
Astérisque

STEVEN SPERBER
Newton polygons for general hyperkloosterman sums

Astérisque, tome 119-120 (1984), p. 267-330
<http://www.numdam.org/item?id=AST_1984__119-120__267_0>

© Société mathématique de France, 1984, tous droits réservés.

L’accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/
Publications/Asterisque/) implique l’accord avec les conditions générales d’uti-
lisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou
impression systématique est constitutive d’une infraction pénale. Toute copie
ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=AST_1984__119-120__267_0
http://smf4.emath.fr/Publications/Asterisque/
http://smf4.emath.fr/Publications/Asterisque/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


Société Mathématique de France 
Astérisque 119-120 (1984) p.267-330 

NEWTON POLYGONS FOR GENERAL HYPERKLOOSTERMAN SUMS 

by 

Steven SPERBER* 

INTRODUCTION 

Let X/W be affine, char 3F = p, f a regular function on X, ^ q q q a non-trivial additive character of 3Fa . We define exponential sums 

Sm(f,X,i/0 = 
X G X OF m 

q 

W.tRf 
m/3F q q 

(f(x)) , 

where X OF ) denotes the JF ̂ -rational points of X . The associated 
q q 

L-function is defined by 
L(f,X,ij;,T) = exp 

m=l 
oo S m ( f / X ^ ) T m / m ) . 

In [4 ], Deligne proved that in the case of the hyperkloosterman sum 
Sm(f,X,ij;), where X is the algebraic group defined over 3Fg by the 
coordinate equation x x x 2 . . . x n + 1 = 1 and where f(x) = x 1 + x 2 + . . . + x

n + 1 i 

that the associated L-function L(Kloos n + 1) has the property that 
(-l) n + 1 

L(Kloos ) is a polynomial of degree n + 1 having all reci-
n/2 

procal roots of absolute value equal to q / . In [5 ], under suitable 
hypotheses, Katz generalizes Deligne's result, proving a similar 
result for the L-functions associated with generalized Kloosterman 
sums Sm(g,Y,\j;) where Y is the algebraic group defined over TF^ by the equation 

bl b 2 
X l X 2 x n + 1 

• Xn+1 = 1 and where 

g(x) = a 1 x ^ + a 2 X 2 + . k 
n+1 n+1 a. e r*. (In fact, Katz's result 

ж Research partially supported by NSF gr,ant MCS 80-01865. 
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S. SPERBER 

is more general proving similar results even when the sums are twis

ted by multiplicative characters). 

In this same work, Katz raises the question of how the Newton 

polygon of the L-function varies with p . In particular, if g(x) 

above is obtained by reduction from a global situation, say for 

example from g(x) e 7L [x̂  , . . . / x

n + 1 ] t then it makes sense to study 

(-l) n + 1 

the Newton polygon of L(g,Y,i{> ,T) as p varies. In the case 

of the zeta function Z(X^,T) of a projective non-singular variety X^ 

arising from mod p reduction of a variety X defined over some 

global field, the Newton polygon of Z(X ,T) has a well-known relation 

to the Hodge numbers of X . Are there analogous structures for expo

nential sums ? For example, in the case of hyperkloosterman sums, we 

proved in [7 ] that for p > n + 3 , the Newton polygon of 

L(Kloos n+l> 
(-l) n + 1 

is given by the diagram with vertices 

(+) { (0,0)} u { u,a u-n/2} n+1 ¿=1 

Clearly, in this case, the Newton polygon is independent of p . Katz 

asks whether this holds also in the case of generalized Kloosterman 

sums ; more precisely, he asks how the Newton polygon of 

L(gfY#i|> ,T) 
(-l) n + 1 

varies as a function of (p,b^,...,^n+1) fo
r P > > 0. 

In the present work, we consider the case b n + 1 = k = 1, which 

we write in the form 

Sm=Ew.TrF 
m/JF q q 

- - _ b i 
[ a i t 1 + . . . + a n t n + x. t l 

..tn-bn) 

where the sum is taken over all t = (t^...,^) e C F +

m )
n • In 

q 

theorem (5.46), we obtain for p = 1 (mod M) , (M = 1 .c .m. (b.̂  , . . . ,bn) ) , 

a precise description of the Newton polygon of the associated L-func-

tion. In theorem (5.31), assuming only (p,M) = 1, we show that the 

Newton polygon always lies over the polygon for p = 1 (mod M) . This 

behavior is not unlike Stickelberger1 s result for Gauss sums. These 

results are then generalized in § 6 and § 7. 

In terms of Katz 1s questions then, within the congruence class 

p = 1 (mod M) the Newton polygon is independent of p . In general 

this diagram has vertices in the lattice TL *^ % . However, the fact 
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that L(-1) n+1 
€ Q(C D) [T ]/ where c is a primitive p f c root of 1 , 

together with the fact that $ (r ) is totally ramified over $ of 
P P P degree p-1 implies that this same diagram can not in general be the 

(-l) n + 1 

the Newton polygon of L when p^1 (mod M). In § 8, we analyze 
an example (with M=3) in greater detail showing (theorem 8.9) that 
if p = 2 (mod 3), then the Newton polygon varies with p, descending 
as p — > * in the congruence classe p = 2 (mod 3) , to the Newton 
polygon diagram for the case of primes p, p = 1 (mod 3) given by 
theorem (5.46). 

Throughout we use Dwork's methods. We systematically replace 
the differential operators that arise in Dwork's theory by simpler 
operators which we view as perturbations. By this type approximation, 
we simplify the computations sufficiently to extract very precise 
estimates. The method also requires a good choice for the basis of 
the cohomology space. In § 4, we take this opportunity to clarify 
the process of specialization. We note also that the present techni
ques eliminate the need to restrict to large p ; in particular, 
theorem (5.46) shows that (+) is the Newton polygon for 

L (Kloos ln+l> (-1) 
n+1 for all p, thus extending the result of [7 ] quoted 

above. 
Finally, we note that it is possible to give a recipe for the 

f - D n + 1 

Newton polygon of L ' when p 1 (mod M) in which the ingredients 
for the recipe consist only of the exponents of the deformation 
equation at the singular point x = 0. We believe that this indicates 
the possibility of using transformations of the polynomial 

al f cl +-"- + an f cn + x t l .-
bl t 

n 
-b 
n 

the singular fibers of the resulting transforms ; and p-adic analytic 
continuation to describe analytically the reciprocal zeros of 
L ( - D n + 1 . 

We tank N. Katz for his suggestions concerning this work, and 
B. Dwork and Y. Sibuya for some helpful discussions. We would also 
like to thank Princeton University for its hospitality while some of 
the work was completed. 

269 



S. SPERBER 

Let Q be an algebraically closed field of characteristic zero 

complete under the extension | | of the p-adic valuation of (J) . We 

will also use the additive form "ord" of the valuation, normalized 

so that ord p = 1 ; if q = p r , then "ord^" will denote the valua

tion normalized so that ord^q = 1 . Let 3N denote the non-negative 

integers, and let 3N+ denote the natural numbers. Let 

a = (a.,...,a ) e C N + ) n . We assume 

a1 >, a 2 > ... £ a R > 0 

Let M = l.cm. (a^aj, . . . ,a ) ; N = 
n 

i=l 
a ± + 1 . 

1. DEFINITIONS. Let QQ be a finite extension of £>p(çp) where C p is a 

primitive p1"*1 root of 1 ; let 0 Q be the ring of integers of ftQ . Let 

T e Gal(^0/Qp(Cp)) denote the Frobenius automorphism . For 

a = (OL^, . . . ,a n) e 2Z
n , y e 3N , m e 3N+ , define 

(1.1) 

1(a) 
i=l 

n 
a. , 

s(a) = max{0 
a1 

al 

-a 
n 

a n 

tf(ot) = I(a) + Ns(a) , 

w m(a ; y) = lia) + Nym ""-M"1 . 

Let t l f...,t n,Y be indeterminates ; let b,c e 3R, b > O. Define 

(1.2) L m(b,c) = 
(a;y)esm 

A(a;y)t aY Y | A(a;y) G fìQ 

ord A(a;y) > c + w m (a ; y)b } 

where the index set S m is given by 

(1.3) S m = { ( a ; y ) e ^ X ] N I Y > "^s^01) } ' 

and where t a denotes 
a a 2  

t t n ' 

Let 
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(1.4) 

L m(b) = 
C «=3R 

U L m(b,c) , 

^ ( b ^ ) = ftQ[[Y]] n L m ( b / C ) , 

Rm< b> u 
C GJR 

R m ( b / C ) = L m(b) O f2Q[[Y]] 

Define 

(1.5) f(Y,t) = 
n 

i=l 
c.t. + Y t " a 

Let {yj}ooj=0 
c W(£p) be a sequence of elements with the 

estimates 

(1.6) 
ord Y 0 = l/(p-D , 

ord Yj £ 
pj+1 
p-1 - (j + 1) 

In terms of these constants, we write 

(1.7) 

H(Y , t) = y . f(Y,t) , 

H ( Y, t ) = H ( Y, t ) + oo 
£=1 

yl.ftl 
( Y P ,tP ), 

F ( Y, t) = exp H (Y, t) , 

E. = t. 3 
3t. 

S ^ ) ( - g l ( Y » M , t ) ) = E. H t Y ^ t ) , 

( = H i ( Y m M , t ) ) = E - H t Y ^ t ) , 

D f m ) = E . + H f m ) 

1 1 1 

We note that 

(1.8) " l m ) = Y o C c . ^ - a ^ t - 3 ) e L m(b,-e) 

where e = b - 1 
p-1 and 

(1.8) 1 H. ( m ) G L (b,-e) 

provided P 
p-1 >, b . 
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5. SPERBER 

We now distinguish for each J e % , a unique vector a e 2Zn 

such that £ ( a ^ ) = J . We employ the notation U i for that element 

of Z n with 1 in the i*"*1 position and O elsewhere. We define a ̂ J^ 

inductively for 0 > J > -(N-1) . First, define for J ^ 0 , 

(1.9) 
S(J) = min{s(y) } t 

W(J) = J + NS(J) , 

where the minimum runs over y such that -y e 3Nn, £(y) = J • Assume 

that a v ' has been defined for 0 z K >. J, (where O > J > -(N-1)), 

with the properties 

(i) K. X(a ( K )) = K ; 

(ii) K. 
(K _ „(K+1) _ T 7 a - a - U , 

(l.lO) where K < O, and z e {1,2,...,n} 

( i ü ) K . s (o ( K )) = S(K) ; 

(i) K. & K is chosen minimally so that the above 

properties hold. 

We will show that £j can be chosen so that o^J^ and Jlj satisfy (l.lO) 

for K = J. Let a

( j , k ) = a ( J + 1 ) - U k , for k e (1,2,...,n} . It suf

fer k) 

fices to prove s(av 1 ') = S(J) for some k . Suppose on the 

contrary 
(*) s ( a ( J , k ) ) > S(J) , for all k . 

L e t y ( J ) - (y< J ) y n

J ) ) e * n , - y ( J ) elN n, I(y ( J )) - J and 

s ( y ^ ) = S(J) . Note that (#) implies 

(**) 
-Yi(J) <-oi (J+l) for all i, 1 < i < n . 

Otherwise, -yi(J) o1(J+1)+1 for some i , 1 < i ̂  n . But then 

-oi(J,i) 

a i 

- a < J + 1 ) 

1 
+ 1 

a i 
< 

-Yi(J) 

a . 
L 

< S(J) ; 

for £ 7* i , 
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ol(J,i) 

al 

0 ( J + 1 , 

al 
>$ S(J+1) ^ S(J) . 

Thus s(a^ J , i^) < S(J), contradicting (*) . But summing (#*) over i, 
leads to the contradiction -J <: -J - 1, and establishes (l.lO) for 
K = J. 

We have thus defined the sequence 
(1.11) {u ,u *...*u > 

Ä-l -2 - (N-l) 
for J, O > J > -(N-l) , 

o ( J> = 
"I 
i=J 

Uli 

Define a map 
(1.12) g : 2Z - {0} — > {1,2, . ,n} 

by setting g(i) = I. for -1 ^ i > -(N-1) and requiring periodicity 
g(j) = g(j+N-l) for j « -N ; then set g(i) = ^ i - N / for 1 <: i >< N-l 
and g(j) = g(j-N+l) for j > N. Then, if J < 0, we define 

(1.13) n(J) _ n (J+l) _ n 
UQ(J) -

-1 

i=J ug(i) ; 

if J > O , 
(J) _ (J-l) 

ö — Ö + V J ) = 

J 
i=l ug(i) ' 

Observe that with this definition 

(1.14) s(a ( J )) = S(J) for all J ^ O . 

It is convenient, as well as consistent with (1.14), to define 
S(J) = 0, W(J) = J for J > 0 . Observe also that 

(1.15) S (J + A (N-l) ) = S (J) - X 

for non-positive integers J and X . 

(1.16) DEFINITION. We call the set 

A = { a ( J ) G 2Sn I J G Z } 

the diagonal weighted by the vector a = (a x,a 2,...,a n) e C K + ) n . 
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We distinguish a certain subset of the diagonal A which will 

play an important role in the following sections. Let 

(1.17) A = { a ( J ) e A I -N+l < J ̂  O } . 

Let V m(b) be the Rm(b)-span of 

(1.18) { ymMS(y) t° 
(y) 

a ( p ) e Ï } 

and 
V m(b,c) = V m(b) n L m(b,c) . 

2. REDUCTION THEORY. 

The purpose of this section is to prove certain explicit reduc

tion formulas modulo the submodule 
n 

i=l 
H ;[

m )L m(b /c+e) of L m(b,c) , 

and to prove under the hypothesis (p,M) = 1, that 

(2.1) L m(b,c) = V m(b fc) + 
n 

i=l 
HJ m )L m(b fc +e) . 

In the next section we will prove this sum is direct. 

