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THE STABILITY OF AXISYMMETRIC ROTATING DROPS 

by J. ROSS and F. BRULOIS (San Diego State University) 

1. INTRODUCTION. 

Let ft be an open set in . 

The variational problem 

Minimize E(ft) = A(3ft) - cl(ft) 

Subject to i) Volume (ft) = Vq = given constant , 

i i ) The center of gravity of ft at the origin 

is an accepted mathematical model for studying the equilibrium shapes and the 

stability of an incompressible liquid drop driven at a constant angular velocity. 

An important physical assumption in this model, is that there is no internal 

motion. Here A(3ft) is the surface area of 3ft , I(ft) is the moment of inertia 

of ft with respect to the axis of rotation, and c is a positive constant which 

can be expressed in terms of physical quantities by the formula 

Ap 2 
c = 2*0) 

where Ap is the pressure difference on the axis of rotation, T is the surface 

tension, and u) is the angular velocity. 

There exists, mathematically, a well known family of axisymmetric equilibrium 

shapes whose surfaces are topologically the sphere [2,4,5,63. These surfaces must 

satisfy the Euler-Lagrange equation for this problem. This means that at any 

point, p , on the surface we must have 

2H = 2h + cr2 

219 



J. ROSS, F. BRULOIS 

where H is the mean curvature at p , h is a constant, and r is the distance 

from p to the axis at rotation. If we fix the volume, then c may be taken as 

the parameter in a smooth one parameter subfamily. In this subfamily, c ranges 

from 0 to c . When c = 0 , we have the sphere. When c = c , we have h = 0. 

(h is never negative in this subfamily and is zero only at c = c* ) . We denote 
this subfamily by f = {̂ c;0< ĉ_< c }. All members of this family are convex. Here 

c depends on VQ. 

Besides these equilibrium shapes and another family of axisymmetric 

equilibrium shapes whose surfaces are tori, there are two other mathematical facts 

known about this problem. The first is that any equilibrium shape must have as a 

plane of symmetry the plane which passes through its center of gravity and is 

perpendicular to the axis of rotation. This follows from a variant of Aleksandrov's 

proof that the sphere is the only compact, imbedded, two dimensional surface of 

constant mean curvature. The second is the result of Albano and Gonzalez Ell which 

establishes the existence and regularity of a true local minimum provided that c 

is sufficiently small. As c 0 , these local minima are known to converge in 

to the sphere. 

Some experiments conducted at JPL by T. Wang and E. Trinh Lll suggest that 

there are families of equilibrium shapes which bifurcate from f. Brown and 

Scriven [3D did extensive numerical calculations which support the contention that 

these bifurcating families exist. Furthermore, they investigated numerically the 

stability of all these equilibrium shapes and found that only those shapes in f 

with 0_<c<co<c are stable. Again, Cq depends on Vq. At the point c = CQ 

a family of two-lobed shapes appears to bifurcate from f. 

In this paper, we study, analytically the stability of the members of the 

family f. Although we cannot claim to have proved the stability of f in the 

range 0_<C<Cq and instability in the range CQ_<C<^C* , our results go quite far 

in this direction. Only a few rather standard problems remain. 
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2. DEFINITIONS AND NOTATION. 

A point in TR? will be denoted by (x,y,z) where the z axis is assumed to 
[~~2 2 

be the axis of rotation. Thus r = V x +y . 

Definition 1. A shape, ft , will be said to belong to the admissible class, 0 , 

if 8ft can be represented by a function r = r(z) which is nonnegative, smooth, 

and such that the volume of ft is finite and E(ft) is finite. The center of 

gravity is required to be at the origin. We assume that there are numbers 

< 0< &2 (ft) such that r(z) = 0 if z < or z > %2. 

Definition 2. A perturbation, P , of an admissible shape, ft , is a three 

parameter family of shapes, ft(e,r),v) , whose boundaries can be represented in the 

following way: 

X(0,z,e,ri/v) = (na(z) + R(0,z,e,v)cos 6,nb(z) + R(6,z,e,v)sin 0,z) 

where O£0_<27T , % (v) £ z£ %2 (v) , -°°<n<+CX5, -I<v<+1 , and |e|<.6 for 

some 6 > 0. 

