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THE FREE BOUNDARY OF A SEMILINEAR ELLIPTIC EQUATION 

by D. PHILLIPS (Purdue University) 

1. INTRODUCTION. 

We consider the Dirichlet problem 

(1.1) Au = Xf(u) in ft (A > 0) 

u = 1 in 8ft 

where ft is a bounded domain in 3Rn with 3ft €C2+0t, f(s) = 0 if sj< 0, 

f(s) = sPf(s) if s>0 (0<p<l) with f eC2(C0,°°)) and 0<m<.f£M<«>. 

A solution, û  , satisfies 0 <.û  < 1 in ft. Our objective is to study the 

geometric structure and location of the level set {u^ = 0}=N^. 

The motivation for this work stems from the theory of reaction-diffusion in 

porous pellets. The region ft plays the role of the pellet which is partially 

comprised of a catalyst. The function, u , represents the concentration of a 

gaseous impurity normalized to 1 on the boundary. And the parameter X i s a 

modeling coefficient related to the reaction rate. 

The pellet is a filter in the sense that the impurity reacts with the catalyst 

and is removed as the total fluid passes through. As a result N̂  is the portion 

of the pellet not utilized (see 111). 

One of our main results is the following: 

Theorem 1. If ft is a two-dimensional convex domain and f satisfies 

(1.2) f• (S) + > o for 0 < s < l 
1 - s — 
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then ( 1 . 1 ) has a unique solution for each A_>0. Moreover there is a ^ic>0 so 

that 

Nx = 4> if \<\it 

is a single point if A = 

is a convex domain if \>\it 

The process is assumed to be isothermal. This allows us to consider one 

equation as opposed to a coupled system in u and a temperature field t. 

A model found in the literature Cl3 for isothermal processes has 

f (s) = sP exp -V 
3 + l - 3s 

(V,3 constants, V>0 , 3 > 0 ) . 

This equation for f satisfies (1 .2 ) for a certain range of the parameters V and 

3. 

The research described in this paper has been done jointly with Avner Friedman 

C3II. 

2 . EXISTENCE AND UNIQUENESS RESULTS. 

From the structure of f(s) and the boundary conditions one can show that 

classical solutions to ( 1 . 1 ) exist (C , a = min(a,p)). This can be done by 

minimizing the functional 

( 2 . 1 ) J. (v) = 2 |Vv|2 + XF(v) dx 

F(s) = 
s 

0 
f (t)dt , subject to the b.c. v = 1 . 

With Au_> 0 , from the maximum principle we get u< 1 in Q. And since 

f(s) = 0 for s _ < 0 , 0_<u. As f(s) is only Holder continuous near s = 0 

(not Lipschitz), N may be nontrivial for a particular solution. 

The function f(s) is not assumed to be increasing and as a result ( 1 . 1 ) has 

in general more than one solution. Nonetheless (1 .2 ) is a sufficient condition for 
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uniqueness to the n-dimensional problem. This was shown in C2D and in L3l using 

a different argument. 

3. COMPARISON THEOREMS. 

Although a number of our results pertain to an arbitrary solution of (1.1), 

we are mainly interested in solutions that are elements of a family for which we 

have comparison theorems. Such families are minimums of (2.1), maximal, and 

minimal solutions of (1.1). 

Definition. A solution û  of (1.1) is a maximal solution if for any other 

solution û  , u^(x) <̂ û (x) in 

Theorem 2. Let ^ < A2 an^ UA-^A.^ ^e respective maximal (minimal) solutions. 

Then 

û  < û  on {u^ > 0} , 
2 1 2 

tu < u-v on {u-v > 0} , 
~A2 ~A1 ~A2 

and {u^ =0} ({u^ = 0}) is contained in the interior of 

{ux = 0} ({uj, = 0}) . 

An analogous comparison result is true for minimizers of (2.1) as well. 

The advantage of considering a branch of solutions with the monotonicity 

relations above is that if X^< X < \^ then 

(3.1) NX e<= NXCC NX 

Thus we are able to use and as barriers to obtain properties of 

3NX. 

4. ASYMPTOTIC ESTIMATES. 

207 



D. PHILLIPS 

For large values of the parameter A the reaction occurs near 8ft. We have 

the following theorem. 

Theorem 3 . There are positive constants AQ , yQ , and c so that if ond 

u, is any solution to (1.1) then 

(4.1) x e f t | d i s t ( x , a f t ) > 0̂ 
A A I xefi|dist(x(8fi) > ^0 

7\ 
1 _ £l 

Moreover i f x = h(t) is a local parameterization of dtt and V(t) is the 

normal pointing into then there is a function K(t) (depending on û ) so 

that 3N̂  can be represented in the form 

(4.2) x = h(t) +K(t)V(t) , 

with 

|K(t) - Y0, 
A' 

x i q 

| K ( t ) I c1+s < C . 

5. CONVEXITY PROPERTIES. 

The function û  grows away from the level set at a prescribed rate. 

In particular if we set 

g(u^(x)) = 
ux(x) 

'0 
ds 
2F(s) 

F(s) = A 
s 

'0 
f (t)dt 

then g(u^(x)) is Lipschitz in ft and in a weak sense 

|V(g(u,))| = 1 on 

Moreover if ft is convex one can show that (see C43) 

(5.1) |Vg(ux)| < 1 in ft . 

And with this i t can be shown that 
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Ag(u )̂ >. 0 in ft . 

Now let K be a smooth subdomain of ft with Hn~̂ (3K 0 3N^) = 0. 

We can apply Green's Theorem to Kfl {u^>0}. We get 

0<\ Ag(u,) = - I ldHn_1 + Vg(u,) • VdH11"1 . 
JKn{uA>0} «'9NxnK JKn{ux>0} 

Using (5.1) we find that 

HN_1ONAnK) < Hn_1(3Kn {ux> 0}) . 

That is 3N^ minimizes surface area subject to variations on oneside. Such a 

boundary can be considered a surface of generalized positive mean curvature. When 

ft is two-dimensional this becomes a statement of convexity. 

We have the following theorem: 

Theorem 4 . If ft is convex, ftcrjR , and u-̂  any solution to ( 1 .1 ) then each 

component of N̂  with nonempty interior is a convex domain. 

We can now describe the basic idea behind theorem 1. From section 1 (assuming 

( 1 . 2 ) ) the map, A •+ u^(x) , is well defined. Using ( 3 . 1 ) we see the sets, N̂  , 

are nested. One then must show that the map, A -*- , deforms continuously. 

Using this and the fact that for ^2L^Q , is a convex domain (theorems 3 and 

4) one can show that N̂  is convex as long as int(N^) ^ (J). Setting 

Â  = inf{A|int(N^) £ cf> for A > A} 

one then proves that NT, consists of one point. 

Analogous theorems are shown for the Robins condition 

+ y(u- 1) = 0 on 3ft (U > 0) 

instead of u = 1 on 3ft. 
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