Astérisque

D. PHILLIPS The free boundary of a semilinear elliptic equation

Astérisque, tome 118 (1984), p. 205-210

http://www.numdam.org/item?id=AST_1984__118__205_0

© Société mathématique de France, 1984, tous droits réservés.

L'accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Société Mathématique de France Astérisque 118 (1984) p.205 à 210.

THE FREE BOUNDARY OF A SEMILINEAR ELLIPTIC EQUATION

by D. PHILLIPS (Purdue University)

1. INTRODUCTION.

We consider the Dirichlet problem

(1.1) $\Delta u = \lambda f(u)$ in Ω ($\lambda > 0$)

u = 1 in $\partial \Omega$

where Ω is a bounded domain in \mathbb{R}^n with $\partial \Omega \in \mathbb{C}^{2+\overline{\alpha}}$, f(s) = 0 if $s \le 0$, $f(s) = s^p \hat{f}(s)$ if s > 0 $(0 with <math>\hat{f} \in \mathbb{C}^2([0,\infty))$ and $0 < m \le \hat{f} \le M < \infty$.

A solution, u_{λ} , satisfies $0 \le u_{\lambda} < 1$ in Ω . Our objective is to study the geometric structure and location of the level set $\{u_{\lambda} = 0\} \equiv N_{\lambda}$.

The motivation for this work stems from the theory of reaction-diffusion in porous pellets. The region Ω plays the role of the pellet which is partially comprised of a catalyst. The function, u, represents the concentration of a gaseous impurity normalized to 1 on the boundary. And the parameter λ is a modeling coefficient related to the reaction rate.

The pellet is a filter in the sense that the impurity reacts with the catalyst and is removed as the total fluid passes through. As a result N_{λ} is the portion of the pellet not utilized (see [1]).

One of our main results is the following:

Theorem 1. If Ω is a two-dimensional convex domain and f satisfies

(1.2)
$$f'(s) + \frac{f(s)}{1-s} > 0$$
 for $0 < s \le 1$

D. PHILLIPS

then (1.1) has a unique solution for each $\lambda \ge 0$. Moreover there is a $\lambda_* > 0$ so that

$$\begin{split} \mathbf{N}_{\lambda} &= \phi & \text{if } \lambda < \lambda_{\star} \\ \mathbf{N}_{\lambda} & \text{is a single point if } \lambda &= \lambda_{\star} \\ \mathbf{N}_{\lambda} & \text{is a convex domain if } \lambda > \lambda_{\star} \end{split}$$

The process is assumed to be isothermal. This allows us to consider one equation as opposed to a coupled system in u and a temperature field t.

A model found in the literature [1] for isothermal processes has

$$f(s) = s^{p} \exp\left(\frac{-\nu}{\beta+1-\beta s}\right) \quad (\nu,\beta \text{ constants}, \nu > 0, \beta > 0).$$

This equation for f satisfies (1.2) for a certain range of the parameters ν and $\beta.$

The research described in this paper has been done jointly with Avner Friedman [3].

2. EXISTENCE AND UNIQUENESS RESULTS.

From the structure of f(s) and the boundary conditions one can show that classical solutions to (1.1) exist $(C^{2+\alpha}, \alpha = \min(\overline{\alpha}, p))$. This can be done by minimizing the functional

(2.1)
$$J_{\lambda}(\mathbf{v}) = \int_{\Omega} \left(\frac{1}{2} |\nabla \mathbf{v}|^2 + \lambda \mathbf{F}(\mathbf{v})\right) d\mathbf{x}$$

 $F(s) = \int_{0}^{s} f(t) dt , \text{ subject to the b.c. } v = 1 .$

With $\Delta u \ge 0$, from the maximum principle we get u < 1 in Ω . And since f(s) = 0 for $s \le 0$, $0 \le u$. As f(s) is only Hölder continuous near s = 0 (not Lipschitz), N may be nontrivial for a particular solution.

The function f(s) is not assumed to be increasing and as a result (1.1) has in general more than one solution. Nonetheless (1.2) is a sufficient condition for

FREE BOUNDARY OF AN ELLIPTIC EQUATION

uniqueness to the n-dimensional problem. This was shown in [2] and in [3] using a different argument.

3. COMPARISON THEOREMS.

Although a number of our results pertain to an arbitrary solution of (1.1), we are mainly interested in solutions that are elements of a family for which we have comparison theorems. Such families are minimums of (2.1), maximal, and minimal solutions of (1.1).

<u>Definition</u>. A solution \overline{u}_{λ} of (1.1) is a maximal solution if for any other solution u_{λ} , $u_{\lambda}(x) \leq \overline{u}_{\lambda}(x)$ in Ω .

<u>Theorem 2</u>. Let $\lambda_1 < \lambda_2$ and $\overline{u}_{\lambda_1}(\underline{u}_{\lambda_1})$ be respective maximal (minimal) solutions. Then

$$\overline{u}_{\lambda_2} < \overline{u}_{\lambda_1}$$
 on $\{\overline{u}_{\lambda_2} > 0\}$,

$$\underline{u}_{\lambda_2} < \underline{u}_{\lambda_1}$$
 on $\{\underline{u}_{\lambda_2} > 0\}$,

and $\{\overline{u}_{\lambda_1} = 0\}$ ($\{\underline{u}_{\lambda_1} = 0\}$) is contained in the interior of

$$\{\overline{u}_{\lambda_2} = 0\} \quad (\{\underline{u}_{\lambda_2} = 0\})$$

An analogous comparison result is true for minimizers of (2.1) as well.