Here X is a position vector defined by i ts coordinates (x,y,z). The point 

(T)a(z ),r|b(z ) , z ) is the center of gravity of the two dimensional region o o o 
ft(e,Ti/V) 0 {plane z = z } for each z , I. (v) < z <£0(z ) and for all e,n , and o o 1 — o— 2 o 
v. 

R(0,z,e,v) = r(z,v) (q(z,e) +ef(0,z)) 

where 
2TT 

0 
f(0,z)d0 = 0 for all z , min ^(v) <z<max %2 (v) 

,2 — 1 
h (Z) = 2? 

r2l\ 

Jo 
f2(0,z)d0 

q(z,G) = f 2 2 
1 - e h (z) 

and r(z,v) represents an admissible shape whose volume is VQ for all v , 

-I<_v<.+1. While r(z,0) represents the member of f corresponding to the value 
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of c considered. We assume that h (z) is a bounded function on 

min 1 ^ (v) j< z_< max l^Cv). This permits the existence of 6. 

Definition 3. 

E(e,n,v) = E(X(e,n,v)) . 

We assume that the functions r(z,v) , a(z) , b(z) , and f(9,z) are smooth enough 

so that the function E(£,r|/V) can be written as 

E(e,n,v) = 
*9(v) 
2 t 

^(v) 

27T 

e 

(c + (c +nC_)2 
¡N1/2 

E 
'l 2, 2 , 2 , 2 1 4N T̂l (a +b )R +-R d6dz 

2 2 where c = RQ + R , 1 U 

C2 = R Rz 

c_ = RA (a sin 6-b cos 8) + R(a cos 6+b sin 9) 3 o z z z z 

and is a twice continuously differentiable function of S,T\ , and v. 

Remark. The assumptions made imply that 

&2(v) 

J^(v) 
2 

a(z)r (z,v)dz = 

A2(v) 

'^(v) 
b(z)r2(z,v)dz = 0 

and 

f27T 

Jo 
f(6,z)cos 6 d6 = 

(2TT 

0̂ 
f(6,z)sin 6 d6 = 0 , for all z 

3. RESULTS OF A COMPUTATION. 

With the above assumptions, we have 

Theorem 1. 

1) E£(0,0,v) = E^(0,0,v) = 0 

2) E (0,0,0) = 0 
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3) E <0,0,v) = E£v(0,0,v) = Env(0,0,v) = 0 

4) E££(0,0,v) = 
'2TT 

r 

r 

*1| 

r 

z 

, 2 ? 
1 6 

r 
(l + r V / 2 z 

2 4 2 C(rf) ] - 2 c r V z >d9dz 

5) E (OfO,v) = 
•*2 

*1 

r 
<l + r2>3/2 

z 

, 2 2 0 2, 2 2 (a + b ) - 2cr (a + b ] z z dz 

Proof. 1) follows by direct calculation 

2) is an assumption 

3) E£^(0,0,v) = 0 by direct calculation while E^CCO^v) = E£v(0,0,v) = 

by differentiating the formula in 1) 

4) and 5) follows by direct calculation. 

Conjecture. It is surely true that Ew(0,0,0) > 0. We believe that if only 

axially symmetric perturbations are allowed the classical methods in the calculus 

variations would establish that ft(0,0,0) is a local minimum in a weak neighbor­

hood, the volume constraint notwithstanding. 

4. DISCUSSION. 

The £ perturbation changes the shape of cross sections z = constant while 

preserving their area and center of gravity. The r| perturbation preserves the 

shape of the cross sections z=const but shifts their centers of gravity. The v 

perturbation changes the areas of the cross sections of the admissible shape but 

preserves the axisymmetry. Theorem 1 shows that in a natural sense these three 

perturbations are always orthogonal thus stability is reduced to studying E££ , 

E , and E 
riri W 

5. RESULTS ABOUT E . 

Theorem 2. E££(0,0,0)>0 provided ck < 3/2 where k is the equatorial 

radius at ft . 
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Proof. 

