W}(\mu)}{\mathrm{p}-1}+1\right)
$$

Furthermore if we write by abuse of notation, $\sigma(\mu)=\left(\mu_{1}, \ldots, \mu_{n}\right)$, then

$$
\hat{A}_{v, \mu}^{(j)}=\sum \tilde{v}(\beta, \gamma, j) B_{\gamma} \prod_{i=1}^{n} B_{p B_{i}}-\mu_{i}+a_{i} \gamma
$$

where B_{m} is defined in (5.3), $\tilde{v}(\beta, \gamma, j)$ is a unit in Ω_{0} and the sum runs over $\beta=\left(\beta_{1}, \ldots, \beta_{n}\right) \in \mathbb{Z}^{n}, \gamma \in \mathbb{N}$ satisfying $\gamma=(\tilde{\gamma}-M S(\mu)) M^{-1}$, (where $\tilde{\gamma} \in \mathbb{N}, \tilde{\gamma} \geqslant \operatorname{pMs}(\beta))$, and $\Sigma(\beta)=N \tau_{\beta}+\nu$ for some $\tau_{\beta} \in \mathbb{Z}$, and $\tilde{\gamma}+p^{\tau}{ }_{\beta} M=j+p M S(\nu)$.

Proof : The first assertion is simply a statement of (3.16) in the constext of $\xi=\underset{Y^{M}}{(O)}\left(Y^{M S(\mu)} t^{\sigma}{ }^{(\mu)}\right) \in L_{p}\left(\frac{p}{p-1}, \frac{-W(\mu)}{p-1}\right)$. To establish the second assertion, we may write by (5.4)

$$
\mathrm{F}_{\mathrm{O}}\left(\mathrm{Y}^{\mathrm{M}}, \mathrm{t}\right)=\sum_{(\alpha ; M \gamma) \in S_{1}} \mathrm{~V}\left(\alpha ; \mathrm{M}_{1}\right) \mathrm{B}\left(\alpha ; \mathrm{M}_{\gamma}\right) \mathrm{Y}^{\mathrm{M} \gamma} t^{\alpha}
$$

in which $v\left(\alpha, M_{\gamma}\right)$ is a unit in Ω_{0} and where

$$
\begin{equation*}
B(\alpha ; M \gamma)=B_{\gamma} \prod_{i=1}^{n} B_{\alpha_{i}}+a_{i} \gamma \tag{5.33}
\end{equation*}
$$

with the $B_{m}^{\prime} s$ defined in (5.3). The second assertion is then the explicit reduction of
$\underset{Y^{M}}{(O)}\left(Y^{M S(\mu)} t^{\sigma(\mu)}\right)={ }_{(\beta ; \tilde{\gamma})}^{\sum_{i} \in S_{p}} \quad B\left(\mathrm{p} \beta-\sigma^{(\mu)}, \tilde{\gamma}-M S(\mu)\right) Y^{\tilde{\gamma}} t^{\beta}$ modulo $\sum_{i=1}^{n} \hat{H}_{i}^{\tau}\left(Y^{\mathrm{pM}}, t\right) L_{p}\left(\frac{p}{p^{-1}}\right)$ given in (2.8).
(5.34) THEOREM. Assume $(\mathrm{p}, \mathrm{M})=1$. Then in (5.32),

$$
\operatorname{ord} \hat{A}_{v, \mu}^{(j)} \geqslant \frac{p W(\nu)-W(\mu)}{p-1}+\frac{j N M^{-1}}{p-1}
$$

for all $j \geqslant 0$. Furthermore, assume $p \equiv 1(\bmod M)$. Then

$$
\operatorname{ord} \hat{A}_{v, v}^{(0)}=W(v) ;
$$

if $\mu \neq v$ and $W(\mu) \geqslant W(\nu)$, then

$$
\operatorname{ord} \hat{A}_{v, \mu}^{(0)}>(p W(v)-W(\mu)) /(p-1)
$$

Proof : Let

$$
\begin{equation*}
b(\beta, \gamma, j)=\tilde{v}(\beta, \gamma, j) B\left(\alpha ; M_{\gamma}\right) \tag{5.35}
\end{equation*}
$$

be a typical term in the sum for $\hat{A}_{\nu, \mu}^{(j)}$. Then

$$
\begin{equation*}
\text { ord } b(\beta, \gamma, j) \geqslant \frac{p \sum(\beta)-\mu+N \gamma}{p-1} \tag{5.36}
\end{equation*}
$$

and by the conditions on $\Sigma(\beta)$ and γ,

$$
\mathrm{p} \Sigma(\beta)-\mu+\mathrm{N} \gamma=\mathrm{pW}(\nu)-\mathrm{W}(\mu)+\mathrm{jNM}^{-1} .
$$

This proves the first assertion.
For the second assertion, we need a finer analysis of $b(\beta, \gamma, j)$. Observe that by definition, the indices $p^{\beta}{ }_{i}-\mu_{i}+a_{i} \gamma$ must be nonnegative integers so that

$$
\begin{equation*}
\gamma \geqslant s(p \beta-\sigma(\mu)) \tag{5.37}
\end{equation*}
$$

Using $\Sigma(\beta)=N \tau+\nu,(5.36)$ becomes (in the case $j=0$)
(5.38)
$\operatorname{ord} b(\beta, \gamma, O) \geqslant \frac{p \nu-\mu+p N \tau+N \gamma}{p-1}$.
Consider first the case $\tau \geqslant 1$. Then
ord $b(\beta, \gamma, O) \geqslant \nu+N+(\nu-\mu+N) /(p-1)$. Using $O<S(\nu) \leqslant 1$ for $-N+1 \leqslant \nu<0$,
we obtain for $\tau \geqslant 1$

$$
\text { ord } \left.b(\beta, \gamma, O) \geqslant \frac{p W(\nu)-W(\mu)}{p-1}+\frac{N(1-S(\nu)+S(\mu)}{p-1}\right) .
$$

Thus, in the case $\tau \geqslant 1$, ord $b(\beta, \gamma, O) \geqslant(p W(v)-W(\mu) /(p-1)$ and this inequality is strict unless the following situation holds
(5.39)

$$
\tau=1, \mu=0, \quad S(\nu)=1
$$

Now assume $\tau \leqslant 0$. Since

$$
\begin{aligned}
\sum_{i=1}^{n} \beta_{i} & =N \tau+v \\
& =\sum_{i=1}^{n}\left(a_{i} \tau+v_{i}\right)+\tau
\end{aligned}
$$

unless $\tau=0$ and $\beta_{i}=v_{i}$ for all $i, l \leqslant i \leqslant n$, there $i s$ some index i such that

$$
\beta_{i}<a_{i} \tau+v_{i}
$$

But then by (5.37)
(5.40)

$$
\begin{aligned}
\gamma & \geqslant \frac{-p \beta_{i}+\mu_{i}}{a_{i}} \\
& \geqslant-p \tau+(p-1)\left(\frac{-v_{i}+1}{a_{i}}\right)+\left(\frac{-v_{i}+\mu_{i}+1}{a_{i}}\right)
\end{aligned}
$$

We claim that for any index i,

$$
\begin{equation*}
\frac{-v_{i}+1}{a_{i}} \geqslant s(v) \tag{5.41}
\end{equation*}
$$

Suppose not, then $\left(-v_{i}+1\right) / a_{i}<S(v)$. We will show that this violates the definition of the diagonal sequence Δ, (1.10). Let $\sigma^{(v)}=-\sum_{v \leqslant j \leqslant-1} U_{g(j)}$; let $\ell=g(v)$. We will also establish for future use

$$
\begin{equation*}
S(v)=-v_{\ell} / a_{\ell} . \tag{5.42}
\end{equation*}
$$

Suppose $-v_{\ell} / a_{\ell}<S(v)$, and δ is the smallest index $v<\delta \leqslant 0$ such that $S\left(\sigma^{(\delta)}\right)<S(\nu)$. Since $\sigma^{(\nu)}=\sigma^{(\delta)}-\sum_{\nu \leqslant j \leqslant \delta-1} U_{g(j)}$, we obtain $v_{i} \leqslant \delta_{i}$ for all $i, 1 \leqslant i \leqslant n$. In particular $v_{\ell}<\delta_{\ell}$, so that if $-v_{\ell} / a_{\ell}<s(v)$, then

$$
\mathbf{S}\left(\sigma^{(\delta)}-U_{\ell}\right)<S(\delta-1)=S(v)
$$

contradicting (1.9). Note that with δ defined as above and with the index i violating (5.41), then

$$
S\left(\sigma^{(\delta)}-U_{i}\right)<S(\delta-1)=S(v) .
$$

But, this violates (1.9) again.

Now (5.40) and (5.41), imply

$$
\gamma \geqslant-p \tau+(p-1) s(v)+\frac{\mu_{i}-v_{i}+1}{a_{i}}
$$

If $\mu \geqslant \nu$, then $\sigma(\nu)=\sigma(\mu)-\sum_{\nu \leqslant j \leqslant \mu-1} U_{g(j)}$, so that $v_{i} \leqslant \mu_{i}$ for. every index i. Thus $\gamma \in \mathbb{N}$ and our hypothesis $p \equiv 1$ (mod M), imply that

$$
\gamma \geqslant-p \tau+(p-1) S(v)+1
$$

which yields from (5.38)

$$
\operatorname{ord} b(\beta, \gamma, 0) \geqslant \frac{p W(\nu)-W(\mu)}{p-1}+\frac{N(1-S(\nu)+S(\mu))}{p-1} .
$$

Note that $1-S(\nu)+S(\mu)>0$ in the case $\mu \geqslant \nu$. Thus we have strict inequality ord $b(\beta, \gamma, O)>(p W(\nu)-W(\mu)) /(p-1)$ in the case $\tau \leqslant 0$, $\mu \geqslant \nu$, unless the following situation holds

$$
\begin{equation*}
\tau=0 ; \beta=\sigma^{(v)} . \tag{5.43}
\end{equation*}
$$

We consider now the case (5.43). Then (5.37) implies

$$
\gamma>(p-1) \frac{\left(-v_{i}\right)}{a_{i}}+\frac{\mu_{i}-v_{i}}{a_{i}}
$$

for all i, $i=1, \ldots, n$. If $v<\mu$, and $\ell=g(v)$, then we have seen above $v_{\ell}<\mu_{\ell}$. With (5.42), this implies

$$
\gamma \geqslant(p-1) S(v)+1,
$$

so that by (5.38), we again deduce

$$
\operatorname{ord} b(\beta, \gamma, 0)>\frac{p W(\nu)-W(\mu)}{p^{-1}}
$$

This leaves the case $\nu=\mu, \tau=0, \beta=\sigma^{(\nu)}$. Clearly (5.37) implies $\gamma \geqslant(p-1) S(v)$. Note that for $\gamma=(p-1) S(v), v=\mu$,

$$
p v_{i}-\mu_{i}+a_{i} \gamma=(p-1)\left(v_{i}+S(v) a_{i}\right) .
$$

By (5.41), $0 \leqslant v_{i}+S(v) a_{i} \leqslant 1$. Thus by (5.3),

$$
\text { ord } b(\sigma(v),(p-1) S(v), 0)=w(v) ;
$$

clearly by (5.38)

$$
\text { ord } b\left(\sigma{ }^{\left.(\nu)_{\gamma}\right)}>W(v) \text { for } \gamma>(p-1) S(v)\right. \text {. }
$$

Consider now $\tau \leqslant O$ and $\nu>\mu$. Since $-a_{i} \leqslant \mu_{i}$, for all i, (5.40) implies that

$$
\gamma \geqslant-p \tau+(p-1) S(v) .
$$

But then (5.38) yields

$$
\operatorname{ord} b(\beta, \gamma, 0) \geqslant \frac{p W(\nu)-W(\mu)}{p^{-1}}+\frac{N(S(\mu)-S(\nu)}{p^{-1}} .
$$

Since $O \leqslant \mu<v \leqslant-N+1$, clearly $S(\mu) \geqslant S(v)$.
Thus

```
ord b(\beta,\gamma,O) > (pW(v)-W(\mu))/(p-1) ,
```

unless
(5.44) $\quad v>\mu$ and $S(\mu)=S(\nu)$.