The advantage of considering a branch of solutions with the monotonicity relations above is that if $\lambda_1 < \lambda < \lambda_2$ then

(3.1)
$$N_{\lambda_2} \subset N_{\lambda} \subset N_{\lambda_2}$$

Thus we are able to use N_{λ_2} and N_{λ_1} as barriers to obtain properties of $\partial N_{\lambda}.$

4. ASYMPTOTIC ESTIMATES.

D. PHILLIPS

For large values of the parameter $\,\lambda\,$ the reaction occurs near $\,\partial\Omega\,.$ We have the following theorem.

Theorem 3. There are positive constants λ_0 , γ_0 , and c so that if $\lambda \ge \lambda_0$ and u_{λ} is any solution to (1.1) then

$$(4.1) \quad \left| \mathbf{x} \in \Omega \left| \operatorname{dist}(\mathbf{x}, \partial \Omega) \right| > \frac{\gamma_0}{\sqrt{\lambda}} + \frac{c}{\lambda} \right| \subset \mathbb{N}_{\lambda} \subset \left| \mathbf{x} \in \Omega \right| \operatorname{dist}(\mathbf{x}, \partial \Omega) \right| > \frac{\gamma_0}{\sqrt{\lambda}} - \frac{c}{\lambda} \right|$$

Moreover if x = h(t) is a local parameterization of $\partial\Omega$ and v(t) is the normal pointing into Ω then there is a function K(t) (depending on u_{λ}) so that ∂N_{λ} can be represented in the form

(4.2)
$$x = h(t) + K(t)v(t)$$

with

$$\begin{split} |\kappa(t) - \frac{\gamma_0}{\sqrt{\lambda}}| < \frac{c}{\lambda} , \\ |\kappa(t)|_{c^{1+\delta}} < c . \end{split}$$

5. CONVEXITY PROPERTIES.

The function $\,u_\lambda^{}\,$ grows away from the level set $\,N_\lambda^{}\,$ at a prescribed rate. In particular if we set

$$g(u_{\lambda}(x)) = \int_{0}^{u_{\lambda}(x)} \frac{ds}{\sqrt{2F(s)}} , F(s) = \lambda \int_{0}^{s} f(t) dt$$

then $g(\boldsymbol{u}_{\boldsymbol{\lambda}}\left(\boldsymbol{x}\right))$ is Lipschitz in $\boldsymbol{\Omega}$ and in a weak sense

$$|\nabla(g(u_{\lambda}))| = 1$$
 on ∂N_{λ} .

Moreover if Ω is convex one can show that (see [4])

(5.1)
$$|\nabla g(u_{\lambda})| \leq 1$$
 in Ω .

And with this it can be shown that

$$\Delta g(u_{\lambda}) \geq 0$$
 in Ω

Now let K be a smooth subdomain of Ω with $H^{n-1}(\partial K \cap \partial N_{\lambda}) = 0$. We can apply Green's Theorem to $K \cap \{u_{\lambda} > 0\}$. We get

$$0 \leq \int_{K \cap \{u_{\lambda} > 0\}} \Delta g(u_{\lambda}) = - \int_{\partial N_{\lambda} \cap K} 1 dH^{n-1} + \int_{K \cap \{u_{\lambda} > 0\}} \nabla g(u_{\lambda}) \cdot v dH^{n-1}$$

Using (5.1) we find that

$$H^{n-1}(\partial N_{\lambda} \cap K) \leq H^{n-1}(\partial K \cap \{u_{\lambda} > 0\})$$

That is ∂N_{λ} minimizes surface area subject to variations on oneside. Such a boundary can be considered a surface of generalized positive mean curvature. When Ω is two-dimensional this becomes a statement of convexity.

We have the following theorem:

<u>Theorem 4</u>. If Ω is convex, $\Omega \subset \mathbb{R}^2$, and u_{λ} any solution to (1.1) then each component of N_{λ} with nonempty interior is a convex domain.

We can now describe the basic idea behind theorem 1. From section 1 (assuming (1.2)) the map, $\lambda \rightarrow u_{\lambda}(x)$, is well defined. Using (3.1) we see the sets, N_{λ} , are nested. One then must show that the map, $\lambda \rightarrow N_{\lambda}$, deforms continuously. Using this and the fact that for $\lambda \geq \lambda_0$, N_{λ} is a convex domain (theorems 3 and 4) one can show that N_{λ} is convex as long as $int(N_{\lambda}) \neq \phi$. Setting

$$\lambda_{\star} = \inf\{\lambda | \inf(N_{\widetilde{\lambda}}) \neq \phi \text{ for } \widetilde{\lambda} > \lambda\}$$

one then proves that $N_{\lambda_{\perp}}$ consists of one point.

Analogous theorems are shown for the Robins condition

$$\frac{\partial u}{\partial v} + \mu(u-1) = 0$$
 on $\partial \Omega$ ($\mu > 0$)

instead of u = 1 on $\partial \Omega$.

D. PHILLIPS

REFERENCES

- [1] R. ARIS, The Mathematical Theory of Diffusion and Reaction in Permeable Catalysts, Oxford, Clarenden Press, 1975.
- [2] D.S. COHEN and T.W. LAETSCH, Nonlinear boundary value problems suggested by chemical reactor theory, J. Diff. Eqs. 7 (1970), 217-226.
- [3] A. FRIEDMAN and D. PHILLIPS, The free boundary of a semilinear elliptic equation, to appear in Trans. Amer. Math. Soc.
- [4] J. MOSSINO, A priori estimates for a model of Grad-Mercier type in plasma confinement, Applicable Analysis <u>13</u> (1982), 185-207.

Daniel PHILLIPS Department of Mathematics Purdue University West Lafayette, Indiana 47907 U.S.A.