E (0,0,0) > 2TT 
ce 

ri 

-I 

2 r 3 
L 2 1/2 

r(l + r ) 

2l 2 2cr h dz = 

= 4ïï : 2 r 
i 

3 
V 2 1/2 r(l + r ) z 

2> 
• 2cr j 

h2(Zl(r)) +h2(z2(r)) |dZ 
dr 

•dr 

where ẑ  (r) and z2̂ r̂  are t̂ le inverses of r(z,0) as indicated below. 

c 
d 

a 

x 

-z2(r) 

rd 

• z^r) 

v 

Since h is an arbitrary function, we must have 

3 
2 I/2 r(l + r ) z 

- - 2cr2 > 0 for all r , 0 < r < k 

The Euler-Lagrange equation is 

- (rf(z )) = 2h + cr2 , where f(x) r r r 
X 

q ( + o) 
; f *(x) = x 

1-X2 

-1 1 3 So z = f (hr + — cr ) . And r 4 

3 

v f 
1 + 

V 
A.-

,2X1/2 
2cr2 = 3h - -| cr2 .> 3h- 5/4 ck2 . 

Now 3h - r/4 ck > 0 iff ck < 3/2 where we have used the relationship 

hk + -j- ck"* = f(z^(k)) = 1. This completes the proof. 

The above theorem cannot locate the precise value of Cq since a definitely 

positive term is dropped in the first step of the proof. Indeed the above 

sufficient condition for e-stability, namely ck3<1.5 is stronger than the 
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necessary and sufficient condition obtained by Chandrasekhar C4] and Brown and 

Scriven C33, namely ck^<1.8. (N.B.: for comparison purposes, Chandrasekhar1s 

dimensionless parameter Z i s , in our notation, *̂"Ck̂  ; and Brown and Scriven's 

dimensionless parameter Z or fi2 is jcr*^ where r is given by = y T ^ ; 

recall that is the prescribed volume of the drop). 

The next theorem is the first step in determining the exact point at which £ 

instability occurs. 

Theorem 3. Normalize f by the condition that 
•2TT 

0 

vd 

xx 
f2(6,z)d6dz = 7T. 

Let 

Qn(g) = 
*2 

x 

rd 
2 3/2 (1 + r ) z 

(Crgin2 + (n2- 1) r 
2 1/2 (1 + r ) z 

- 2cr4 2_ g dz 

Suppose that 

inf Q-(g) > - 00 w/zere k = 
k 2 

g| 
*2 

v 
g dt = 1 

Then the inf E££(0,0,v) over normalized admissible f may be attained as the 

limit of a sequence of functions {f.} i = 1,2,3.. . where f.(6,z) = g.(z)cos 29 
n i i 

and 
¿2 

g±(z)dz = 1. 

Proof. We know that f(0,z) = 
oo 

n=2 
a (z)cos n9+b (z)sin n9. n n 

Now 

E££(0,0,v) = 7T 
oo 

n=l 
(Q(a)+Q (b)) . n n n n 

Let a = d_ a (z) ; h = e b (z) where d ,e are constants such that n n n n n n n n 

r 

v 

- 2 . a dz = n 

v 

s 
b dz = 1 . 
n 

So 
00 

n=2 
(Q (a ) + Q ( b ) ) = n n n n 

oo 

n=l 
(d2Q (a ) + e2Q (b )) n n n n n n where 

dv 

n=2 

2 2 (cT+e ) = 1 n n 

Let Q = inf Q (g) . 
gCk 

We have 
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Eee(0,0,v) >.i 
00 2 2 — — 1 (d +e ) Q > T T Q „ n n n 2 

n=2 
since 0 < 0 , for all n. This completes the proof. n~ n+1 

6. CONCLUSION. 

We have not obtained any concrete estimates about ri stability. We wish to 

point out that i t is expected that the shape of the perturbation which first 

induces ri instability will not be symmetric with respect to the xy plane. If 

r(z,v) = 1 - z2 , then we have a singular Sturm-Liouville problem which leads to 

Jacobi's differential equation. The first eigenfunction (after the constant 

function) is odd. The numerical work of Brown and Scriven [3D does not consider 

such perturbations while the experiments of T. Wang [73 produce shapes which appear 

to have resulted from such an instability. 
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