In summary, ord $\hat{A}_{\nu, \nu}^{(0)}=W(\nu)$ and ord $\hat{A}_{\nu, \mu}^{(0)} \geqslant(\mathrm{pW}(\nu)-W(\mu)) /(p-1)$ and the inequality is a strict one unless (5.39) or (5.44) holds. In particular, we observe that $W(\mu) \geqslant W(\nu)$ precludes both (5.39) and (5.44).

Our main result now follows :
(5.45) THEOREM. Assume $p \equiv 1(\bmod M), x \in \Omega_{0}^{*}, x^{q}=x$. Then the following estimates hold for the entries of the matrix $a=\left(a_{v, \mu}\right)$ of the semi-linear map $\bar{\alpha}_{x}^{\prime}: w_{x} \longrightarrow w_{x}:$

> (i) ord $\alpha_{v, \mu} \geqslant(\mathrm{pW}(v)-\mathrm{w}(\mu)) /(\mathrm{p}-1)$,
> (ii) ord $\alpha_{v, v}=w(v)$,
> (iii) if $\mu \neq v$, and if $w(\mu) \geqslant w(v)$, then ord $\alpha_{v, \mu}>(\mathrm{pW}(v)-w(\mu)) /(\mathrm{p}-1)$.

Proof : This result is an immediate consequence of (5.32) and (5.34).
(5.46) THEOREM. Assume $p \equiv 1(\bmod M), x \in \Omega_{O}^{*}, x^{q}=x \cdot \frac{\text { Then the }}{n+1}$ reciprocal zeros $\omega_{\mu},-N+1 \leqslant \mu \leqslant 0$, of $L(\bar{f}(\bar{x}, \bar{E}), T)^{(-1)^{n+1}}$ belong to $Q_{p}\left(\zeta_{p}\right)$ and may be arranged so that

$$
\operatorname{ord}_{q} \omega_{\mu}=W(\mu)
$$

In other words the Newton polygons of $L(\bar{f}(\bar{x}, \bar{E}), T)^{(-1)^{n+1}}$ and $\tilde{H}(\bar{f}(\bar{x}, \bar{t}), T)$ coincide.

Proof : It is useful to allow somewhat greater ramification than that of $f\left(\zeta_{p}\right)$. Let π be a uniformizer in $f\left(\zeta_{p}\right)$, and let of be the extension of $\sigma\left(\zeta_{p}\right)$ defined by adjunction of a root say π^{\prime} of $x^{M}-\pi$; extend τ to of' by setting $\tau\left(\pi^{\prime}\right)=\pi^{\prime}$. Let
$\boldsymbol{C}=\operatorname{diag}\left(\pi^{-W(O)}, \ldots, \pi^{-W(-N+1)}\right.$) be the $N \times N$ diagonal matrix with entries $\left\{\pi^{-W(\mu)}\right\}_{-N+1 \leqslant \mu \leqslant O}$ in the order shown. If
$b^{\tau} a \zeta^{-1}=a^{(1)}=\left(a_{v, \mu}^{(1)}\right)$, then

$$
a_{v, \mu}^{(1)}=\pi^{W(\nu)-W(\mu)} a_{v \mu}
$$

so that

$$
\text { ord } a_{v, \mu}^{(1)} \geqslant W(v)
$$

(5.47)
ord $a_{v, v}^{(1)}=w(v)$,
ord $a_{\nu, \mu}^{(1)}>W(\nu)$, if $\nu \neq \mu$, and $W(\mu) \geqslant W(\nu)$.

Now by [7, proposition 2.20], there exists an $N \times N$ matrix $m \in G L\left(N, O_{\infty}^{\prime}\right)$, (where O_{∞}^{\prime} is the ring of integer of of satisfying

$$
\begin{equation*}
m^{\tau} \zeta^{\tau} a \zeta^{-1} m^{-1}=\varepsilon^{-1} \tag{5.48}
\end{equation*}
$$

In fact, we can rework the proof of [7, proposition 2.20] to show the existence of an $N \times N$ matrix $y \in G L\left(N, O_{\infty}\right)$ satisfying

$$
\begin{equation*}
y^{\tau} a y^{-1}=\zeta^{-1} \tag{5.49}
\end{equation*}
$$

Then the argument of [7, (2.28) and (2.29)] yields the additional information $\omega_{\mu} \in Q_{p}\left(\zeta_{p}\right),-N+1 \leqslant \mu \leqslant 0$.
6. THE ONE-VARIABLE CASE.

The methods we have employed above can be used to treat somewhat more general exponential sums of a "Kloosterman type". In this section and the next, we will expand the set of examples we can study in this way. It seems likely that the same approach may be employed in the investigation of the exponential sums $S_{m}(\bar{f})$, (5.l), in the more general setting where $d \in \mathbb{N}^{*}$, and

$$
\begin{equation*}
\overline{\mathrm{f}}(\overline{\mathrm{x}}, \mathrm{t})=\sum_{i=1}^{n} \bar{c}_{i} t_{i}^{d}+\overline{\mathrm{x}} \bar{t}^{-a} \tag{6.1}
\end{equation*}
$$

In fact, if $\bar{g} \in \overline{\mathbb{F}}_{q}\left[\bar{t}_{1}, \ldots, \bar{t}_{n}\right]$ is any homogeneous polynomial of degree d, "regular" in Dwork's sense [l], then we believe that the exponential sums $S_{m}(\bar{f})$ with

$$
\begin{equation*}
\bar{f}(\bar{x}, \bar{t})=\bar{g}(\bar{t})+\bar{x} \bar{t}^{a} \tag{6.2}
\end{equation*}
$$

should be amenable to this type of analysis.
In this section we will restrict ourselves to the simpler one variable case. Let

$$
\begin{equation*}
\overline{\hat{f}}(\bar{x}, \bar{t})=\bar{c}_{\bar{t}} \bar{d}_{1}+\bar{x}^{-d_{2}} \tag{6.3}
\end{equation*}
$$

with $\bar{c} \in \mathbb{F}_{q}^{*}, \bar{x} \in \bar{F}_{q}^{*}, d_{1}, d_{2} \in \mathbb{N}^{*}$ be the reduction of $\hat{f}(x, t)$ where $\hat{f}(Y, t)=c t^{d_{1}}+Y t^{-d_{2}}$ and $c=c^{q}, x=x^{q}$ belong to Ω_{0}.

We proceed as in §§ l-3. Let Y, t_{1}, \ldots, t_{n} be algebraically
independent, $M=1 . \operatorname{com} .\left\{d_{1}, d_{2}\right\}$, Then we define for $\ell \in \mathbb{Z}, \gamma \in \mathbb{N}$

$$
\left\{\begin{array}{l}
\hat{s}(\ell)=\max \left\{0, \frac{-\ell}{d_{2}}\right\} \tag{6.4}\\
\hat{w}(\ell)=\frac{\ell}{d_{1}}+\left(\frac{d_{2}}{d_{1}}+1\right) s(\ell)=\max \left\{\frac{\ell}{d_{1}}, \frac{-\ell}{d_{2}}\right\} \\
\hat{w}_{m}(\ell ; \gamma)=\frac{\ell}{d_{1}}+\left(\frac{d_{2}}{d_{1}}+1\right) \gamma m^{-1} M^{-1}
\end{array}\right.
$$

Define

$$
\begin{aligned}
& \text { (6.5) } \quad L_{m}(b, c)=\left\{\sum_{(\ell ; \gamma) \in \hat{S}_{m}} A(\ell ; \gamma) t^{\ell} Y^{\gamma} \mid A(\ell ; \gamma) \in \Omega_{O},\right. \\
&\text { ord } \left.A(\ell ; \gamma) \geqslant c+b \hat{w}_{m}(\ell ; \gamma)\right\},
\end{aligned}
$$

where the index set \hat{S}_{m} is given by

$$
\begin{equation*}
\hat{\mathrm{s}}_{\mathrm{m}}=\{(\ell ; \gamma) \in \mathbb{Z} \times \mathbf{N} \mid \gamma \geqslant \operatorname{mM} \hat{s}(\ell)\} \tag{6.6}
\end{equation*}
$$

We define $\hat{H}(Y, t), H(Y, t), \hat{F}(Y, t), E_{O}=t \frac{d}{d t}, \hat{H}_{O}^{(m)}, H_{O}^{(m)}, D_{O}^{(m)}$ as in (1.7) using $\hat{f}(Y, t)$ in place of $f(Y, t)$, and using the sequence $\left\{\gamma_{\ell}\right\}_{\ell \geqslant 0}$ given in (5.12). We define $R_{m}(b, c), R_{m}(b), L_{m}(b)$ just as in (1.4). Finally, we define

$$
\begin{equation*}
\tilde{\Delta}=\left\{\ell \mid-d_{2} \leqslant \ell<d_{1}\right\} \tag{6.7}
\end{equation*}
$$

$V_{m}(b)$ is the $R_{m}(b)-$ span of

$$
\begin{equation*}
\left\{Y^{m M \hat{\mathbf{s}}(\ell)} t^{\ell} \mid \ell \in \tilde{\Delta}\right\} \tag{6.8}
\end{equation*}
$$

and
(6.9)

$$
\mathrm{V}_{\mathrm{m}}(\mathrm{~b}, \mathrm{c})=\mathrm{V}_{\mathrm{m}}(\mathrm{~b}) \cap \mathrm{L}_{\mathrm{m}}(\mathrm{~b}, \mathrm{c})
$$

The reduction formulas $\bmod \hat{H}_{O}^{(m)}$ are extremely simple :
(6.10)

$$
Y^{\gamma} t^{\ell}=d_{2} d_{1}^{-1} Y^{\gamma+m M_{t}}{ }^{\ell-d_{1}-d_{2}}+H_{O}^{(m)}\left(\gamma_{O}^{-1} d_{1}^{-1} Y_{t}^{\left.\gamma_{t}^{\ell-d_{1}}\right), ~ i f ~} \ell \geqslant d_{1}\right.
$$

$$
Y_{t}^{\gamma}{ }^{\ell}=-d_{1} d_{2}^{-1} Y^{\gamma-m M_{t}}{ }^{\ell+d_{1}-d_{2}}-H_{O}^{(m)}\left(\gamma_{O}^{-1} d_{2}^{-1} Y^{\gamma-m M_{t}^{\ell+d_{2}}}\right), \text { if } \ell<-d_{2}
$$

Thus we have
(6.11) THEOREM. Assume $(p, M)=1$. Then for $\frac{p}{p-1} \geqslant b$,

$$
L_{m}(b, c)=V_{m}(b, c)+\hat{H}_{O}^{(m)} L_{m}(b, c+e)
$$

If $\quad \xi=\sum_{(\ell ; \gamma) \in \hat{S}_{m}} A(\ell ; \gamma) t^{\ell} Y^{\gamma} \in L_{m}(b, c)$ then $\xi=\hat{v}+\hat{H}_{O}^{(m)} \hat{\zeta}$ with $\hat{v} \in L_{m}(b, c), \hat{\zeta} \in L_{m}(b, c+e), \quad$ and

$$
\begin{aligned}
& \hat{\mathrm{v}}=\sum_{\ell \in \Delta} \hat{\mathrm{v}}_{\ell}(Y) Y^{m M \hat{s}(\ell)} t^{\ell} \\
& \hat{\mathrm{v}}_{\ell}(Y)=\sum_{j \geqslant 0} \hat{v}_{\ell, j} Y^{j},
\end{aligned}
$$

with explicit reduction formulas given by

$$
\begin{equation*}
\hat{v}_{\ell, j}=\sum u(r, \alpha) A(r ; \alpha) \tag{6.12}
\end{equation*}
$$

where $u(r ; \alpha)$ is a unit in Ω_{0} and the sum in (6.12) runs over $(r ; \alpha) \in \hat{S}_{m}, r=\ell+\tau\left(d_{1}+d_{2}\right), \alpha=j+m M \hat{s}(\ell)-\tau m M, \tau \in \mathbb{Z}$. (Note that $(r ; \alpha) \in \hat{S}_{m}$ implies the sum (6.12) is finite).

