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IS THERE GRAVITY-INDUCED FACETTING OF CRYSTALS?

by Jean E. TAYLOR (Rutgers University)

1« INTRODUCTION.

The question of the shape of a drop of fluid sitting on a table in a
gravitational field has been studied analytically for 180 years, from Laplace [4]
to Finn [3]. But solids have surface energy as well, so this question makes
equally good sense in that case. For a single crystal of a solid, the surface
energy per unit area (for a fixed orientation of the crystal) usually depends
continuously on the normal direction, and the gravity-free shape is normally not a
sphere.

In this paper, the following two results are proved in the case that the
gravity-free shape is polyhedral and has an edge pointing up:

1) In the absence of special symmetry, no gravity-induced facet can occur on top
of a convex crystal (Theorem 1), and

2) In some special symmetric cases, a gravity-induced facet must occur for
sufficiently large values of the gravitational constant, provided the body is
convex (Theorem 2).

More precisely, the surface tension of the crystal-medium interface is a

continuous function

F: s2 + R* = RA{r: r>0}
and the surface energy Eg(V) of a region V of finite perimeter contained in the
half space H = {xeR3: x330} is

Eg(V) = [xeav N {x: x,>0} F(v(x)) dH 2x + o H2(3aV N oH);
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here v(x) is the exterior normal of the reduced boundary of V (see [2, 4.5.6];
it is hereafter denoted 93V) for all x in 9V and ¢ is the difference between
the surface tension of the crystal-table interface and table-medium interface. Aas
usual, the gravitational energy Eg(V) is

gfxev x3 df 3%,
where g represents the gravitational constant times the difference in density
between the material of V and the surrounding medium.

Thus the question of the equilibrium shape of a crystal of volume v sitting
on a table in a gravitational field, with given F, ¢, and g, is the question of
the shape of any minimizer of E(V) = Eg(V) + Eg(V) in the class of sets of finite
perimeter of having volume v and being contained in H.

Since surface energies vary with direction, the notions of wetting and contact
angles and their relationship to ¢ are much more elaborate than in the isotropic
case and it seems best to leave the problem in its energy formulation.

For g = 0, the problem has been completely solved and the result (called W
throughout this paper) is unique and convex; see section 2 below. For g > O,
it is not even known if a solution must be convex, or indeed if any solution is
convex. (The case of a two-dimensional crystal is sufficiently special that it
also is essentially completely solved; see [1]. In particular, those solutions
are also unique and must be convex.)

In [1] it was shown that if W was polyhedral and had a corner [resp., edgel
pointing up, and if solutions to the g > 0 case were convex [resp., convex and
polyhedral], then gravity-induced facetting on top resulted if the gravitational
constant was large enough relative to the volume enclosed.

In this paper, it is shown that the hypothesis of V being polyhedral was
crucial: examples are given of surface tension functions for which there is never

a facet on top, as well as ones for which there is a facet on top for large enough

ge
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2. THE ZERO-GRAVITY SOLUTION.

Given F : 82 » Rt, the region of given volume with least surface energy in
the interior of H exists and is unique up to translation (see [5] for proofs and
further references); its shape is given by the Wulff construction

W= {x € R3: x°n < F(n) for every nes2}.
W can then be scaled by a homothety to achieve the desired volume and translated
to lie inside H. W itself is called the crystal of F. The solution to the
related free-boundary problem, where the region is allowed to contact 9H, can
also be found by the Wulff construction, in the sense that the solution is

W = T(WN{x: -x3<0}),

where T1: R3»R3 is the translation T(x1,x2,X3) = (xq,Xp,x3+0) (see [6]). If
-0 »? max{X3: xeEW}, then W” has zero volume; this corresponds to the case of
complete wetting, where the region degenerates to a thin film completely covering
oHs If -0 < min{x3: xeW}, there is complete drying, and there is an
infinitesimal film of the medium between the material of V and the table; the

shape of V 1is identical, however, to that when -g = min{x3: XeW}.

3. ASSUMPTIONS AND NOTATIONS.

Throughout this paper, we fix an F such that W is polyhedral (such
integrands are called crystalline). We assume further that only 3 facets meet at
each corner of W. We fix a g > 0 and a ¢ such that

min{x3: xeW} < -0 < max{x3: xeW}.

It is convenient to assume further that F is a convex function, since
then E(V) is a lowersemicontinuous function. This can be done without loss
of generality in the following sense, as shown in [5].

Let G be the (unique) convex integrand having W as its Wulff shape. Then

G(n) = F(n) for each n which is a normal to W, and G is determined by its
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values on the set of normals to W. Any set of finite perimeter V has a
corresponding varifold V° with V as underlying set such that the surface energy
of V, wusing G, is the same as that of V“, wusing F. V’° can be thought of as
having "infinitesimal corrugations" wherever it has tangent planes with normals that
are not normals to W. We therefore do assume that F is convex, and we simply
observe at the end that if any solution V has a normal n which is not a normal
to W, V can be replaced by the corresponding varifold V” to obtain a solution
to the original problem with nonconvex F.

