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THE INFLUENCE OF BOUNDARY GEOMETRY ON 

CAPILLARY SURFACES WITHOUT GRAVITY 

by R. FINN (Stanford University) 

1. For given boundary geometry, the form of a capillary free surface can 

change strikingly, depending on whether or not an external force (gravity) field 

is present. We consider the historically important example of a cylinder Z of 

homogeneous material, closed at one end by a base of general section ft and partly 

filled with liquid. We seek to characterize those configurations for which liquid 

can cover ft and be in mechanical equilibrium. According to the Principle of 

Virtual Work, the associated energy functional 

(1) E = Q(S - $S* + 2HV) 

will be stationary in equilibrium configuration. Here S is the (free) fluid 

surface area, O the surface tension, S the area of wetted surface on Z , a$ 

the adhesion coefficient of fluid to cylinder, 20H a Lagrange multiplier arising 

from the constraint that the volume V of fluid is prescribed. Formal variational 

procedures lead to a geometrical problem: to find those sections ft such that 

there will exist a surface S of constant mean curvature H , which covers ft and 

meets the cylinder walls Z in the constant angle y = cos 1 3 (measured between 

S and ft ) . Our principal interest i s directed toward configurations for which 

the energy will be minimized, and hence - in view of a theorem of Miranda C133 -

we consider only surfaces that can be described non-parametrically by a function 

z = u(x,y) over ft. The variational condition applied to (1) then leads to an 
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analytical formulation 

(2) div Tu = 2H = Q" COS Y 

in Q with 

1 (3) Tu = 
d d Du 

2 Du 
and 

(4) V • Tu = cos y 

on E = 3ft. Here V is outer directed normal on E. We use the symbols E , Q , 

. . . both to denote a set and to denote i ts measure. 

We may always assume 0<Ly<i\/2. We assume E to be smooth except for a 

finite number of isolated corners P with interior angle 2a (<_ 2TT) . At P the 

condition (4) is not prescribed. It can be shown that a solution, whenever one 

exists, is nevertheless uniquely determined up to an additive constant; no growth 

condition at P need be imposed. 

2. It was shown by Concus and Finn C23 that solutions of (2-4) may not exist, 

even for convex analytic E ; thus the structure of the solution set is quite 

different from what happens in a gravity field. The nonexistence is not an 

idiosyncrasy of the equations, i t has been verified experimentally. 

If a corner P appears, then no solution can exist if a + Y < ; however, 

solutions for which a + y = TT/2 are explicitly known 121. 

3. The question of determining natural geometrical conditions on Q for 

existence of a solution was addressed by Giusti and Weinberger C12], by Chen Cl3, 

by Finn C53 and by Finn and Giusti C103, with limited success. We describe here 

another approach to the problem, that has led to more inclusive results (Finn 
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C6, 7, 83, Conçus and Finn C3, 41, Tarn C173). The underlying idea contacts on an 

observation of Conçus and Finn L2l, that whenever a solution exists, the functional 

(5) *Cn = T - E* cos y + cos y 

must be positive for any curve (or system of curves) Y that cuts a subregion Q* 

from Q and subarc E* from E (see Figure 1). 

r 

r 

£1* 

rs 

r 

E* rd 

Figure 1 

Giusti Ell] showed that whenever there exists £>0 so that the modifi* 

functional 

(6) $eCH = ( l - e ) r - Z* cos Y + (1 (d + u)> rd 

is positive for all V as above, then a capillary surface must exist. In the 

special case y = 0 , he showed that $ [n >0 is already sufficient C12D. 

4. In order to see how these requirements relate to the geometry of (1 , i t is 
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natural to seek those T that minimize the respective functionals. If we compare 

(5) with (1), we see a remarkable analogy, which shows that the problem of 

minimizing (5) is simply that of finding a capillary surface in one lower 

dimension. The only differences are a) the mean curvature is now prescribed in 

advance =̂ ^ cos and b) the bounding walls are no longer cylindrical, so that 

the problem must now be studied in a parametric formulation. The structure of the 

problem tel ls us, however, what to expect, and the result is proved in Lll: A 

minimizing set Y , whenever one exists 3 consists of circular arcs of radius 

Ry = E CoS y * If ^ 0 •» then F consists of a finite number of disjoint arcs3 

each of which either meets Z at a point P , or else intersects I with angle 

y 3 measured on the side of Y opposite to that into which its curvature vector 

points. No arc of Y can enter a point P at which 2a < TT 3 and no arc of Y 

can include a semicircle. 

5. It can happen that no minimizing set exists. Whenever that happensthere 

holds $ t n >0 3 all Yczft C7D. Further, i t is shown in Ul that if at every 

corner P there holds a + y>7r /2 , then there exists e>0 such that $ CT3 > 0 > 

all r c j ] . Under this condition, we obtain: 

The nonexistence of a solution to the subsidiary variational problem for $LT1 

is a sufficient condition for the existence of a solution to the original 

(capillary) variational problem for Ets3. 

The nonexistence of a minimizing set can be verified directly in many 

particular cases (e.g., i t is easy to see that i t holds in any parallelogram for 

which the smaller angle satisfies a + Y > n/2 ) . It also holds in any case for 

which the second variation on any extremal V can be made negative. In Lll this 

second variation is calculated explicitly. In polar coordinates r , 9 referred 

to the center of an arc Y , we find in terms of a variation r = r| , 
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(7) I[Tfl s i . Q + ^ X [ ( , _ki _A_)n2 + (, .k2 . A _ ) n 2 ] 

with 

(8, Q - ^ | e i ( n ' 2 - n 2 > 6 -

Here the indices 1, 2 refer to the two points of contact with Z , and k̂  , k̂  

are the curvatures of £ at those points, considered as positive when the 

curvature vector points into ft. 