(2.2) LEMMA (Reduction to the diagonal). Assume (p,M) = 1. Let  

a G Z n , 1(a) = J . Then 

t a = u(a) 
to(J) n 

i=l 

Hi(m)(Yo-1Pi,a) 

in which u(a) is a unit in flQ, and p ± ^ 0Q [t± ..., t R, (t1,... ,tn)
 1] 

6 
has the following properties : if t p is a monomial of p. having   — j. 7 a 
non-zero coefficient, then 

(i) £($) = lia) - 1 , 

and 
(ii) s(ß) ^ s(a) . 

Proof : If a = (a1,a2,...,aR) 
E ZZn, then 
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( 2 . 3 ) l f j 
, a , v — 1, a a-Ui+Uj. / „ £ (m) Ci (m) N , , _ v -1, a ^iv t =a iCj(ajC i) t J+(ajH i

 7-a ±H^ )((Y Q
aj ci) fc ) 1 

We describe this process as shifting from i to j. We use this process 
in either of two cases : 

(i) a ± > 0 ; 

(ii) OL± ^ O , and 
-a ± +l 

a i 
s(a) . 

In both cases, we have 
s(a-U±) = s(a) , s(a+Uj-Ui) ^ s(a) . 

We use the shift process (2.3) repeatedly to reduce a to the diagonal. 

As long as there exists a pair of indices (i,j) with ou > 0 and 
a_. < 0 then we can shift from i to j, as above. Therefore, we may 
and will assume that either a i > 0 for all indices i, or that ^ 0 
for all indices i. We treat these cases separately. Assume first 
that a i > 0 for all indices i. Then whenever > 0, we may shift to 
j from i, for any j, j ^ i, and we obtain the assertion of the lemma 
after a finite number of steps. 

Assume next that ^ O for all indices i. If s(a) > S(J) and 
a . 

- —2- = s(a), then we claim that we can shift from i to j. Note that 
a j 

since £(a) = £ ( a ^ ) = J and a a ̂ J^ , therefore a i > cr.fJ^ for some 
i . Thus, 

-a ±+l 
a i 

-a<J> l 
a. 
l 

^ S(J) < s(a) , 

so that we can shift from i to j . In a finite number of steps we 
can reduce s(a) ; in fact, the process continues as long as s(a)>S(J). 
Therefore assume we have reduced a to a = (a 1,...,a n) with- s(a) =S(J). 
If X jt a ( J ) , then 1(2) = I(a ( J )) implies that 2. > a| J ) and 2. < a ] J ) 

for some pair of indices (i,j) . Then 
a. 

-a.+l 
a i 

-cfJ> 
1 a. 
l 

^ S(j) = s(a) 

so we can shift from i to j . In a finite number of steps, we reduce 
a to o^J^ as desired. u 
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(2.4) THEOREM. Assume (p,M)=l; Let ç = 
(a;y)esm 

U a ? Y ) t V € L m ( b , c ) . 

Then for each k G 7L , 

E(a)=k (a;Y)eSm 

A(a;y)t aY y = a K(Y)t^ 
n 

L 

1 = 1 

Hi(m)ni 

where a k(Y) = 
Z (a)=k 

u(a) 
(a;y)GSm 

A(a;y)Y Y G Rm(b,c+kb) , ak(Y)t
a 
.00 

G Lm(b,c) , 

G L m(b,c+e), u(a) a unit in fiQ 

Proof : The reduction follows from lemma (2.2) (note that Y does not 

appear in a.fifm) -a.H^ m ) so that we may multiply (2.3). . by Y Y to 
3 1 1 3 1 / 3 

reduce Y Y t a ) . If y > mMs(a), then using s(a) >s(B) for any monomial 

t^ of p. , we see that all monomials of Y Yp. belong to S_ ; ri,a' *i/a ^ m 

similarly by (1.9) and (1.14), Y Y t a G S m . 

Note that if Sm,k = { ( a ; Y ) G S m I ï { a ) = k } ' then 

ord 
( a ; Y ) G S m , k 

u ( a ) A ( a ; Y ) £ c + kb + yNbm 1M 1 . 

Thus, a k(Y) G Rm(b,c+kb) , and a k(Y)t
a 

(k) 
G L m(b,c) Similarly, in 

terms of (2.2), ni= Y0-l 
( a ; Y ) e S m , k 

A(a;y)Y yp 
i, a 

Thus, if we write 

ni - (B;y)ESm,k 
B ±(3;Y)t

EY Y, then B ± ( B ; Y ) has the from 

B ± ( B ; Y ) = Y Q 1 I A(a;Y)e(a) 

in which the sum runs over a G Z n with £(a) = k = £(B) + 1 / (so that 

w m (a ; Y ) = w m ( B ; Y ) + 1) , and s(3)-£s(a)^m
 1 M 1 Y / and in which 

e(a) e 0Q . Thus, 

ord B ± ( B ; Y ) > c + e + bw m(3;Y) 

and T)^ G L m(b,c+e). 

To reduce along the diagonal to the set A, we will need the 

following formulas : 
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(i) 
(k) 

Y Yt G = ag(k) 
-l 
g(k) Y

Y+mMta r(k-N) g(k) (y'V
1  

U 0 Cg(k) 
Yyto (k-1) 

if k > O ; 
(2.5) 

(ii) Y Yt a 
(k) 

= c a"1 

g (k+N) g (k+N) 
(k+N) 

YY-mMta _U (m) 
g (k+N) 

i 1 (k+N-1) 
( Y0 ag(k+N)Y fc ) ' 

if k^ -N . 

(2.6) LEMMA (Reduction along the diagonal). Assume (p,M) = 1 . Let 
(a; Y) e S , with a = a ( k ) G A, £ (a) = £(a ( k )) = k . Let k = NT + y 
with -N < y < 0 . Then 

(k) y a Y t = 0 3 ( k ) Y Y + T m M t a ( y ) 
n 

i=l 
H ( m ) ( Y _ 1 P ) 1 l Y 0 Pi,a,Y J ' 

in which u)(k) is a unit in 0 Q . Furthermore, for 
k > O, p. G YYC) [Y,t, , . . . ,t ] such that if Y v t 3 is a monomial 

1,01, Y \J JL n —_______——__——_——____— —__________ 
term of p. having a non-zero coefficient, then 

(i) 3 G A ; 
(ii) £ ( 3 ) = J (a) - AN - 1 for some A , O < A < T , and 

v = Y + AmM, (thus w m(3 ;v) = w m(a ; Y) - 1) ; 
(iii) s(3) = s(a) = O. 

For k < -N, Pj_ a y is a polynomial with coefficients in 0Q in the 
variables Y, t^ 1, . . ., tn"L such that if Y vt^ is a monomial term of 
p. having non-zero coefficient then *i,a,y 2  

(i) 3 e A , 
(ii) 1(3) = £ (a) + AN-1, for some A , 1 < A « | x | , and 

v = Y - *mM, (thus w m(3;v) = w m(a;Y) - 1) , 
(iii) s(3) = S(k+A-1) - A<c s(a) - A . 

Proof : This is an immediate consequence of the reduction formulas 
(2.5). Note that if k< -N we can verify (iii) as follows. Since 
3 e A , 
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S($) = S(k+XN-1) 

= S(k+A-1+A(N-1)) 

= S (k+A-1) - X 

< s(a ) - A 

by periodicity (1.12). 

(2.7) THEOREM. Assume (p,M) = 1. Let £= 
aGA 

A(a; Y)Y
Yt aG L m(b,c) 

Then 

£= 
o(u) a, 

G A 

b <Y)t" 
(u) 

i=l 

n Hi(m)£i 

where 
o(u)EA 

b(Y)t a 
(y) 

e v m(b,c) and c. e L (b,c+e) .  i m 

Proof : In fact, if we define for each a £ A by 1(a) - N T ^ + y 

(with -N+l4 y ̂  O ) , then b(Y) = 
v^mMS(y) 

b y(v)Y
v , where 

(*) b (v) = 
Y+T mM=v 

A(a;Y)w(£(a)) . 

Since Y >0# Y + T mM —> + 00 as T —> 00 . Since ' a a 

s(a) = S(Nxa+y) = S(y + T A ) - T A >. s (a
 ( y 5 ) - T ̂  for x a < 0 , 

Y + T mM —> + °° for (a; Y) 'e S m , a e A , as
 T

a ~* -°° • Thus the sum 

in (*) is finite. Thus 

ord b^ (v) >, 
Y+T mM=v a 

inf {c+b(£(a) + Nm 1 M ~ 1 Y ) } 

> c + bw m(a *
y * ; v) . 

Hence 
o(u)EA 

b u(Y)t° 
(u) 

ev m(b,c) . 

Let C ± = Ic i(ß;v)t
ßY v, in which S£i , (6 ; v) e S . By the 

lemma. ? i • 0>u>-N+1 
£i,u where 

£i,u = -1 

E (a) =y (mod N) 
A ( a J Y ) P i , a , Y * 
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Thus 

(**) C ±(ß) = Y Q
1 I A(o;.Y)e (a) 

where e (a) e Oq . In the case £(3) > O, the sum runs over a e A , 

(a;Y)^S m, £ (a) = N T A + y = £ (3) + XN+1 and v = y + XmM for 

some A, O < A < x a . Since y and A are both non-negative, the sum in 

(**) is finite. Furthermore since w m($;v) = w m(a;y) -1 , 

ord c ±(3) > c + e + b w (3;v) . 

On the other hand, if £(3) < 0, then the sum in (##) runs over 

a €= A, (a;y)eS m, £ (a) = N T ^ + y = J (6) - AN + 1 and v = y - AmM 

for some A, J.^ A ̂  IT I . Since v = y - AmM > (s(a)+T )mM , and 

s (a) + T —» + » as J (a) —> - °°, the sum in (**) is finite in this 

case also. Again w m(3;v) = w (ct;y) - 1 , implies the desired estimate 

ord c ±(3) > c + e + b w m(3;v) 

so that ^ e Lm(b,c+e) as desired. 

Combining theorems (2.4) and (2.7) we have (2.1) in the follo

wing precise form. 

(2.8) THEOREM. Assume (p,M) =1. Then 

L m(b,c) = V m(b,c) 
n 

i=l 
H{ m )L m(b,c+e) . 

In fact, if £ = 
(ojY)eSm m 

A(a;y)Y Yt aG L m(b,c) , then 

? = V + 
n 

i=l 
H< m )£. 
1 sl 

where £^e L m(b,c+e), A 
V = 

-N+l^v^O 
v (Y)ta 

(v) 
EV m(b,c) Explicitly, 

V v(Y) = 
6 _»mMs ( v ) 

0>mMs(v) where 

v v(6) = jA(a;y)u(a)(ü(X(a)) 

in which the sum runs over (a ;y) e S m , £ (a) = N-ra + v , y + T^mM = 6 , 

and u(a) and (_.(J(a)) are units. * 
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3. DIRECTNESS OF SUM. 

Let A be an arbitrary noetherian unique factorization domain in 

which c^ and a^ are units for all i . We have in mind the two cases 

A = Oq and A = 3Fg . Let R = A [Y , , . . . , t R , Y
m M t " a ] , and 

h^ m^ = t i - e iY
m Mt"~ a where is a unit in A for every i, i = l,2,...,n. 

(3.1) THEOREM. The sequence {h^ m^}J = 1 in any order forms an R-se-

quence in R . 

Proof : Let I be a proper subset of {l,2,...,n} and define the ideal 

of R CZ = ( H ( M ) ) 

I {'••' i •• # ;i e i • 

It suffices to show ĥ . is not contained in any associated prime 

ideal of C? for k ^ I . For, if so, then 

(CZZ : h£ m )) = Ctj. . 

We may assume by relabeling that I = {l,...,j}, in which case 

we write CSTj in place of Oc^ , and k = j + 1, (the case 1 = 0 and 

k = l is trivial). Let S = A [Y, t± , t j + 1 , . . . , t R, y^t"*
3 ] where 

t - b • rl-b1 rj+l-bj+1 t-bj 
n 

with b 1 = 
J 

&=1 
a , b = a for j+l^< n . Then the homomorphism 

6 : R —> S defined by 0 1(t £) = e j le 1 tj_ for 1^ j , e x (tÄ) = t £ , 

for £ > j , and 0 1(Y) =Y , induces an isomorphism of rings 

R/Cfcj 
6l S/L 

where L=(t1-e0 YmMt-b) is a principal ideal , and 

e 0 = 

b f a l + 1 

e 2 
" a 2 

3j-aj 
is a unit in A . Let 

U = A[Y, t l,tj+1 tn,tn+1 Then the homomorphism 6 2 : U —> S 

defined by e 2(t ) = t for ä ^ n + i , e 2(Y) = y, e 2(t ) = y^t" 1 3 

induces an isomorphism of rings 

U/F e2 S/L 
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where 
C=(t1-eotn+1, tn+1tb-YmM.) 

Let P = A[Y,t 1,t. + 1,...,t n] . 

Then the homomorphism e3 : U P defined by (t¿) = t ¿ , for 

ii 5>Í n+ i, e 3(Y) = y, e 3 ( t n + 1 ) = eo l t :i induces an isomorphism of rings 

U/JX 
93 

P/tf" 

where t/" = (t 1t
t > - EQY 1 1^) . Thus hj + ̂  is not in any associated prime 

of Ot- in R if and only if e 3 e 2

1 e 1 

h(m) 
j+1 

t j + l " ej + l E0 fcl is not 

in any associated prime of 0 in P/xt . This in turn holds if and only 

if tj + i " ej + l E 0 l t l ^ s not "*"n an^ associated prime of it in P, 

a u.f.d. Let 

t1tb-eoYmM = 
E 

Ä 

i=l 
P,(t,Y) 

r i 

be the factorization into relatively prime factors in P, e a unit in 

P, r^ > 0 . Then the ideals (p^(t,Y)) are the associated prime of *T 
in P . Suppose 

tj+1-ej+1e-1t1E(Pi(t,Y) for some i . 

Then since t. - E . E~^t 
j+l j+1 O 1 is clearly irreducible. 

tj+1-ej+1eO-1t1=e'Pi(t,Y) 

where e' is a unit in P . Thus there is a polynomial f(t,Y) e p 

such that 

« t j + i - ^ + i ^ S ^ ^ ' ^ - t i t b - e o Y n M • 

Specializing fcj+i - > ^ + ^ 0 ^ 1 in both sides yields a contradic

tion. 

