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UNIQUENESS OF MINIMAL POINT AND ITS LOCATION OF 

CAPILLARY FREE SURFACES OVER CONVEX DOMAIN 

by J.-T. CHEN (National Taiwan University) 

1. INTRODUCTION. 

Let 12 be a convex domain in the plane, u be the solution of (1.1) or 

(1.2), we prove in section 2 that the minimal point is unique for a l l contact angle 

y, Q<-Y<'2 anc* estimate in section 3 for the location of the minimal point when 

y = 0. 

(1.1) 
|div Tu = H in ft 

) Tu • V = cos y on 9ft 

(1.2) 
J div Tu = Ku in ft 

J Tu • v = cos y on 9ft 

where 9ft is the boundary of ft, V is the unit outer normal of 9ft 

Tu = < 
u 

+ U2 + u2 A/I + u2 + u2 

K and y are constants, 0<_Y< "j • 

In case of y = 0 Chen and Huang C23 showed that the solution of (1.1) is 

s t r ic t ly convex over a convex domain, Korevaar C83 showed that the solution of 

(1.2) i s convex over a s t r ic t ly convex domain. In case of y £ 0 , solutions of 

(1.1) and (1.2) may fail to be convex, counter examples were given by Finn 151 and 

Korevaar C83. 
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2. UNIQUENESS OF THE MINIMAL POINT. 

Lemma 2.1. Let v be the one dimensional solution of (1.1) or (1.2) in a strip 

-a£x_< a , T be any convex curve defined in -aj<x£a , v be the downward unit 

normal of V. Then for any y, 0£y< j , the set 

{P e T | TV • v < cos y at p} 

is a connected subarc of T. 

Lemma 2.2. Let uQ be the solution of (1.1), with the volume constraint 

| uQdxdy = 0 , 

or the solution of (1.2) corresponding to the contact angle yQ. Let Yn̂ YQ and 

un be the solutions of (1.1), with the same constraint, or (1.2) corresponding to 

the contact angle Yn- Then there is a subsequence un̂  converge uniformly to 
2 

uY гn C (K) for every compact subset K of ft. 
T0 

Sketch of the proof: 

Step I . un is uniformly bounded on every compact subset K of ft by using 

comparison principle for (1.2), or by using a theorem of Giusti C83 for (1.1). 

Step I I . I^unl is uniformly bounded on K by using a theorem of Gerhardt C63 for 

equation (1.2) or a theorem of Serrin C93 for equation (1.1). 

Step I I I . I t follows from step II that un is uniformly bounded in C1,a(ft) and 

then apply the interior Schander estimate to obtain a uniformly C ,̂0t(ft) bound. 

The existence of convergent subsequence un^ in C (K) then follows from Arzela-

Ascoli theorem. 

Theorem 2.3. Let ft be a convex domain in the plane such that (1.1) or (1.2) has 

solution for y = 0. Then for any y , 0<_y < ^ , the solution of (1.1) and (1.2) 

corresponding to the contact angle y cannot have more than one minimal point. 

Proof. Since y>0 , u i s increasing near the boundary along the normal 

direction of 3ft , therefore the minimum point must happen in the interior of ft. 
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Suppose there is a y ̂  > 0 such that Uy has more than two minimal points 

in ft , when y is decreased the surfaces will change smoothly in C (K) on any 

compact set Kcl] (Lemma 2.2). However, by the theorem of Chen and Huang ClD for 

(1.1) or Korevaar [2D for (1.2), the surface is convex for y = 0 , thus there 

exists a marginal number YQ such that u^ is convex for a l l 0_<y<.Y0 and 

nonconvex for Yn<Y — Yi • Since u converges to uv uniformly in C (K) for 

every compact subset KcJl as Y ^ YQ and since each u^ is nonconvex, there 

exists a point P in the graph of uv such that u_ has zero Gaussian 

curvature at P and whose tangent plane at P is horizontal, le t v be the one 

dimensional solution of (1.1) or (1.2) which is vertical on the defining str ip and 

is tangent to u at P , we may adjust the direction of the str ip so that the 

principle direction of v and u.. at p are coincident. Since v and u^, 

have the same Gaussian curvature and mean curvature at P and the principle 

direction of them are coincident, by Euler formula, they have the same curvature 

alone every direction, that is they are second order contact at P. In other 

words, uY - v together with i t s f i rs t and second derivative vanish at P. 
r0 

However uv - v satisfies an e l l ip t ic partial differential equation in ft , the 
Y0 

zero level curves divide ft into at least six subregions such that uv - v 
Y0 

changes sign on each adjacent subregion, then by Lemma 2.1, comparison principle 

and the argument as in L2l we get a contradiction. 

