H. W. Alt
 E. Di Benedetto
 Flow of oil and water through porous media

Astérisque, tome 118 (1984), p. 89-108
http://www.numdam.org/item?id=AST_1984__118__89_0
© Société mathématique de France, 1984, tous droits réservés.
L'accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

FLOW OF OIL AND WATER THROUGH POROUS MEDIA

by H.W. ALT (Universität Bonn) and E.DI BENEDETTO (Indiana University)

We shall prove existence and regularity for the flow of two immiscible fluids through a porous medium. It is described by the following system of degenerate elliptic parabolic equations (see [2], [3]).

$$
\begin{equation*}
\left.\partial_{t} s_{i}-\nabla \cdot\left(k_{i}\left(\nabla p_{i}+e_{i}\right)\right)=0 \quad \text { in } \quad \Omega_{T}:=\Omega \mathrm{x}\right] 0, \mathrm{~T}[\tag{1}
\end{equation*}
$$

for $i=1,2$, with side condition

$$
s_{1}+s_{2}=1
$$

The porous body Ω is a bounded domain in \mathbb{R}^{N} with Lipschitz boundary. s_{i} is the fluid content of the $i-t h$ fluid depending on $p_{1}-p_{2}, k_{i}$ its conductivity depending on s_{i}. The hydrostatic pressure is denoted by p_{i} and e_{i} is the gravity. s_{i} and k_{i} are continuous functions as in the Figure, s_{i} strictly monotone in $\left[p_{\min } \prime p_{\max }\right]$, where $-\infty \leq p_{\min }<0<p_{\max } \leq \infty$, and k_{i} positive in]0,1]. Therefore we have the additional side condition

$$
\mathrm{p}_{\min } \leq \mathrm{p}_{1}-\mathrm{p}_{2} \leq \mathrm{p}_{\max }
$$

As initial condition we pose

$$
s_{i}\left(p_{i}-p_{2}\right)(x, 0)=s_{i}^{o}(x) \text { for } x \in \Omega
$$

where s_{i} are nonnegative measurable functions with $s_{1}^{0}+s_{2}^{0}=1$. We assume that $\psi\left(s_{1}^{0}\right) \in L^{1}(\Omega)$ where ψ is defined below. The boundary conditions are induced by a partition of $\partial \Omega$ into three measurable sets Γ_{1}, Γ_{2} and Γ_{0}. We consider

Neumann data

$$
\left.k_{i}\left(\nabla p_{i}+e_{i}\right) \cdot v=0 \text { on } \Gamma_{o} \times\right] 0, T[
$$

and mixed Dirichlet and overflow conditions

$$
\begin{aligned}
& \mathrm{p}_{1}=\mathrm{p}_{1}^{\mathrm{D}} \\
& \mathrm{k}_{2}\left(\nabla \mathrm{p}_{2}+\mathrm{e}_{2}\right) \cdot v=0 \text { if } \mathrm{p}_{1}-\mathrm{p}_{2}>\mathrm{p}_{\min } \\
& \mathrm{k}_{2}\left(\nabla \mathrm{p}_{2}+\mathrm{e}_{2}\right) \cdot v=0 \text { if } \mathrm{p}_{1}-\mathrm{p}_{2}=\mathrm{p}_{\min }
\end{aligned}
$$

on $\left.\Gamma_{1} \times\right] 0, \mathrm{~T}\left[\right.$ and similar conditions on $\left.\Gamma_{2} \times\right] 0, \mathrm{~T}[$.
Here

$$
p_{i}^{D} \in L^{\infty}\left(\Omega_{T}\right) \cap L^{2}\left(0, T ; H^{1,2}(\Omega)\right)
$$

with

$$
\mathrm{p}_{\min } \leq \mathrm{p}_{1}^{\mathrm{D}}-\mathrm{p}_{2}^{\mathrm{D}} \leq \mathrm{p}_{\max }
$$

and

$$
\partial_{t} p_{i}^{D} \in L^{1}\left(0, T ; L^{2}(\Omega)\right) \cap L^{r}\left(\Omega_{T}\right) \text { for some } r>1 .
$$

Common Dirichlet conditions for p_{1} and p_{2} are easier to handle.
Multiplying (1) by $p_{i}-p_{i}^{D}$ we see that

$$
\begin{equation*}
\sum_{i=1,2} \int_{0}^{T} \int_{\Omega} k_{i}\left(s_{i}\left(p_{i}-p_{2}\right)\right)\left|\nabla p_{i}\right|^{2} \tag{2}
\end{equation*}
$$

determines the natural topology of the problem. Therefore since k_{i} degenerates we cannot work in function spaces for p_{i}. But if we define

$$
\begin{aligned}
& u_{1}:=\Phi_{1}\left(p_{1}, p_{2}\right):=p_{2}+\int_{0}^{p_{1}-p_{2}} \sqrt{\frac{k_{1}\left(s_{1}(\min (\xi, 0))\right)}{k_{1}\left(s_{1}(0)\right)}} d \xi, \\
& u_{2}:=\Phi_{2}\left(p_{1}, p_{2}\right):=p_{1}-\int_{0}^{p_{1}-p_{2}} \sqrt{\frac{k_{2}\left(s_{2}(\max (\xi, 0))\right)}{k_{2}\left(s_{2}(0)\right)}} d \xi,
\end{aligned}
$$

then (2) is equivalent to the L^{2}-Norm of $\left(\nabla u_{1}, \nabla u_{2}\right)$. Also

$$
\left[\begin{array}{cc}
\mathrm{k}_{1}\left(\mathrm{~s}_{1}\right) & \nabla \mathrm{p}_{1} \\
\mathrm{k}_{2}\left(\mathrm{~s}_{2}\right) & \nabla \mathrm{p}_{2}
\end{array}\right]=\mathrm{k}\left(\mathrm{~s}_{1}\right)\left[\begin{array}{l}
\nabla \mathrm{u}_{1} \\
\nabla \mathrm{u}_{2}
\end{array}\right],
$$

where in the set $\left\{p_{1} \geq p_{2}\right\}$ the matrix K is given by

$$
K\left(s_{1}\right)=\left[\begin{array}{ll}
k_{1}\left(s_{1}\right) & 0 \\
k_{2}\left(s_{2}\right)-\sqrt{k_{2}\left(s_{2}(0)\right) k_{2}\left(s_{2}\right)} & \sqrt{k_{2}\left(s_{2}(0) k_{2}\left(s_{2}\right)\right.}
\end{array}\right]
$$

and similarly in $\left\{p_{1} \leq p_{2}\right\}$. Introducing the notation $K:=\left\{\left(v_{1}, v_{2}\right) \in L^{2}\left(0, T ; H^{1,2}(\Omega)\right) ; \quad v_{1}=p_{1}^{D}\right.$ and $v_{1}-v_{2} \geq p_{\min }$ on $\left.\Gamma_{1} \times\right] 0, T[$,

$$
\left.\mathrm{v}_{2}=\mathrm{p}_{2}^{\mathrm{D}} \text { and } \mathrm{v}_{1}-\mathrm{v}_{2} \leq \mathrm{p}_{\max } \text { on } \Gamma_{2} \times\right] 0, \mathrm{~T}[\}
$$

we can formulate the properties of a weak solution $\left(p_{1}, p_{2}\right)$ as follows. $p_{i}: \bar{\Omega} \rightarrow \mathbb{R}$ with $p_{\min } \leq p_{1}-p_{2} \leq p_{\max }$ and the transformation $\left(u_{1}, u_{2}\right)$ obtained by (3) (in $\left.\bar{\Omega}\right)$ is of class $L^{2}\left(0, T ; H^{1,2}(\Omega)\right)$. Furthermore for $\left(v_{1}, v_{2}\right) \in K$ with $\partial_{t} v_{i} \in L^{1}\left(\Omega_{T}\right)$ the following inequality holds for almost all t, where $s_{i}=s_{i}\left(p_{1}-p_{2}\right)$:

$$
\int_{\Omega}\left(\psi\left(s_{1}(t)\right)-\psi\left(s_{1}^{o}\right)\right)-\int_{\Omega}\left(s_{1}(t)\left(v_{1}-v_{2}\right)(t)-s_{1}^{o}\left(v_{1}-v_{2}\right)(0)\right)+\int_{0}^{t} \int_{\Omega} s_{1} \partial_{t}\left(v_{1}-v_{2}\right)+
$$

$$
\begin{equation*}
+\Sigma_{i} \int_{0}^{t} \int_{\Omega}\left(\sum_{j} k_{i j}\left(s_{i}\right) \nabla u_{j}+k_{i}\left(s_{i}\right) e_{i}\right) \cdot\left(\frac{1}{k_{i}\left(s_{i}\right)} \sum_{j} k_{i j}\left(s_{i}\right) \nabla u_{j}-\nabla v_{i}\right) \leq 0 . \tag{4}
\end{equation*}
$$