It is also quite clear that if A is a noetherian, unique factorization domain, and we set $h_{0}^{(m)}=t^{d}-\varepsilon Y^{m M_{t}}{ }^{-d_{2}}$, with ε a unit in A, then $h_{o}^{(m)}$ is not a zero-divisor in $R=A\left[Y, t, y^{m M_{t}}{ }^{-d_{2}}\right]$. This ensures the directness of the sum (6.11). We summarize :
(6.13) THEOREM. Assume $(p, M)=1, \frac{p}{p-1} \geqslant b>\frac{1}{p-1}$ so that $e=b-\frac{1}{p-1}>0$. Then

$$
L_{m}(b, c)=V_{m}(b, c) \oplus D_{O}^{(m)} L_{m}(b, c+e)
$$

Furthermore, if we set $b=\frac{p}{p-1}$ and if we write $\xi \in L_{m}\left(\frac{p}{p-1}, c\right)$
according to (6.11) as

$$
\xi=\hat{\mathrm{v}}+\hat{\mathrm{H}}_{\mathrm{O}}^{(\mathrm{m})} \hat{\zeta}
$$

with $\hat{v} \in V_{m}\left(\frac{p}{p-1}, c\right), \hat{\zeta} \in L_{m}\left(\frac{p}{p-1}, c+1\right)$, then we can express

$$
\xi=v+D_{O}^{(m)} \zeta
$$

where $\quad v \in V_{m}\left(\frac{p}{p-1}, c\right), \zeta \in L_{m}\left(\frac{p}{p-1}, c+1\right)$ and $v-\hat{v} \in V_{m}\left(\frac{p}{p-1}, c+1\right)$.

The situation above can be specialized. We observe that elements of $L_{m}(b, c)$ converge on the region
(6.14) $\quad \hat{G}_{m}(b)=\left\{(t, Y) \in \Omega^{2} \mid\right.$ ord $t>-b d_{1}^{-1}$, ord $Y>-b d_{l}^{-1}\left(d_{1}+d_{2}\right) m^{-1} M^{-1}$, ord $t-\mathrm{mMd}_{2}^{-1}$ ord $\left.\mathrm{Y}>\mathrm{db}_{2}^{-1}\right\}$.

We fix $x \in \Omega_{0}^{*}$, ord $x>-b d_{1}^{-1}\left(d_{1}+d_{2}\right)$, and $y \in \Omega, y^{M}=x$. Set $\Omega_{O}^{\prime}=\Omega_{O}(y)$. We define
(6.15) $L(x, b, c)=\left\{\sum_{\ell \in \mathbf{Z}} A(\ell) t^{\ell} \mid A(\ell) \in \Omega_{0}\right.$, ord $A(\ell) \geqslant c+\hat{w}(\ell) b+\hat{s}(\ell)$ ord $\left.x\right\}$.

We will employ a dash to denote that the field of definition of a space under consideration has been extended from Ω_{0} to Ω_{0}^{\prime}. The specialization maps S_{y}, as in § 4 , then are surjections. For example,

$$
S_{y}: L_{m}(b, c)^{\prime} \longrightarrow L\left(x^{m}, b, c\right)^{\prime}
$$

if ord $x^{m}>-b d_{1}^{-1}\left(d_{1}+d_{2}\right)$. We also define Frobenius maps $\alpha_{Y^{M}}, \alpha_{Y^{M}}^{(0)}$, $\bar{\alpha}_{X}, \bar{\alpha}_{x}^{(O)}, \bar{\alpha}_{X}^{\prime}$ as in § 5. Since ${\underset{Y}{\alpha}}_{(O)}^{(Y)} \hat{S}^{(j) M_{t} j}) \in L_{p}\left(\frac{p}{p-1}, \frac{-\hat{w}(j)}{p-1}\right)$, we may write
where $\zeta \in L_{p}\left(\frac{p}{p-1}, \frac{-\hat{w}(j)}{p-1}+1\right)$, and

$$
\sum_{i \in \Delta} \tilde{A}_{i j}(Y) Y p \hat{s}(i) M_{t} i \in V_{p}\left(\frac{p}{p-1}, \frac{-\hat{w}(j)}{p-1}\right) .
$$

(6.17) THEOREM. Assume $(p, M)=1$.
(i) Let $x \in \Omega^{*}$, ord $x>-d_{1}^{-1}\left(d_{1}+d_{2}\right) /(p-1)$. Then $\alpha_{x}^{(0)}: w_{x} \rightarrow \mathcal{W}_{x^{(\tau)}}^{\mathcal{p}^{(\tau)}}$ is an Ω-linear map

$$
\bar{\alpha}_{x}^{(0)}\left(\bar{t}^{j}\right)=\sum_{-d_{2} \leqslant i<d_{1}} A_{i j}(x) \bar{t}^{i}
$$

with matrix $A=\left(A_{i j}(x)\right), A_{i j}(x)=S_{y}\left(\tilde{A}_{i j}(Y)\right) x^{p s(i)-s(j)}$, with respect to the bases $\left\{\bar{t}^{i} \mid-d_{2} \leqslant i<d_{1}\right\}$ of w_{x} and $w_{x}^{(\tau)}$ respectively. For ord $x>\frac{-\left(d_{1}+d_{2}\right)}{d_{1}(p-1)}$, ord $s_{y}\left(\tilde{A}_{i j}(y)\right) \geqslant(p \hat{w}(i)-\hat{w}(j)) /(p-1) \cdot$ Thus, if ord $x=0$,

$$
\text { ord } A_{i j}(x) \geqslant(p \hat{w}(i)-\hat{w}(j)) /(p-1)
$$

for $-d_{2} \leqslant i, j<d_{1}$.
(ii) Let $x \in \mathcal{O}\left(\zeta_{p}\right)$, ord $x=0, \tau(x)=x^{p}$. Then $\bar{\alpha}_{x}^{\prime}: v_{x} \longrightarrow v_{x}$ is a τ^{-1} (semi) -linear endomorphism

$$
\bar{\alpha}_{x}^{\prime}\left(\bar{t}^{j}\right)=-d_{2} \leqslant \sum_{i<d_{1}} a_{i j}(x) \bar{t}^{i}
$$

with matrix $Q=\left(C_{i j}(x)\right)$ with respect to the basis $\left\{t^{-i} \mid-\alpha_{2} \leqslant i<d_{1}\right\}$ of $\quad w_{x} ; G_{i j}(x)=\tau^{-1}\left(A_{i j}(x)\right) ;$
ord $Q_{i j}(x) \geqslant(p \hat{w}(j)-\hat{w}(i)) /(p-1)$
for $-d_{2} \leqslant i, j<d_{1}$.

Just as in §5, the above result yields.
(6.18) THEOREM. Assume $(p, M)=1$, let $\overline{\hat{f}}(\bar{x}, \bar{t})=\bar{c}^{\mathrm{E}^{1}}+\bar{x}^{-\mathrm{t}_{2}} \in \mathbb{F}_{q}[\bar{t}]$. Let $\tilde{H}(\overline{\hat{f}}, T)=\underset{-d_{2} \leqslant i<d_{1}}{\pi}\left(1-q^{\hat{w}}(i) T\right)$. Then the Newton polygon of $L(\overline{\hat{f}}, T)$ lies over the Newton polygon of $\tilde{H}(\overline{\hat{f}}, T)$.

Just as in § 5 , we will now show that when $p \equiv 1(\bmod m)$ the Newton polygons of $L(\overline{\hat{f}}, T)$ and of $\tilde{H}(\overline{\hat{f}}, T)$ coincide. Just as $\S 5$, the following holds.
(6.19) THEOREM. Assume $(p, M)=1$. Write (using (6.11))

$$
\begin{gathered}
\underline{\text { with }} \hat{A}_{i j}(Y)=\sum_{\ell=0}^{\infty} \hat{A}_{i j}^{(\ell)} Y^{\ell} \in R_{p}\left(\frac{p}{p-1}, \frac{p \hat{w}(i)-\hat{w}(j)}{p-1}\right), \text { and } \\
\hat{\zeta} \in L_{p}\left(\frac{p}{p-1},-\frac{\hat{w}(j)}{p-1}+1\right) \cdot \text { If } \tilde{A}_{i j}(Y) \text { is given by }(6.16) \text { then } \\
\hat{A}_{i j}(Y)-\tilde{A}_{i j}(Y) \in R_{p}\left(\frac{p}{p-1}, \frac{p \hat{w}(j)-\hat{w}(i)}{p-1}+1\right) .
\end{gathered}
$$

Furthermore,
(6.20)

$$
\hat{A}_{i j}^{(\ell)}=\sum \tilde{u}(r, \gamma, \ell) B_{\gamma}{\underset{d}{l}}_{-1}^{\left(p r-j+d_{2} \gamma\right)}
$$

where $\tilde{u}(r, \gamma, \ell)$ is a unit in Ω_{O}, where B_{n} is defined in (5.3), and where the indices γ and $d_{1}^{-1}\left(\mathrm{pr}-j+d_{2} \gamma\right)$ are both non-negative integers. The sum (6.20) runs over $(r, \gamma) \in \mathbb{Z} \times \mathbb{N}$ satisfying $\gamma=(\tilde{r}-M s(j)) M^{-1}$ (where $\tilde{\gamma} \in \mathbb{N}, \tilde{\gamma} \geqslant \operatorname{pMS}(r))$, and $r=i+\tau\left(d_{1}+d_{2}\right)$ for some $\tau \in \mathbb{Z}$, and $\tilde{\gamma}+\tau \mathrm{PM}=\ell+\mathrm{pM} \hat{s}(i)$.

