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VARIATIONAL FORMULATION FOR THE FOKKER-PLANCK 

KINETIC EQUATION IN EQUILIBRIUM PROBLEMS 

by M. TESSAROTTO (Università Trieste) 

1. INTRODUCTION. 

Variational approaches have been widely employed in rarified gas dynamics C2, 

43 and plasma dynamics C13,16,18,19] to investigate boundary-value problems for the 

linearized Boltzmann and Fokker-Planck equations. In both cases the interest of 

such methods l ies in the possibility of evaluating macroscopic quantities of direct 

physical significance (fluxes through isobaric surfaces, wave frequencies and 

growth rates for linear "turbulent" perturbations, e t c . ) . In fact, even in linear 

problems ( i . e . , for which i t sufficies to consider linearized approximations of the 

previous kinetic equations), a good accuracy in estimating the effect of two-

particle Coulomb collisions is difficult to achieve due to the complicate nature of 

the collision operator, even in i t s linearized version. 

As far as what concerns the application to rarified gas dynamics variational 

methods have been found extremely satisfactory (for a review see Ref. [43). In 

particular, Cercignani [23 developed a variational formulation for a non-self-

adjoint Boltzmann equation showing how a trial-function technique could be adopted. 

Analogous methods have been adopted in plasma kinetic theory to investigate 

both collisional transport problems in quiescent magnetoplasmas ( i . e . , in which 

turbulent perturbations are négligeable) [15,193 and linear stabil i ty problems in 

weakly turbulent systems [14,163. For the f i r s t type of problems, Rosenbluth, 
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Hazeltine and Hinton C15D were able to develop an "asymptotic theory", i . e . a 

variational theory based on an asymptotic estimate for the t r i a l function which was 

determined only to lowest significant order with respect to a small parameter 6 

(6 = <(1 - B/B ) > « 1 , with B the absolute maximum of B on a given 

isobaric surface S , with B the magnetic field, and the brackets "< >" denoting 

an appropriately weighted average on the same isobaric surface). Their method was 

specifically intended for applications to a special class of hydromagnetic 

equilibria, i . e . those exibiting toroidal axisymmetry and subject to "ad hoc" 

assumptions on the relevant physical parameters which are known as "neoclassical 

ordering" C173; i t concerned, in addition, only so-called weakly-collisional 

magnetoplasmas, i . e . subject to the asymptotic condition p =V __/GO, << 1 (with 

V an effective collition frequency to be appropriately defined and U), the s,eff b 
bounce or t ransi t frequency characterizing the unperturbed particle motion long a 

magnetic flux l ine) . A generalization of their technique, which - rather than on 

an asymptotic estimate for the t r i a l function - is based on a consistent perturba-

tive expansion w.r. to an appropriate adimensional parameter A (A = 6|1 - 6 | ) 

has been more recently proposed by the present author C183 and i t s application to 

the investigation of collisional transport in a multi-species plasma has been 

worked out C19D. 

Similar techniques, on the other hand, were developed by Rosenbluth and other 

authors C16D for the linear stabil i ty analysis of a magnetoplasma subject to linear 

electrostatic perturbations of the drift type and in the presence of two-particle 

Coulomb collisions. In this case, a simplified model collision operator, i . e . a 

so-called pitch-angle scattering approximation, was, in particular, adopted for the 

construction of a variational principle for the linearized Fokker-Planck equation. 

All such theories, apart Ref. C133 - where, however, a different ordering 

scheme is assumed for the linearized Fokker-Planck equation - refer to a magneto-

plasma in the so-called weakly collisional regime, i . e . p « 1. On the contrary. 
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investigations of collisional (pg^O(l)) or strongly collisional ( p g » l ) 

magnetoplasmas have not been based up to now, to the author's knowledge, on a 

systematic investigation able to encompass the various plasma "regimes" of possible 

interest. In particular, for the investigation of regimes of collisional or 

strongly collisional plasmas, respectively, a variety of approaches have been 

proposed which are founded either on hydrodynamical models ClD, moment equations 

C83, expansions in orthogonal functions [6,10] and finally approaches based on the 

construction of model collision operators (see also Ref. ClOU and references there

in cited) . 