Here by convention

$$
k_{i j}(0)=0 \quad \text { and } \quad \frac{k_{i j}}{\sqrt{k_{i}}}(0)=0,
$$

and the convex function ψ is defined by

$$
\psi\left(s_{1}(z)\right):=\int_{0}^{z}\left(s_{1}(z)-s_{1}(\xi)\right) d \xi
$$

Hence formally $\partial_{t} \psi\left(s_{1}\left(p_{1}-p_{2}\right)\right)=\left(p_{1}-p_{2}\right) \partial_{t} s_{1}\left(p_{1}-p_{2}\right)$, therefore the variational inequality (4) formally is equivalent to the above stated initial boundary value problem. We prove

1. Existence Theorem. Suppose that $\mathfrak{H}^{\mathrm{N}-1}\left(\Gamma_{1}\right)>0, \mathrm{p}_{\min }>-\infty$, and $u_{\text {max }}:=-\Phi_{2}\left(0,-p_{\text {max }}\right)<\infty$, or that $\mathfrak{H}^{N-1}\left(\Gamma_{2}\right)>0, p_{\max }<\infty$, and $u_{\min }:=\Phi_{1}\left(p_{\min }, 0\right)>-\infty$. Then there exists a weak solution.

Proof. We approximate the conductivity k_{i} by positive functions

$$
k_{\varepsilon i}:=\max \left(\varepsilon^{2}, k_{i}\right)
$$

and the water content by adding a penalizing term

$$
s_{\varepsilon 1}(z):=s_{1}(z)+\varepsilon z, s_{\varepsilon 2}(z):=s_{2}(z)-\varepsilon z \text {. }
$$

Furthermore we approximate the time derivative ∂_{t} by backward difference quotients ∂_{t}^{-h}. Thus we start with solutions $\left(p_{h \varepsilon 1}, p_{h \varepsilon 2}\right) \in K_{h}$ of $\left(p_{h \varepsilon}:=p_{h \varepsilon 1}-\right.$ - $p_{h \varepsilon 2}$)
(5) $\sum_{i} \int_{\Omega}\left(\partial_{t}^{-h} s_{\varepsilon i}\left(p_{h \varepsilon}\right)\left(p_{h \varepsilon i}-v_{i}\right)+\nabla\left(p_{h \varepsilon i}-v_{i}\right) k_{\varepsilon i}\left(s_{i}\left(p_{h \varepsilon}\right)\right)\left(\nabla p_{h \varepsilon i}+e_{i}\right)\right) \leq 0$ for all times and for every $\left(v_{1}, v_{2}\right) \in K_{h}$. Here K_{h} is defined as K with p_{i}^{D} replaced by

$$
p_{h i}^{D}(t):=f_{(j-1) h}^{j h} p_{i}^{D}(\tau) d \tau \text { for }(j-1) h<t<j h
$$

The initial condition is

$$
s_{\varepsilon i}\left(p_{h \varepsilon}\right)(t)=s_{i}^{0} \text { for }-h<t<0
$$

The solution $p_{h \varepsilon i}$ of these inductively defined elliptic problems exists since $\mathbb{H}^{N-1}\left(\Gamma_{1} \cup \Gamma_{2}\right)>0$. Setting $v_{i}=p_{h i}^{D}$ we obtain for the parabolic part since $s_{\varepsilon i}$ is monotone

$$
\begin{aligned}
& \int_{0}^{t} \int_{\Omega} \partial_{t}^{-h} s_{\varepsilon i}\left(p_{h \varepsilon}\right)\left(p_{h \varepsilon}-p_{h}^{D}\right) \geq f_{t-h}^{t} \int_{\Omega}\left(\int_{0}^{p_{h \varepsilon}}\left(s_{\varepsilon i}\left(p_{h \varepsilon}\right)-s_{\varepsilon 1}(\xi)\right) d \xi-s_{\varepsilon 1}\left(p_{h \varepsilon}\right) p_{h}^{D}\right)+ \\
& \quad+\int_{0}^{t-h} \int_{\Omega} s_{\varepsilon 1}\left(p_{h \varepsilon}\right) \partial_{t}^{h} p_{h}^{D}-c \geq c \varepsilon f_{t-h}^{t} \int_{\Omega}\left|p_{h \varepsilon}\right|^{2}-\varepsilon \int_{0}^{t} \int_{\Omega}\left|p_{h \varepsilon}\right|\left|\partial_{t}^{h} p_{h}^{D}\right| .
\end{aligned}
$$

Together with the elliptic part we obtain the a priori estimate

$$
\varepsilon \sup _{0 \leq t \leq T} \int_{\Omega}\left|p_{h \varepsilon}\right|^{2}+\sum_{i} \int_{0}^{T} \int_{\Omega} k_{i}\left(s_{i}\left(p_{h \varepsilon}\right)\right)\left|\nabla p_{h \varepsilon i}\right|^{2} \leq c
$$

Therefore if $u_{h \varepsilon i}$ are defined as in (3) with respect to $k_{\varepsilon i}$ we can conclude that $\nabla u_{h \varepsilon i}$ are bounded in $L^{2}\left(\Omega_{T}\right)$. Now in the set $\left\{p_{h \varepsilon 1} \geq p_{h \varepsilon 2}\right\}$ by definition of $k_{\varepsilon i}$ (write $u_{h \varepsilon}:=u_{h \varepsilon 1}-u_{h \varepsilon 2}$)

$$
0 \leq u_{h \varepsilon} \leq u_{\max }+c \varepsilon\left|p_{h \varepsilon}\right|
$$

Thus if $u_{\text {max }}<\infty$ by the a priori estimate

$$
\max \left(u_{h \varepsilon}-u_{\max }, 0\right) \rightarrow 0 \text { in } L^{\infty}\left(0, T ; L^{2}(\Omega)\right)
$$

Similarly if $u_{\text {min }}>-\infty$

$$
\min \left(u_{h \varepsilon}-u_{\min }, 0\right) \rightarrow 0 \quad \text { in } L^{\infty}\left(0, T ; L^{2}(\Omega)\right)
$$

Together with the boundary condition and the assumptions made this implies that $u_{h \varepsilon i}$ are bounded in $L^{2}\left(0, T ; H^{1,2}(\Omega)\right)$. Hence for a subsequence $h \rightarrow 0, \varepsilon \rightarrow 0$

$$
u_{h \varepsilon i} \rightarrow u_{i} \text { weakly in } L^{2}\left(0, T ; H^{1,2}(\Omega)\right)
$$

and

$$
u_{\min } \leq u_{1}-u_{2} \leq u_{\max }
$$

Consequently p_{1} and p_{2} are well defined by (3).
The next step is to prove compactness of $s_{\varepsilon i}\left(p_{h \varepsilon}\right)$. We multiply the equation in the time interval $](j-m) h, j h[$ by the time independent function

$$
v_{i}=p_{h \varepsilon i}+\eta^{2}\left(u_{h \varepsilon i}(t)-u_{h \varepsilon i}(t-m h)\right)
$$

where $\eta \in C_{0}^{\infty}(\Omega), j \geq m$, and $(j-1) h<t<j h$. Using the a priori estimate we obtain

$$
\int_{m h}^{T} \int_{\Omega} \eta^{2}\left(s_{\varepsilon 1}\left(p_{h \varepsilon}(t)\right)-s_{\varepsilon 1}\left(p_{h \varepsilon}(t-m h)\right)\left(u_{h \varepsilon}(t)-u_{h \varepsilon}(t-m h)\right) \leq c m h\right.
$$