The key result then is the following.
(6.21) THEOREM. Assume $(\mathrm{P}, \mathrm{M})=1$. Then in (6.19)

$$
\operatorname{ord} \hat{A}_{i j}^{(\ell)} \geqslant \frac{p \hat{w}(i)-\hat{w}(j)}{p-1}+\frac{\ell M^{-1} d_{1}^{-1}\left(d_{1}+d_{2}\right)}{p-1}
$$

for all $\ell \geqslant 0$. Furthermore, if $p \equiv 1(\bmod M)$,

$$
\operatorname{ord} \hat{A}_{i i}^{(O)}=\hat{w}(i) ;
$$

if ifi, then

$$
\text { ord } \hat{A}_{i j}^{(0)}>(p \hat{w}(i)-\hat{w}(j)) /(p-1)
$$

except possibly for the case $i=-d_{2}, j \geqslant 0$.

Proof : Note that by (6.20),

$$
\text { ord } \hat{A}_{i j}^{(\ell)} \geqslant d_{1}^{-1}\left(p r-j+\left(d_{1}+d_{2}\right) \gamma\right) /(p-1)
$$

Using the conditions on r, γ, and $\tilde{\gamma}$, we obtain the first assertion.

If we set $m_{2}=\gamma, m_{1}=d_{1}^{-1}\left(p r-j+d_{2} m_{2}\right)$, the situation appears more symmetric. Let

$$
\mathrm{b}\left(\mathrm{~m}_{1}, \mathrm{~m}_{2}\right)=\mathrm{B}_{\mathrm{m}_{1}} \mathrm{~B}_{\mathrm{m}_{2}}
$$

subject to the conditions :

$$
\left\{\begin{array}{l}
m_{1}, m_{2} \in \mathbb{N} \tag{6.22}\\
d_{1} m_{1}-d_{2} m_{2}=p i-j+p \tau\left(d_{1}+d_{2}\right), \text { for } \tau \in \mathbb{Z} .
\end{array}\right.
$$

Assume first that $i \geqslant 0$ so that $\hat{w}(i)=i / d_{1}$. Then (6.22) gives (since $\mathrm{m}_{2} \geqslant 0$)
(6.23)

$$
\left\{\begin{array}{l}
m_{1} \geqslant p(\hat{w}) i-\frac{j}{d_{1}}+\frac{p \tau\left(d_{1}+d_{2}\right)}{d_{1}} \\
m_{2}=\frac{d_{1}}{d_{2}} m_{1}+\frac{-p \tau\left(d_{1}+d_{2}\right)-p i+j}{d_{2}}
\end{array}\right.
$$

Therefore, if τ > 0 ,

$$
\begin{equation*}
m_{1}+m_{2}>p \hat{w}(i)-\hat{w}(j) . \tag{6.24}
\end{equation*}
$$

Furthermore if $\tau=0$, we also obtain (6.24) when $j<0$. Suppose now that $j \geqslant 0$, and $\tau=0$. Then

$$
m_{1} \geqslant p \hat{w}(i)-\hat{w}(j)
$$

so (6.24) holds unless $m_{l}=\hat{p}(i)-\hat{w}(j)$ and $m_{2}=0$. But $0 \leqslant i, j<d_{1}$, together with $m_{1}=(p i-j) / d_{1} \in \mathbb{N}$, imply $i=j$. If $i=j \geqslant 0$, then

$$
\text { ord } b\left((p-1) i / d_{1}, 0\right)=\hat{w}(i)
$$

We consider $i \geqslant 0, \tau<0$. Then

$$
\begin{aligned}
m_{1}+m_{2} & =\frac{\left(d_{1}+d_{2}\right) m_{1}-p \tau\left(d_{1}+d_{2}\right)-p i+j}{d_{2}} \\
& \geqslant \frac{p\left(d_{1}+d_{2}\right)}{d_{2}}-\frac{p i}{d_{2}}+\frac{j}{d_{2}} \\
& >\frac{p i}{d_{1}}+\frac{j}{d_{2}} \geqslant p \hat{w}(i)-\hat{w}(j)
\end{aligned}
$$

the strict inequality being a simple consequence of $i<d_{1}$. This completes the proof of the theorem in the case $i \geqslant 0$.

In the case $i<0$, we interchange the roles of m_{1} and m_{2} in (6.23) and τ and $-\tau$ in the subsequent argument. We may then conclude that (6.24) holds in all cases except $\tau=0, i=j$, (in which case ord $\left.b\left(0,-(p-1) i / d_{2}\right)=\hat{w}(i)\right)$, or when $\tau=0, i=-d_{2}, j=0$, or $\tau=1$, $i=-d_{2}, j \geqslant 0$, (in which cases we only obtain the weak inequality $\left.m_{1}+m_{2} \geqslant p \hat{w}(i)-\hat{w}(j)\right)$.

The following result is then an immediate consequence.
(6.25) THEOREM. Assume $\mathrm{p} \equiv 1(\bmod M)$, where $M=1 . c \cdot m \cdot\left(d_{1}, d_{2}\right)$. Then $L(\overline{\hat{f}}, T)$ is a polynomial of degree $d_{1}+d_{2}$, with reciprocal zeros $\left\{\omega_{i}\right\}_{i=-d_{2}}^{d_{1}-1}$ algebraic integers lying in $\Phi_{p}\left(\zeta_{p}\right)$ which can be arranged so that

$$
\operatorname{ord}_{q} \omega_{i}=\hat{w}(i)
$$

In other words, provided $p \equiv 1(\bmod M)$, the Newton polygons of $L(\overline{\hat{f}}, T)$ and $\tilde{H}(\overline{\hat{f}}, T)$ coincide.

7. FURTHER APPLICATIONS.

We will extend the results of the two previous sections. We consider here the two cases
(7.1)
(i) $\bar{h}(\bar{x}, \bar{t})=\bar{f}(\bar{x}, \bar{t})+\sum_{\alpha \in J} \bar{b}_{\alpha} \bar{t}^{\alpha}$
(ii) $\overline{\hat{h}}(\bar{x}, \bar{t})=\overline{\hat{f}}(\bar{x}, \bar{t})+\sum_{i \in K} \bar{b}_{i} \overline{\mathrm{t}}^{i}$
where $\bar{f}(\bar{x}, \bar{t})$ is the reduction modulo the maximal ideal of 0_{0} of (1.5); $\overline{\hat{f}}(\bar{x}, \overline{\mathrm{t}})$ is given by (6.1) ; $\left\{\overline{\mathrm{b}}_{\alpha}\right\}_{\alpha \in J} \cup\left\{\bar{b}_{i}\right\}_{i \in k} \subseteq \mathbb{F}_{q}^{*} ; J$ is a finite sum of monomials a satisfying
(7.2)
(i) $0<w(\alpha)<1$; $K \subseteq\left\{i \in \mathbb{Z} \mid-d_{2}<i<d_{1}\right\}$, and the inequalities
(ii) $0<\hat{w}(i)<1$,
are obvious for $i \in K$.

We give a few examples to show that the notion is not an empty one :
(i) $\bar{h}\left(t_{1}, t_{2}\right)=t_{1}+t_{2}+t_{1}^{-1}+t_{1}^{-2} t_{2}^{-1}+t_{1}^{-7} t_{2}^{-2}+t_{1}^{-1 O_{t}}{ }^{-3}$;

$$
\begin{equation*}
\text { (ii) } \bar{h}\left(t_{1}, \ldots, t_{n}\right)=\sum_{i=1}^{n} \bar{c}_{i} r_{i}+\sum_{j=1}^{m} \bar{b}_{j} t^{-a j} \text {, } \tag{7.3}
\end{equation*}
$$

where

$$
\begin{gathered}
a=\left(a_{1}, \ldots, a_{n}\right) \in\left(\mathbb{N}^{*}\right)^{n},\left\{\bar{c}_{i}\right\}_{i=1}^{n} \cup \bar{b}_{m} \subseteq \mathbb{F}_{q}^{*}, \\
\left\{\bar{b}_{j}\right\}_{j=1}^{m-1} \subseteq \mathbb{F}_{q} .
\end{gathered}
$$

We will work primarily with case (7.l)(i). Case (ii) is entirely analogous. Consider

$$
\begin{equation*}
h(x, t)=\sum_{i=1}^{n} c_{i} t_{i}+\sum_{\alpha \in J} b_{\alpha} t^{\alpha}+x t^{-a} \tag{7.4}
\end{equation*}
$$

where c_{i}, b_{α} and x are Teichmuller units in Ω_{o}, and the reduction modulo the maximal ideal of h is $\bar{h}(\bar{x}, \bar{t})$. We define as usual

$$
\begin{align*}
F_{O}^{*}(x, t) & =\theta_{\infty}\left(x t^{-a}\right) \prod_{i=1}^{n} \theta_{\infty}\left(c_{i} t_{i}\right) \underset{\alpha \in J}{\Pi} \theta_{\infty}\left(b_{\alpha} t^{\alpha}\right) \\
& =\sum_{\gamma \in \mathbb{Z}^{n}}\left(u(\gamma) \sum B_{\ell} \prod_{i=1}^{n} B_{m_{i}} \underset{\alpha \in J}{\Pi} B_{n_{\alpha}}\right) t^{\gamma} \tag{7.5}
\end{align*}
$$

where $u(\gamma)$ is a unit for each $\gamma \in \mathbf{z}^{n}$, and the inner sum runs over the set $f(\gamma)$, where

$$
\begin{align*}
\mathcal{J}(\gamma)= & \left\{\left(\left\{m_{i}\right\}_{i=1}^{n},\left\{n_{\alpha}\right\}{ }_{\alpha \in J}, \ell\right) \in \mathbf{N}^{n+|J|+1}\right. \text { such that } \tag{7.6}\\
& \left.m_{i}+\sum_{\alpha \in J} n_{\alpha} \alpha_{i}-a_{i} \ell=\gamma_{i} \text { for } i=1,2, \ldots, n\right\}
\end{align*}
$$

where we have systematically written $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ for $\alpha \in z^{n}$. Let

$$
\begin{equation*}
F(\gamma)=u(\gamma) \sum_{\gamma(\gamma)} B_{\ell} \sum_{i=1}^{n} B_{m_{i}} \sum_{\alpha \in J} B_{n_{\alpha}} \tag{7.7}
\end{equation*}
$$

then

$$
\text { ord } F(\gamma) \geqslant \inf _{\gamma(\gamma)}\left(\sum_{i=1}^{n} m_{i}+\sum_{\alpha \in J} n_{\alpha}+\ell\right) /(p-1)
$$

Note that the requirement $w(\alpha)<1$ implies that $\Sigma(\alpha) \leqslant 0$, because $s(\alpha) \geqslant 0$, and therefore $\Sigma(\alpha) \geqslant 1$ implies $w(\alpha) \geqslant 1$. Note also that for $\left(\left\{m_{i}\right\}_{i=1}^{n},\left\{n_{\alpha}\right\}_{\alpha \in J}, \ell\right) \in f(\gamma)$,

$$
\begin{equation*}
\sum_{i=1}^{n} m_{i}+\sum_{\alpha \in J} n_{\alpha}+\ell=\Sigma(\gamma)+N \ell+\sum_{\alpha \in J} n_{\alpha}(1-\Sigma(\alpha)) . \tag{7.8}
\end{equation*}
$$

We claim

$$
\begin{equation*}
\inf _{\gamma(\gamma)}\left\{N \ell+\sum_{\alpha \in J} n_{\alpha}(1-\Sigma(\alpha))\right\} \geqslant \operatorname{Ns}(\gamma), \tag{7.9}
\end{equation*}
$$

where $s(\gamma)$ is defined in (1.l). Clearly the left side is non-negative. It remains to show that
(*)

$$
N \ell+\sum_{\alpha \in J} n_{\alpha}(1-\Sigma(\alpha)) \geqslant-N \gamma_{i} / a_{i}
$$

for any i, and any $\left(\left\{m_{i}\right\}_{i=1}^{n},\left\{n_{\alpha}\right\}_{\alpha \in J}, \ell\right) \in \mathcal{J}(\gamma)$. Substituting in (*) for γ_{i} from (7.6) the desired inequality will hold, provided

$$
1-\Sigma(\alpha) \geqslant-N \alpha_{i} / a_{i}
$$

for any $\alpha \in J$. However $w(\alpha)<1$, implies

$$
\Sigma(\alpha)+\operatorname{Ns}(\alpha)<1
$$

which completes the proof of (7.9) and the following result.
(7.10) THEOREM. If J is a subset of monomials a satisfying $0<w(\alpha)<1$, then

$$
F_{0}^{*}(x, t) \in L\left(x, \frac{1}{p-1}, 0\right)
$$

where L is defined in (4.1 (i)).