Finally, we define F”° by F“(n) = F(n) if n is not (0,0,-1), and
F*((0,0,-1)) = a.

We denote by V (or, to emphasize the dependence on g, occasionally by vg)
any minimizer of the total energy Eg + Eg.

Normal directions to W are called crystalline directions; all other

directions are called noncrystalline directions.

4. THE CRYSTAL GRAPH.

The dual graph of W” (called the crystal graph) can be defined since W” is
a polyhedron (it is the subdivision of the unit sphere induced by the Gauss map on
W”): there is a vertex in s2 for every facet of W”, this vertex being the normal
to that facet, and there is an edge between two vertices if and only if the
corresponding facets intersect along a line segment, that edge being the shorter
geodesic between the vertices. Each face of the dual graph then corresponds to a

corner of W”.

5. SUMMARY OF PREVIOUS RESULTS FROM [1] (assuming W is polyhedral).

1) The normals to V 1lie in the closure of the union of the edges of the crystal

graph.
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2) If Vg is convex and if W has an edge on top, then for large enough g Vg
either has a facet or is curved on top; if Vg is polyhedral near its top, then

A/

g has a facet on top for large enough g.

3) The quantity
A= (2 Eg + 4 Eg)/3v
serves as a "Lagrange multiplier" in this problem. A typical initial deformation
will change the volume by a small amount Av, change Eg by an amount AEg, and
change Eg by an amount AEg. The new region is then rescaled to the original
volume by the scale factor s = (v/(v + avN /3 w1 - Av/3v; the surface energy
scales by s2 and the gravitational energy by s4, Thus the net change in energy
due to the combined deformations is
AE = Av(AEg/Av + AEg/Av - 1) + 0((Av2).
Letting h be the maximum height of V, we note that X - gh > 0 since one such
deformation involves pushing down on the top of V (Av < 0), giving AEg/Av = gh,
AEg/Av > 0, and thus

0 < lim AE/Av < -gh + A.

6. NEW RESULTS.
Lemma. a) If§ x e 8v, N 44 a convex neighborhood of x, and vAN 48 convex,
then av has a unique tangent cone at x, and this tangent cone {4 a cone;

b) Tangent cones o 3v minimize Eg;

c) Unden the hypotheses of a), the nowmals to the tangent cone £ie on the

boundarny of a single face of the crystal graph.

Proof. Parts a) and b) are well-known and easily checked (the tangent cone is the
translation to the origin of the boundary of the intersection of all supporting
half-spaces of V N at x, and tangent cones minimize Eg alone because surface

and volume integrals scale differently under homotheties). If part c) were not
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true, there would be a unit vector ng inside the convex hull on the sphere of the
normals to the cone such that ng is a vertex or on an edge of the crystal graph.

One could then deform the cone by flattening it near its vertex, producing a facet

with normal ng; this deformation decreases surface energy, by calculations

analagous to those in [5].

Proposition.

Hypotheses:
1) Vv minimizes the total enengy

2) x € 3V, 3V has nowmal n at x, and n 4s inside the edge of the crystal
graph conresponding to an edge T of W
3) VNN A& convex, where N 44 a convex nedighborhood of Tnv and T 48 the

Line through x parallfel to T.

Conclusions:
1) 3vnt 48 a Line segment (henreaftern called a nuling) of positive Length
2) (A - gh) =L, where X 48 the "Lagrange multiplier" and

% 44 the Length of the ruling through x

h {4 the height of the center of gravity of this ruling

L 44 the Length of T 4in wW.

2522{. Let V, n, T, £, h, and L be as in the hypotheses. Let m be a unit
vector orienting T. Using the convexity of VNN and summary fact 1, we see that
VNT is a line segment of positive length, and a general position argument allows
us to assume that V has tangent cones consisting of two half planes at each end
of 1. Let ng denote the normal other than n to that tangent cone at the
positive end of T and let np denote the other normal at the negative end.