I t is the purpose of this Note to propose a variational formulation of this 

type, i . e . applying to a magnetoplasma of "arbitrary collisionality", for which, 

more precisely, the adimensional parameter pg is not requested to be small. In 

particular, we intend to show how the variational principle may be given in a form 

useful for the development of an approximate solution technique based on orthogonal 

function expansions. The method, here developed for a special example (a quiescent 

magnetoplasma), can be applied also to problems of weak turbulence (magnetoplasma 

subject to linear electromagnetic perturbations). I t appears, therefore, of 

remarkable generality. In addition, since i t s accuracy seems to be limited, in 

principle, only by the choice of the (numbers of terms in the) approximating 

sequence for the solution, a highly accurate evaluation of the relevant macroscopic 

quantities should be possible. Such a method should be, for this reason, useful 

for actual applications to transport problems in plasma dynamics. 

2. VARIATIONAL FORMULATION FOR THE STEADY FOKKER-PLANCK EQUATION. 

We shall consider here the case of a quiescent magnetoplasma, namely a plasma 

in which turbulent perturbations are négligeable. For definitess, we consider a 

model analogous to that of Réf.s C18D and C19D. Thus we assume a magnetoplasma 

embedded in a toroidal and axisymmetric magnetic configuration and subject to the 

257 



M. TESSAROTTO 

so-called neoclassical ordering £17]. In this case a straightforward Larmor-radius 

expansion for a l l the physically relevant quantities, and in particular for the 

one-particle distribution function of the s - th particle species fg^JL'Vyt) 

(with s = l,n , being n the number of particle species present in the system), 

delivers for the first-order perturbation f̂  g the so-called drift Fokker-Planck 

equation: 

(1) Lk(h) = Fk (k = l,r) 

where is the linear operator ^ ( h ) = LAk̂ k ~ Ck ^o ' w '̂̂ 1 LAk = V||^ *̂  ' 
and the source term F reads F = -v • Vf - L vMG f En0t , with standard 

notations (see Ref. [19]). Thus, in particular, fi = B_/B, V J J =_V • n, v = v_,_+v | j n, v ̂  ^ 

is the diamagnetic drif t velocity of the species k and finally C (fQ|h) is the 

linearized Fokker-Planck collision operator in the Landau form, i . e . , with standard 

notations C183: 

Ck(folh) = 
s=l ,r 

qks 
_8_ 
3v ' d3v 32u 

dy_dy_ 
3 

3v h » f (v1) ~ o,k_ dv o s(v)hk(v') -

(2) 
_ ^k 

m 
s 

3y_' f . (V)h (v) + o,k — s — m 
s 

3 
dv' hk (^ ) fo , s (^ 

Eq. (1) holds under the assumption of identifying the "equilibrium" distribution 

f . with a local maxwellian distribution constant on a given isobaric surface c o,k 
subject to the condition of temperature equilibration TQ ^ = TQ s ^or = 1/ 

Furthermore, hg is related to the first-order perturbation f̂  ^ , in terms of 

the equation ^ = h]c + v||Gicf0 ^ y0t » with Gk the function of Spitzer-Harm, 

solution of the equation: 

(3) ck(fohifoG) -
ek 
o,k 1 

f . o,k 

and E_r0t the inductive part of the electric field E. 

Assuming, in addition, an equilibrium magnetic field B_ = + with 

toroidal axisymmetry ( B^ and Bp being, respectively, the toroidal and poloidal 
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— — (D) components of B_ ) one obtains for f1 k the decomposition f1 k = gk + gk , 

where 

(4) Ln gi(D) = -v^ . • Vf _ 

with y_D ^ the diamagnetic drift and a right-handed and orthogonal curvilinear 

coordinate system (6,X/^) (corresponding to the vectors B^B^ and B x̂B^ ) has 

been adopted. 

From Eq. (1) an integral equation can immediately be obtained by performing an 

appropriate average on an isobaric surface, thus delivering the so-called integral 

drift equation: 

(5) <- C (f |h)> ,N = 0 

where for circulating particles ( °— •̂<1/Bmax ' witn ^ tne pitch-angle variable 
2 2 

X = 2y/v and y = v^/2B the magnetic moment per unit mass) S(X) coincides with 
a given isobaric surface S , while for trapped particles ( 1/B < X < 1/B ) is the 

max — 

subdomain of S where v y >_0. 

As usual, solutions of Eq.s (1) and (5) shall be seeked under standard 

boundary conditions (implied by periodicity on a given toroidal isobaric surface 
and, possibly, of boundness of f̂  g together with f̂  ) and regularity 
requests ( f. of class C (ft ) , being 0, =R the whole v-space, and of 

class (ft̂ ) with ft^ a torus in configuration space with boundary 6ft̂  , 

coinciding with the material wall of the discharge chamber). The validity of such 

regularity conditions is needed, in particular, to assure that the Fokker-Planck 

collision operator fulfil ls the usual conservation laws (namely, particle, momentum 

and kinetic energy conservation). 