Set

$$
\begin{equation*}
q(x, t)=\sum_{l=0}^{\infty} \gamma_{l} h^{\tau^{\ell}}\left(x^{p^{l}}, t p^{l}\right) \tag{7.11}
\end{equation*}
$$

where $\left\{\gamma_{\ell}\right\}_{\ell=0}^{\infty}$ is given by (5.12) ; let

$$
\begin{equation*}
\psi_{i, x}=E_{i} \mathscr{H}(x, t)=H_{i, x}+\Lambda_{i, x} \tag{7.12}
\end{equation*}
$$

where $H_{i, x}$ is given by (4.1 (iii)) and

$$
\begin{equation*}
\Lambda_{i, x}=\sum_{\ell=0}^{\infty} \gamma_{\ell} p^{\ell} \sum_{\alpha \in J} \alpha_{i} b_{\alpha} t^{\alpha p^{\ell}} . \tag{7.13}
\end{equation*}
$$

Note that since $w(\alpha) \in M^{-1} \mathbf{N}$, and $w(\alpha)<1$ for $\alpha \in J$, therefore

$$
\begin{equation*}
w(\alpha) \leqslant 1-\frac{1}{M}, \quad \text { for } \quad \alpha \in J . \tag{7.14}
\end{equation*}
$$

It follows from (7.13) and (7.14) that for $b \leqslant \frac{p}{p-1}$

$$
\begin{equation*}
\Lambda_{i, x} \in L\left(x, b,-e+e^{\prime}\right) \tag{7.15}
\end{equation*}
$$

where $e^{\prime}=b / M$; recall also that for $b \leqslant \frac{p}{p-1}, H_{i, x} \in L(x, b,-e)$. Define

$$
\begin{equation*}
D_{i, x}=E_{i}+q_{i, x}=D_{i, x}+\Lambda_{i, x} . \tag{7.16}
\end{equation*}
$$

It is not hard to prove that for ord $x>-N b,(p, M)=1$, the $\left\{\Phi_{i, x}\right\}_{i=1}^{n}$ form an R-sequence on $L(x, b)$ and furthermore that for $\frac{p}{p-1} \geqslant b>\frac{1}{p-1}$

$$
L(x, b, c)=V(x, b, c) \oplus \sum_{i=1}^{n} \mathscr{D}_{i, x} L(x, b, c+e) .
$$

From (7.16) we derive in the usual manner :
(7.17) THEOREM. Assume $(p, M)=1, \frac{p}{p-1} \geqslant b>\frac{1}{p-1}$, ord $x>-N b$. If we express $\xi \in L(x, b, c)$ in the forms $\xi=v+\sum_{i=1}^{n} D_{i, ~}{ }^{\zeta}{ }_{i}$ and $\xi=\mathrm{v}^{*}+\sum_{i=1}^{n} D_{i, x_{i}} \zeta_{i}^{*}$ with $v, v^{*} \in \mathrm{v}(\mathrm{x}, \mathrm{b}, \mathrm{c}), \zeta_{i}, \zeta_{i}^{*} \in \mathrm{~L}(\mathrm{x}, \mathrm{b}, \mathrm{c}+\mathrm{e})$ then

$$
v-v^{*} \in V\left(x, b, c,+e^{\prime}\right)
$$

Define as in §5, $\alpha_{x}^{(0) *}=\psi \circ F_{0}^{*}(x, t), \alpha_{x}^{\prime *}=\tau^{-1} \circ \psi \circ F_{0}^{*}(x, t)$,


```
We shall work exclusively with \(b\) fixed, \(b=p /(p-1), e=1\),
\(e^{\prime}=p / M(p-1)\).
```


Writing

$$
\begin{equation*}
F_{O}^{*}(x, t)=\sum_{\gamma \in \mathbb{Z}^{n}} F(\gamma) t^{\gamma} \tag{7.18}
\end{equation*}
$$

with $F(\gamma)$ defined in (7.7) above, we may write
(7.19) $\alpha_{x}^{(O)^{*}}\left(x^{S(\mu)} t^{\sigma(\mu)}\right)=\sum_{\beta \in z^{n}} A(\beta) t^{\beta} \in L\left(x^{p}, \frac{p}{p-1},-\frac{W(\mu)}{p-1}\right)$
where $A(B)=x^{(\mu)} F\left(p \beta-\sigma^{(\mu)}\right)$. We know
(7.20) $\alpha_{x}^{(0)^{*}}\left(x^{S(\mu)} t^{\sigma(\mu)}\right)=S_{Y}\left(\sum_{\beta \in \mathbb{Z}^{n}}{ }^{\left.A(\beta) x^{-p s(\beta)} Y^{\mathrm{pMs}(\beta)} t^{\beta}\right), ~}\right.$
and by (2.8) we define $\hat{A}_{\nu \mu}^{(j)}$ by
(7.21) $\sum_{\beta \in \mathbb{Z}^{n}} A(\beta) x^{-p s(\beta)} Y^{\mathrm{pMs}(\beta)} t^{\beta}=\sum_{\sigma} \sum_{v)_{\in \Delta}} \tilde{J}^{\left(\sum_{j=0}^{\infty} \hat{A}_{v, \mu}^{(j)} Y^{j}\right) Y^{\mathrm{pMs}(v)} t^{\sigma}}{ }^{(v)}$ $+\sum_{i=1}^{n} \hat{H}_{i, p}^{(\tau)}\left(Y^{p M}, t\right) \zeta_{i}$
where $\zeta_{i} \in L_{p}\left(\frac{p}{p-1}, \frac{-W(\mu)}{p-1}+1\right), \hat{A}_{\nu \mu}(Y)=\sum_{j=0}^{\infty} \hat{A}_{V, \mu}^{(j)} Y^{j} \in$ $R_{p}\left(\frac{p}{p-1}, \frac{p W(\nu)-W(\mu)}{p-1}\right)$ and we have explicit formulas from (2.8)

$$
\begin{equation*}
\hat{A}_{\nu, \mu}^{(j)}=\sum A(\beta) w^{-p s(\beta)} u(\beta, j) \tag{7.22}
\end{equation*}
$$

in which $u(\beta, j)$ is a unit in Ω_{0}, and in which the sum runs over $\beta \in \mathbb{Z}^{\mathrm{n}}$ where $\Sigma(\beta)=\mathrm{N} \tau_{\beta}+\nu, \mathrm{PMs}(\beta)+\tau_{\beta} \mathrm{PM}=\mathrm{j}+\mathrm{pMS}(\nu)$. Thus $\hat{A}_{v, \mu}^{(j)}=\sum F(p \beta-\sigma(\mu)) X^{S(\mu)-p s(\beta)} u(\beta, j) \quad$ where β runs over the above index set.
(7.23) THEOREM. Assume $(p, M)=1$, ord $x>-N /(p-1)$

$$
\operatorname{ord} \hat{A}_{v, \mu}^{(j)}>\frac{p W(\nu)-W(\mu)}{p-1}+\frac{j N M^{-1}}{p^{-1}}
$$

for all $j \geqslant 0$. Furthermore, if $p \equiv 1(\operatorname{Mod} M)$,

$$
\operatorname{ord} \hat{A}_{v, v}^{(0)}=W(v) ;
$$

if $\mu \neq \nu$ and $W(\mu) \geqslant W(\nu)$ then

$$
\operatorname{ord} \hat{A}_{v, \mu}^{(O)}>(p W(\nu)-W(\mu) /(p-1))
$$

Proof : Let
$b\left(\left(\left\{m_{i}\right\}_{i=1}^{n},\left\{n_{\alpha}\right\}_{\alpha \in J}, \ell\right) ; j\right)=u(\beta, j) x^{S(\mu)-p s(B)} B_{\ell} \underset{i=1}{n} B_{m_{i}} \underset{\alpha \in J}{n} B_{n_{\alpha}}$ for $\left(\left\{m_{i}\right\}_{i=1}^{n},\left\{n_{\alpha}\right\}_{\alpha \in J}, \ell\right) \in \mathcal{Y}(p \beta-\sigma(\mu)$) (where β satisfies the conditions in (7.22)) be a typical term in the series for $A_{\nu, \mu}^{(j)}$. Then the first assertion is a straighforward computation using ord $x>-N /(p-1)$. We obtain for $j=0$,
(7.24) ord $b\left(\left(\left\{m_{i}\right\}_{i=1}^{n},\left\{n_{\alpha}\right\}_{\alpha \in J}, \ell\right) ; 0\right) \geqslant \frac{p W(\nu)-W(\mu)}{p-1}+\frac{\sum_{\alpha \in J} n_{\alpha}(1-\Sigma(\alpha))}{p-1}$.

Since $\Sigma(\alpha) \leqslant 0$, we get a strict inequality in (7.23) if $n_{\alpha} \neq 0$ for any $\alpha \in J$. Therefore, we can restrict our attention to

$$
\left(\left\{m_{i}\right\}_{i=1}^{n}, \quad\{O\}_{\alpha \in J}, \ell\right) \in J(p \beta-\sigma(\mu))
$$

where β satisfies the conditions of (7.21). Thus

$$
b\left(\left(\left\{m_{i}\right\}_{i=1}^{n},\{O\}_{\alpha \in J}, \ell\right) ; O\right)=u(B ; O) B_{O}^{|J|_{B} \prod_{\ell=1}^{n} B_{p B_{i}}-\mu_{i}+a_{i} \ell}
$$

by definition (7.6) of the set \mathcal{F}. But then the argument is clearly the same as (5.34).