Let W m=^[Y,t 1 /... /t n,Y
m Mt" a] , & - (Ti M TT ("i) v 

^m ~ ( H1 '•"' Hn ] 
For 

k e m ^ M ^ , let W ( k> m be the finite dimensional fì-subspace of W 
m 

spanned by monomials Y Y t a satisfying (cx;y) ̂  S m and w m(Y
Yt a) = k . 

Let 

(3.2) a ( k ) 
m «in " Wri k ) 

v <k> m V (b) n wj; k ) . m m 

281 



5. SPERBER 

We claim : 
(3.3) e v ( k ) = W ( k ) . m m m 

Without the assertion of directness, the claim is a corollary of the 
results of the previous section. To see directness, we note more 
generally : 

(3.4) THEOREM. v m(b) n 
n 
i=l 

fiW L m(b) - O . 

Proof : Assume v(Y,t) e v
m

( b ) and v(Y,t) = 
n 
i=l 

H ( m ) r H i C i with 
C. e L (b) . l m Then Cj_ converges for 

(Y,t) G {ord t ±> -b ; ord yinM 
n 
i=l 

a. ord t. > -b} = G(b) . i i m 

In particular, consider 

(*) tav(Y,t) = t a 
n 
i=l 

g(m) 
H i ci 

and set fci - ( c i a i ) _ V i * . • 
Set Y equal to a unit u in ft that does not trivialize the left 

side of (*), which then becomes a non-trivial polynomial in t 1 of 
degree at most N-l. However, the right side converges and in fact 
vanishes for each of the N distinct roots t 1 e of 

. N mM, , N t x = u (a-yc.^ 
n 
j=l 

( c j / a j ) ^ 

As consequence, both side of (*) vanish identically. * 

Using these results and the argument of 1, § 3 we obtain the 
following results 

(3.5) THEOREM. Assume (p,M) = 1, P 
p-1 > b . 

L m(b,c) = V m(b,c) + 
n 
i=l 

H{ m )L m(b,c+e) 

(3.6) THEOREM. Assume (p,M) = ] P 
p-1 > b . 
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v m(b) n 
n 

i=l 
H ;[

m )L m(b) = (O) . 

(3.7) THEOREM. Assume (p,M)=l, P 
P 1 

£ b > 1 
p-1 • 

L m(b,c) =V m(b,c) + 
n 

i=l 
D| m )L m(b,c+e) . 

In fact, if ç G L m(b,c), and 

Ç = V + 
n 

i=l 
w(m) Y 
H i ci 

with v G V (b,c), ç ± g Lm(b,c+e) as in (3.5)i then we may express 

£ = V + 
n 

i=l 

Di(m)£i 

with v G V m(b,c), ç ± G L m(b,c+e), v - v G V m (b, c+e ) , V
Ç i e L m ( b ' c + 2 e ) ' 

(3.8) THEOREM. Assume (p,M) =1, P 
p-1 

b > 1 
p-1 

Let A C {1,2,...n}. If {ç j L} i A c L m(b) satisfy 

L 

i G A 

Di(m)£i 
= O 

then there exists a skew-symmetric set ^ i j } i , j e A £
 L m ( b ) indexed by 

A such that 

£i= 
jEA 

DJ»>n 
ij 

(3.9) THEOREM. Assume (p,M) = 1, P_ 
p-1 

> b > 1 
p-1 

Then 

V m(b)n 
n 

i=l 

Di(m)Lm(b) = (O) . 

We wish to compare reduction modulo the submodule 
n 

i=l 
H| m )L m(b,c+e) (respectively, the submodule 

n 

i=l 
D :[

m )L m(b,c+e)) with 
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reduction modulo 
n 

i=l 
H| m )L m(b,c+e) studied in section 2. We now 

specialize our considerations to the case b = p/(p-l), e = l. 

(3.10) LEMMA. The following relation holds 

£ (m) _ (m) (m) (m) 
H i * H i G i + ri 

where r(m) 

i 
G L m 

P 
•p-1' 

0) , r(m) G i e L 
m 

P (m) 
is invertible and both 

and r(m) 
G i 

-1 
belong to L m 

P 
P-1' 

0) 

Proof : By definition. 
« i m ) = V ° ± t i - » ± * B M t " a > 

with a^ G _N , 

xi E h0 q 
c i = c: 

. Thus 

H(m) = 

1 

oo 

£=0 

£ 
P Y£ 

r(m) 
Gi£ 

r(m) 
Gi£ 

£ 

-I 

M A £ -̂ mMp t-ap } 

= 
oo 

£=0 

PlYl((citi)Pl- (aiYmMt-a)P) 

+ 
OO 

£=1 
P Y A ( a ± 

£ 
a i ' 

yinMp t-ap 

Consider 

£(m) 
i 

oo 

£=1 

£ 
P Y£ 

at1£ aPi£ ™ Ä £ YinMp t-ap 

£ < m ) - 1f 
oo 

£=1 
-1 ~* 

Y 0 Y £ P 

P "I 

j=0 
(c ±t ±)3 

(aiYmMt-a)Pl-j-1 

Using the fact a i G 22^ , we get p divides 
£ £ 

T p a. - af so that 

£(m) 
i m 

p 
p-1 

rO) Similarly G i 
G Lm 

m 

P 
P-1 

rO) . 

Finally we note that a series of the form 

A = 1 -
w m(a;y) >0 

c(a; Y)Y
Yt a G L m(b,0) 

is a unit in L m(b), with A 1 G L m(b,0) , for the series 
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oo 

j=0 w 
m 
(a;y)>0 

c(a; Y)Y
Yt a) 

j 

is defined, belongs to L m(b,0), and is an inverse to A in L m(b) . 

This shows that H^ m ) = H| m )G^ m ) + r| m ) . The lemma follows by sol

ving for H f m ) in terms of H.[m) . * 

(3.14) THEOREM. Let £ G L

m(^TY'
c) • Then £ may be expressed by (2.8) 

in the form 

e = v + 
n 

i=l 
1 1 

with V G V m 
P 

p-1' 
rC) , A G L^ m 

P 
VP-1 

c+1) t and £ may also be expressed 

by (3.5) in the form 

K = v + 
n 

i=l 
h : l 

(m) £i 

with v G V  m 
P 

P-1' 
rC) , 

o), 
G L 

m 

P 
P-1 

c+1) Then 

V - V G V 
m 

_P 
P-1 

,c+l) . 

A. % 
Furthermore and may be chosen so that 

c. -cf m ) ? . G L^ m 
P 
P-1 

rC+2) . 

Proof : (Cf. [1, lemma (3.6)]). Assume 

we may write 

c U ) G L m 
P 

P-l 
,C+£) By (2.8), 

£(l)=v(l) n 

i=l i ^ i 

with 
A (£) 
V ' G V 

m 

P 
p-] 

c+l -(A) 
gi ELm 

P 
P-1 

,C+£+l) 

Then by (3.10), 

(3.15) 5<*> = v U ) + 
n 

i=l 
H(m) 
l (G< m )$f>) + C U + 1 ) , 

where 5(l+1) = 
n 

i=l 
r i m ) ? l Ä ) e L m(b,c +A +1) . 
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Summing (3.15) from H = O to Z = K and letting K —>«> we obtain the 
result. 

Combining the above result (3.14) with (3.7) we get the fol
lowing result. 

(3.16) THEOREM. Assume (p,M) =1 . Let £ G L m 
P 

1P-1 c) be expressed 
by (2.8) as 

£ = v + 
n 
i=l 

H. ( m )C. 

with v G V  m P 
XP-1 ,c) 

A 
l m 

P 
P-1 ,c+l) and by (3.7) as 

£ = v + n 
i=l 

Di(m)£i 

with VEVm P LP-1 c) l m 
P 

P-1 rC + 1) Then 

v - v G V_ m 
P 
P-1 rC+1) 

and z,^ and c.̂  may be chosen so that 

(m)£ 
C i - G ± c ± G L M 

P 
p-1 ,c+2) . 

4. SPECIALIZATION. 

The previous sections establish the cohomology in the "generic" 
case. In order to draw arithmetic consequences concerning generali
zed hyperkloosterman sums, we will need to specialize L m(b,c) by 

^ — i _ i setting Y — > y where y G ft satisfies ord y > - NbM m 

(4.1) DEFINITIONS. Assume x G ft* , ord x > - Nb. Define 

(i) L(x,b,c) = 
a E ZZn 

A(a)ta|A(a)Gft0,ordA(a)^c+w(a)b+s(a)ord x} ; 

(ii) L(x,b) = U L(x,b,c) ; 
c G3R 

286 



NEWTON POLYGONS FOR HYPERKLOOSTERMAN SUMS 

(iii) H. = H.(x,t) ; 
-— / X X 

Hi,x = H i ( x ' f c ) ' 
(iv) D. = E. + H. ; i,x i i,x 
(v) V = ftQ - span of {t a | c ( ^ E A} 

(vi) V(x,b,c) = V n L(x,b,c) . 

Given x e ft*, ord x m >-Nb, we fix y e ft¥ with y M = x . Let 
V m(b,c) 1, L m ( b ) 1 , R m ( b ) ,

/ L(x,b,c)', V(x,b,c) 1, L(x,b)', V 1, be 
defined exactly as their unprimed counterpart but where the coef
ficients are allowed to lie in ft^ = ftQ(y) . 

We then define an ft^ - linear specialization map Ŝ , (by sending 
Y — > y) on various of the space of §§ 1-3 having targets as fol
lows : 

(4.2) 

S 
y L m(b,c) 

: L m(b,c)' L(x m,b,c) 1 

s y L m ( b > ' 
: L m(b)' L(x m,b)' 

S 
y V B > ' 

: R m(b)' °0 

S 
y v m(b)-

v m(b)-

n 
i=l 

D f ) L m ( b ) . 
n 
i=l 

D m i,x 
L(x m,b) • 

we can also define an ft^-linear section SL^ by sending 

(4.3) I : 
y 

u n a G2Z 
A(a) t a 

L n 
A ( a ) y m M s ( a ) t a 

xms(a) 

Clearly S y o A y = 1 in the above cases so that the maps S y in (4.2) 
are all surjective. The following result describes the kernel of 
the map . 

(4.4) THEOREM . Let x and y be as above . Then 
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ker S ILm (b,c) = (Y-y) 1^ (b,c-ordy)'. Thus ker Sy|Lm(b) =(Y-y)L m(b)' , 

ker SY.L 
Y V B ) 

= (Y-y)Rm(b)' , and ker 
s y V n(b)' 

= (Y-y)Vm(b)' . 

Proof : Let 5 = 
(a; Y)ES m 

A(a; y) Y Y t a G L m(b,c)
 1 and assume S (£)=0. 

For each a e 7Ln, we must have 

Y>mMs (a) 
A(a;y)yY = O . 

Since y^O, we may divide by mMs(a) so that 

1>0 
A (a ;Y+raMs(a) )y Y = O . 

Thus, 

£= 
a 6 2 y>0 

A(a;Y+mMs(a)) (Y
Y-y Y ) ) Y^3 ( a > t a 

= (Y-y) 
a ¿ 2 n y>0 

A (a; Y+mMs (a) ) 
Y-l 

X=0 
yX Y-l-X ) ymMs(a) ta 

and one checks easily that the second factor on the right belongs to 

Lm(b,c-ordy)
 1, since NbM" 1m~ 1 + ordy > O . * 

By (3.8), the operators D.fm^ form an R-sequence (in any order) 

on the Rm(b)-module L m(b) . We recall the following standard result 

on Koszul complexes [8, Ch. 8, theorem 7] . 

(4.5) Let E be an R-module, {6 ̂  > j = 1 central elements of R . If 6^ 

is not a zero divisor on E 
Ei-1 

j=l 
6.E then 

V { V j = i i E ) = 0 
for 

all y > O . 

In particular, setting R = R m(b), E = L m(b), 6.. =Dj(m) , this 

implies the following result. 

(4.6) THEOREM. Assume (p,M) = 1, P 
P-1 

> b > 1 
p-1 " 

Then 
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V { D j m ) } j = l l L m ( b > > = 0 

for y > O . (Similarly H 
V 
({D^ m )} |L (b) ' ) = O 

1 m 
for y > O) . 

^ 6n +l = Y-Y• 

(4.7) LEMMA. Assume (p,M) = 1 P_ 
p-1 

^ b > 1 
p-1 

Then 6 , , = Y-y is  n+1 u — 

not a zero divisor on V B > ' 

n 

i=l 
D < m ) L ( b ) ' . i m 

Proof : Assume 

(*) (Y-y)ç = 
n 

i=l 
1 Sl 

where ç G L m(b,c)', ç ± e L(b)' . Then by (3.7) 

(**) £ = v + 
n 

I =1 

Di(m)ni 

where v G V m(b,c) ' . r\± G Lm(b,c+e) ' . Thus (*) , (**) , and (3.9) 

imply that v = 0 which completes the proof of the lemma. • 

As a consequence of the lemma and (4.5) we obtain : 

(4.8) THEOREM. Assume (p,M) = 1 P 
p-1 

£ b > 1 
p-1 

Then 
V { f i

3 

,n+l 
j=l 

|Lm(b)-) = O for,y > O, where ó.. = D^ m ) for 1 ̂  j ̂  n 

^ 6n+l = y-y• 

We recall the following result [8, Ch. 8, theorem 4] on Koszul 

complexes : 

(4.9) Let E be an R-module, {ô.} s , central elements of R. If 6 
3 D-i s 

is not a zero divisor on E then there is an isomorphism of R-modules 

Hu({$i}Si=1|EHu (6.1 s-1 
i=l |E/6SE) 
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for all y > O . 

It is an immediate corollary of (4.3) and (4.4) that 
L m(b) V(Y-y)L m(b) 1 = L(x m,b)' (where y M = x) 
and thus there is an isomorphism over ft^ for all y > 0 , 

(4.10) H / { ^ J V W V S ^ V b ) ' ) = H p « D . m } n |L(xm,b)-) . 
1,X 1=1 

Combining (4.8), (4.9) and (4.10) yields 

(4.11) THEOREM. Assume (p,M) = 1, 
Then 

P 
p-1 * b > 

1 
p-1 x e ftQ, ord x m>-Nb. 