Under the constraint + Tl2 = 1 , the stationary points for $ are the 

rigid motions 

(9) n = a cos (6 - Q) 

where a , a. satisfy 

A0) 2 SLN 20 (K _K , RY 
UU' cos 20 +cos 26 ( 2 V sin Y 

(11) *2 = 1 + cos 20 cos 26 ' 6 = e2-ei • 

These equations admit, in general, four distinct solutions. 

For any choice of 0 , a , we find from (7), (9) 

(12) 4r iCnH = -sin 26 cos 20 + cot Y|COS2(<5 - 0) [l - k0—^—1 + cos2 (6 + 0) [l - k. — ^ — - l &2 1 1 [ 2 cos Y J L * COS Y J 

We find immediately the general result: if y>0 and if for every strict subaro 

T of a semicircle of radius R̂  that meets Z in equal angles y (measured 

exterior to the semicircle) the relation (12) with one of the four a from (10) 

yields a negative I ^ then there exists a solution of (2-4). 

Further sufficiency criteria appear in Lll. These criteria are useful in many 

particular cases, although for a general configuration they do require an 

investigation of the possible extremal configurations. The criterion can be made 
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a priori in the case of a convex 0, , as then kj , k2 >̂ 0 and thé angle <5 can 

be estimated in terms of the maximal boundary curvature. We obtain the result 111 : 

Suppose the boundary curvature k satisfies 0 <.km <.k£kM <_°°. Then a solution of 

(2-4) exists whenever either Ryk̂ _< 1 or 

(13) min I . Sin Y . cos y 1 + Ink - cos Y | > 0 . 
) V M " C O S Y I Hm I 

The particular case of a trapezoidal section is discussed in some detail in 

C6D, where an anomalous behavior that had been observed for that section is 

clarified. 

6. The extremals for the subsidiary problem have a curious property C4] : 

Suppose there is a rigid displacement r\ of an extremal V s for which &y - 0 

at both points of contact with E. Then iLr\l = 0 ; further3 r\ is an extremal 

for the functional I * in the sense that when r\ is expressed in the form (9) the 

parameters o 3 a satisfy (10) and (11). 

7. It can be shown that to every section Q there corresponds an angle YQ 

in £o, j j such that if y^<T\/2 , a solution of (2-4) exists for all Y > YQ , 

while if y > 0 , then no solution exists for Y <Y • Concus and Finn Z3l studied 'o ' 'o 
the case Y = Y and obtained the result: o 

Suppose 0 < YQ < "J * If ^ ^s toothy or if a + YQ > "j at all corners3 then 

no solution exists at y % If one or more comers appear at which ot + YQ = "J •> 

then a solution may or may not exist, depending on the geometry. 

It may at first seem surprising that a surface should exist when E is not 

smooth and fail to exist when £ i s smooth. However, the matter can be viewed 

from another point of view: If E is smooth, the capillary surface disappears in 

a continuous way as Y ^ Y , while if E has one or more corners, the surface 
o 

can disappear in a discontinuous way. 
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In every case for which the surface fails to exist at YQ , the surfaces 

corresponding to a sequence y l YQ can ê normalized so that at YQ a limiting 

configuration is obtained, of a solution surface defined over a part ftQ of ft 

bounded in part by extremals T of the subsidiary problem, and which is asymptotic 

at T to vertical circular cylinders of radius over V. If ftQ = <(> then 

the limiting surface consists of one or more vertical circular cylinders. 

We note that in the above result, the case a+YQ < "J cannot occur. This 

follows from the general result (§2 above) that no solution can exist when 

a + Y < "J holds at any corner. If a + y = — at sgrae corner, then the positivity 

of $ (§3 above) fails for every £> o. 

8. It is desirable to characterize those configurations with a+YQ = y , for 

which a solution will exist. A simple example is obtained by choosing ft to be a 

regular polygon. A lower hemisphere whose equatorial circle circumscribes ft then 

provides an explicit solution of (2-4), with a +y = — at each corner. Larger 

values of y are obtained by increasing the radius of the hemisphere, while for 

smaller y there is no solution (discontinuous disappearance). 

A general configuration does not seem to lend itself to a comparably simple 

discussion; however, Finn C8D proved the following result: Suppose that at each 

comer P there is a lower hemisphere of radius which in some neighborhood 

of P meets the vertical cylinder walls over I in angles not larger than YQ« 

Suppose also that $Cn > 0 for all admissible reft. Then there exists a solution 

u(x) of (2-4) in ft. If u(x) is normalized (e.g., so that /^u dx = 0 )y then 

u(x) <M<°° in ft 3 depending only on the geometry and on the physical constants. 

The bounds are (in principle) explicit. 

This result was strengthened in important ways by Tarn C17], who also extended 

i t to any number of dimensions. Tarn's proof proceeds along quite different lines, 

using an indirect argument based on the notion of generalized solution introduced 

163 



R. FINN 

by Miranda C143. 

Siegel C153 studied the behavior of solutions u(x;g) in a gravity field g , 

directed toward the base through the fluid, as g 0. He showed that if E is 

smooth^ if y > 0 j and if there exists a solution v(x) of (2-4) in ft 3 then 

(after normalization by additive constants) | u - v | = 0(g) in ft. Later Tam [17] 

weakened the restriction on E so as to allow corners, and showed that if Y = 0 , 

then two different types of behavior can occur, depending on whether or not 

vEL^ (ft) . Tam also provides new information on what happens in the case y - y . 
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