Since $p_{h \varepsilon}$ is a monotone function of $u_{h \varepsilon}$ and since $\varepsilon\left|p_{h \varepsilon}\right| \rightarrow 0$ in $L^{1}\left(\Omega_{T}\right)$ it follows as in [1] that $s_{\varepsilon 1}\left(p_{h \varepsilon}\right)$ is relative compact in $L^{1}\left(\Omega_{T}\right)$, hence for a subsequence convergent to $s_{1}\left(p_{1}-p_{2}\right)$ in $L^{1}\left(\Omega_{T}\right)$ and almost everywhere.

Then also $u_{h \varepsilon 1}-u_{h \varepsilon 2} \rightarrow u_{1}-u_{2}$ almost everywhere in Ω_{T}. Moreover the boundary condition on $\Gamma_{i}, i=1,2$, is of the form

$$
u_{h \varepsilon 1}+u_{h \varepsilon 2}=\gamma_{\varepsilon}\left(u_{h \varepsilon 1}-u_{h \varepsilon 2}\right)
$$

where $\gamma_{\varepsilon i}$ are continuous functions converging uniformly to some γ. This implies that

$$
u_{1}+u_{2}=\gamma\left(u_{1}-u_{2}\right)
$$

that is, $\left(u_{1}, u_{2}\right)$ is of class K.
Finally we have to show that $\left(u_{1}, u_{2}\right)$ satisfies the variational inequality. For this write (5) (omitting unessential positive terms on the left) in the form

$$
\begin{aligned}
& \frac{1}{h} \int_{t-h}^{t} \int_{\Omega}\left(\psi\left(s_{1}\left(p_{h \varepsilon}\right)\right)-\psi\left(s_{1}^{o}\right)\right)+\sum_{i} \int_{0}^{t} \int_{\Omega}\left(k_{\varepsilon i}\left(s_{i}\left(p_{h \varepsilon}\right)\right)\left|\nabla p_{h \varepsilon i}\right|^{2}+k_{\varepsilon i_{i}}\left(s_{i}\left(p_{h \varepsilon}\right)\right) \nabla p_{h \varepsilon i} \cdot e_{i}\right) \\
& \quad \leq \frac{1}{h} \int_{t-h}^{t} \int_{\Omega} s_{\varepsilon 1}\left(p_{h \varepsilon}\right) v_{h}-\frac{1}{h} \int_{0}^{h} \int_{\Omega} s_{1}^{o} v_{h}-\int_{0}^{t-h} \int_{\Omega} s_{\varepsilon 1}\left(p_{h \varepsilon}\right) \partial_{t}^{h} v_{h}+ \\
& \quad+\sum_{i} \int_{0}^{t} \int_{\Omega}\left(k_{\varepsilon i}\left(s_{i}\left(p_{h \varepsilon}\right)\right) \nabla v_{h i} \cdot e_{i}+k_{\varepsilon i}\left(s_{i}\left(p_{h \varepsilon}\right)\right) \nabla p_{h \varepsilon i} \cdot \nabla v_{h i}\right) .
\end{aligned}
$$

Here $\left(v_{h 1}, v_{h 2}\right) \in K_{h}$ is a suitable approximation of a given function $\left(v_{1}, v_{2}\right)$ with the properties as in (4). Since $s_{1}\left(p_{h \varepsilon}\right)$ converges almost everywhere the first integral on the left and all terms on the right except the last one converge to the desired limit. Since

$$
k_{\varepsilon i}\left(s_{i}\left(p_{h \varepsilon}\right)\right) \nabla p_{h \varepsilon i}=\sum_{j} k_{\varepsilon i j}\left(s_{i}\left(p_{h \varepsilon}\right)\right) \nabla u_{h \varepsilon i}
$$

also the last term on both sides converge. The second term on the left is $\left(\varepsilon \leq \varepsilon_{0}\right)$

$$
\geq \sum_{i} \int_{0}^{t} \int_{\Omega} \frac{1}{k_{\varepsilon_{0} i}\left(s_{i}\left(p_{h \varepsilon}\right)\right)}\left|\sum_{j} k_{\varepsilon i j}\left(s_{i}\left(p_{h \varepsilon}\right)\right) \nabla u_{h \varepsilon i}\right|^{2},
$$

which in the limit $\varepsilon \rightarrow 0, h \rightarrow 0$ is

$$
\geq \Sigma_{i} \int_{0}^{t} \int_{\Omega} \frac{1}{k_{\varepsilon_{0} i}\left(s_{i}\left(p_{1}-p_{2}\right)\right)}\left|\sum_{j} k_{i j}\left(s_{i}\left(p_{1}-p_{2}\right)\right) \nabla u_{i}\right|^{2}
$$

Then let $\varepsilon_{0} \rightarrow 0$.
That weak solutions satisfy the differential equation is stated in the next Lemma.
2. Lemma. For any weak solution $\partial_{t} s_{i}\left(p_{1}-p_{2}\right) \in L^{2}\left(0, T ; \mathrm{H}^{1,2}(\Omega) *\right)$ with initial values s_{i}^{0}, that is,

$$
\begin{equation*}
\int_{0}^{T}\left\langle\partial_{t} s_{i}\left(p_{1}-p_{2}\right), \zeta\right\rangle+\int_{0}^{T} \int_{\Omega}\left(s_{i}\left(p_{1}-p_{2}\right)-s_{1}^{0}\right) \partial_{t} \zeta=0 \tag{6}
\end{equation*}
$$

for $\zeta \in C_{0}^{\infty}(\Omega \times[0, T[)$. Moreover in the above space

$$
\begin{equation*}
\partial_{t} s_{i}\left(p_{1}-p_{2}\right)-\nabla \cdot\left(\sum_{j} k_{i j}\left(s_{i}\left(p_{1}-p_{2}\right)\right) \nabla u_{j}+k_{i}\left(s_{i}\left(p_{1}-p_{2}\right)\right) e_{i}\right)=0 \tag{7}
\end{equation*}
$$

Proof. Formally this follows by setting $v_{i}=p_{i} \pm \zeta$ in (4). But since we do not know whether p_{i} is regular enough to do so, we have to approximate these functions. Choose $u_{\min }^{\rho} \searrow u_{\min }$ and $u_{\max }^{\rho}>u_{\max }$ and define

$$
u_{1,2}^{\rho}:=\frac{u_{1}+u_{2}}{2} \pm \frac{1}{2} \max \left(u_{\min }^{\rho}, \min \left(u_{\max }^{\rho}, u_{1}-u_{2}\right)\right)
$$