H y({D 
i,x m 

in 
i=l 

|L(xm,b)') = 0 

for y > 0, m > 1 . 

It remains to examine H Q = L(x m,b)V 
n 
i=l 

D 
ixm 

L(x m,b) ' , of the 
specialized complex, which by (4.9) and (4.10) is isomorphic as an 
ft^ - vector space to Lm(b)'/((Y-y)Lm(b) • + n 

i=l 
D< m )L(b)') . i m 

(4.12) THEOREM. Assume (p,M) = 1, p 
p-1 > b > 

1 
p-1 

Let V* = ^' - span of { ymMs(y) ta (y) o(u) EA} 

Then 
V B ) " = V 6 • 

n 
i=l 

Df)L m(b)« + (Y-y)Lm(b)•} . 

Proof : Let £ e L m(b)'. Then by (3.7), 

5 = v + 
n 
i=l 

u i ci 

where v e v
m ( b ) 1 ' C ±

 G L m ( b ) l ' since 

v = 
-N+l^y^O 

a ^ ( Y ) Y m M S ( p ) t a ( l l ) 
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with a y(Y) e R m ( b ) f , we obtain as in (4.4) 

v = 
-N+1<u<0 

a y ( y ) ^ S (y)ta (y) + 6 

with 6 G Ker S y n V m ( b ) f = (Y-y)V m(b) 1. This establishes everything 
except for the directness of the sum above. Assume v Q e 

v o - -N+!Up«0 
a ^ S 

y 
(y)ta (y) n 

i=l 
D(m) É± + (Y-y) TI 

with c ± , n e L m(b)'. By (3.7), we have 

n = v + n 
i=l 

D !»>,,. 
1 1 

with vev m(b)', Г 1 i G L
m ( b ) , - Using directness of the sum (3.9), we have 

-N+l<y^O 
a Y^S 

y 
(y)tc (y) (Y-y)v . 

Applying to both sides, and recalling y ^ 0, we get a y = 0 for 
all -N+l^ y^ O so that v Q = O . * 

We summarize the above results in terms of the specialized 
Koszul complex. 

(4.13) THEOREM. Assume (p,M) = 1, P 
p-1 ^ b > 

1 
p-1 Assume x e fìQ , 

ord x > -Nb . Then 

L(x,b,c) = V(x,b,c) © 
n 

i=l 
D. L(x,b,c,+e) 

so that 

H o < { D i , x } S - l l L ( x ' b ) ) = Span 
"o 

[ta a M E X } 

(as vector spaces over ft^) . 

Furthermore, 
H y ( { D i , X } ? = l l L ( X ' b ) ) = °> for y > 1 . 

Proof : We emphasize that the above assertion has ftQ (not ft^) as the 

field of definition. First of all, we have already observed that 

H

11(
{D-,x{ni=1|L(x,b) ' ) = 0 for y > 1, so that the last assertion fol-
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lows from 

(4.14) V { D i , x > ? = l l L ( x ' b ) , ) V { D i , x } ? = l l L < x ' b > > h0 °0 

and the fact that V ( D i , x > 
n 
i=l 

|L(x,b)) is a vector space over ftQ , 

For the first assertion, we note that from (4.12) we can conclude 

(4.15) L(x,b,c) 1 = V(x,b,c)* 
n 

i=l 
D. L(x,b,c+e)') . 
X ,x. 

Let { ti±> 
K 
i=l 

be a basis for ft^/ftQ with = 1, {ti^c.GQ (= ring 

Df integers of Q^), and the property that if 

w=Ewini, wiEho 

then ord u)1 > ord w. For example, if e(ft^/ftQ) = s, f (ft̂ /Ŝ ) = f 

ir1 a uniformizer for ft^, (c^ ,"c2 ' • • • ' " ^ " f
a basis for ^¿/^0 ' witn 

= r, c-ĵ  = 1/ ^ an arbitrary lifting of ^ for i ^ 1, then as is 

well-known {(it 1 ) 3}._ ^t.^-t o O is a basis for ft'/ft . 

But then if 

w 
f 

i= 1 

s 

j=l 

wij(TT')J)£i 

we obtain from the linear independence of the ?i's that 

ord a) = inf 
i 

ord 
s 

j=l 
«ü±;j (TT» ) 

j 
From the fact that it 1 is a uni

formizer for and e(fl^/n'0) = s, we obtain 

ord 
s 

j=l 
wij(TT') 

j 
= inf 
1< j^s 

ord(o)ij U' )
 j ) . 

Thus ord bi, ~ > ord a) as required. 1, u 

Now if ^ e L(x,b,c), then by (4.15), we may conclude that 

(4.16) K = 
o(u)EA 

v t a 

y 

t(y) N 

i=l 
Di,x n 

a 6 2 n 

A i(a)t
a 

where v^ , A i(a) e ft^ and ord A i(a) >, c+e+w(a)b+ s(a)ord x. 

Writinc 

v = 
y 

j=l 

K 
v ( ^ n . , 
y J 
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A ±(a) = 
K 
j = l 

A ^ > ( a ) n j 

we obtain since £ is defined over ftQ 

(4.17) £= 
a (u) ^ G A 

vu(1) to(u) n 
i=l 

Di,x aEZn 
A i (a)ta . 

Since ord v ( 1> 
y 

> ord v y , ord A^ 1^(a) > ord A i(a) we obtain from 
(4.17) that 

L(x,b,c) = V(x,b,c) + 
n 
i=l 

D. L(x,b,c+e) 
X , X 

The directness of this sum is as immediate consequence of (4.15). 
We observe that (4.16) also implies 

(4.18) 
( u ) ^ a G A y 

(y) 
=2-

n 
i=l 

Di,x u n Ap> (a)t« 

which by directness gives that both sides of (4.18) are zero, hence 
we have the additional information that in the reductions (4.16) and 
(4.17) 

(4.19) v = v ( 1 ) . 
y y 

5. FROBENIUS MAP. 

Let q = p r . In the present section, we apply the previous 
results to the study of the Kloosterman-like exponential sums : 

(5.1) Sm(f(x,t)) = I^oTr^ 
qm Fqs (f(x,t)) , 

where f(x,t) is the reduction of (1.5) (with Y = x ) , and where the 
outer sum on the right runs over t = (t^,t 2,.•.,tn) G C F * m ) n ; 

q 
V is an arbitrary non-trivial additive character of 3F ; and q 
{ c ~ } n _ ^ u {x> c 3Fg. Let c^, x denote Teichmuller liftings of c\ 
and x (c? = c i, x g = x ) . Set ^ = Q p(C p) ; K r = the unramified 
extension of in ft of degree r ; *$ = the completion of the maximal 
unramified extension of Q p in ft ; ftQ = K r ( C p ) . Note c i # x G ftQ . we 
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will choose v special - we assume that W=0 
, т % / * р ' 

where (2) 

is a non-trivial additive character of 3F . However, as b runs over .j. — P IF , (iob runs overs the non-trivial additive characters of 3F ; 
^ — n ^ since our results will be independent of the constants t0^}^--^ r 
there is no loss of generality in choosing V special - thus, results 
(5.31) and (5.46) are independent of the choice of non-trivial ad
ditive characters v of 3Fg . 

Let E ( z) = exp oo 
3=0 

p j 

P j) be the Artin-Hasse exponential 

series ; fix y e ® (c p), ord Y =l/(p-l)/ satisfying 00 
j=o 

p j 

Y 'Pj = 0 
Dwork calls the function 

(5.2) 0oo(z) = E( Yz) 

a splitting function. As a power series in z , 

(5.3) eoo(z) = 
oo 

m=0 BmZM 

with ord B m^m/(p-l), for all m > 0 ; and B m = y m / m ! > f ° r 

0 < m ^ p - l . In terms of 0^ we define 

(5.4) F Q(Y,t) = 0oo(Yt a ) n 
i=l 

©Jc.t.) , 

so that 

(5.5) F 0(Y m M,t) e L m 
1 

VP-1* O) . 

In terms of F Q we define 

(5.6) F(Y,t) = 
r-1 
j=0 ^ 3 

(Ypj, tPj) 

so that 
F(Y m M,t) L 

m 
P 

q(p-l) .0) 

We also define an R.(b)-linear map , 

i/> : L 1(b,c) > Lp(pb,c) , 

defined on monomials by 
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(5.7) *(t°) = 
rt«/p when p | , l ^ i ^ n ; 

O , otherwise ; 

and extended "linearly" to arbitrary elements of L (b,c) . Then for 
P 

p-1 
> b > 1 

p-1 

(5.8) yM iproF(YM,t) L 1(b fc) > L q(b,c) 

is an Rĵ  (b) -linear map. Choose y e n such that y M = x . By defini

tion, SyO^ = *l>°Sy , so that 

(5.9) Soa.. = a o S y y M x y 

where a x = ip
roF(x,t) acts on L(x,b,c). The significance of the map 

a x arises from the Dwork trace formula. Let 

(5.10) L(f,T) = exp 
OO 

m=l 
S m(f)T

m/m) 

be the L-function associated with the exponential sum (5.1). Then a 

consequence of Dwork's trace formula is 

(5.11) det(I - Ta x) 
6 n 

= L(f,T) ( 1 ] 

.n+1 

where det(I-Tax) denotes the Fredholm determinant of the comple

tely continous endomorphism a x acting on L(x,b), and where 6 acts 

on g(T) e l + Tfl[[T]] by g(T) 6 = g(T)/g(qT) . 

We now fix the choice of constants (1.6), {Yj)j = 0 , by 

setting 

(5.12) 
Y 0 = Y 

vj 
i 

¿=0 
P Ä / £ 

Y /P 

OO 

£=j+l 

YPl/Pl. 

We recall [1, § 4 ] that 

P 0(Y
M,t) = r v F , t ) ; 

F(y" , t) = #(Y M,t)/F(Y M q,t«) , 

where F is given in (1.7). The following commutativity relation may 

then be derived 
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(5.13) 
aYM.Di(1) qDi(q) 

° A M • 
Y 

Relation (5.13) specializes via to 

(5.14) ax° Di,x = *>i,x°ax • 

As a consequence, a x acts on the Koszul complex K({D. 
i,x i=l 

I L(x,b) ) 
yielding via the results of the previous sections and [1, § 4 ] 

(5.15) det(I-Ta x) =L(f(x,t),T) (-D n + 1 

where a x is the map a x acting on the quotient 

^ x <= H 0 ( { D i , x in i=l L(x,b) ) = = L(x,b) / 
n 
i=l 

D. L(x,b) . 
J. t X. 

Note that if 

(5.16) 
aYM(0) F

T(xP,t) 1o^oF(x,t) = iPoF0(x,t) 

4 0 ) 
SY.aM(0) F T(x P,t) 1o^oF(x,t) = iPoF0(x,t) 

then 
Y" 

is an R 1(b) linear map from L 1(b) to L^(b), and a ^ ° ^ is 
an ßQ-linear map. 

a ( 0> 
Y* 

L x(b,c) L p(pb,c), 

4 0 ) L (x,b,c) L(x P,pb,c), 

/ P 
XP-1 b > 1 

p-1 satisfying 

(5.17) 

aYM(0).Di(1) =pDi,t(p).aYM(o) 

a ( 0 )»D. X 1 ,x pD (T) 
i,x 

(0) 
p a x 

in which D, ( m ) = E. + HT(Y M m,t), D{,Tl = E. + uUx,t). Thus a ( ^ and 
1 , T X 1 X , X X X V" 

a x°^ define obvious quotient maps 
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(5.18) 

aYM(0) 
Y 

^ ( T ) 

Y P 
(-Lp(b) 

n 

i=l 
D ^ V b ) ) , 

4 0 ) X x p 

(=L(xP,b) 
n 

i=l 

D(t) 

i,x 
L(xP,b)) 

ir 

The following factorizations hold 

(5.19) 

aYM -(0) 
yMq/p Y MP 

-(O) 

Y M 

a 
x 

-(0) 
a j o 

Xq/P 
>ä(0> 
x p 

-(0) 
° ax 

Finally for x G "^(^p)' ord x> 0, T (x) = x p, we can define 

(5.20) -1 
T : 

Wxp(t) 
X 

by sending 5 = 1 A(a)t a G L(xP,b,c) into 

T X ( ? ) = 
a 

x" 1(A(a))t a e L(x,b,c) ; 

clearly 

-1 
T 

n 

i=l 

D(t) 

i,x 
pL(x

P,b)) c 
n 

i=l 
D i / XL(x,b) , 

so T 1 is defined on the quotient. In the rest of this section, we 

fix b = p/(p-l), e = 1. Let x = x q, q = p r ; let 

(5.21) a 1 = x 
-1 -(o) 

wx w^x 

a x 1 (semi)-linear map. Then is a completely continuous endo-

morphism of L (x. P 
p-1 

over w1=Rp¨£p), and 

a = (a') r . x x 

Remark : The following result of Dwork [2, lemma 7.1] will be ins

trumental in obtaining a general lower bound for the Newton polygon 

of 
"o 

(I - Ta x) (=L(f,T)
 K l ) ) . 
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(5.22) LEMMA (Dwork). Let = x, q = p r . The Newton polygon of 

det 0 (I - Ta ) can be obtained from that of det 0 (I-TÔT') byredu-
Q X — — — — — — — — — — — — — — — — — J_ 

cing both ordinates and absissas by the factor 1/r and interpreting  

the ordinates as normalized so that ord q = 1. • 

We need estimates for the matrix of -40) • 
Observe that 

(5.23) YMS(y) ta
( y ) 

G L l 
1 

p-1 
-W(y). 
p-1 

for a ( y ) G A , so that • 5 } 
( YMS(u) tc

( l i )

; 

e L P 
p 

p-1 
-W(y) 
p-1 

and we 

may write 

(5.24) 
aYM(o) 

( yMS(y) ta (y) 

(v ) ~ a G A 

a, 
A 
vy 

( Y ) ypMS(v) ta 
(v) n 

i=l 

Di(p)£i 

with A (Y) v , y e r p 
P 

P-1 
pW(v)-W(y) 

p-1 
and ç. e L p 

P 
p-1 

-W(y) 
P-1 

+ 1) . 