We can use the result above to obtain estimates for the reduction of $\alpha_{x}^{(0)^{*}}\left(t^{\sigma(\mu)}\right)$ modulo $\sum_{i=1}^{n} \hat{H}_{i, x}^{\tau}{ }^{L}\left(x^{p}, b\right)$ (here $\hat{H}_{i, x}$ is given by (4.1)). By (7.20) and (7.21) we write

$$
\alpha_{x}^{(0) *} t^{\sigma(\mu)}=\sum_{\sigma}^{(\nu)} \sum_{\in \Sigma_{\Delta}} \hat{A}_{v, \mu}^{*}(x) t^{\sigma(\mu)}+\sum_{i=1}^{n} \hat{H}_{i, x}^{\tau} p \hat{\zeta}_{i}^{*}
$$

where $\hat{\zeta}_{i}^{*} \in L\left(x^{p}, \frac{p}{p-1}, \frac{-W(\mu)}{p-1}-S(\mu)\right.$ ord $\left.x+1\right)$.
(7.25) COROLLARY. Assume $(p, M)=1$, ord $x>-N /(p-1)$

$$
\operatorname{ord} S_{Y}\left(\hat{A}_{\nu \mu}(Y) \geqslant(\mathrm{pW}(\nu)-W(\mu)) /(\mathrm{p}-1)\right. \text {. }
$$

Assume in addition, ord $x=0$, and set

$$
\hat{\mathrm{A}}_{v, \mu}^{*}(\mathrm{x})=\mathrm{x}^{\mathrm{pS}(v)-\mathrm{S}(\mu)} \mathrm{S}_{\mathrm{Y}}\left(\hat{\mathrm{~A}}_{v, \mu}(\mathrm{Y})\right)
$$

Then clearly ord $\hat{\mathrm{A}}_{v \mu}^{*}(x) \geqslant(\mathrm{pW}(\nu)-W(\mu)) /(p-1)$. If we also assume $\mathrm{p} \equiv 1(\bmod \mathrm{M})$, then

$$
\operatorname{ord} \hat{\mathrm{A}}_{v v}^{*}(\mathrm{x})=\mathrm{W}(v) ;
$$

if $\mu \neq \nu$ and $W(\mu) \geqslant W(\nu)$, then
$\operatorname{ord} \hat{A}_{v, \mu}^{*}>(p W(\nu)-W(\mu)) /(p-1)$.

If we combine (7.17), (3.16) and (7.25), we obtain the following result.
(7.26) THEOREM. Assume $(\mathrm{P}, \mathrm{M})=1$.
(i) Let $x \in f\left(\zeta_{p}\right)$, ord $x=0, \tau(x)=x^{p}$. Then
$\bar{\alpha}_{x}^{\prime *}=\tau^{-1} \circ \bar{\alpha}_{x}^{(0)^{*}}: w_{x}^{*} \rightarrow w_{x}^{*}$ is a τ^{-1} semi-linear endomorphism

$$
\bar{\alpha}_{x}^{\prime *}\left(\bar{t}^{\sigma}(\mu)\right)=\sum_{\sigma}^{(\mu) \in \tilde{\Delta}}{ }_{v \mu} a_{v,}^{*}(x) \bar{t}^{\sigma(\mu)}
$$

with matrix $a^{*}=\left(Q_{\nu, \mu}^{*}(x)\right)$ with respect to the basis $\left\{\bar{\epsilon}^{(\mu)} \mid \sigma^{(\mu)} \in \tilde{\Delta}\right\}$; the estimate ord $Q_{\nu \mu}^{*} \geqslant(p W(\nu)-W(\mu)) /(p-1)$ holds for all $-N+1 \leqslant \nu, \mu \leqslant 0$.
(ii) If $p \equiv 1(\bmod M)$, then

$$
\operatorname{ord} Q_{v v}^{*}(x)=W(v) ;
$$

if $\mu \neq \nu$ and $W(\mu) \geqslant W(\nu)$, then

$$
\text { ord } Q_{\nu \mu}^{*}(x)>(p W(\nu)-W(\mu)) /(p-1)
$$

From this we deduce the usual consequences for the Newton polygon of $L(\bar{h}, T)^{(-1)^{n+1}}$.
(7.27) THEOREM. Assume $(p, M)=1$. The Newton polygon of $L(\bar{h}, t)^{(-1)^{n+1}}$ lies over the Newton polygon of $\tilde{H}(\overline{\mathrm{f}}, \mathrm{T})$ (defined in (5.31)). If $\mathrm{p} \equiv 1$ $(\bmod M)$, the reciprocal zeros of $L(\bar{h}, T)^{(-1)^{n+1}}$ are algebraic integers in $Q_{p}\left(\zeta_{p}\right)$ and the Newton polygons of $L(\bar{h}, T)^{(-1)^{n+1}}$, $L(\overline{\mathrm{I}}, \mathrm{T})^{(-1)^{\mathrm{n}+1}}$ and $\tilde{H}(\mathrm{f}, \mathrm{T})$ all coincide.

A similar result holds in case (ii) by applying the above technique. Robba [6] has obtained a similar result by using his index theory.
(7.28) THEOREM. Let $M=1 . c . m \cdot\left(d_{1}, d_{2}\right) \cdot$ Assume $(\underline{p}, M)=1$. The Newton polygon of $L(\overline{\hat{h}}, T)^{(-1)^{n+1}}$ lies over the Newton polygon of $H(\overline{\hat{f}}, T)$ defined in (6.17). If $p \equiv 1$ (mod M) the reciprocal zeros of $L(\overline{\hat{h}}, T)^{(-1)^{n+1}}$ are algebraic integers in $\Phi_{\mathrm{p}}\left(\zeta_{\mathrm{p}}\right)$ and the Newton polygons of $L(\overline{\hat{h}}, T)^{(-1)^{n+1}}, L(\overline{\hat{f}}, T)^{(-1)^{n+1}}$, and $\tilde{H}(\overline{\hat{f}}, T)$ all coincide.
8. OTHER CONGRUENCE CLASSES.

In this section, we examine the situation when we drop the hypothesis $\mathrm{p} \equiv 1(\bmod \mathrm{M})$. We consider the exponential sums
where

$$
\begin{equation*}
\bar{f}(t)=\bar{\alpha} t+\bar{x} t^{-3} \tag{8.1}
\end{equation*}
$$

$\bar{\alpha}, \bar{x} \in \mathbb{F}_{q}^{*}$, when $p \equiv 2(\bmod 3)$. (The case $p \equiv 1(\bmod 3)$ is already included in the results of §5). The results of the present section show that for the example (8.1), the Newton polygon of the associated L-function when $p \equiv 2(\bmod 3),(p>5)$ lies over the Newton
polygon for the associated L-function when $p \equiv 1(\bmod 3)$, and it approaches this Newton polygon in the limit when p varies in the congruence class $p \equiv 2(\bmod 3)$ and $p \rightarrow \infty$.

It is convenient to introduce the following notation.
(8.2) $\lambda(v)=\left\{\begin{array}{l}\text { least non-negative residue mod } 3 \text { of } p v, \text { for } 0 \leqslant v \leqslant 2 \text {; } \\ 3, \text { for } v=3 .\end{array}\right.$ $\eta(v)=\frac{p v-\lambda(v)}{3}$ $\delta(\nu, \mu)=$ least non-negative residue mod 4 of $\mu-\lambda(\nu)$; $\varepsilon(v, \mu)=\eta(v)+\delta(v, \mu)$.
(8.3) LEMMA. For ord $x=0, p>5, p \equiv 2(\bmod 3), 0 \leqslant \mu, \nu \leqslant 3$

$$
\frac{\mathrm{pw}(-v)-\mathrm{w}(-\mu)}{\mathrm{p}-1}+1>\frac{\varepsilon(\nu, \mu)}{\mathrm{p}-1}
$$

where $w(-v)$ is defined in (1.1).

Proof : Using the definitions in (8.2), and the definition of $w(-v)=v / 3$ for $3 \geqslant v \geqslant 0$ (from (l.l)), the asserted inequality in the statement of the lemma is equivalent to

$$
p-1>\frac{\mu-\lambda(\nu)}{3}+\delta(v, \mu)
$$

which holds by definition of $\delta(v, \mu)$ and our restriction to primes p>5.
(8.4) THEOREM. Let α, x be Teichmuller liftings of $\bar{\alpha}, \bar{x}$. If $p>5, p \equiv 2$ (mod 3), ord $x=0$, then the following estimates for the size of the entries of the Frobenius matrix hold
(8.5) $\quad A_{-v,-\mu}=\pi^{\varepsilon(\nu, \mu)} a_{\nu, \mu}, O \leqslant \nu, \mu \leqslant 3$,
where $Q_{\nu, \mu}$ is an integer in $Q_{p}(\pi, x, \alpha)$, and, in fact, is a unit for all pairs (ν, μ) with the possible exceptions of $(3,0),(3,1)$ and $(3,2)$.

NEWTON POLYGONS FOR HYPERKLOOSTERMAN SUMS

Proof : By lemma (8.3) and theorem (5.32), it is sufficient to prove the estimates (8.5) for the matrix entries $\hat{A}_{-v,-\mu}$ where $\hat{A}_{-v,-\mu}$ is defined by

$$
\alpha_{x}^{(0)} t^{-\mu}=\sum \hat{A}_{-v,-\mu} t^{-v} \quad\left(\bmod \hat{H}_{O, x}^{(\tau)} L(x, b)\right)
$$

and where $\hat{A}_{-v,-\mu}$ is given explicity in the notation of theorem (5.32), by

$$
\begin{equation*}
\hat{A}_{-v,-\mu}=\sum_{\tau \in \mathbb{Z}} u(\tau, x) \quad \sum B_{4 p \tau-p v+\mu+3 \gamma} B_{\gamma} \tag{8.6}
\end{equation*}
$$

where $u(\tau, x)$ is a unit for all $\tau \in \mathbb{Z}$ and the inner sum runs over all non-negative integers γ such that

$$
4 p \tau-p v+\mu+3 \gamma \geqslant 0
$$

For real x let $\langle x>$ denote the smallest integer greater than or equal to x. For $\tau \leqslant 0$,

$$
\begin{align*}
\gamma & \geqslant \max \left\{0,\left\langle\frac{-4 p \tau+p \nu-\mu}{3}\right\rangle\right\} \tag{8.7}\\
& \left.=\max \left\{0,-p \tau+\frac{p \nu-\mu-p \tau}{3}\right\rangle\right\}
\end{align*}
$$

Let

$$
\begin{equation*}
b_{\nu, \mu}(\tau ; \gamma)=u(\tau, x) B_{\gamma} B_{4 p \tau-p \nu+\mu+3 \gamma} \tag{8.8}
\end{equation*}
$$

be a typical term in the series (8.6) for $\hat{A}_{-v,-\mu}$. Thus
(*)

$$
\text { ord } b_{\nu, \mu}(\tau ; \gamma) \geqslant \frac{4 p \tau-p \nu+\mu+4 \gamma}{p-1} .
$$

Consider first the case $\tau>0$. If $\tau \geqslant 2$ or if $\tau=1$ and $\nu<3$, we obtain from (*)

$$
\operatorname{ord} b_{v, \mu}(\tau ; \gamma)>1+\frac{3}{p-1}
$$

If $\tau=1$ and $v=3$, we obtain from (*)

$$
\text { ord } b_{v, \mu}(\tau ; \gamma) \geqslant \frac{p+\mu}{p-1} \geqslant \frac{\varepsilon(3, \mu)}{p-1}
$$

in which the last inequality is sharp if $\mu=3$. If $\tau<0$, or $\nu>0$, or $\mu<3$, then

$$
\begin{aligned}
\max & \left\{0,-p \tau+\left\langle\frac{p v-\mu-p \tau}{3}\right\rangle\right\} \\
& =-p \tau+\left\langle\frac{p v-\mu-p \tau}{3}\right\rangle
\end{aligned}
$$