We consider the deformations illustrated below. They push in or out a
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sides being the normals nqy and n,; of the facets of W containing T and, in
the case of a ridge, with roughly triangular patches at the ends with normals ng
and n,, as appropriate (in the case of a furrow, the deformation cuts away such
triangular pieces at the ends). If we denote the cross-sectional area perpendicular
to T of the furrow or ridge by ad2, then the surface energy of the triangular
regions added or cut off at the ends is

ad? (F(ng)/m.ng + F(np)/|m.np|) + 0(a3d)
and the volume change is ad2 + 0(d3). One can compute the remaining terms in the
change of surface energy directly; alternatively and more instructively, one can
let wy be the coordinate vector of the corner of W at the np end of T, so
that wp + Lm is the coordinate vector of the ng end. The surface energy of W
and of V does not depend on the center of W, by the divergence theorem;
therefore the computation of the change in surface energy cannot depend on the
value of wy and we may compute this change with wy equal to (0,0,0). Now
F(np) = F(nq) = F(ny) = 0, and the change in surface energy depends only on
F(ng) = L meng (and the geometry of the piece with normal ng); hence it is

ad2L + o(a3d).

Therefore after applying a homothety to restore the original volume, one obtains

0 = AE = Av(-X + gh + L/&) + 0(d3),
and hence

(A - gh) =
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Corollary 1. Any facet with a noncrystalline direction n (s a parallelogram
with constant & and h and hence has horizontal ends and (unfess n = (0,0,1))
nonhonizontal rulings.

Proof. A facet on a convex body must itself be convex; thus £(A - gh) =L (a

constant) implies that £ and h are constant.

Corollary 2. Any continuous family of nonmal directions to v such that one set
of the ends of its nulings are in a honizontal plane has the other set of ends in
another honizontal plane.

Proof. Under the above hypotheses, & and h are affinely related
(h = hg + c&/2, where hy is the height of the horizontal plane and the absolute
value of c¢ 1is the square root of 1 + (n.ne)z) and therefore each must be

constant.

Theorem 1. Suppose that W {8 such that each great cincle on the unit sphere

through (0,0,1) contains at most one nommal to W 4n addition to (0,0,-1), and
that (0,0,1) 48 4n an edge of the crystal graph. Then there 48 no facet on Zop
0§ any convex Vg
gravitational constant.

which minimizes the total enengy, forn any value of the

Proof. Suppose that W and V are as in the hypotheses, but that V does have a
facet with normal (0,0,1). By Corollary 1, this facet must be a parallelogram,
and the normals to the tangent cones at the ends of the facet both must lie on a
great circle through (0,0,1). By the hypotheses on W, there are no crystalline
directions in at least one of the two half circles from (0,0,1) to (0,0,-1)

in this great circle; we restrict ourselves to an end of the top facet whose
tangent cone normals are in such a half circle. Since all normals to V are in

the closure of the edges of the crystal graph, there must be a facet with a
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noncrystalline direction at this end of the top facet; by corollary 1, it too is
a parallelogram. Similarly, it too has a parallelogram coming off its lower edge,
and so forth, down to a facet with its lower edge in the plane X3 = 0. (The
finiteness of the number of edges in the crystal graph ensures that there are a
finite number of parallelograms in this string.)

In this situation there is a deformation with net energy change precisely zero
which changes the lengths of some of the rulings in the top facet, as indicated in

the figure. Shallow similar triangles of equal area are pushed out

——
e

o
J—

==
=D

and pushed into the top facet at the end under discussion. Each ruling in its
adjacent facet which ended on one edge of a triangle is moved out or in hori-
zontally, extending or shrinking a ruling of the top facet, until it reaches one
of the other edges of the triangle. This creates two triangles of the same area in
the horizontal plane containing the lower edge of this facet. The next facet down
then has its ruling translated as above, and so forth, until the plane x3 =0

is reached. If the triangles are shallow enough that all normals of the deformed
surface stay within their respective edges of the crystal graph, then the total
surface energy change is precisely zero, since it is zero with respect to each
facet (including the one with normal (0,0,-1)). The change in volume is O,
since equal areas are added and subtracted at each height; similarly, the change

in gravitational energy is precisely zero.
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Finally, the existence of this deformation provides a contradiction, since
the deformed surface, having the same energy, must also be a minimum for the total
energy, and yet the rulings on the top facet are not of equal length, contradicting

corollary 1.

Theorem 2. Suppose that the erystal graph has five vertices, one being (0,0,-1)
and the other four having edges to (0,0,-1), with two of these vertices being
joined by an edge which contains (0,0,1) and the other two lying on another great
eirele through (0,0,1). Then for large enough g there is a horizontal facet on

top of v if Vv 18 convex.

Proof. Suppose that the crystal graph is as in the hypotheses and that V is
convex with no facet on top. By corollaries 1 and 2, there can be no facets or
continuous families with normals in the edges not containing either (0,0,1) or
(0,0,-1) in their closures. But then there can be none in the edge containing
(0,0,1) either, since the absence of those other normals implies that the length
of any such rulings with normals in that edge would have to be constant, violating
the proposition. Thus V is polyhedral near its top, having as its normals the
normals of W, and the absence of a facet on top for all g now contradicts

minimality, by summary statement 2.
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