Applying to (5.24) and multiplying the result by -S(y) we 

obtain 

(5.25) 
ax(o) 

(t° ) = 
o(v)EA 

A ( y ) xPS<v>-S<v) t°
( V ) 

v,y ̂  
n 

i=l 

D(t) 
i,xP 

(S y( Ç ; L)x-
S (^ 

Note that by the results of (4.12) and particularly (4.19), 

X ( y ) xpS(v)-S(p) £ ß Q 

so that it makes sense to write 

(5.26) A (x) = a ( y ) x P s ( v ) - s ( y ) 

v,y v,y J / 

In particular, if : ftQ] = K and if A Y) = v,y j>0 
£(j) yj 
v, y A ( j )  

v, y 
Evo 

then for 0 < I < K , 

I A ( j ) y j = 0 , 

where the sum runs over j G3N, j+M(pS(v)-S(y)) = I (mod K) . 

Furthermore, by the same reason. 
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(5.27) A (x) = v , y 
^ (i ) A J y v, y a 

j+M(pS(v) - S(y) ) 

where the sum runs over j e IN, j+M(pS(v) -S(y)) = O (mod K) . 

One obtains the matrix of a x by applying T
 1 to (5.25). 

Summarizing : 

(5.28) THEOREM. Assume (p,M) = 1. 

(i) Let x e n*, ord x > -N/(p-l). Then -(0) a x X W D 
X* is an fì-linear map 

-<0) 
X 

(t0(u) 

o(v)EA2 
A (x)tCT 

(v) 

with matrix A=(Av,u(x)), A 
v ,-y 

= s v ( A v . u 

( y ) ) xpS(v)-S(u) with 

respect to the bases {to (u) 
o<"> e A } of <UTx and 

W(t)xF 

respecti

vely. For ord x > -N 
p-1 

ord S y(A v y(Y)) > (pW(v) -W(y))/(p-l) . 

Thus, jLf ord x = 0 , then 

ordA (x) ^ v, y 
pW(v) -W(y) 

p-1 

for (v) (y) ^ a , a e A 

(ii) Let x e «tf (c ) , ord x = O, x (x) = x P . Then c*x : <U> — * U> 

is a -1 
T 

(semi)-linear endomorphism 

a' ( x 
to 

(u) 

o(v)EA2 
C« (x) (tCT 

(v) 

with matrix C8= ( C?v p(x)) with respect to the basis {t° 
(u) 

o(u)EA2 

av,u= -1 
T 

( A V , P ( X ) ) ord ce >> v,y (pW(v)-W(y) )/(p-l) for 

-N+1 < y,v ^ 0 . 

We now fix an integral basis {t,±: 
r 

Ji=l of ^o^^l with the pro

perty that {hi}ri=1 is a basis for IF /3F 
q 7 P 

Then {hi r 
i=l 

has the 
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property that if w e ft^ , Ü) = 
r 

i=l 
a . n . , a. <E 0 l then 

ord GO = inf {ord a.} . Using t h i s p r o p e r t y , the following r e s u l t 

is e a s i l y o b t a i n e d . 

(5.29) COROLLARY. Assume (p,M) = 1. Let x €E ft* , x q = x . Thus 
ax ; W > VÔ-

x x 
is an ft^-linear map. 

^(n.t* (y) CS(v, j) ; (y,i) ) ( n j t ° 
(v) 

with matrix CZ% = ( a(v, j) ; (y,i) ) with respect to the basis 

{nito 
(y) 

-N+l ^ y ^ O ; 1 < i < r} of U^ x over ni . The estimate 

ord <2( (v,j);(y,i)) > (pW(v) - W(y)) / (p-1) 

holds for all entries of the matrix. 

We now proceed as in [2, § 7 ] to estimate the Newton polygon of 

d e t f t x 
(I - Ta x) = 1 + 

rN 
j = l 

djT j Here dj is (up to sign) the sum of 

the jxj principal minors of the matrix Qt? . As a consequence. 

(5.30) ord d_. > inf of all j-fold sums 
i 

1=1 
W(v^) in which 

{(vl,il) }il=1 are j distinct elements in {(v,i) | -N+l ̂ v < 0 ; l « ^ i < r } . 

This yields 

(5.31) THEOREM. Assume (p,M) = 1. Let H(f,T) = 
-N+l^y^O 

( l - q W ( y ) T ) . 

Then the Newton polygon of det(I - Ta x) (=L(f,T) H ) n + 1 lies over 
the Newton polygon of H(f,T) . 

a. _ 
Thus H(f,T) is a type of "Hodge" polygon for this example. Note % 

that H(f,T) is independent of the constants 
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{ ci }i=l U ( x } - ^ q * 

We will now prove that when p = 1 (mod M) the Newton polygon of 

L(f,T) (-l)
n + 1 

is equal to the Newton polygon of H(f,T) . 

(5.32) THEOREM. Assume (p,M) = 1. Write (using (2.8)) 

- 5 } 

( yMS(y) ta (y) 

o(v)EA2 

A 
A 
v, y 

( y ) y P M S ( v ) t o 
(v) 

Là 
i=l 

n 
^ ( Y p

M , t ) f . , 

with A (Y) = v, y 

oo 

Là 
j=0 

Av,u(i)Yj ERp r P 
xp-l 

pW(v) - W(y) ) 
p-1 

and 

A 
L P 

P 
P-1 

W(y) 
p-1 

+ 1) . If Av,u(Y) is given by (5.24) , then 

Â (Y) - A (Y) v,y v,y e R p 
p 

'p-1 
pW(v) - W(y) 

p-1 
+ 1) 

Furthermore if we write by abuse of notation, a ( y ) = (y l f...,y n) , 

then 

A ( j ) 

v, y l v(3,Y,j)B Y 

n 

i=l 
Bp3 i-y i+a iY 

where B m is defined in (5.3), v (3, y, j ) is a unit in SlQ and the sum  

runs over 3 = (3^..., 3 n) e Z
n , y e n satisfying Y = (Y - MS (y) ) M* 1, 

(where y G 3N, y > pMs ( 3) ) , and £ (3) = NT + v for some T - e TL , and 

y + pTgM = j+pMS(v) . 

Proof : The first assertion is simply a statement of (3.16) in the 

constext of £==a (0) 
YM 

( yMS(y) ta 
Au) 

e L P 
p 

p-1 
-W(y) . 
p-1 

To establish 

the second assertion, we may write by (5.4) 

F Q ( A t ) = 
(a;My) e S x 

v(a;My)B(a;MY) Y^ l Yt a 

in which v(a,My) is a unit in fiQ and where 
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(5.33) B(a;My) = B y 

n 

i=l 
B 

a i + a i Y 

with the B's defined in (5.3). The second assertion is then the m 
explicit reduction of 

(O) 
a M 

( YMS(y) ta<^, = 

(B;Y) e s p 

B ( p 3 ~ a ( y ) Y - MS(y) ) Y Y t ß 

modulo 
n 

i=l 
6*(Y p M,t) 

V 
P 

P-1 
given in (2.8). 

(5.34) THEOREM. Assume (p,M) = 1. Then in (5.32), 

ord v, y 
pW(v)-W(y) 

P-1 
jNM"1 

P-1 

for all j > 0 . Furthermore, assume p = 1 (mod M) . Then 

ord A ( 0 ) = W(v) ; 

if y ^ v and W(y) > W(v), then 

ord v (0), y (pW(v) - W(y))/(p-l) . 

Proof : Let 

(5.35) b(3,Y,j) = v($,Y,j)B(a;My) 

be a typical term in the sum for à<j) 
v, y 

Then 

(5.36) ord b(B,Y,j) £ 
pZ (ß) - y + NY 

P-1 

and by the conditions on Z(3) and y , 

pZ (3) - y + NY = pW(v) - W(y) + jNM - 1 . 

This proves the first assertion. 

For the second assertion, we need a finer analysis of b(3,Y,J)« 

Observe that by definition, the indices p3^ - y^ + a^Y must be non-

negative integers so that 

(5.37) Y >, s(p3 - a ( y ) ) . 
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Using £(3) = Nx+v, (5.36) becomes (in the case j =O) 

(5.38) ord b(3,y,0) > pv - y + PNT + NY 
P-1 

Consider first the case x >1 . Then 

ord b(ß,Y,0) >v+N+(v-y+N)/(p-l) . Using 0 < S(v) ̂  1 for -N+1^ v < 0 , 

we obtain for x > 1 

ord b(3,Y,0) > pW(v)-W(y) 
P-1 

N(1 - S(v) + S(y) x 

p-1 

Thus, in the case x > 1, ord b(3/Y/0) > (pW(v) -W(y)/(p-l) and this 

inequality is strict unless the following situation holds 

(5.39) x = 1 , y = O , S(v) = 1 . 

Now assume x < O . Since 

n 

i=l 
3 ± = Nx + v 

n 

i=l 
(a±x + v ±) + x , 

unless T = 0 and 3^ = for all i, 14 i4 n, there is some index i 

such that 
3 ± < a ±T + v ± . 

But then by (5.37) 

(5.40) 
Y> 

-p3 ± + y ± 

a i 

V - px + (p-1) 
-v.+l 

a i 

-vi+ui+1 

a i 

We claim that for any index i. 

(5.41) 
-v.+l 

a i 
> S(v) . 

Suppose not, then (-v±+l)/ai <S (v) . We will show that this violates 

the definition of the diagonal sequence A , (1.10). Let 

o(v)=-
v<j^-1 

Ug(j) ; let I = g ( v) . We will also establish for 

future use 
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(5.42) S(v) = - v

£ /
a

£ • 

Suppose -v^/a^ < S(v) , and 6 is the smallest index v < <5 ,< 0 such 

that S(a ( 6 )) < S(v) . Since o(v) a< 6 ) -
a<j<$-1 

ug(j) 
we obtain 

v i ^ ô i "̂ or a"^ 1 ̂  "̂̂  n * In particular vl<$l, so that if 

-v /a < S (v)/ then 

s ( a ( ô ) -U ) < S(6 - 1) = S(v) 

contradicting (1.9). Note that with 6 defined as above and with the 

index i violating (5.41), then 

s(a<6> -0.) < S (6 - 1) = S (v) . 

But, this violates (1.9) again. 

Now (5.40) and (5.41), imply 

Y > -PT + (p-l)S(v) 
y.-v.+l 

a i 

If y > v , then a ( v ) = a ( y ) 

v^j^y-1 °g(j) 
so that ^ y^ for. 

every index i . Thus y e 1M and our hypothesis p = 1 (mod M ) , imply 
that 

Y > -PT + (p-l)S(v) + 1 

which yields from (5.38) 

ord b(ß,Y,0) pW(v)-W(y) 
p-1 

N(l-S(v)+S(y)) 
P-1 

Note that 1-S(v)+S(y) >0 in the case y > v . Thus we have strict 

inequality ord b(3,Y,0) > (pW(v) -W(y))/(p-l) in the case T < 0 , 

y > v , unless the following situation holds 

(5.43) T = O ; 3 = a ( v ) . 

We consider now the case (5.43). Then (5.37) implies 

Y > (p-1) 
(-v.) 

a i 

ui-vi 

d. . 1 

for all i, i = l,...,n. If v < y, and l = g(v), then we have seen 

above < y . With (5.42), this implies 

Y > (p-l)S(v) + 1 , 
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so that by (5.38), we again deduce 

ord b(8,Y,0) > pW(v)-W(y) 
p-1 

This leaves the case v » y, x = 0 , 0 = a ^ . Clearly (5.37) 
implies y > (p-l)S(v) . Note that for Y = (p-l)S(v), v = y , 

p v i ~ y i + a i Y = ^P"1^ ( vi + s( v) ai> • 
By (5.41), 0 < v i + S(v)a i < 1 . Thus by (5.3), 

ord b(a ( v ),(p-l)S(v),0) = W(v) ; 
clearly by (5.38) 

ord b ( a ( v )
Y ) > W(v) for y > (p-l)S(v) . 

Consider now T ̂  0 and v > y. Since -a i < y i , for all i, 
(5.40) implies that 

Y > "PT + (p-l)S(v) . 
But then (5.38) yields 

ord b(3,Y/0) > pW(v)-W(y) p-1 
N(S(y)-S(v) 

p-1 
Since 0 y < v ̂  -N+1, clearly S(y) > S(v) . 
Thus 

ord b(3,Y,0) > (pW(v)-W(y))/(p-l) , 
unless 
(5.44) v > y and S (y ) = S(v) . 

In summary, ord V , V = W(v) and ord A ( 0 ) > (pW(v)-W(y) )/(p-l) 
and the inequality is a strict one unless (5.39) or (5.44) holds. 
In particular, we observe that XV(y) ^ W(v) precludes both (5.39) 
and (5.44). * 

Our main result now follows : 

(5.45) THEOREM. Assume p = 1 (mod M) , x G Si* , x q = x . Then the  
following estimates hold for the entries of the matrix Ct= ( C£v ^) 
of the semi-linear map a'X: VJ'X > : 
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(i) ord OL , >y (pW(v)-W(y) )/(p-D , 

(ü) ord « V f V = W(v) 

(iü) if y^v, and if W(y) ^W(v), then 

ord C£ > (pW(v) -W(y) )/(p-1) . 
V , y 

Proof : This result is an immediate consequence of (5.32) and (5.34). 

(5.46) THEOREM. Assume p E 1 (mod M ) , x e ft* , x q = x . Then the 

(-l) n + 1 

reciprocal zeros , -N+l <: y ̂  O , of L(f (x,t) ,T) belong 

to © (c ) and may be arranged so that 
r ir ord g Ü)^ = W(y) . 

In other words the Newton polygons of L(f (x,t),T) 1 A;(n+1 and 

H(f(x,t),T) coincide. 