In order to obtain a local variational formulation L5l for the previous 

problems ( i . e . , either Eq. (1) or (5) equipped with the previous boundary and 

regularity conditions), we notice that, at f i rs t sight, they seem to require quite 

different mathematical approaches. In fact, the linear operator resulting in Eq. 
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(1) is - unlike for Eq. (5) - non-symmetric. Thus a variational formulation in the 

s t r i c t sense C213 for the f i r s t problem can only be given in the form of a 

"constrained" variational principle, namely by limiting appropriately the class of 

admissible variations, as shall now be clarified. 

I t is convenient to introduce the vect or linear operator L = {L^, . . . , ^ 1 

acting on the vector k = {k^, . . . ,k^} . By defining the scalar product <h|k> : 

(6) <h|k> = E < d3vh k > (with h =h /f and ||h|| = ( <h|h>)1/2 the norm) 

one obtains from Eq. (1) 

(7) <h|Lk> = -<h|ck> + <h|LAk> + <h|LA(g(D) + V||GfoEy0t)> 

where L and C are the linear operators L = {Lj,. . . ,L } and C = {c^,...,C^} 

with: 

(8) C. (h) = C_ (f |h) (k = l,r) . 

The two operators C and result respectively symmetric and antisymmetric, in 

fact <h|ck> = <Ch|k> , while <h|L k> = -<LAh|k>. 

On the other hand, a necessary condition for the existence of a variational 

formulation in the s t r i c t sense (Volterra theorem C223) requires the symmetry of 

the operator involved in the equation (here L ) , and in addition - in order to 

make this condition sufficient - also the convexity of i t s domain of definition. 

I t follows that a variational formulation for the problem related to Eq. (1), to be 

intended in the previous s t r i c t sense, can only be given provided the class of 

admissible variations corresponds to a convex domain: in other words the variations 

must be appropriately constrained. 

In order to obtain a nontrivial solution to this problem i t is necessary that 

the constraint equation(s) to be determined have mathematical (and obviously also 

physical) significance. By that we mean that the class of solutions thus 

determined from a constrained variational principle must coincide with that of the 

given problem. Although, in the author's opinion, there is no general rule for 
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constructing such a type of variational formulation, i t seems clear that the 

constraint equation(s) must be obtained constructing appropriate bilinear forms in 

terms of the given equation ( i . e . , Eq. (1)). Since hg can be decomposed in terms 

of i t s odd and even parts w.r. to v y , namely respectively Dhg and Phg 

( hg = Dhg + Phg ), the simplest bilinear forms which can be constructed in terms of 

Eq. (1) read: 

(9) Q. (h In ) = < d3v Dh {L Ph - C (f tan)}> = 0 
1, s s 1 s J s s s s o 1 

(10) Qn (h In ) = < d3v Ph {L Dh -C (f |Ph) +L {v..G f En0t + g(D)}> = 0 
2,s s1 s J s s s s o1 s || s o,s || s 

for each particle species, or simply: 

<9") Ql(h|h) = ZsQ1(S(hs|hs) = 0 

(10-) Q2(h|h) = 2sQ2/S(hs|hs) = 0 . 

A possible choice for the variational functional turns out to be: 

(11) W(h|h) = -<h|ch> . 

Thus a variational principle for the previous problem, related to Eq. (1), is 

delivered - as previously pointed out by the author 1201 - by the Euler equation: 

(12) 6 W(h|h) = 0 (s = l,r) 

where the variations are constrained by Eq.s (91) and (10'). 

We recall , in addition, that a variational formulation for the integral drift 

Fokker-Planck equation (Eq. (5)), is delivered by the previous Euler equation by 

constraining the class of admissible variations only with the equations: 

(13) n • V6h = 0 (s = l,r) . 

We mention that both variational principles are "minimal", in the sense that the 

solution of Eq. (1) (and analogously of the integral equation (5)) minimizes the 

functional W(h|h) both w.r. to Dh and Ph . 
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3. EXPANSION IN ORTHOGONAL FUNCTIONS. 

From the previous discussion i t emerges clearly that in order to determine the 

(macroscopic) fluxes, which are needed for the macroscopic description of a plasma, 

the search of approximate solutions of the drift F - P equation can be limited to 

weakly convergent series expansions, in particular in the sense of energy 

convergence: 

(14) lim ||u -h | | = 0 
n + oo n C 

where {un,n£N} is some sequence of functions with finite energy, namely: 

(15) llu II2 = -<u leu >< +0° 11 n"c n1 n 

and l lun l l mav ke defined as the energy or the energy norm of un w.r. to the 

operator C (notice that C results positive definite in an appropriate 

functional class, from which are excluded local maxwellian distributions, since for 

them results C(h) = 0 identically). 

