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THE BEHAVIOR OF CAPILLARY SURFACES WHEN GRAVITY GOES TO ZERO 

by L.-F. TAM (Stanford University) 

1. PRELIMINARY. 

Let ft be a bounded (smooth or piecewise smooth) domain in Rn , n>^2. 

Consider the following boundary value problem: 

div(Tw) = div[Dw/ Vl + |Dw| 2 j = H + Bw in ft 
( 1 . 1 ) ^ ' 

Tw • V = cosy on 8ft 

where B>0 , TT/2 > y > 0 are constants, H = ^ ^ 1 cosy and V = outward normal 

of aft. 

The solution of ( 1 . 1 ) corresponds to capillary surface with gravity. We are 

interested in the behavior of w when gravity goes to zero, i . e . when B tends 

to zero. So we compare w with the solution of 

div(Tv) = H in ft 
(1 .2) 

Tv • V = cosy on 8ft . 

(1 .2 ) may not have a solution. If (1 .2 ) has a bounded solution, y > 0 and 

ft is smooth, then i t is proved by Siegel in Ll&l that there exists a constant C 

which is independent of B such that suplw - v| < C • B where v is the solution 

of (1 .2) normalized by /^vdx = 0 . 

In this paper we are going to investigate the case when ft is piecewise 

smooth, the case when ft is smooth but y = 0 and the case when (1 .2) has no 

solution. We shall use the idea of generalized solutions introduced by Miranda 

[ 1 7 3 , see also Giusti C10D. 
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It is known that if v is a bounded solution of (1 .2) where H is replaced 

by any bounded measurable function H(x) , then v is a variational solution of 

(1.3) F(fi;v) = 
fi 

' l+ |Dv|2 + H(x)v(x)dx - cosy v(x)dH 
an n_1 

for vEBV(fì). 

We introduce another functional: 

(1 .4 ) F(fi;U) = 
fi X R 

DX„I + 
'fìX R 

H(x)Xy(x,t)dxdt - cosy 
31ÎXR 

Xu(x,t)dHn 

where UcfixR is a Caccioppoli set, xy i-s the characteristic function of U. 

In (1.3) and (1 .4 ) we do not assume fi to be bounded. 

Definition 1 . 1 . Ucflx R is said to be a solution of (1 .4) if and only if for an] 

compact set K in Rn+* and any Caccioppoli set V of fi x R such that 

s p t ( X T T " X„> CK ' then F(fi;U) < F (I];V) where U V JN. J\ 

( 1 . 5 ) FK(fi;W) = 
r + 12 

d + ) 
ÎÎXRfiK 

H(x)Xw(x,t)dxdt - cosy 
1 + u e 

Xw(x,t)dHn 

We also introduce two subsidiary functionals: 

(1 .6 ) G f̂ijA) = | D X A I + 
fi 

H(x)X,(x)dx - cosy 
fi A 9fi A n 1 

and 

(1 .7 ) G2(fi;A) = | D X A I -
fi A 

H(x)x, (x)dx +cosy 
fi A 

XA(x)dH 
afi 

for Ac fi. Solutions of (1 .6 ) and (1 .7 ) are defined similarly. 

Definition 1 .2 . A function u : fi L-00,*00! is a generalized solution of (1.3) 

if i t s subgraph U = { (x, t) e fi x R| t < u (x) } is a solution of ( 1 . 4 ) . 

Theorem 1 . 1 . Let fi be a bounded pieoewise smooth domain^ and u€BV(fi) 3 then 

u is a solution of (1.3) if and only if u is a genevalized solution of (1.3) . 
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2. CASE WHEN ft IS PIECEWISE SMOOTH. 

In this section we make the following assumptions: 
2 

(2.1) ft is a bounded piecewise smooth domain in R ; 
(2.2) le t 2 «a = minimum of interior angles of ft , then TT/2 - y < a < IT/2 ; 

(2.3) (1.2) has a bounded solution v which is normalized by /^v(x)dx = 0. 

We also assume 0 < B < 1. 

Theorem 2.1. Under the above assumptions, there exists a constant C which is 

indipendent of B such that 

(2.4) sup|w - v| <_ C • B . 
ft 

Before we prove the theorem, we have several lemmata. In what follows 

will denote constants independent of B. 

Lemma 2.1. There is a constant such that 

(2.5) |w| < cx . 

Proof. Use comparison principle as in C183. 

q.e.d. 