Proof : It is useful to allow somewhat greater ramification than that 

of "^(^p) • Let 1 be a uniformizer in 1 and let ke the 

extension of *J(Cp) defined by adjunction of a root say IT1 of — IR ; 

extend T to °JI by setting T(TT') = IT1 . Let 

C = diag (TT"W(0) , . . . , TT" W (" N + 1 ) ) be the NxN diagonal matrix with 

entries {TT-W(u)} N+1<U<O in the order shown. If 

C t a C-1 = a(1) (<Z ( 1 )) v,y' then 

a ( 1 ) 

v, y 

TTW(v)-W(u) 
avy 

so that 

(5.47) 

ord o, ( 1 ) ^ W(v) , 

ord V , V = W(v) , 

ord a(1)v,u > W(v), if v^y , and W(y) £W(v) . 

Now by [7, proposition 2.20], there exists an NxN matrix 

№ e GL(N,(V), (where CM is the ring of integer of <*$' ) satisfying 
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(5.48) w>T e T a e" 1 tri1 = e - 1 

In fact, we can rework the proof of [7, proposition 2.20] to show 
the existence of an NxN matrix t£e GL(N,Ooo) satisfying 

(5.49) YtaY-1=C-1. 

Then the argument of [7 , (2.28) and (2.29) ] yields the additional 
information u> e © ( c ) , -N+1 <: y « O . • 

M f p 

6. THE ONE-VARIABLE CASE. 

The methods we have employed above can be used to treat some
what more general exponential sums of a "Kloosterman type". In this 
section and the next, we will expand the set of examples we can 
study in this way. It seems likely that the same approach may be 
employed in the investigation of the exponential sums S (f), (5.1), 

* m 

in the more general setting where d e 3N , and 
(6.1) f(x,t) = 

n 
i=l 

c.t d  

1 1 xt-a 

In fact, if g e f ^ t ^ . . . , ^ ] is any homogeneous polynomial of 
degree d, "regular" in Dwork's sense [1], then we believe that the 
exponential sums S m(f) with 

(6.2) f(x,t) = g(t) + xt a 

should be amenable to this type of analysis. 

In this section we will restrict ourselves to the simpler one 
variable case. Let 

(6.3) f(x,t) = c t a1 x t ~
d2 

with c G F * , x G , d l f d 2 e u* be the reduction of f(x,t) where 

f(Y,t) = ct .
dl + Yt ."

d2 and с = Cq; q 
x = x^1 

belong to ß Q . 

We proceed as in §§ 1-3. Let Y,t^,...,tn. be algebraically 
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independent, M = 1 .c .m. {d]L ,d 2}, . Then we define for £ e 2, y e ]N 

(6.4) 

â(A) = max{O, - £ 
d 2 

w U ) 
l 

dl 

, d2 
d l 

- 1 ) s(£) = max 
l 

d1 
-l 
d2 

w m(£ ; y) l 
d1 

, d2 
d1 

1) Ym"1M""1 

Define 

(6.5) L m(b,c) « 
(£;y)esm 

A(£;y)t£YY|A(il;Y) e ftQ , 

ord A(£ ; y) > C + bw m(A ; y) > / 

A 
where the index set S_ is given by 

m 3 J 

(6.6) S = m { U ; Y ) e Z xK I Y > mMs ( il ) } . 

We define H(Y, t), H(Y, t), F(Y, t), E = 
td 
dt H o 

u (m) 
H o 

D(m, as in 

(1.7) using f(Y,t) in place of f(Y,t), and using the sequence 

( Y £ } £ > 0 given in (5.12). We define R m(b,c), R m(b), L m(b) just as in 

(1.4). Finally, we define 

(6.7) A = (£|-d2 ^ £ < d x> . 

V m(b) is the Rm(b)-span of 

(6.8) { YmMS(£) t£ I £ e J } 

and 

(6.9) V m(b,c) = V m(b) n L m(b,c) . 

The reduction formulas mod H 0 are extremely simple : 

(6.10) 

Y Yt* = d ^ - V ^ t ^ ^ + H ^ ^ Y ô ' d ^ Y ^ t ^ 1 ) , if £ > d 1 , 

Y £ i „ £+d.-d0 , * . £+d« 

Y t - - d ^ - V ^ t 1 2 - H ^ m ) ( Y - 1 d ; M - m M t 2 ) , if £ < -d 2 . 

Thus we have 
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(6.11) THEOREM. Assume (p,M) = 1. Then for P 
p-1 

> b , 

L m(b 7c) = V m(b,c) + â^>L m(b,c +e) . 

If K = 
U;y)es m 

A(£;Y)t £Y Y G L m(b,c) then yv a (m) a 
K = v + H^ m ;ç 

with 

v e L m(b,c) C e Lm(b,c+e) and 

A 
V = EA 

vl ( Y ) yroMs(A) tA 

0 t(Y) = 
JS-O 

(Y)YmM(l)tl 

with explicit reduction formulas given by 

(6.12) vo -\ = I u(r,a)A(r;a) 

where u(r;a) is a unit in ftQ and the sum in (6.12) runs over 

(r;a) G § m , r = &+T (d 1+d 2) , a = j + mMs(£) - xmM , x e Z. (Note that 

(r;a) e S implies the sum (6.12) is finite). * 

It is also quite clear that if A is a noetherian, unique facto-

(m) ^1 jnM -<^2 rization domain, and we set h^ = t - eY^t , with e a unit in 

A, then is not a zero-divisor in R = A[Y ft fY
m Mt 2 ] . This 

ensures the directness of the sum (6.11). We summarize : 

(6.13) THEOREM. Assume (p,M) = 1, P 
p-1 * b > 

1 
P-1 

so that e = b - 1 
p-1 > O . 

Then 
L m(b,c) = V m(b,c) *> D^

m )L m(b,c+e) . 

Furthermore, if we set b = P 
p-1 

and if we write £ G L 
m 

p 
p-1 

-c) 
according to (6.11) as 

5 = v + û ^ î 

with V G vm p 
p-1 

rC) , £ E Lm 
P 

•p-1' 
c+1) , then we can express 

ç = v + D ^ m ) c 
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where v G V m 
P^ 

p-1 
c) , 5 G L m 

P 
P-1 

c+1) and A __ V - V G V_ 
m 

P 
P-1 

,c+l) 

The situation above can be specialized. We observe that elements 

of L (b,c) converge on the region 

(6.14) G(b) = m {(t,Y) G fi2 ord t > -bd" 1 ord Y > -bd 
-1 
1 

(d 1+d 2)m"
1M" 1, 

ord t - m M d ^ ord Y > db" 1 >. 

We fix x G ft* ord x > -bdi-1 (d x+d 2), 
M 

and y G ti , y1 = x . Set 
^'o=^o(y) We define 

(6.15) L(x,b,c) = 
& GZ 

A U ) t£|A(il)Gfi0/ ord A U ) >c+wU)b+sU)ord x} , 

We will employ a dash to denote that the field of definition of 

a space under consideration has been extended from ftQ to Qq . The 

specialization maps S , as in § 4, then are surjections. For example. 

S y : L m(b,c)
1 > L(x m,b,c)' , 

if ord x m > -bd^ 1(d 1+d 2] We also define Frobenius maps a M Y 
a(0) 

YM 

a x ' 
-CO) 
x a' 

x 
as in § 5. Since a(o) 

YM 
( Y S ( j ) M t j ) 

S L P 
P 
P-1' 

-w(i) 
p-1 

we 

may write 

(6.16) 
a(0) 

YMY 

( Ys(j)M tJ } = 

iGA 
A±.(Y)Y^{±)M^ + D(T)£ 

o,p 

where £ELp p 
VP-1' 

-w(j) 
p-1 

+1) and 

iGA 

Aij ( Y ) yPs(i)M ti EVp p 
P-1' 

-w(J). 
p-1 

(6.17) THEOREM. Assume (p,M) = 1. 

(i) Let x G Q*, ord x >-d^ 1(d 1+d 2)/(p-l). Then ä
( 0 ) : X V> — > U> ( t )  

x x p 

is an ^-linear map 

a-(o) (t-j) 
x -d 2<i«3 1 

aIJ5X°T-I 

310 



NEWTON POLYGONS FOR HYPERKLOOSTERMAN SUMS 

with matrix A = (A ± j(x)), A ± j(x) S y(A ± j 

( Y ) ) xps(i)-s(j) with 

respect to the bases (t 1 -d 2 ̂  i < d 1 } of U>x and 
W5T° 
Xp 

respectively. 

For ord x > 
-(d 1 +d 2) 

D1(p-1) 
ord S y(A i ; j(Y)) > (pw(i)-w(j) )/(p-l) Thus, 

if ord x = 0, 

ord A..(x) > (pw(i)-w(j))/(p-l) 

for ^ < d l * 

(ii) Let x G ° 3 U p ) , ord x = O, x (x) = x
p. Then dx : wx > V>K 

is a x 1 (semi)-linear endomorphism 

a'(tD) x -d 2<i<d 1 

Ct ± j(x)t
1 

with matrix Cl= ( a ± j (x) ) with respect to the basis 

i t ' 1 I -d^ i < d 1> of ^ x ? a i j ( x ) = T 1( A

ij(
x)) ? 

ord U±.(x) ^ (pw(j)-w(i))/(p-l) 

for -d 2 < i,j < d.̂  . 

Just as in § 5, the above result yields. 

_ __"d 2 

(6.18) THEOREM. Assume (p,M) = 1 , let f (x,t) = ct + xt G IF [t] . 

Let H(f,T) = n (l-q w ( l )T) . Then the Newton polygon of 
-d0^i<d, 

L(f,T) lies over the Newton polygon of H(f,T) . 

Just as in § 5, we will now show that when p = 1 (mod M) the 

Newton polygons of L(f,T) and of &(f,T) coincide. Just as § 5, the 

following holds. 

(6.19) THEOREM. Assume (p,M) = 1 . Write (using (6.11)) 

a ( 0 ) 

Y M 

( YMê(j) tJ } 

-d 2<i<d 1 

%±.(Y)Y^è{±)t± + H^ T )(Y p M,t)C 
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with A (Y) = 
00 

«,=0 
Aij(l)Yl e R P 

P 
P-1 

pw(i) -w( j) v 
p-1 

and 

î e 
L P 

P 
VP-1 

w(j) 
p-i 

+ l) If A ± j(Y) is given by (6.16) then 

Â i ; j(Y) -A.j (Y) S R P 
P 

VP-1 
pw(j ) -w(i) 

p-1 
+ 1) . 

Furthermore, 

(6.20) A U )  
Aij = I u(r,Y#*)B 

d x (pr-j+d2y) 

where u(r,y,A) is a unit in fi^ , where B n is defined in (5.3), and 

where the indices Y and d, 1(pr-j+d 9y) are both non-negative integers. 

The sum (6.20) runs over (r,y) e z x]N satisfying Y = (y - Ms(j) )M 

(where y e E , y >, pMs (r) ) , and r = i+x (d 1+d 2) for some x e Z , and 

Y + xpM = £ + pMs(i) . * 

The key result then is the following. 

(6.21) THEOREM. Assume (p,M) = 1. Then in (6.19) 

ord A.<*> 
ID 

pw(i)-w(j) 
p-1 

£M~ 1d 1

1(d x+d 2) 

p-1 

for all £ > 0. Furthermore, if p = 1 (mod M ) , 

ord A ( 0 )  

li - w(i) ; 

if i ^ j, then 

ord 
A(o) 
ID 

(pw(i)-w(j))/(p-l) 

except possibly for the case i = -d 2 , j > 0 . 

Proof : Note that by (6.20), 

ord A.<*> 
ID 

M 1

_ 1 ( p r - j + ( d 1 + d 2 ) Y ) / ( p - D . 

Using the conditions on r, y, and y, we obtain the first assertion. 
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If we set m 2 = y, m 1 = d" 1(pr-j+d 2m 2) , the situation appears 
more symmetric. Let 

b(m.,m0) = B B m  1 2 m^ m 2 

subject to the conditions : 

(6.22) 
m^ ,m 2 G JN 

d 1m 1-d 2m 2 = pi - j+px(d 1+d 2) for x G TL . 

Assume first that i ^ 0 so that w(i) = i/d. Then (6.22) gives 
(since m 2 ^ 0) 

(6.23) 
va± >r p (w) i -j 

px (d 1+d 2) 

m 2 = 
d l 
d 2 

m 1 

-px(d x+d 2)-pi+j 
a 2 

Therefore, if x > O, 
(6.24) m l + m 2 > P w " W(J ) • 
Furthermore if x = O, we also obtain (6.24) when j < O. Suppose now 
that j > O, and x = 0. Then 

m 1 >y pw(i) - w( j ) 

so (6.24) holds unless = pw(i) - w( j) and m 2 = 0. But 0 ̂  i, j < d 1 , 
together with m 1 = (pi-j)/d e isr, imply i = j . If i = j ^ O, then 

ord b((p-l)i/d1,0) = w(i) . 

We consider i > O, x < 0. Then 

m l + m 2 
(d 1+d 2)m 1-px(d 1+d 2)-pi+j 

d 2 

5-
P(d x+d 2) 

a2 
pi 
d 2 

j 
d 2 

> Pi 
dl 

j 
d 2 

> pw(i) - w( j) , 

the strict inequality being a simple consequence of i < ^ . This 
completes the proof of the theorem in the case i > 0 . 
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In the case i < O, we interchange the roles of m 1 and m 2 in 
(6.23) and T and -x in the subsequent argument. We may then conclude 
that (6.24) holds in all cases except x = 0, i = j, (in which case 
ord b(O,-(p-1)i/d2) = w(i)), or when x = O, i = -d 2, j = 0, or x = 1, 
i = -d 2, j > 0, (in which cases we only obtain the weak inequality 
m 1+m 2 pw(i)-w(j) ) . * 

The following result is then an immediate consequence. 

(6.25) THEOREM. Assume p = 1 (mod M ) , where M = 1 .c .m. (dx ,d 2) . Then 
L(f,T) is a polynomial of degree d 1+d 2, with reciprocal zeros 

d -1 
^a)i^i=-d algebraic integers lying in Q p(Cp) which can be arranged 
so that ord a). = w(i) . 

In other words, provided p = 1 (mod M ) , the Newton polygons of L(f,T) 
and H(f fT) coincide. 