Then the corresponding pressures p_{i}^{ρ} belong to $L^{2}\left(0, T ; H^{1,2}(\Omega)\right)$. Similary define $p_{i}^{D \rho}$. Then

$$
w_{i}:=p_{i}^{D}+\left(p_{i}^{\rho}-p_{i}^{D \rho}\right)
$$

satisfy $p_{\min } \leq w_{1}-w_{2} \leq p_{\max }$ and the Dirichlet condition on Γ_{i}. As test function in (4) we use

$$
\mathrm{v}_{1,2}^{\tau \varepsilon}:=\frac{1}{2}\left(\mathrm{w}_{1}^{\tau \varepsilon}+\mathrm{w}_{2}^{\tau \varepsilon}\right) \pm \frac{1}{2} \max \left(\mathrm{p}_{\min }, \min \left(\mathrm{p}_{\max }, \mathrm{w}_{1}^{\tau \varepsilon}-\mathrm{w}_{2}^{\tau \varepsilon}\right)\right)+\zeta_{1,2},
$$

where

$$
w_{i}^{\tau \varepsilon}(t):=p_{i}^{D}(t)+\left(p_{i}^{\rho}-p_{i}^{D \rho}\right)(t)+
$$

$$
+\max \left(0,1-\frac{(j+1) h-\tau-t}{\varepsilon}\right)\left(\left(p_{i}^{\rho}-p_{i}^{D \rho}\right)((j+1) h-\tau)-\left(p_{1}^{\rho}-p_{1}^{D \rho}\right)(j h-\tau)\right)
$$

whenever $j h-\tau \leq t \leq(j+1) h-\tau, j=0, \ldots, j_{h}, t_{h}=j_{h} \cdot h, t_{h}-h \leq t_{o} \leq t_{h}$ for given $t_{0}<T$. In this definition $p_{i}^{D}(t):=p_{i}^{D}(0)$ and $p_{i}^{\rho}(t):=p_{i}^{o \rho}$ for $t<0$, where $p_{i}^{O \rho} \in H^{1,2}(\Omega)$ is chosen such that $p_{\min } \leq p_{1}^{O \rho}-p_{2}^{O \rho} \leq p_{\max }$ and

$$
\int_{\Omega}\left(\psi\left(s_{1}^{o}\right)-\int_{0}^{p_{1}^{o \rho}-p_{2}^{o \rho}}\left(s_{1}^{o}-s_{1}(\xi)\right) d \xi\right) \rightarrow 0 \text { as } \rho \rightarrow 0
$$

Then the ζ_{i} terms in (4) give the assertion provided we can show that for $\zeta_{i}=0$ the right side in (4) does not exceed the left in the limit $\varepsilon \rightarrow 0, \mathrm{~h} \rightarrow 0$, and $\rho \rightarrow 0$.

Let us consider the parabolic terms. For almost all τ almost everywhere in Ω we have (writing $s_{1}(t)$ for $s_{1}\left(x,\left(p_{1}-p_{2}\right)(x, t)\right)$, $v^{\tau \varepsilon}$ for $v_{1}^{\tau \varepsilon}-v_{2}^{\tau \varepsilon}$ etc.) $\int_{j h-\tau}^{(j+1) h-\tau} s_{1} \partial_{t} v^{\tau \varepsilon}=\int_{j h-\tau}^{(j+1) h-\tau} x\left(\left\{p_{\min }<w^{\tau \varepsilon}<p_{\max }\right\}\right) \cdot\left(s_{1}-s_{1}((j+1) h-\tau)\right) \partial_{t} w^{\tau \varepsilon}+$ $+s_{1}((j+1) h-\tau)\left(w^{\tau \varepsilon}((j+1) h-\tau)-w^{\tau \varepsilon}(j h-\tau)\right) \geq$ $\geq-\int_{j h-\tau}^{(j+1) h-\tau}\left|s_{1}-s_{1}((j+1) h-\tau)\right|\left|\partial_{t} p^{D}\right|-\frac{1}{\varepsilon} \int_{(j+1) h-\tau-\varepsilon}^{(j+1) h-\tau}\left|s_{1}-s_{1}((j+1) h-\tau)\right| \cdot$

- $\left|h \partial_{t}^{h}\left(p^{\rho}-p^{D \rho}\right)(j h-\tau)\right|-\left|s_{1}((j+1) h-\tau)\right| \int_{j h-\tau}^{(j+1) h-\tau}\left|\partial_{t}\left(p^{D}-p^{D \rho}\right)\right|+$

$$
+s_{1}((j+1) h-\tau)\left(p^{\rho}((j+1) h-\tau)-p^{\rho}(j h-\tau)\right) .
$$

The second term tends to zero as $\varepsilon \rightarrow 0$, hence summing over j and integrating
over Ω we obtain
(8) $\lim _{\varepsilon \rightarrow 0} \int_{0}^{t_{h}-\tau} \int_{\Omega} s_{1} \partial_{t} v^{\tau \varepsilon} \geq R_{1}+\sum_{j=0}^{j_{h}-\tau} \int_{\Omega} s_{1}((j+1) h-\tau)\left(p^{\rho}((j+1) h-\tau)-p^{\rho}(j h-\tau)\right)$. For the second term on the left of (4) we have

$$
\text { (9) }-\int_{\Omega}\left(s_{1}\left(t_{h}-\tau\right) v^{\tau \varepsilon}\left(t_{h}-\tau\right)-s_{1}^{o} \cdot v^{\tau \varepsilon}(o)\right) \geq R_{2}-\int_{\Omega}\left(s_{1}\left(t_{h}-\tau\right) p^{\rho}\left(t_{h}-\tau\right)-s_{1}^{o} \cdot p^{\rho}(o)\right)
$$

Thus the sum of the left sides in (8) and (9) is

$$
\begin{aligned}
& \geq R_{3}-\sum_{j=0}^{j_{h}-1} \int_{\Omega}\left(s_{1}((j+1) h-\tau)-s_{1}(j h-\tau)\right) p^{\rho}(j h-\tau) \geq \\
& \geq R_{3}-\int_{0}^{p^{\rho}\left(t_{h}-\tau\right)}\left(s_{1}\left(t_{h}-\tau\right)-s_{1}(\xi)\right) d \xi+\int_{\Omega} \int_{0}^{p^{o \rho}}\left(s_{1}^{\circ}-s_{1}(\xi)\right) d \xi \geq \\
& \geq R_{3}-\int_{\Omega}\left(\psi\left(s_{1}\left(t_{h}-\tau\right)\right)-\int_{0}^{p^{o \rho}}\left(s_{1}^{o}-s_{1}(\xi)\right) d \xi\right)
\end{aligned}
$$

Integrating over τ from 0 to h and dividing by h the last integral
converges to the first term in (4). The remander R_{3} tends to zero with h and ρ after perferming the mean over τ. In the elliptic term we first can go to the limit with ε. After that it is not hard to complete the proof.
3. Remark. In order to show that the weak solution p_{1}, p_{2} satisfies the original problem, we have to show that $s_{i}\left(p_{1}-p_{2}\right)$ are continuous in space and time. This would imply that ∇p_{i} is well defined in the open set $\left\{k_{i}\left(s_{i}\left(p_{1}-p_{2}\right)\right)>0\right\}$.

We need
4. Assumptions. s_{i} is continuous differentiable with respect to the z variable in $\Omega \times\left\{p_{\min }<z<p_{\max }\right\}$ and

$$
\begin{equation*}
\partial_{z} s_{1}>0 \tag{10}
\end{equation*}
$$

$$
\begin{equation*}
\frac{k_{1}\left(s_{1}(z)\right)}{\partial_{z_{1}}(z)} \geq c(\sigma)>0 \quad \text { for } z \leq p_{\max }^{\rho}>p_{\max } \tag{11}
\end{equation*}
$$

H.W. ALT, E. DI BENEDETTO

(12)

$$
\left|\frac{k_{i}\left(s_{i}(z)\right)}{\partial_{z} s_{i}(z)}\right| \leq C \quad \text { for } \quad z \leq 0(\geq 0) \quad \text { if } \quad i=1(2),
$$

$$
\begin{equation*}
\left|k_{1}\left(s_{1}(z)\right)\left(\partial_{z} k_{2}\right)\left(s_{2}(z)\right)+k_{2}\left(s_{2}(z)\right)\left(\partial_{z_{1}} k_{1}\right)\left(s_{1}(z)\right)\right| \leq C \tag{13}
\end{equation*}
$$