Thus by (8.7),

$$
\begin{aligned}
4 \mathrm{p} \tau-\mathrm{p} v+\mu+4 \gamma & \geqslant-\mathrm{p} v+\mu+4\left\langle\frac{\mathrm{p} v-\mu}{3}\right\rangle \\
& \left.=\eta(v)+\mu-\lambda(v)+4<\frac{\lambda(v)-\mu}{3}\right\rangle
\end{aligned}
$$

where the first inequality is sharp if $\tau<0$ or if $\tau=0$ and $\gamma\rangle\left\langle\frac{p \nu-\mu}{3}\right\rangle$. Note that if $\nu \neq 0$ or if $\mu \neq 3$, then

$$
\mu-\lambda(v)+4\left\langle\frac{\lambda(v)-\mu}{3}\right\rangle=\delta(\nu, \mu),
$$

(since $-3<\lambda(v)-\mu \leqslant 0$ gives $\mu-\lambda(v)$ on both sides, and $0<\lambda(\nu)-\mu \leqslant 3$ gives $\mu-\lambda(\nu)+4$ on both sides). In case $\tau=0$ and $\gamma=\left\langle\frac{p \nu-\mu}{3}\right\rangle$, we obtain

$$
\text { ord } b_{\nu, \mu}(0 ; \gamma)=\frac{\eta(\nu)+\delta(\nu, \mu)}{p-1}
$$

In case $v=0$ and $\mu=3, b_{0,3}(0 ; 0)=u(0, x) B_{O} B_{3}$ so that

$$
\text { ord } b_{0,3}(0 ; 0)=\frac{\delta(0,3)}{p-1}
$$

Let $\bar{\alpha}_{x}^{(O)}$ denote the Frobenius map

$$
\bar{\alpha}_{x}^{(0)}: w_{x} \longrightarrow \underset{w^{p}}{w^{(\tau)}} .
$$

If $q=p^{r}$, we wish to compute the ord of the eigenvalues of the map $\alpha_{x}=\left(\tau^{-1} \circ \alpha_{x}^{(0)}\right)^{r}$. We will modify the argument of $[7, \S 2]$.
(8.9) THEOREM. Let $p>5, p \equiv 2(\bmod 3) \cdot$ Let $x \in \mathbb{F}_{q}^{*},\left(q=p^{r}\right)$, and let x be the Teichmuller lifting of x in Ω. Then
(i) for $p>11$, the eigenvalues $\left\{\omega_{i}\right\}_{i=0}^{3}$ of the Frobenius map $\bar{\alpha}_{x}$ can be arranged so that

$$
\begin{aligned}
\operatorname{ord}_{q} \omega_{o} & =0 \\
\operatorname{ord}_{q} \omega_{1} & =\frac{1}{p-1}\{n(1)+3\} \\
\operatorname{ord}_{q} \omega_{2} & =\frac{1}{p-1}\{n(2)-3\} \\
\operatorname{ord}_{q} \omega_{3} & =1
\end{aligned}
$$

(ii) For $p=11$, the eigenbalues $\left\{\omega_{i}\right\}_{i=0}^{3}$ of the Frobenius map $\bar{\alpha}_{x}$ can be arranged so that

$$
\begin{aligned}
& \operatorname{ord}_{q}{ }^{\omega}{ }_{0}=0, \\
& \operatorname{ord}_{q}{ }^{\omega} 1 \\
& \operatorname{ord}_{q} \omega_{3}=1
\end{aligned}
$$

Proof : We will follow the argument of [7, § 2] working with the matrix $A=\left(A_{-\nu,-\mu}\right)_{O} \leqslant \nu, \mu \leqslant 3$ of the Frobenius map $\bar{\alpha}_{x}^{(O)}$ with respect to the basis $\left\{t^{-\nu}\right\}_{\nu=0}^{3}$. We use an argument from (semi)-linear algebra via the usual formalism (cf. [3]). In both cases in the statement of (8.9), we can find a matrix $\mathcal{C} \in G L\left(4,0_{\infty}\right)$ (here 0_{∞} is the ring of integers in $f\left(\zeta_{p}\right), \pi$ is a uniformizer for O_{∞}) having the property that $C A\left(C^{-1}\right)^{\tau}$ has the block form

$$
\left[\begin{array}{cc}
1 & 0 \\
0 & A
\end{array}\right]
$$

where $A^{(1)}$ is a 3×3 matrix with entries in O_{∞} and

$$
A_{v, \mu}^{(1)} \equiv A_{-\nu,-\mu} \bmod \pi^{\varepsilon(v, \mu)+1}
$$

for any $1 \leqslant \nu, \mu \leqslant 3$. We will use the notation $X^{-\tau}$ to denote $\left(x^{-1}\right)^{\tau}$.
We will now deal with case (i), i.e. p>ll. We claim that there exists $\xi=\left(\xi_{1}, \xi_{2}, \xi_{3}\right) \in O_{\infty}^{3}$ such that

$$
\begin{equation*}
\xi A^{(1)}=\pi^{n(1)+3} \xi^{\tau} \tag{8.10}
\end{equation*}
$$

and furthermore $\xi=\left(\pi^{\varepsilon(1,1)} \tilde{\xi}_{1}, \pi^{\varepsilon(1,2)} \tilde{\xi}_{2}, \pi^{\varepsilon(1,3)} \tilde{\xi}_{3}\right.$) where $\tilde{\xi}_{1}, \tilde{\xi}_{2}, \tilde{\xi}_{3}$ are units in 0_{∞}. We write

$$
\begin{array}{r}
A_{v, \mu}^{(1)}=\pi \varepsilon(v, \mu) \quad a(1) \\
v, \mu
\end{array}
$$

for $1 \leqslant \nu, \mu \leqslant 3$. The existence of ξ is equivalent to the existence of $\tilde{\xi}=\left(\tilde{\xi}_{1}, \tilde{\xi}_{2}, \tilde{\xi}_{3}\right) \in 0_{\infty}^{3}$ with unit co-ordinates such that

$$
\begin{align*}
& \tilde{\xi}_{1} a_{1,1}^{(1)}+\pi^{n(1)-5 \tilde{\xi}_{2}} \begin{array}{l}
a(1) \\
2,1
\end{array}+\pi^{n(2)-3 \tilde{\xi}_{3}} a_{3,1}^{(1)}=\tilde{\xi}_{1}^{\tau} \\
& \tilde{\xi}_{1} G_{1,2}^{(1)}+\pi^{n(1)-1} \tilde{\xi}_{2} a_{2,2}^{(1)}+\pi^{n(2)+1} \tilde{\xi}_{3} G_{3,2}^{(1)}=\tilde{\xi}_{2}^{\tau} \tag{8.11}\\
& \tilde{\xi}_{1} a_{1,3}^{(1)}+\pi^{n(1)-1} \tilde{\xi}_{2} \underset{2,3}{a(1)}+\pi^{n(2)-3} \tilde{\xi}_{3} a_{3,3}(1)=\tilde{\xi}_{3}^{\tau} .
\end{align*}
$$

Note that $\eta(2)-3 \geqslant 1$ and $\eta(1)-5 \geqslant 0$ provided p is a prime, $p \equiv 2(\bmod 3)$, and $p>11$. Consider the reduced system

$$
\begin{align*}
\bar{\xi}_{1} \bar{u}_{1,1}+\bar{\xi}_{2} \bar{u}_{2,1} & =\bar{\xi}_{1}^{p} \\
\bar{\xi}_{1} \bar{u}_{1,2} & =\bar{\xi}_{2}^{p} \tag{8.12}\\
\bar{\xi}_{1} \bar{u}_{1,3} & =\bar{\xi}_{3}^{p},
\end{align*}
$$

where $\bar{u}_{1,1}, \bar{u}_{1,2}, \bar{u}_{1,3}$ are non-zero and $\bar{u}_{2,1}$ is zero if $p>17$, but is non-zero in case $p=17$. In either case, the equations may be solved simultaneously in $\overline{\mathbb{F}}_{p}$, the algebraic closure of \mathbb{F}_{p}, for a solution $\bar{\xi}=\left(\bar{\xi}_{1}, \bar{\xi}_{2}, \bar{\xi}_{3}\right) \in\left(\mathbb{F}_{\mathrm{p}}^{*}\right)^{3}$ of (8.12). Lifting, we obtain $\xi^{(1)}=\left(\xi_{1}^{(1)}, \xi_{2}^{(1)}, \xi_{3}^{(1)}\right) \in\left(0_{\infty}^{*}\right)^{3}$, a solution $\bmod \pi$ of (8.11).

Assume now that $\xi^{(i)}=\left(\xi_{1}^{(i)}, \xi_{2}^{(i)}, \xi_{3}^{(i)}\right) \in\left(O_{\infty}^{*}\right)^{3}$ has been constructed for $i \leqslant \ell$ so that (8.11) holds $\bmod \pi^{i}$ and so that

$$
\xi_{j}^{(i)} \equiv \xi_{j}^{(i+1)} \quad\left(\bmod \pi^{i}\right)
$$

for $j=1,2,3$ and $i<\ell$. We construct $\xi^{(\ell+1)}$ as follows. Let

$$
\xi_{j}^{(\ell+1)}=\xi_{j}^{(\ell)}+\pi^{\ell} w_{j}
$$

$(j=1,2,3)$, let

$$
\tilde{Q_{v, \mu}(1)}=\theta(v, \mu) Q_{v, \mu}^{(1)}
$$

where $\theta(1, \mu)=1$, for $\mu=1,2,3 ; \theta(2,1)=\pi^{n(1)-5} ; \theta(2, \mu)=\pi^{n(1)-1}$, for $\mu=2,3 ; \theta(3, \mu)=\pi^{n(2)-3}$, for $\mu=1,3 ; \theta(3,2)=\pi^{n(2)+1}$. Finally, let

$$
\beta_{j}=\frac{1}{\pi}\left(\xi_{j}^{(\ell)^{\tau}}-\sum_{k=1}^{3} \xi_{k}^{(\ell)} \hat{G}_{k j}\right) \in O_{\infty}
$$

for $j=1,2,3$. Then we obtain the following equations for w_{j} :

$$
\sum_{k=1}^{3} w_{k}{\hat{Q_{k j}}}=w_{j}^{\tau}+\beta_{j}
$$

$(j=1,2,3)$. This system may be solved for w_{j} by reducing (mod π) and
solving for $\left(\bar{w}_{1}, \bar{w}_{2}, \bar{w}_{3}\right) \in\left(\overline{\mathbb{F}}_{p}\right)^{3} \quad$ (just as we solved (8.12)), then lifting the solution to 0_{∞}^{3}. We then obtain $\tilde{\xi}$ by taking $\tilde{\xi}_{j}=\lim _{\ell \rightarrow \infty} \xi_{j}^{(\ell)}$.