7. FURTHER APPLICATIONS. 

We will extend the results of the two previous sections. We 
consider here the two cases 

(7.1) (i) h(x ft) = f(x,t) 
EJ 

b t a 

(ii) h(x,t) = f(x,t) 
L 

iGK 

bit-i 

where f(x,t) is the reduction modulo the maximal ideal of 0 Q of (1.5); 
f(x,t) is given by (6.1) ; { b a } a € E J u { E ± } i e k c 3F* ; J is a finite 
sum of monomials a satisfying 

(7.2) (i) O < w(a) < 1 ; 
K C {i G TL I -d 2 < i < d x> and the inequalities 

(ii) O < w(i) < 1 , 
are obvious for i G K . 
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We give a few examples to show that the notion is not an empty 
one : 

(i) h(t 1,t 2) = t x+t 2+ 
t1-1+t1-2t2-1+t1-7t2-2+t1-10t-3 

(7.3) 
(ii) h(t 1,...,t n) = 

n 
i=l 

c.r. m 
j=l 

bjt-aj 

where 
a = (ai,...,an) € (K*) n , { c i > i = l U b m ^ K ' 

{bj}m-1 
j=1 

CFg 

We will work primarily with case (7.1)(i). Case (ii) is entirely 
analogous. Consider 

(7.4) h(x,t) = 
n 
i=l 

c.t. + 
aGJ 

b t a +xt" a 

a 
where c. , b and x are Teichmiiller units in ft^ , and the reduction l a _ _ _ O 
modulo the maximal ideal of h is h(x,t). We define as usual 

(7.5) 

F*(x,t) = e o o(xt" a) 
n 
i=l 

aoo(citi) 
aGJ aoo(bata) 

YEZn (U(Y) I B £ 

n 
i=l Bmi 

aEJ Bna)ty 

where u(y) is a unit for each y e * n , and the inner sum runs over 
the set $(Y) / where 

(7.6) 
•J(Y) = U{m ±>» { n > € J , *> e ^n+|j|+l such that 

m. + l aej 
n a a i " a i £ = Yi for i = l,2,...,n } 

where we have systematically written a = (o 1,..,,a n) for a G Z n . 
Let 

(7.7) F(y) = u(y) 
J(y) 

Bl 
n 
i=l 

B m. aGJ 
B n a 

then 
ord F(y) > inf 

}(y) 

n 
i=l 

mi 
aGJ 

n a + £)/(p-D . 
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Note that the requirement w(a) < 1 implies that E(a) ^ 0 , 

because s(a) > 0, and therefore 1(a) > 1 implies w(a) > 1. Note also 

that for ({ni i}
n

= = 1 , { n a > a G J , I) G ^( Y) , 

(7.8) 
n 

i=l 
m . + 

aEJ 
n + a = E (Y) 

a 1 

+ N£ + 
aGJ 

na(l-E(a)) . 

We claim 

(7.9) inf 
j(y) 

{NÄ + 
aEJ 

n a(l - E(a))} > NS(Y) , 

where S(Y) is defined in (1.1). Clearly the left side is non-nega

tive. It remains to show that 

<*) N£ + 
aGJ 

n a(l - E(a)) > -NY i/a i 

for any i, and any ([mi}n 
i=1 

{na}aEJ,l E J(y) Substituting 

in (*) for Y- from (7.6) the desired inequality will hold, provided 

1 - E(a) > - N<x±/a± 

for any a G J . However w(a) < 1, implies 

E(a) + Ns(a) < 1 

which completes the proof of (7.9) and the following result. 

(7.10) THEOREM. If J is a subset of monomials a satisfying 

0 < w(a) < 1, then 

F*(x,t)E G (x , 1 
p-1 

0) 

where L is defined in (4.1 (i) ) . 

Set 

(7.11) fe-(x,t) = 
oo 

1=0 
Ylh TL (xPl, tPl) 

where Yl oo 
£=0 

is given by (5.12) ; let 

(7.12) ^i,x = EiW(x,t) H. + A . i,x i,x 

where H. is given by (4.1 (iii)) and i, x 
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(7.13) Ai,x -

CO 

£=0 
YlPl 

aGJ 
a. b t aP 1 a 

Note that since w(a) G M""1 UN, and w(a) < 1 for a G J , therefore 

(7.14) w(a) ^ 1 - 1 
M ' 

for a G J . 

It follows from (7.13) and (7.14) that for b< P 
p-1 

(7.15) A. G L(x,b,-e+e') x1 x 

where e' = b/M ; recall also that for b <= P 
p-1 

H. G L(x,b,-e) . 
X I Ä Define 

(7.16) 2>. = E. + = D . +A. 1,X 1 1,X 1,X 1,X 

It is not hard to prove that for ord x > -Nb, (p,M) = 1 , the 

{ x^i=l ^orm an R-sequence on L(x,b) and furthermore that for 

P 
p-1 

^ b > 1 
p-1 

L(x,b,c) = V(x ;b,c) e 
n 

i=l 
<g>. L(x,b,c+e) . 
X , X. 

From (7.16) we derive in the usual manner : 

(7.17) THEOREM. Assume (p,M) = 1, P 
p-1 ^ b > 

1 
p-1 ' 

ord x > -Nb . 

If we express E, G L(x,b,c) in the forms K = v + 
n 

i=l 
Di,x^i and 

£=v*+ n 

i=l 
3>. ..c* with v, v*GV(x,b,c), c., G L(x,b,c+e) 
IF A X — — — X X 

then 

v - v* G V(x,b,c,+e'). 

Define as in § 5, a ( 0 ) . 
X 

= *o F*(x,t), a x* = T
 1oi^oFQ(x,t) , 

a x = if» oF (x,t) where F*(x,t) 
r-1 

j=0 

F*0 ri (xPj tPt) 
Define also 

V * = L(x,b) 
n 

i=l 
€>. L(x,b) , 
X r X. 

W(t) 

xP 
L(x P,b) 

n 

i=l 
© ( T ,_L(xP fb) . 
i,x p 
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We shall work exclusively with b fixed, b = p/(p-l), e = 1, 

e' = p/M(p-l). 

Writing 

(7.18) F*(x,t) = 
Y G Z n 

F(y)t Y 

with F(y) defined in (7.7) above, we may write 

(7.19) a ( 0 ) * 
X 

( x ^ > t * ( y ) ) 
aEZn 

A(3)t 3 G L(x P , P_ 
p-± 

W(y) x 

p-1 

where A(3) = x S ( y )F(p3 - a ( y ) ) . We know 

(7.20) a ( 0 ) * x ( x S ^ t ° ( y ) ) S y ( ^ n A ( e ) x - P
s ( ß ) Y P M s ( ß ) t ß ) 

and by (2.8) we define 
A(j) 
vu by 

(7.21) 
ß e z n 

A ( 3 ) x - P S ( ß ) Y P M s ( ß ) t ß = 

o 
I 
(v) G A 

oo 

j=o 
Â ( j ) Y ^ ) v, y 

YpMs(v) ta
( v ) 

n 

i=l 
h<t> 

lr P 
[YPM,t)ç. 

where ç . G L 
1 P 

P 
%P-1 

-W(y) 
P-1 

+ 1) A (Y) 
vy 

oo 

j=o V , y 

Rp P 
P-1 

pW(v)-W(y) , 
p-1 

and we have explicit formulas from (2.8) 

(7.22) â(j) 
v, y I A(ß)w-P S ( ß )u(ß,j) 

in which u (3,j) is a unit in ftQ , and in which the sum runs over 

3 G Z n where E(3) = N T & + v, pMs (3) + T^pM = j + pMS(v) . Thus 

A ( j ) = I F(p3 - a ( y ) ) x S ( y ) ~ p s ( e ) u ( 3 , j ) where 3 runs over the above v, y 
index set. 

(7.23) THEOREM. Assume (p,M) = 1, ord x > -N/(p-l) 

ord £(j> 
v, y 

pW(v)-W(y) 
p-1 

jNM 1 

p-1 

for all j £.0. Furthermore, if p = 1 (Mod M) , 
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ord A ( 0 ) 

V / V 
= W(v) ; 

if y ^ v and W(y) > W(v) then 

ord Â ( 0 ) 

v , y 
(pW(v)-W(y)/(p-l) ) . 

Proof : Let 

b(({m.>;? = 1,{n a} a e j,*) ; j) = u ( e , j ) x
S ( ^ - P s ( ß ) B j l 

n 

i=l 
B 
m. 

n B n a 

for ( { m i } i = l ' {VaGJ'*> 
G 3<p3-a ( y )) (where 3 satisfies the condi

tions in (7.22)) be a typical term in the series for A ( ^ v, y Then the 

first assertion is a straightorward computation using 

ord x > -N/(p-l) . We obtain for j = 0 , 

(7.24) ord b(({m i}
n

= 1,{n a} a G j /£);0) > pW(v)-W(y) 
p-1 

aGJ 
na(l-E(a)) 

p-1 

Since E (a) ̂  O, we get a strict inequality in (7.23) if n^ \4 0 for 

any aGJ. Therefore, we can restrict our attention to 

({mi}n 
i=1 {0} < = T aGJ A) G ^( P3-a

( y )) 

where 3 satisfies the conditions of (7.21). Thus 

b({mi}n 
i=1 

{ 0>aGJ • A) ; 0) = u(3;0)B^
J>B Ä 

n 

i=l 
Bp3 i-y i+a i£ 

by definition (7.6) of the set ^ . But then the argument is clearly 

the same as (5.34). * 

We can use the result above to obtain estimates for the reduc

tion of a<°>* 
X 

;ta 
(y) 

modulo 
n 

i=l 
L(x p,b) 

A 
(here H. is given 

X , X 
by (4.1)). By (7.20) and (7.21) we write 

a(0)*. a
( y ) 

x 
o(v)EA 

A v , y ( x ) t 

n 

i=l 

Ht 
i,xP 

A* 
5i 

where G L(x p

 t 
P 

p-1 
-W(y) 
p-1 

S (y) ord x + 1) 
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(7.25) COROLLARY. Assume (p,M) = 1, ord x > -N/(p-l) 

ord S (A v y(Y) > (pW(v)-W(y))/(p-l) . 

Assume in addition, ord x = O, and set 

A* (x) 
v, y 

x p S < v ) - S ( y ) S y ( i ^ ( Y ) ) 

Then clearly ord A* (x) > (pW(v)-W(y) )/(p-l) , If we also assume 
p = 1 (mod M) , then 

ord A* (x) 
vv 

W(v) ; 
if y ^ v and W(y ) > W(v) , then 

ord v, y (pW(v) - W(y) )/(p-l) . 

If we combine (7.17), (3.16) and (7.25), we obtain the fol
lowing result. 

(7.26) THEOREM. Assume (p,M) = 1. 
(i) Let x e •$(?), ord x = O, T (x) = x p . Then 

a 1  

X 
-1 -(o)* 

T oa W*X—>W*X is a T" 1 semi-linear endomorphism 

a'*(t a ) x o(u)EA 
a* (x)tc 

with matrix &* = ( Cl* (x)) with respect to the basis {t a |o(u)EA}; 

the estimate ord 0* y > (pW(v)-W(y))/(p-l) holds for all -N+l < v , y <: 0 . 

(ii) If p = 1 (mod M ) , then 
ord (Z* (x) = W(v) ; 

v V if y ^ v and W(y) > W(v), then 
ord Cl,* (x) > (pW(v) - W(y) )/(p-l) . 

From this we deduce the usual consequences for the Newton 
(-l) n + 1 

polygon of L(h,T) v ; 
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(7.27) THEOREM. Assume (p,M) = 1 . The Newton polygon of L(h,t) (-D
n + 1 

lies over the Newton polygon of H(f,T) (defined in (5.31)). If p = 1 

(mod M ) , the reciprocal zeros of L(h,T) ^n+1 are algebraic in

tegers in © ( C ) and the Newton polygons of L(h,T) (-l)
n + 1 

L(f,T) ("l)
n + 1 and H(f,T) all coincide. 

A similar result holds in case (ii) by applying the above 
technique. Robba [6 ] has obtained a similar result by using his index 
theory. 

(7.28) THEOREM. Let M = 1.c.m.(d 1,d 2). Assume (p,M) = 1. The Newton 
X (-i) n + 1 ^ 

polygon of L(h,T) lies over the Newton polygon of H(f,T) de
fined in (6.17). If p = 1 (mod M) the reciprocal zeros of 

a (-D n + 1 

L(h,T) are algebraic integers in $p(Cp) and the Newton poly
gons of L (h,T) (-l) n + 1 L(f,T) (-l) n + 1 

i 
'Vi A 

and H(f,T) all coincide. 

8. OTHER CONGRUENCE CLASSES. 

In this section, we examine the situation when we drop the 
hypothesis p = 1 (mod M ) . We consider the exponential sums 

Sm(f) 
t G1E m 

q 

VoTr^ 
m 
q 

'IF 
q 
(f(t)) 

where 
(8.1) f(t) = at + xt" 3 

— — * a, x e IF , when p = 2 (mod 3) . (The case p = 1 (mod 3) is already q 
included in the results of § 5). The results of the present section 
show that for the example (8.1), the Newton polygon of the associa
ted L-function when p = 2 (mod 3), (p> 5) lies over the Newton 
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polygon for the associated L-function when p = 1 (mod 3), and it 
approaches this Newton polygon in the limit when p varies in the 
congruence class p = 2 (mod 3) and p — > °° . 

It is convenient to introduce the following notation. 

(8.2) X(v) = (least non-negative residue mod 3 of pv, for 0< v< 2 ; 
13, for \> = 3. 

n<\>) = pv-X(v) 3 
6(v,y) = least non-negative residue mod 4 of y-A(v) ; 
e (v, y) = n (v) + 6 (v ,y ) . 

(8.3) LEMMA. For ord x = 0, p > 5 , p = 2 (mod 3 ) , O < y, v < 3 
pw(-\))-w(-y ) 

p-1 + 1 > e(V/P) p-1 
where w(-v) is defined in (1.1). 