Let us consider the transformation (see [8], [13])

$$
v=s_{1} \text {, and } u=p_{2}+\int_{0}^{p_{1}-p_{2}} \frac{k_{1}\left(s_{1}(\xi)\right)}{k_{1}\left(s_{1}(\xi)+k_{2}\left(s_{2}(\xi)\right)\right.} d \xi
$$

Then formally v and u locally in Ω are solutions of the system

$$
\begin{align*}
& 0=\nabla \cdot(k(v) \nabla u+e(v)) \quad \text { (define } \quad \vec{v}:=-(k(v) \nabla u+e(v))), \tag{14}\\
& \partial_{t} v=\nabla \cdot(a(v) \nabla v+b(v)+d(v) \vec{v}),
\end{align*}
$$

where

$$
\begin{aligned}
& k(z)=k_{1}(z)+k_{2}(1-z), \\
& e(z)=k_{1}(z) e_{1}+k_{2}(1-z) e_{2}, \\
& a(z)=\frac{k_{1}(z) k_{2}(1-z)}{k(z)} \partial_{t} s_{1}^{-1}(z), \\
& b(z)=\frac{k_{1}(z) k_{2}(1-z)}{k(z)}\left(e_{1}-e_{2}\right), \\
& d(z)=\frac{k_{2}(1-z)}{k(z)} \text { or }=-\frac{k_{1}(z)}{k(z)},
\end{aligned}
$$

The assumptions made imply that these coefficients are bounded and

$$
\begin{aligned}
& c \leq k \leq c, \quad\left|\partial_{z} a\right| \leq c, \\
& \phi_{0}(\omega):=\inf _{z \leq 1-\omega / 4} a(z)>0 \quad \text { for every } \omega>0 .
\end{aligned}
$$

Then u satisfies an elliptic equation and v a degenerate parabolic equation, coercive near 0 .
5. Remark. u and v are solutions of (14) and (15) with ∇v replaced by $\lim \nabla \min (v, 1-\rho)$ and ∇u replaced by $\lim \nabla u^{\rho}$, where $\min (v, 1-\rho)$ and u^{ρ}
 is the transformation of u_{i}^{p} according to (3), and

$$
u_{i}^{\rho}:=\frac{u_{1}+u_{2}}{2} \pm \frac{1}{2} \max \left(u_{\min }^{\rho}, \min \left(u_{\max }^{\rho}, u_{1}-u_{2}\right)\right)
$$

with $u_{\min }^{\rho} \searrow u_{\text {min }}$ and $u_{\max }^{\rho}>u_{\text {max }}$.
Next we show
6. Lemma. In addition to the assumptions in theorem 1 suppose that if $H^{N-1}\left(\Gamma_{1}\right)>0$ then $p_{\min }>-\infty$ and

$$
\int_{0}^{p_{\max }} \frac{k_{2}\left(s_{2}(\xi)\right)}{k_{1}\left(s_{1}(\xi)\right)+k_{2}\left(s_{2}(\xi)\right)} d \xi \leq c
$$

(similar if $H^{\mathrm{N}-1}\left(\Gamma_{2}\right)>0$). Then u is locally bounded in Ω_{T}.
Proof. The assumptions imply that the functions u^{ρ} defined as above are uniformly bounded on $\Gamma_{1} \cup \Gamma_{2}$ by some c. Then

$$
\phi\left(u^{\rho}\right):=\min \left(u^{\rho}+c, \max \left(u^{\rho}-c, 0\right)\right)
$$

can be used as test function for the equation (14). This gives that

$$
\lim _{\rho \rightarrow 0}\left\|\phi\left(u^{\rho}(t)\right)\right\|_{H}{ }^{1,2}(\Omega)
$$

is bounded in t. Then multiplying (14) by $\eta^{2} u^{\rho}$ with $\eta \in c_{o}^{\infty}(\Omega)$ we obtain that

$$
\lim _{\rho \rightarrow 0}\left\|u^{\rho}(t)\right\|_{H_{10 c}^{1,2}(\Omega)}
$$

is bounded in t. Therefore u^{ρ} has a weak limit, which is a bounded function satisfying (14).

Now we are able to prove
7. Regularity theorem. Suppose that the assumptions in 1. and 4. hold and that u is bounded. Then $s_{i}\left(p_{1}-p_{2}\right)$ are continuous in Ω_{T}, and the modulus of
continuity can be estimated.

Proof. This follows by an iterative procedure from the two propositions below, and they are proved using the De Giorgi techniques, where the special features here are the degeneracy of the coefficient a in the parabolic equation for v and the coupling to the elliptic equation for u.
8. Notation. Let $\left(x_{0}, t_{0}\right) \in \Omega_{T}$. For $R>0, \alpha>0$, and $0<\sigma_{1}, \sigma_{2}<1$ we let

$$
\left.Q_{R}^{\alpha}\left(\sigma_{1}, \sigma_{2}\right):=B_{\left(1-\sigma_{1}\right) R}\left(x_{0}\right) \times\right]_{0}-\left(1-\sigma_{2}\right) \alpha R^{2}, t_{0}[
$$

and $Q_{R}^{\alpha}=Q_{R}^{\alpha}(0,0), Q_{R}=Q_{R}^{1}$. We define

$$
\|w\|_{Q_{R}}^{2}:=\operatorname{t}_{t_{0}-R^{2}<t<t_{0}}^{\operatorname{ess} \sup _{B_{R}\left(x_{0}\right)}}|w|^{2}+\int_{Q_{R}}|\nabla w|^{2},
$$

and similar for $Q_{R}^{\alpha}\left(\sigma_{1}, \sigma_{2}\right)$. In the following $0<R \leq R_{0}$ with $Q_{R_{0}} \subset \subset \Omega_{T}$ and μ^{+}, μ^{-}are any numbers with

$$
\begin{gathered}
\text { ess sup } v \leq \mu^{+} \leq 1, \quad \text { ess inf } v \geq \mu^{-} \geq 0, \\
Q_{2 R}
\end{gathered}
$$

hence ess osc $v \leq \mu^{+}-\mu^{-} \leq 1$. Furthermore ω is any positive number satisfying $\mu^{+}-\mu^{-} \leq \omega \leq 2\left(\mu^{+}-\mu^{-}\right)$.
9. Proposition. There is a small constant such that if

$$
\text { meas }\left(Q_{R} \cap\left\{v>\mu^{+}-\frac{\omega}{2}\right\}\right) \leq c_{0} \phi_{1}(\omega) \text { meas }\left(Q_{R}\right),
$$

then

$$
\begin{aligned}
& \text { ess osc } v \leq \frac{5}{8} \omega \\
& Q_{R / 2}
\end{aligned}
$$

Here $\phi_{1}(\omega):=\left(\omega \phi_{0}(\omega)\right)^{\mathrm{N}+2}$.
Proof. Let $v_{\omega}:=\min \left(v, \mu^{+}-\frac{\omega}{4}\right)$ and $\mu^{+}-\frac{\omega}{2} \leq k \leq \mu^{+}-\frac{\omega}{4}$ and multiply (15) by $\left(v_{\omega}-k\right) \eta^{2}$ in the time interval $] t_{0}-R^{2}, t\left[\right.$ with $t<t_{0}$. Here η is a cut off
function with $\eta=1$ in $Q_{R}\left(\sigma_{1}, \sigma_{2}\right), \eta=0$ on the parabolic boundary of Q_{R}, and

$$
\begin{aligned}
& |\nabla \eta| \leq C\left(\sigma_{1} R\right)^{-1}, \quad|\nabla \eta| \leq C\left(\sigma_{1} R\right)^{-2} \\
& 0 \leq \partial_{t} \eta \leq C\left(\sigma_{2} R^{2}\right)^{-1}
\end{aligned}
$$