Having found ξ as desired, we note $\zeta=\pi^{-n(1)} \xi\left(=\left(\zeta_{1}, \zeta_{2}, \zeta_{3}\right)\right) \in 0_{\infty}^{3}$ satisfies (8.10) with ord $\zeta_{1}=\frac{3}{p-1}$, ord $\zeta_{2}=0$, ord $\zeta_{3}=1 /(p-1)$.
Note that if we set

$$
\Lambda=\left(\begin{array}{lll}
\zeta_{1} & \zeta_{2} & \zeta_{3} \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

and

$$
D=\Lambda \cdot A^{(1)} \cdot \Lambda^{-\tau},
$$

then \varnothing has the block form

$$
\mathscr{D}=\left(\begin{array}{cc}
\pi^{n_{1}+3} & 0 \\
\Gamma & D^{(1)}
\end{array}\right)
$$

where $\Gamma=\left(\Gamma_{2}, \Gamma_{3}\right)^{t}$ is a 2×1 submatrix, and $D^{(1)}=\left(D_{v, \mu}^{(1)}\right)_{2 \leqslant v, \mu \leqslant 3}$ is a 2×2 submatrix. Furthermore

$$
\begin{align*}
\Gamma_{2} & =A_{2,1}^{(1)} \zeta_{1}^{-\tau}, \text { ord } \Gamma_{2}=\frac{1}{p-1}(n(2)-3) ; \\
\Gamma_{3} & =A_{3,1}^{(1)} \zeta_{1}^{-\tau}, \text { ord } \Gamma_{3} \geqslant 1-\frac{1}{p-1} ; \\
D_{2,2}^{(1)} & =-A_{2,1}^{(1)} \zeta_{1}^{-\tau} \zeta_{2}^{\tau}+A_{2,2}^{(1)}, \text { ord } D_{2,2}^{(1)}=\frac{1}{p-1}(\eta(2)-3) ; \tag{8.13}\\
D_{2,3}^{(1)} & =-A_{2,1}^{(1)} \zeta_{1}^{-\tau} \zeta_{3}^{\tau}+A_{2,3}^{(1)}, \text { ord } D_{2,3}^{(1)}=\frac{1}{p-1}(\eta(2)-2) ; \\
D_{3,2}^{(1)} & =-A_{3,1}^{(1)} \zeta_{1}^{-\tau} \zeta_{2}^{\tau}+A_{3,2}^{(1)}, \text { ord } D_{3,2}^{(1)} \geqslant 1-\frac{1}{p-1} ; \\
D_{3,3}^{(1)} & =-A_{3,1}^{(1)} \zeta_{1}^{-\tau} \zeta_{3}^{\tau}+A_{3,3}^{(1)}, \text { ord } D_{3,3}^{(1)} \geqslant 1 .
\end{align*}
$$

We construct a matrix z of the form

$$
z=\left(\begin{array}{ll}
1 & 0 \\
\theta & I
\end{array}\right)
$$

where $\theta=\left(\theta_{2}, \theta_{3}\right)^{t}$ is a 2×1 submatrix, I is the 22 identity, and z satisfies

$$
z \mathscr{D} z^{-\tau}=\left(\begin{array}{cc}
\pi^{\eta(1)+3} & 0 \\
0 & \theta^{(1)}
\end{array}\right)
$$

This is equivalent to solving the system

$$
\begin{equation*}
\theta_{2} \pi^{\eta(1)+3}+\Gamma_{2}-D_{2,2}^{(1)} \theta_{2}^{\tau}-D_{2,3}^{(1)} \theta_{3}^{\tau}=0 \tag{8.14}
\end{equation*}
$$

$$
\theta_{3} \pi^{n(1)+3}+\Gamma_{3}-D_{3,2}^{(1)} \theta_{2}^{\tau}-D_{3,3}^{(1)} \theta_{3}^{\tau}=0 .
$$

We write $\Gamma_{2}=\pi^{n(2)-3} \gamma_{2}, \Gamma_{3}=\pi^{n(3)-1} \gamma_{3}, \quad \theta_{2,2}^{(1)}=\pi^{n(2)-3} d_{2,2}$, $\boldsymbol{D}_{2,3}^{(1)}=\pi^{n(2)-2} \alpha_{2,3}, \quad \nabla_{3,2}^{(1)}=\pi^{n(3)-1} d_{3,2}, \quad D_{3,3}^{(1)}=\pi^{n(3)} d_{3,3}$ and $r_{2}, r_{3}, d_{2,2}, d_{2,3}, d_{3,2}$ and $d_{3,3}$ belong to o_{∞} and $r_{2}, d_{2,2}$, and $d_{2,3}$ are, in fact, units. For $p>11, p \equiv 2(\bmod 3), n(2)-2 \geqslant \eta(1)+3$ and $\eta(3)-2>\eta(1)+3$, so (8.14) reduces to the following system

$$
\begin{align*}
& \Theta_{2}+\pi^{n(1)-5} \gamma_{2}-\pi^{n(1)-5} d_{2,2} \Theta_{2}^{\tau}-\pi^{n(1)-4} d_{2,3} \Theta_{3}^{\tau}=0 \\
& \Theta_{3}+\pi^{n(2)-4} \gamma_{3}-\pi^{n(2)-4} d_{3,2} \Theta_{3}^{\tau}-\pi^{n(2)-3} d_{3,3} \Theta_{3}^{\tau}=0 \tag{8.15}
\end{align*}
$$

This system can be solved for θ_{2} and θ_{3} by a similar argument to that used for the solution of (8.11).

We can now again apply the result of $[7, \S 2]$ to obtain $\sigma=\left(\sigma_{2}, \sigma_{3}\right) \in 0_{\infty}^{2}$, with σ_{2} a unit, σ_{3} divisible by π, satisfying

$$
\begin{equation*}
\sigma D^{(1)}=\pi^{n(2)-3} \sigma^{\tau} \tag{8.16}
\end{equation*}
$$

Just as before this enables us to define a 2×2 matrix $\xi \in G L\left(2,0_{\infty}\right)$ satisfying

$$
\xi D^{(1)} \xi^{-\tau}=\operatorname{diag}\left(\pi^{n(2)-3}, \pi^{Y}\right)
$$

where the right-side denotes a 2×2 diagonal matrix with diagonal entries indicated. By the well-known functional relation, it follows that $y=n(3)$.

In case (ii), i.e. $p=11$, the above argument is modified as follows. We can find $\xi=\left(\xi_{1}, \xi_{2}, \xi_{3}\right), \xi_{1}=\pi \tilde{\xi}_{1}, \xi_{2}=\tilde{\xi}_{2}, \xi_{3}=\pi \tilde{\xi}_{3}$
with $\tilde{\xi}=\left(\tilde{\xi}_{1}, \tilde{\xi}_{2}, \tilde{\xi}_{3}\right)$ having unit co-ordinates in 0_{∞} satisfying
(8.17)
$\xi A^{(1)}=\pi^{5} \xi^{\tau}$.

Then letting

$$
\hat{\Lambda}=\left(\begin{array}{lll}
\xi_{1} & \xi_{2} & \xi_{3} \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

and setting

$$
\hat{D}=\hat{\Lambda}_{A}^{(1)} \hat{\Lambda}^{-\tau} \text {, }
$$

yields $\hat{\mathscr{D}}$ in the block form

$$
\hat{\mathscr{D}}=\left(\begin{array}{cc}
\pi^{5} & 0 \\
\Gamma & \hat{\mathscr{D}}^{(1)}
\end{array}\right)
$$

where $\hat{\Gamma}=\left(\hat{\Gamma}_{1}, \hat{\Gamma}_{2}\right)^{t}$ is a 2×1 submatrix and $\hat{D}^{(1)}=\left(\hat{D}_{\nu, \mu}^{(1)}\right)_{2 \leqslant \nu, \mu \leqslant 3}$ is a 2×2 submatrix. Furthermore

$$
\begin{align*}
\hat{\Gamma}_{2} & =A_{2,1}^{(1)} \xi^{-\tau}, \quad \text { ord } \hat{\Gamma}_{2}=\frac{1}{2} ; \\
\hat{\Gamma}_{3} & =A_{3,1}^{(1)} \xi_{1}^{-\tau}, \quad \text { ord } \hat{\Gamma}_{3} \geqslant 1 ; \\
\hat{D}_{2,2}^{(1)} & =-A_{2,1}^{(1)} \xi_{1}^{-\tau} \xi_{2}^{\tau}+A_{2,2}^{(1)}, \quad \text { ord } \hat{\mathscr{D}}_{2,2}^{(1)}=\frac{1}{2} ; \\
\hat{D}_{2,3}^{(1)} & =-A_{2,1}^{(1)} \xi_{1}^{-\tau} \xi_{3}^{\tau}+A_{2,3}^{(1)}, \quad \text { ord } \hat{D}_{2,3}^{(1)}=\frac{3}{5} ; \tag{8.18}\\
\hat{\mathscr{D}}_{3,2}^{1} & =-A_{3,1}^{(1)} \xi_{1}^{-\tau} \xi_{2}^{\tau}+A_{3,2}^{(1),} \text { ord } \hat{\mathscr{D}}_{3,2}^{(1)} \geqslant 1 ; \\
\hat{\mathscr{D}}_{3,3}^{(1)} & =-A_{3,1}^{(1)} \xi_{1}^{-\tau} \xi_{3}^{\tau}+A_{3,3}^{(1)}, \quad \text { ord } \hat{\mathscr{D}}_{3,3}^{(1)}=1 .
\end{align*}
$$

We can now find $\hat{\theta}=\left(\hat{\theta}_{1}, \hat{\theta}_{2}\right)^{t} \in O_{\infty}^{2}$ such that if

$$
\hat{z}=\left(\begin{array}{ll}
1 & 0 \\
\hat{\theta} & I
\end{array}\right)
$$

with I the 2×2 identity matrix, then

S. SPERBER

$$
\hat{z} \hat{D} \hat{z}^{-\tau}=\left(\begin{array}{cc}
\pi^{5} & 0 \\
0 & \hat{D}^{(1)}
\end{array}\right)
$$

The rest of the argument goes through unaltered. This completes the proof of (8.9).
$\underline{\text { Remark }}:$ Let $\bar{h}(t)=\bar{\alpha}_{1} t+\bar{\alpha}_{-1} t^{-1}+\bar{\alpha}_{-2} t^{-2}+\bar{\alpha}_{-3} t^{-3}$ with $\bar{\alpha}_{i} \in \mathbb{F}_{q}$, $\bar{\alpha}_{1}, \bar{\alpha}_{-3} \in \mathbb{F}_{q}^{*}$. By the method of $\S 7$, we can conclude that for $p>11$, $p \equiv 2(\bmod 3)$, the Newton polygon of $L(\bar{h}, t)$ and $L(\bar{f}, t)$ (given in theorem (8.9 (i))) coincide.

REFERENCES

[1] B. DWORK, "On the zeta function of a hypersurface", Publ. Math. I.H.E.S., n° 12, Paris, 1962.
[2] B. DWORK, "On the zeta function of a hypersurface, II", Ann. of Math., Vol. 80 (1964), 227-299.
[3] B. DWORK, "Bessel functions as p-adic functions of the argument", Duke Math. Jour., Vol. 41 (1974), 711-738.
[4] P. DELIGNE, "Applications de la formule des traces aux sommes trigonometrique", in SGA $4^{1 / 2}$ Cohomologie Etale, Lecture Notes 569, Springer Verlag (1977) Berlin.
[5] N. KATZ, "Sommes Exponentielles", Asterisque 79 (1980), Paris.
[6] P. ROBBA, "Index of p-adic differential operators, III. Applications to twisted exponential sums", to appear.
[7] S. SPERBER, "Congruence properties of the hyperkloosterman sum", Compositio Math., Bol. 40 (1980), 3-33.
[8] D. G. NORTHCOTT, Lessons on rings, modules and multiplicities, Chapter 8, Cambridge University Press (1968), London.

Steven SPERBER
School of Mathematic University of Minnesota Minneapolis, MN 55455
U.S.A.

[^0]: * Research partially supported by NSF grant MCS 80-01865.