The next crucial step is to obtain a uniform bound for the gradients of w 

and v. If ft is smooth, then i t immediately follows from Zll. If ft is only 

piecewise smooth, then by C73, [13] and C20D we can always get uniform bound for 

the gradients away from the corners. So i t remains to find a bound near the 

corners. Without loss of generality we may assume a corner is at (0,0) and near 

i t ft consists of two segments on 0 = -a and 0 = a. Let w = w + constant 
3 _ such that (0,0,0) £R belongs to the closure of the graph of w. Here w is a 

solution of (1.1) or (1.2). 

Lemma 2.2. Let U be the subgraph of w. There exists constants > 0 and 

RQ > 0 which are independent of B 3 such that for any (xQ,tQ) e^"XR and let 

Cr(xQ,tQ) = {(x,t) €R | |X-Xq | <r and | t - t | < r} the following are true: 
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(1) if |u I = |c (x , t ) flul > 0 for all r > 0 then |u I > C_r3 for all r <R ; 
IT r o o 1 r'— 2 — o 

(2) lu'I = |c (x , t ) - u| > 0 for all r > 0 then lu' I > C0r3 for all r < R . w 1 r r o o r— 2 — o 

Lemma 2 . 3 . There exists a constant such that 

(2.6) |DW| <_C3 , where w ts t/ze solution of ( 1 . 1 ) 02» ( 1 . 2 ) . 

Proof. Take any sequence _> 0 (not necessarily distinct) and take any sequence 

of positive numbers > 0 . Let 

w = — w (e x) k,£. e, k k k k 
where is the solution corresponding to B^. We can then find a subsequence 

of w which tends to a generalized solution u of (1.3) with H(x) =0 in the k,ek 
domain 

^ = lim —— Si 00 £ 

k -> 00 k 

Let P = (x|u(x) = °°} and le t N = {x|u(x) = - °°} . Then P is a solution of 

G1 (̂ oo,A) with H(x) E 0 . Use assumption (2 .2) we can prove that P = 4> or ft^. 

By Lemma 2.2 we conclude that P = (j). Similarly N = <f). From these and lemma 2 .2 

we can prove that ŵ  £ are uniformly bounded in {xeftoJl<_|x|_<2} if k is 

large enough. From C7D, C13] and [ 2 0 ] , the lemma follows. 
q.e.d. 

Now we can proceed as in C18] to get a proof of Theorem 2 . 1 . 

3 . CASE WHEN y = 0 . 

Let H be a smooth domain in Rn , n ^ 2 . If y = 0 , solution of (1 .2 ) may 

not exist, or may exist but fail to be bounded. See L9l. Suppose (1 .2 ) has a. 

solution v , then we have the following 

Theorem 3 . 1 . Either (1) v (Q) and lim w = v+C in 9. for some constant C ; 
B + 0 

or 
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(2) v£L (ft) and limw = -00 in ft . 
B 0 

The proof of Theorem 3.1 is obtained by using the idea of generalized solution 

and comparison principle. 

Theorem 3.2. Vie can find a function C(B) such that lim (w + C(B)) = v in ft. 

The proof of Theorem 3.2 is also obtained by using the idea of generalized 

solution and the following lemma. 

Lemma 3 . 1 . For any B -> 0 , we can find a subsequence Bk such that 

limBk wk = 0 3 where wk is the solution of ( 1 . 1 ) corresponding to B^. 
j J J 
Corollary 3 . 1 . lim Dw = Dv in ft. 

B -> 0 
Note that all convergences are uniform in compact subset of ft. 

4 . CASE WHEN (1.2) DOES NOT HAVE A SOLUTION. 

We make the following assumptions: 

(3.1) ft is a piecewise smooth domain in R such that every interior angle 2a 

satisfies TT/2 > a >_ 7T/2 - y ; 

(3.2) ft satisfies internal sphere condition for some radius 6>0 and angle y 

in the sense of C6D; 

(3.3) G f̂tjA) >_0 for all A eft where H(x) EH , and there is a unique set P 

such that P ^ (J) or ft and G f̂tjP) = 0. 

Lemma 3.1 is s t i l l true in this case and we have: 

Theorem 4 . 1 . There are functions C^(B) and C2(B) such that: 

(1) w + C^B) tends to a classical solution of div(Tu) = H in the interior of N 

and tends to positive infinity in the interior of P ; 

(2) w + C2(B) tends to a classical solution of div(Tu) = H in the interior of P 

and tends to negative infinity in the interior of N. 
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