Corollary. Let ft be a convex domain and let k(x) be the curvature of 3ft at 

x £ 3ft suppose k(x) >H for all x £ 9ft. Then the solutions of (1.1) can not have 

more than one minimal point. 

Proof. The conditions of ft imply the solutions of (1.1) exists and bounded for 

Y = 0. (See Chen C3] and Giusti 111) . 

3. LOCATION OF THE MINIMAL POINT. 

We will give an estimation for the location of the minimal point for solution 
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(1.1) or (1.2) for y = 0. 

Let 0 be a fixed angle, O_<0<TT , L(0) be the family of parallel chords 

in ft of slope tan 0 , M(0) be the trace of the mid-points of these chords, and 

S(0) be the smallest closed strip perpendicular to L(0) which contains M(0) , 

with these notations we can state our theorem as follows. 

Theorem 3.1. Let u be the solution of (1.1) or (1.2) corresponding to y = 0. 

Then u takes its minimal value in the set s fl S(0). 
0 < 0 < TT 

Proof. Suppose that u takes i t s minimal value at p£S , the p£S(0) for some 

0. Let £ be the straight line pass through P and is parallel to the strip 

S(0) , let ft* be the reflection of ft with respect to £. (Figure 1) and u' 

be the reflection of u with respect to the vertical plane contains % , then u' 

is the solution of (1.1) or (1.2) in ft' with y = 0. Consider u and u' on 

the convex set G = ft Oft1 and let r = 9G fl ft' , I" = 9G fl ft. 

Then we have 

(3.1) 
jdiv Tu - H in G 

I Tu • V = 1 on r 

(3.1) 
|div Tu' = H in G 

| Tu' • V = 1 on r ' 

or 

(3.2) 
J div Tu = Ku in G 

I Tu • V = 1 on T 

(3.2) ' 
div Tu' = Ku* in G 

Tu' • V = 1 on r' 

Since u and u1 take minimum at P , the tangent planes of u and u' at 

p are horizontal, and since u' is the reflection of u with respect to the 

vertical plane pass through p , we have u'(p) = u(p). Hence u' contacts u 

140 



UNIQUENESS OF MINIMAL POINT OF CAPILLARY SURFACES 

at p. Thus the zero level curves of the difference function u-u' divides the 

neighborhood of P into at least four subregions on which u-u' changes i t s 

sign on the adjacent subregions, say + , - , + , - on R̂ , R̂ , R̂ , R̂  (Figure 2). 

By maximal principle, the zero level curves of u-u' cannot meet in the interior 

of G , thus each R̂  must contains 3G , moreover by using the comparison 

principle to (3.1) and (3.1)', or (3.2) and (3.2)', one finds that the sub-

boundaries R1 n3G and R̂  0 8G cannot l ie inside T* completely, and similarly, 

R2 fl 3G and R-̂  fl 3G cannot l ie inside T completely. But this is impossible 

since R̂ , R̂ / R̂  and R̂  are adjacent regions. This complete the proof of the 

theorem. 

Remark. If there were more than four subregions, say R̂ , R^, R2n' n>2 , 

on which u-v takes sign as +, -, + , One will get more subregions 

contradict to the comparison principle. 

The following Theorem is a consequence of the uniqueness theorem of minimal 

point. 

Theorem 3.2. If has two axis of symmetry, then the minimal point lies on the 

intersection of the axis of the symmetry for any solution of (1.1) or (1.2) with 

any contact angle y , 0 <_y < -r- . 
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(contradiction happen on R3) 
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