Proof : Using the definitions in (8.2), and the definition of 
w(-v) = v/3 for 3 >v >0 (from (1.1)), the asserted inequality in the 
statement of the lemma is equivalent to 

p-1 > U-A(v) 3 + 6(v,y ) , 

which holds by definition of <5(\>,y) and our restriction to primes 
p > 5 . 

(8.4) THEOREM. Let a,x be TeichmUller liftings of a,x. If p > 5, p = 2 
(mod 3), ord x = 0 , then the following estimates for the size of the  
entries of the Frobenius matrix hold 

(8.5) A-v,-y 7r £ ( V' y ) (X 
v, y 

0 £ v , y ̂  3 , 

where ftv y is an integer in Qp(ff,x,a), and, in fact, is a unit for  
all pairs (v,y) with the possible exceptions of (3,0), (3,1) and  
(3,2) . 
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Proof : By lemma (8.3) and theorem (5.32), it is sufficient to prove 
the estimates (8.5) for the matrix entries A where % is 

-v,-y -v,-y 
defined by 0(0) f c-u _ j & t-v x ** -v,-y (mod H^L(x,b)) , 

and where A_^ _ y is given explicity in the notation of theorem (5.32), 
by 
(8.6) A 

-v, -y T e z 
U(T,X) B B 4pr-pv+y+3y Y 

where u(x,x) is a unit for all T G TL and the inner sum runs over all 
non-negative integers Y such that 

4px - pv + y + 3Y >0 . 
For real x let <x> denote the smallest integer greater than or equal 
to x. For x O, 

(8.7) Y > max {0 , -4px+pv-y ̂  
3 

= max {0 , -px + ̂ pv-y-px 1 

3 Let 
(8.8) b (T;Y) = u(x,x)B B„ . l 0 v,y ' Y 4px-pv+y+3Y 
be a typical term in the series (8.6) for A 

-v, -y 
Thus 

(*) o r d b v , y ( t ; y ) > 4px-pv+y+4Y 
p-1 

Consider first the case x > 0 . If x > 2 o r if x = 1 and v < 3, we obtain 
from (*) 

ord b (x ;Y) > 1 + 3 
p-1 

If x = 1 and v = 3, we obtain from (*) 

ord b (x;Y) P+y 
p-1 

e (3,y) 
p-1 

in which the last inequality is sharp if y = 3. If x < 0, or v > 0, or 
y < 3, then 

max {0 , -px + Dv-y-px^ 
3 

= -px + ,pv-y-px ̂  
3 

Thus by (8.7), 
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4px - pv + y + 4y > - pv + y + 4 nv-u 
3 

= n (v) + y - X (v) + 4 X (v)-y 3 
where the first inequality is sharp if T < O or if T = O and 
Y > ,pv-y. 3 Note that if v / O or if p / 3, then 

y - X(v) + 4 ,X (v)-y, 3 = 6(v,y) , 

(since -3 < X(v) - y O gives y-X(v) on both sides, and 0 < X ( v ) - y ^ 3 
gives y - X(v) + 4 on both sides) . In case T = O and y = .Pv-u. 

3 , we 
obtain 

ord b (O;y) 
V t Y 

n(v)+6(v , y) 
p-1 

In case v = 0 and y = 3, b Q 3(0;0) = u(0,x)B0B^ so that 

3rd b Q^ 3(0;0) 6 (0.3) 
p-1 

Let <* x^ denote the Frobenius map 

A-(O) 
X 

Wx W(t)xp 

If q = p r , we wish to compute the ord of the eigenvalues of the map 
a = (T" 1oa ( 0 )) . We will modify the argument of [7, § 2] . 

(8.9) THEOREM. Let p > 5, p = 2 (mod 3) . Let x e 3F* , (q = p r) , and let 
x be the Teichmüller lifting of x in Q. Then 

(i) for p> 11, the eigenvalues W > i = 0 of the Frobenius map 
<*x can be arranged so that 

ord g " 0 = 0 , 
Ord g w1= 1 

p-1 (n(l) + 3} , 

ord g "2 
1 

p-1 Cti(2) - 3} , 

ord_ o)~ = 1 . q 3 

(ii) For p=ll, the eigenbalues {">i}i=0 of the Frobenius map 
a

x can be arranged so that 
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ord g 0) O = O , 
ord^ o). 

q i 
= ord_ 0) O q 2 

1 
2 

ord_ 0) O = 1 . 
q 3 

Proof : We will follow the argument of [7, § 2] working with the 
matrix A = (A ),~ - of the Frobenius map a ̂  with respect 
to the basis {t~ v}^_ 0 . We use an argument from (semi)-linear al
gebra via the usual formalism (cf. [3]). In both cases in the sta
tement of (8.9), we can find a matrix C G GL(4,0oo) (here 0^ is the 
ring of integers in ^(c ) , tt is a uniformizer for 0m) having the 
property that C A (C ) T has the block form 

1 
O 

0 
A(1) 

where A^ 1^ is a 3x3 matrix with entries in 0 and 

A ( 1> v, y A mod -v,-y 
(v,y)+l 

for any 1^ v, y<3. We will use the notation X T to denote (x""1)1^ . 

We will now deal with case (i) , i.e. p> 11. We claim that there 
exists £ = (E,ir^2,E,^) G 0^ such that 

(8.10) 5 A ( 1> i r " ( 1 ) + V , 

and furthermore 5 = U ^ 1 ' 1 ^ , TTe(1,2)£2, „ , ( 1 , 3 ) ^ where <\» % a. 

are units in 0 .We write 
A ( 1> = v, y 7re(v,y) 

v, y 
for 1^ v, y<3. The existence of K is equivalent to the existence of 
a» a, <\, Oi 
e = (c 1,c 2,c 3) 

e 0 3 

oo 
with unit co-ordinates such that 

(8.11) 

51 a d ) 1,1 
+TTn(1)-5£2 a ( D 

2,1 
+TTn(2)-3£3 £2(1) 

3,1 
£t1 

5i 
a(1) 
1,2 

+TTn(1)-1£2 
2,2 

,n(2) +l^ (ad) 
3,2 ^2 

51 a(1) 
1,3 

+TTn(1)-1£2 
2,3 l rn(2)-3^ a d ) 

3,3 
£t3 
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Note that n(2) - 3 > 1 and n(l) - 5 >0 provided p is a prime, 

p = 2 (mod 3), and p> 11. Consider the reduced system 

(8.12) 

*1 Ul,l + ^2 u2,l = *l 

?1 Ul,2 = 4 

*1 Ul,3 = ? 3 ' 

where u. ,, u, 0, u. ~ are non-zero and u 0 .. is zero if p > 17, but 
1/1 JL , ̂  1 / j ^ / 1 

is non-zero in case p=17. In either case, the equations may be 

solved simultaneously in IF , the algebraic closure of 3F , for a 
ir ir 

solution ? = U1 , ? 2 , T 3) e (IF*)3 of (8.12). Lifting, we obtain 
= (e< 1>,^ 1 ,,e< 1 )> e ( o ! ) 3 . a solution mod IT of (8.11). 

Assume now that £(i) = (£1(i),£2(i),£3(i)) E (0*oo)3 has been 

constructed for i A so that (8.11) holds mod TT1 and so that 

£j(i) 
E (i+D 
j 

(mod ir1) 

for j = 1,2,3 and i < £ We construct 5 U+l) as follows. Let 

£ U+l) 
j 

c (A) 
j 

TT Wj 

( j = 1,2,3), let 

v . y = e (v,y) V , y 

where 9(1,y) = 1, for y = 1,2,3 ; 9(2,1) = TT n ( 1 )~ 5 ; 9(2,y) =TT n ( 1 )"' 1 , 

for y = 2,3 ; 9(3,y) = ^ ( 2 5 - 3 for y = 1,3 ; 9(3,2) = ^(2)+! 

Finally, let 

Bj 1  
A u < t ) T 

3 

k=l 

£(l) 
k 5, .) € 0 

for j = 1,2,3. Then we obtain the following equations for Wj : 

3 

k=l 
wk<*kj = wT + ß j 

(j = 1,2,3). This system may be solved for w.. by reducing (mod TT) and 
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solving for (w l fw 2,w 3) e (F ) 3 (just as we solved (8.12)), then 

lifting the solution to 0œ . We then obtain £ by taking £j= lim 
l->oo 

F U ) 

Having found ç as desired, we note ç = tt n ( 1 ) U = ( C 1 , C 2 , C 3 ) ) e Ö 3 

satisfies (8.1c0) with ord u1 = 3 
p-1 

ord C 2 = 0 , ord c 3 = l/(p-l). 

Note that if we set 

A = 

Çl 

O 

0 

^2 

1 

0 

^3 

0 

1 

and 

S> = A.A ( 1 ).A" T , 

then <2> has the block form 

Sb = 

' n 1+3 
TT 

r 

0 
D(1) 

where r = (r 2,r^)
t is a 2x1 submatrix, and Ä(l) _ r Ä(l) . 2 <, u<3 is 

a 2x2 submatrix. Furthermore 

(8.13) 

F2 - A ( 1 ) r T  
A2,l çl ord r 2 

1 
p-1 

(tì(2)-3) ; 

r3 -
A ( 1 ) C " T  
A3,l çl ord r > l 1 

p-1 

2,2 - A U ) C " T C T + A U )  
A2,1 Ç1 Ç2 A2,2 ' ord ^2,2 

1 
P-1 

(n(2)-3) ; 

2,3 A2,l çl ç3 A2,3 1 ord 0 ( 1> = 
2,3 

1 
p-1 

[n(2)-2) ; 

3,2 A3,l çl Ç2 A3,2 ord ^3,2 > 1 -
1 

p-1 

D(1) 
3.3 

-A ( 1 )C"" TC T + A U )  

A3,1 Ç1 Ç3 A3,3 ' ord D(1) 
3.3> 1 

We construct a matrix Z of the form 

Z = 
1 O 

0 I 

where 0 = ( ö 2

, 0 3 ^ t is a 2x1 submatrix, I is the 2 2 identity, and Z 
satisfies 
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z a z T = 

„R,(l)+3 

o 

o 

D(1) 

This is equivalent to solving the system 

(8.14) 

n n(l)+3 , 
2 + F2 " D2,2(1)°2 " « I H S3 = ° 

e 3 „n(i)+3 + , 3 
- Ä>d) 9 T _ ^(1) T = 0  

3,2 U2 3,3 U3 U 

We write r 2 = ^ ( 2 ) - S f r 3 . . n ( 3 , - S f . ^ ( 2 » - 3 d 2 ( 2 , 

^(1) _ 1Tn(2)-2 
2,3 Q2,3' ^ 2 = * n ( 3 ) - S , 2 ' 

„(1) _ ,1(3), 
*3,3 - * d3,3 

and 

Y2' Y3' d2,2' d2,3' d3,2 and d3,3 belon9 to 0. and V2'
 d2,2' and d2,3 

are, in f ac t, units. For p > 11, p = 2 (mod 3), n(2)-2>n(l)+3 and 

n ( 3 ) - 2 > n ( D + 3 , so (8.14) reduces to the following system 

(8.15) 

n , n(l)-5v n(l)-5, nT n(l)-4-. nT _ 
2 Y 2 ~ i r d2,2°2 " * d2,3 03 " 0 

n . n<2)-4 n(2)-4 , nT _ n (2)-3. nx _ _ 
3 Y 3 _ 7 T d3,2 03 17 d3,3°3 " ° 

This system can be solved for 0 2 and © 3 by a similar argument to that 

used for the solution of (8.11). 

We can now again apply the result of [ 7, § 2 ] to obtain 
2 

a = (a 2,a 3) G 0m , with c?2 a unit, divisible by TT , satisfying 

(8.16) 
o D(1) _ n(2)-3 T 

— TT <3 . 

Just as before this enables us to define a 2x2 matrix £ e GL(2,0ot) 

satisfying 

5 ® ( 1 ) r T = d i a g U ^ 2 * - 3 , ^ ) 

where the right-side denotes a 2x2 diagonal matrix with diagonal 

entries indicated. By the well-known functional relation, it follows 

that y = n(3). 

In case (ii) , i.e. p=ll, the above argument is modified as 
2 'v* % o» 

follows. We can find £ = U ^ ^ , ^ ) , ^ = TT £ 2 = £ 2 , £ 3 = * ? 3 
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with 
£=(£1,£2,£3) 

having unit co-ordinates in ö w satisfying 

(8.17) K A ( 1 ) = TT5 e . 

Then letting 

A= 

£1 

о 
о 

«2 
1 
o 

^3 
o 
1 

and setting 
é= a a ( 1 ) r T , 

yields «0 in the block form 

A 
2> = 

5 

r 

O 

O(1) 

where 
A . A A v t is a 2x1 submatrix and 5 0 lÄ,v,yj2.<v,yN<3 

is 

a 2x2 submatrix. Furthermore 

(8.18) 

r2 = A i * - ' -
ord r 2 = i ; 

A _ (1) -T 
r3 " A3,1 C1 ' ord r 3 > 1 ; 

^2,2 A2,l^l ^2 A2,2 ' ord V2,2 
_1 
2 

¿(1) = _ (1) - T T (!) 
2,3 A2,l^l ^3 + A2,3 7 ord ~U) _ 3 

^2,3 " 5 

^3,2 ~ A3!l Cl T^2 + A3^2 ord > i • 
^3,2 ^ 1 ' 

= - A ( 1 ) r T C T + A U ) 

°*3,3 A3,l^l C3 + A3,3 ' ord £ { 1 ) = i 
^3,3 1 • 

We can now find e = O 1 , o 2 ) i : G such that if 

A 
z = 

1 o 
A 
0 I 

with I the 2x2 identity matrix, then 
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z 2> z T = 
5 

TT 
O 

o 
-(1) 

The rest of the argument goes through unaltered. This completes the 
proof of (8.9). 

Remark : Let h(t) = a ± t + a _ 1 t " 1 + a _ 2 t ~ 2 + a _ 3 t ~ 3 with a ± e HFg , 
a
1 / a _ 3 e . By the method of § 7, we can conclude that for p> 11, 
p = 2 (mod 3), the Newton polygon of L(h,t) and L(f,t) (given in 
theorem (8.9 (i))) coincide. 
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