We obtain

$$
\begin{aligned}
& \int_{B_{R}} \eta(t)^{2} \Phi(v(t))+\int_{t_{0}-R^{2}}^{t} \int_{B_{R}} a(v) \eta^{2}\left|\nabla\left(v_{\omega}-k\right)^{+}\right|^{2}=\int_{t_{0}-R^{2}}^{t} \int_{B_{R}}\left(\Phi(v) \partial_{t} \eta^{2}-\right. \\
& \left.\quad-a(v)\left(v_{\omega}-k\right)^{+} \nabla v \nabla \eta^{2}-(b(v)+d(v) \vec{v}) \nabla\left(\left(v_{\omega}-k\right)^{+} \eta^{2}\right)\right),
\end{aligned}
$$

where

$$
\Phi(v)=\frac{1}{2}\left|\left(v_{\omega}-k\right)^{+}\right|^{2}+\left(\mu^{+}-\frac{\omega}{4}-k\right)\left(v-\left(\mu^{+}-\frac{\omega}{4}\right)\right)^{+}
$$

Since $a(v) \geq \phi_{0}(\omega)$ in $\left\{\left(v_{\omega}-k\right)^{+} \neq 0\right\}$ and

$$
a(v)\left(v_{\omega}-k\right)^{+} \nabla v=\left(v_{\omega}-k\right)^{+} \nabla\left(\int_{0}^{v} a(\xi) d \xi\right)-\int_{0}^{v} a(\xi) d \xi \nabla\left(v_{\omega}-k\right)^{+}
$$

we derive using the various properties of the coefficients

$$
\begin{aligned}
& c \int_{B_{R}} \eta(t)^{2}\left|\left(v_{\omega}(t)-k\right)^{+}\right|^{2}+\frac{1}{2} \phi_{0}(\omega) \int_{t_{0}-R^{2}}^{t} \int_{B_{R}} \eta^{2}\left|\nabla\left(v_{\omega}-k\right)^{+}\right|^{2} \leq \\
& \quad \leq c\left(\frac{\left(\sigma_{1} R\right)^{-2}}{\phi_{0}(\omega)}+\left(\sigma_{2} R^{2}\right)^{-1}\right) \int_{Q_{R}} x(\{v>k\})-\int_{t_{0}-R^{2}}^{t} \int_{B_{R}} \vec{v} d(v) \nabla\left(\left(v_{\omega}-k\right)^{+} \eta^{2}\right)
\end{aligned}
$$

Using the fact that \vec{v} is divergence free the last term equals

$$
\begin{aligned}
= & -\int_{t_{0}-R^{2}}^{t} \int_{B_{R}} \vec{v} \int_{k}^{k+\left(v_{\omega}-k\right)^{+}}(d(v)-d(\xi)) d \xi \nabla \eta^{2} \leq \\
& \leq \delta \int_{t_{0}-R^{2}}^{t} \int_{B_{R}}|\nabla u|^{2}\left(v_{\omega}-k\right)^{+2} \eta^{2}+\frac{c}{\delta} \int_{t_{0}-R^{2}}^{t} \int_{B_{R}} x(\{v>k\})|\nabla \eta|^{2} .
\end{aligned}
$$

Multiplying (14) with $u\left(\left(v_{\omega}-k\right)^{+} \eta\right)^{2}$ we see that the integral involving $|\nabla u|^{2}$ is estimated by

$$
c \int_{t_{0}-R^{2}}^{t} \int_{B_{R}}\left(\eta^{2}\left|\nabla\left(v_{\omega}-k\right)^{+}\right|^{2}+x(\{v>k\})\left(|\nabla \eta|^{2}+\eta^{2}\right)\right)
$$

Substituting this estimate we obtain

$$
\left\|\left(v_{\omega}-k\right)^{+}\right\|_{Q_{R}\left(\sigma_{1}, \sigma_{2}\right)}^{2} \leq \frac{C}{\phi_{0}(\omega)^{2}}\left(\left(\sigma_{1} R\right)^{-2}+\left(\sigma_{2} R^{2}\right)^{-1}\right) \cdot \operatorname{meas}\left(Q_{R} \cap\{v>k\}\right)
$$

Now we use this over a sequence

$$
R_{n}:=\frac{R}{2}+\frac{R}{2^{n+1}} \quad \text { and } \quad k_{n}=\mu^{+}-\frac{\omega}{2}+\frac{\omega}{8}-\frac{\omega}{2^{n+3}}
$$

Using an embedding Lemma $[10 ; \operatorname{II}(3.9)]$ we get

$$
\int_{Q_{R_{n+1}}}\left|\left(v_{\omega}-k_{n}\right)^{+}\right|^{2} \leq c \frac{2^{2 n}}{\phi_{0}(\omega)^{2} R^{2}} \operatorname{meas}\left(Q_{R_{n}} \cap\left\{v_{\omega}>k_{n}\right\}\right)^{1+\frac{2}{N+2}}
$$

But the left side controls $\left(k_{n+1}-k_{n}\right)^{2}$ meas $\left(Q_{R_{n+1}} \cap\left\{v>k_{n+1}\right\}\right)$, hence

$$
y_{n+1} \leq \frac{c 2^{4 n}}{\omega^{2} \phi_{0}(\omega)^{2}} y_{n}^{1+\frac{2}{N+2}} ; y_{n}:=\frac{1}{R^{N+2}} \operatorname{meas}\left(Q_{R_{n}} \cap\left\{v>k_{n}\right\}\right)
$$

Since by assumption y_{o} was small enough, $y_{n} \rightarrow 0$ as $n \rightarrow \infty$ by [9; 2 Lemma 4.7], which proves the Lemma.

From below we will only assume that

$$
\begin{equation*}
\operatorname{meas}\left(Q_{R} \cap\left\{v<\mu^{-}+\frac{\omega}{4}\right\}\right) \leq\left(1-c_{0} \phi_{1}(\omega)\right) \operatorname{meas}\left(Q_{R}\right) \tag{16}
\end{equation*}
$$

But since a is coercive near 0 , we can derive a similar statement to Proposition 9. First we show an uniform estimate in time.
10. Lemma. Let $k \leq \mu^{+}+\frac{\omega}{4}$ and $p \geq 3$. Then for $t_{o}-R^{2}<t_{1}<t<t_{0}$
where

$$
\psi(z):=\max \left(0, \log \frac{\omega / 4}{\omega / 4-z+\omega / 2^{p}}\right)
$$

Proof. Multiply (14) by $\left.-\left(\psi^{2}\right)^{\prime}(v-k)^{-}\right) \eta^{2}$ where η is a cut off function in space with $\eta=1$ in ${ }^{B}\left(1-\sigma_{1}\right) R^{\circ}$
We obtain

$$
\begin{aligned}
& \int_{B_{R}} \eta^{2} \psi^{2}\left((v(t)-k)^{-}\right)+\int_{t_{1}}^{t} \int_{B_{R}} a(v) \eta^{2} \Psi^{2^{\prime \prime}}\left((v-k)^{-}\right)\left|\nabla(v-k)^{-}\right|^{2}= \\
& \quad=\int_{B_{R}} \eta^{2} \psi^{2}\left(\left(v\left(t_{1}\right)-k\right)^{-}\right)+\int_{t_{1}}^{t} \int_{B_{R}} a(v) \underline{\psi}^{2^{\prime}}\left((v-k)^{-}\right) \nabla v \nabla \eta^{2}+ \\
& \quad+\int_{t_{1}}^{t} \int_{B_{R}}(b(v)+d(v) \vec{v}) \nabla\left(\Psi^{2 \prime}\left((v-k)^{-}\right) \eta^{2}\right) .
\end{aligned}
$$