Let us therefore introduce a set of "coordinate" functions 

{<b. (r,v) ,i=l ,n,s=l ,r} , for each particle species, orthonormal in energy, in the i , s 
sense: 

(16) I I H e = 1 (i = l,n) and ^ J c c f ) ^ = 0 (for i , j = l,n with i ^ j ) 

and complete in the sense of energy convergence w.r. to the operator C CllD. 

Approximate solutions in the form of expansions in terms of an orthonormal 

basis can be found adopting standard methods. In particular we look for a sequence 

{u (r,v),n£N} of functions, defined in the same domain of h (r,v) and n,s s 
fulfilling the same boundary conditions as well as the same regularity properties, 

which is "extremal" for W(h|h) in the sense 

lim ||DU ||* = m 
n +o° 

(17) 
lim ||Pu || = M 
n->°° 

with 

262 



THE FOKKER PLANCK KINETIC EQUATION 

m = inf ||Dh||£ 
(18) 

M = ±nf||Ph||£ 

and Dun,Pun , as well as Dh and Ph , fulfi l l the constraint equations ( 11 ) . By 

an appropriate restriction of the choice of equilibria ( i . e . , B_ and fQ g) 

results in particular m,M > 0 , thus the operator -C is positive definite and 

bounded from below. 

I t is then immediate to prove that if Eq. (10) with constraints (11) has a 

solution, $ay hQ , with finite energy ( l | h o l l c < + 0 ° ) ANY sequence {û (r_,y_) ,n 6 N} 

which i s extremal for W(un|u^) converges in energy to hQ. In fact results: 

(19) 
inf ||Dh||c = ||Dho||c 

inf||Ph||c = ||Pho||c 

Thus an energy convergent sequence can be constructed adopting a technique which 

resembles the wellknown Rayleigh-Ritz direct solution method. I t can be obtained 

by introducing the sequences (for each particle species s ) : 

pu = / a^. ò . (r,v) n,s .¿7* Pi yPi,s —'— i=l ,n 
(20) 

Dun,s - L aDi V s < £ ' - > <n€N) 1 = 1 ,n 

where {(J> (r,v) , i € N,s=l ,r} and {<f> (r ,v) , i£N,s=l ,r} are two orthonormal 
irl , S L)l , S 

bases in energy, while the coefficients a„.,a . read: 
Pi Di 

(21) 

a„. = «j> . Pu > Pi YPi1 n 

a . = <* . Du > Di YDi1 n 

are chosen in such a way that W(u u ) has a conditional extremum constrained by 
n n 

the equations: 

Q,(u |u ) = <Du iLPu > - <Du |CDu > = 0 1 n1 n n1 n n1 n 
(22) 

Q0(u lu ) = <Pu ILDU > - <Pu |CPu >-<Pu II V||GEM0tf > - <Pu |Lg(D)> = 0 2 n1 n n' n n1 n n1 о n1 * 
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and 

(23) n • Va p i ='n • VaD i = 0 (i = l,n and n €N) 

The unknown coefficients can thus be determined, adopting the method of 

Lagrange multipliers, yielding the system of linear algebraic equations: 

(24) 

8 
9 a P i 

Dl 

'w(u lu ) + X Q (u lu ) + X Q (u |u ) n ' n l l n ' n z 2 n ' n I 

W(u lu ) + A Q (u lu ) + X Q (u |u ) n ' n 1 1 n ' n z z n ' n 

= 0 

= 0 

which has to be solved together with the system of Eq.s (22). 

4. CONCLUSION. 

An approximate solution method based on an expansion in othogonal functions 

has been worked out, and i t s application to the investigation of collisional 

transport has been mentioned. 

Such a method seems sufficiently simple to require a relatively small amount 

of calculation and to assure, at least in the case of collisional or strongly 

collisional magnetoplasmas, a good accuracy for the computation of the relevant 

macroscopic quantities ( i .e . fluxes, growth rates and real mode-frequencies). Thus 

i t seems potentially useful for applications in plasma dynamics. These 

applications will be the object of subsequent papers. 

The author is indebted to prof. C. Cercignani (Dipartimento di Matematica, 

Politecnico di Milano, Milano, Italy) and prof. G. Sandri (City University, New 

York, N.Y., U.S.A.) for useful comments. 
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