Since $a(v) \geq \phi_{0}(\omega)$ in $\left\{\psi^{2 "}\left((v-k)^{-}\right) \neq 0\right\}$ and

$$
\left(\underline{\psi}^{2}\right)^{\prime \prime}=2\left(1+\underline{\psi} \psi^{\prime 2} \quad, \text { hence } \frac{\left(\underline{\psi}^{2}\right)^{2}}{\left(\underline{\psi}^{2}\right)^{\prime \prime}} \leq 2 \psi\right.
$$

we derive that

$$
\begin{aligned}
& \int_{B_{R}} \eta^{2} \psi^{2}\left((v(t)-k)^{-}\right)+c \phi_{o}(\omega) \int_{t_{1}}^{t} \int_{B_{R}} \eta^{2} \psi^{2}\left((v-k)^{-}\right)\left|\nabla(v-k)^{-}\right|^{2} \leq \int_{B_{R}} \eta^{2} \Psi\left(\left(v\left(t_{1}\right)-k\right)^{-}\right)+ \\
& \quad+\frac{c}{\phi_{O}(\omega)} \int_{t_{1}}^{t} \int_{B_{R}}\left((1+\Psi) \Psi^{\prime} \eta^{2}+\Psi|\nabla \eta|^{2}\right)+\int_{t_{1}}^{t} \int_{B_{R}} d(v) \vec{v} \nabla\left(\psi^{2}\left((v-k)^{-}\right) \eta^{2}\right)
\end{aligned}
$$

Since \vec{v} is divergence free the last term equals

$$
\begin{aligned}
& =-\int_{t_{1}}^{t} \int_{B_{R}} \vec{v}_{z} d(v) \nabla(v-k)^{-} \Psi^{2 \prime}\left((v-k)^{-}\right) \eta^{2} \leq \\
& \quad \leq \delta \int_{t_{1}}^{t} \int_{B_{R}} \eta^{2} \psi^{2}\left((v-k)^{-}\right)\left(\left|\nabla(v-k)^{-}\right|^{2}+1\right)+\frac{c}{\delta} \int_{t_{1}}^{t} \int_{B_{R}} \eta^{2}\left(|\nabla|^{2}+1\right) \psi \quad .
\end{aligned}
$$

Using
(17) $\quad \Psi\left((v-k)^{-}\right) \leq(\log 2)(p-2) \quad$ and $\quad \psi^{\prime}\left((v-k)^{-}\right) \leq \frac{1}{\omega / 2^{p}}$
the assertion follows, where the integral with $|\nabla u|^{2}$ can be estimated by multiplying (14) with un ${ }^{2}$.

As a consequence we obtain
11. Lemma. There is a $\mathrm{p}=\mathrm{p}(\omega)$ such that if $\mathrm{R} \leq 2^{-\mathrm{p}} \omega$ and (16) hold then

$$
\operatorname{meas}\left(B_{R} \cap\left\{v(t)<\mu^{-}+2^{-p} \omega\right) \leq\left(1-\alpha^{2}\right) \text { meas }\left(B_{R}\right)\right.
$$

for $t_{0}-\alpha R^{2}<t<t_{0}$. Here $\alpha:=\frac{c_{0}}{2} \phi_{1}(\omega)$.
Proof. By the previous lemma $\left(k=\mu^{-}+\frac{\omega}{4}\right)$
(18)

$$
\int_{B_{\left(1-\sigma_{1}\right) R}} \Psi^{2}\left((v(t)-k)^{-}\right) \leq \int_{B_{R}} \psi^{2}\left(\left(v\left(t_{1}\right)-k\right)^{-}\right)+\frac{C(p-2)}{\phi_{0}(w) \sigma_{1}^{2}} R^{N}
$$

and by (16) for some $\left.t_{1} \in\right] t_{o}-R^{2}, t_{o}-\alpha R^{2}[$

$$
\operatorname{meas}\left(B_{R} \cap\left\{v\left(t_{1}\right)<k\right\}\right) \leq \frac{1-2 \alpha}{1-\alpha} \operatorname{meas}\left(B_{R}\right)
$$

hence using (17)

$$
\int_{B_{R}} \Psi^{2}\left(\left(v\left(t_{1}\right)-k\right)^{-}\right) \leq(\log 2)^{2}(p-2)^{2} \frac{1-2 \alpha}{1-\alpha} \operatorname{meas}\left(B_{R}\right)
$$

The left side of (18) is
$\geq \int_{B_{\left(1-\sigma_{1}\right) R} \cap\left\{v(t)<\mu^{-}+2^{-p_{\omega}}\right\}} \psi^{2}\left((v(t)-k)^{-}\right) \geq$
$\geq \max \left(0, \log 2^{p_{o}^{-3}}\right)^{2} \operatorname{meas}\left(B\left(1-\sigma_{1}\right) R \cap\left\{v(t)<\mu^{-}+2^{-p} \omega\right\}\right) \geq$
$\geq(\log 2)^{2}\left(p_{o}-3\right)^{2}\left(\right.$ meas $\left(B_{R} \cap\left\{v(t)<\mu^{-}+2^{-p} \omega\right\}\right)-\sigma_{1} N$ meas $\left.\left(B_{R}\right)\right)$.
Substituting these estimates in (18) we get
$\frac{\operatorname{meas}\left(B_{R} \cap\left\{v(t)<\mu^{-}+2^{-p} \omega\right\}\right)}{\operatorname{meas}\left(B_{R}\right)} \leq\left(\frac{p-2}{p-3}\right)^{2} \frac{1-2 \alpha}{1-\alpha}+c \frac{p-2}{\phi_{0}(\omega) \sigma_{1}^{2}(p-3)^{2}}+\sigma_{1} N \quad$.
Now choose $\sigma_{1}=3 \alpha^{2} /(2 N)$ and p large enough so that

$$
\frac{c(p-2)}{\phi_{o}(\omega) \sigma_{1}^{2}(p-3)^{2}} \leq \frac{3}{2} \alpha^{2} \quad \text { and } \quad\left(\frac{p-2}{p-3}\right)^{2} \leq(1-\alpha)(1+2 \alpha)
$$

We also need the following estimate
12. Lemma. There is a constant C such that for $k \leq \mu^{-}+\frac{\omega}{4}$ and $0<\beta<1$

$$
\begin{aligned}
& \left\|(v-k)^{-}\right\|_{Q_{R}^{\beta}\left(\sigma_{1}, \sigma_{2}\right)}^{2} \leq \frac{C}{\phi_{O}(\omega)^{2}}\left(\left(\sigma_{1} R\right)^{-2}+\left(\sigma_{2} \beta R^{2}\right)^{-1}\right) \int_{Q_{R}^{\beta}}\left|(v-k)^{-}\right|^{2}+ \\
& \quad+\frac{C}{\phi_{0}(\omega)^{2}} \operatorname{meas}\left(Q_{R}^{\beta} \cap\{v<k\}\right) .
\end{aligned}
$$

Proof. This follows similarly to the first part of the proof of Proposition 9 by multiplying (15) with $-(v-k)-\eta^{2}$, where η is a suitable cut off function. Now we are able to show
13. Lemma. For $\theta>0$ there is a $q=q(\omega, \theta)>p(\omega)$ such that if $R \leq 2^{-p} \omega$ and (16) hold, then

$$
\text { meas }\left(Q_{R}^{\alpha} \cap\left\{v<\mu^{-}+2^{-q} \omega\right\}\right)<\theta \text { meas }\left(Q_{R}^{\alpha}\right)
$$

Proof. Let $q \geq p(\omega), \ell=\mu^{-}+2^{-q} \omega$, and $k=\mu^{-}+2^{-q-1} \omega$. By Lemma 11 for $t_{0}-\alpha R^{2}<t<t_{o}$

$$
\operatorname{meas}\left(B_{R} \cap\{v(t) \geq \ell\}\right) \geq c \alpha^{2} R^{N}
$$

therefore using [9; 2 Lemma 3.5]

$$
\frac{\omega}{2^{q+1}} \operatorname{meas}\left(B_{R} \cap\{v(t)<k\}\right) \leq \frac{C R}{\alpha^{2}} \int_{B_{R} \cap\{k<v(t)<\ell\}}\left|\nabla\left((v(t)-\ell)^{-}\right)\right|
$$

Integrating over t yields

$$
\begin{equation*}
\left(\frac{\omega}{2} q^{+1}\right)^{2} \operatorname{meas}\left(Q_{R}^{\alpha} \cap\{v<k\}\right)^{2} \leq \frac{\mathrm{CR}^{2}}{\alpha^{4}} \operatorname{meas}\left(Q_{R}^{\alpha} \cap\{k<v<\ell\}\right) \int_{Q_{R}^{\alpha}}\left|\nabla(v-\ell)^{-}\right|^{2} \tag{19}
\end{equation*}
$$

and by lemma 12

$$
\int_{Q_{R}^{\alpha}}\left|\nabla(v-\ell)^{-}\right|^{2} \leq \frac{c}{\phi_{O}(\omega)^{2}}\left(\left(\operatorname{ess}_{Q_{2 R}} \sup (v-\ell)^{-}\right)^{2}+R^{2}\right) R^{N} \leq \frac{c}{\phi_{O}(\omega)^{2}}\left(2^{-q_{1}} \omega\right)^{2} R^{N}
$$

Thus (19) becomes

$$
\operatorname{meas}\left(Q_{R}^{\alpha} \cap\{v<k\}\right)^{2} \leq \frac{C R_{R}^{N+2}}{\alpha^{4} \phi_{0}(\omega)^{2}} \operatorname{meas}\left(Q_{R}^{\alpha} \cap\{k<v<\ell\}\right)
$$

Adding this unquality for $q=p(\omega), \ldots, q_{0}-1$ we obtain the lemma, if q_{0} is
large enough (depending on ω and θ).
14. Proposition. There is a $q=q(\omega)$ such that if (16) holds and $R \leq 2^{-q} \omega$, then

$$
\text { ess }_{Q_{R^{*}}} \text { osc } v \leq \omega\left(1-2^{-q-1}\right)
$$

where $\mathrm{R}^{*}=\mathrm{c}_{1} \mathrm{R}^{7 / 6}$. Here c_{1} is a small constant independent of R and ω. Proof. Consider the cylinders $Q_{R_{n}}^{\alpha}$ and the levels k_{n} defined by

$$
R_{n}:=\frac{R}{2}+\frac{R}{2^{n+1}} \text { and } k_{n}:=\mu^{-}+\frac{\omega}{2^{q+1}}+\frac{\omega}{2^{q+n+1}}
$$

where $q=q(\omega, \theta), \theta$ to be chosen. By the embedding lemma [10; II (3.9)]

$$
\int_{Q_{R_{n+1}}^{\alpha}}\left|\left(v-k_{n}\right)^{-}\right|^{2} \leq c \operatorname{meas}\left(Q_{R_{n+1}}^{\alpha} n\left\{v<k_{n}\right\}\right)^{\frac{2}{N+2}}\left\|\left(v-k_{n}\right)^{-}\right\|_{Q_{R_{n+1}}^{\alpha}}^{2}
$$

The left side controls

$$
\left(k_{n}-k_{n+1}\right)^{2} \text { meas }\left(Q_{R_{n+1}}^{\alpha} \cap\left\{v<k_{n+1}\right\}\right)
$$

and by Lemma 12
$\left\|\left(v-k_{n}\right)^{-}\right\|_{Q_{R_{n+1}}^{\alpha}}^{2} \leq \frac{c}{\phi_{0}(\omega)^{2}}\left(\left(\frac{2^{n}}{R} \quad \text { ess } Q_{R_{n}}^{\alpha} \sup \left(v-k_{n}\right)^{-}\right)^{2}+1\right) \cdot \operatorname{meas}\left(Q_{R_{n}}^{\alpha} n\left\{v<k_{n}\right\}\right)$.
Since $\left(v-k_{n}\right)^{-} \leq 2^{-q} \omega$ on $Q_{R_{n}}^{\alpha}$ we get the recursive estimate

$$
\begin{aligned}
& \mathrm{y}_{\mathrm{n}+1} \leq \frac{\mathrm{c} \alpha^{\frac{2}{\mathrm{~N}+2}}}{\phi_{0}(\omega)^{2}} 2^{4 n_{\mathrm{y}}}{ }_{\mathrm{n}}^{1+\frac{2}{\mathrm{~N}+2}} \\
& \mathrm{y}_{\mathrm{n}}:=\frac{\operatorname{meas}\left(Q_{R_{n}^{\alpha}} \cap\left\{\mathrm{v}<\mathrm{k}_{\mathrm{n}}\right\}\right)}{\operatorname{meas}\left(Q_{R_{n}}^{\alpha}\right)}
\end{aligned}
$$

By [10; II Lemma 5.6] we infer that $y_{n} \rightarrow 0$ as $n \rightarrow \infty$ if

$$
y_{0}<c \frac{\phi_{0}(\omega)^{N+2}}{\alpha}
$$

But if we choose θ to be the right side of this inequality, this is just the statement in Lemma 13.
15. Remark. In [8] the existence of a classical solution is proved in the case that the equation (15) is strictly parabolic. The paper also contains uniqueness and stability results, but the overflow condition is not included. Some of the arguments are restricted to the two dimensional case.

Recently in [7] the existence of a weak solution was shown for the DirichletNeuman problem. The assumption is that the initial and boundary data stay away from one side of the degeneracy, so that the solution contains only one pure fluid besides the mixture.

In the article presented here the statement of Lemma 6 in connection with the assumption in Theorem 7 is not quite satisfactory, since if $k_{1}(z) \leq C z$ condition (11) implies that $p_{\min }=-\infty$, but then Lemma 6 does not cover the case $H^{\mathrm{N}-1}\left(\Gamma_{i}\right)>0$.

REFERENCES

[0] H.W. ALT, E. DIBENEDETTO, Nonsteady flow of water and oil through inhomogeneous porous media, to appear in Ann. Scuola Norm. Sup. Pisa.
[1] H.W. ALT, S. LUCKHAUS, Quasilinear elliptic-parabolic differential equations, Math. Z. 183 (1983), 311-341.
[2] J. BEAR, Dynamics of fluid in porous media, American Elsevier, New York, 1972.
[3] -, Hydraulics of Groundwater, Mc-Graw Hill, New York, 1979.
[4] R.E. COLLINS, Flow of fluids through porous materials, Reinhold, New York, 1961.
J. GLIMM, D. MARCHESIN, O. MCBRYAN, Unstable fingers in two phase flow, Comm. Pure Appl. Math. 34 (1981), 53-76.
[7] D. KRÖNER, S. LUCKHAUS, Flow of oil and water in a porous medium, Preprint 159, SFB 123 Univ. Heidelberg (1982), to appear in J. Diff. Equations.
[8] S.N. KRUZKOV, S.M. SUKOZIANSKI, Boundary value problems for systems of equations of two phase porous flow type: statement of the problem, questions of solvability, justification of approximate methods, Mat. Sbornik 33 (1977), 62-80.
[9] O.A. LADYZENSKAJA, N.N. URAL'TZEVA, Linear and quasilinear equations of elliptic type, Academic Press, New York, 1968.
[10] O.A. LADYZENSKAJA, V.A. SOLONNIKOV, N.N. URAL'TZEVA, Linear and quasi-linear equations of parabolic type, Amer. Mat. Soc. Transl. Math. Mon. 23, Providence RI (1968).
[11] M.C. LEVERETT, Capillary behavior in porous solid, Trans. Amer. Inst. Mining and Metallurgical Engrs. 142 (1941), 152-169.
[12] A.E. SCHEIDEGGER, The physics of flow through porous media, (3. ed.), Univ. of Toronto Press, Toronto, Ontario, 1974.
[13] A. SPIVAK, H.S. PRICE, A. SETTARI, Solution of the equations for multidimensional, two phase, immiscible flow by variational methods, Soc. Pet. Eng. I. (Feb. 1977), 27-41.

Hans Wilhelm ALT
Institut für Angewandte Mathematik
Universität Bonn
Wegelerstrasse 6
D-5300 Bonn
West Germany

