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VARIATIONAL PRINCIPLES FOR EQUILIBRIUM FIGURES OF FLUIDS 

WITHOUT SYMMETRY ASSUMPTIONS 

by M.S. BERGER (University of Massachusetts) 

1. INTRODUCTION. 

In this article we shall discuss some of the classic problems of nonlinear 

analysis and applied mathematics that deal with rotating figures of equilibrium 

under various physical forces. 

I wish to point out four classic problems in this connection. The first 

problem concerns the question of rotating figures of equilibrium held together 

under gravitational forces. This problem dates back to Newton, MacLaurin, Jacobi, 

Poincaré, and Lichtenstein. The problem arose as an attempt to explain the shape 

of astronomical objects such as stars and the planets of our own solar system. 

This study involved very subtle problems in mathematics and we shall discuss a few 

of these in the sequel. The second classic problem is closely related to the 

first. It is the problem of rotating figures of equilibrium under surface tension 

with no gravitational forces acting. This problem dates back to the classic 

studies of J. Plateau and I refer to i t as the second Plateau problem in contra­

distinction to finding minimal surfaces on a given wire frame. This problem has 

recently become very important because of the important experimental work done at 

JPL in Pasadena by a group headed by Taylor Wang and the detailed numerical studies 

of Scriven and Brown. The third classic problem in this connection is once more 

rotating figures of equilibrium, but this time with the combined action of surface 
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tension and electric charge. This is the so-called "liquid drop model" of Wheeler 

and Bohr that arises in nuclear fission. The fourth classic problem concerned the 

steady vortex motion of an ideal fluid under various external forces. In this 

problem the inner motion of the fluid becomes extremely important and this problem 

dates back to Helmholtz and Riemann. 

2. THE MATHEMATICAL SETTING. 

The mathematics associated with these problems has never been clarified. 

However, i t is clear that each of them can be treated by the calculus of variations 

and that because multiple solutions of interesting geometric structure are known to 

arise, i t is clear that these problems are a challenge for the modern theories of 

analysis and the calculus of variations. 

Before proceeding i t is a good idea, I believe, to review the physical forces 

and energies that are associated with the problems. First, there is the notion of 

rotation of a fluid. This rotation is generally measured by a parameter of either 

angular velocity or angular momentum. The next two physical quantities involved 

are gravity and electric charge acting on the fluid. These two quantities differ 

only in sign and thus can be treated from a unified point of view. Another 

physical force involved is surface tension which is taken as proportional to 

surface area of the fluid involved. This surface area leads to new classes of 

variational problems when closed surfaces of fluids are considered. Next, there is 

the internal motion of the fluid itself . This is generally measured by i ts 

vorticity. Finally, there is the distinction between compressible and incompres­

sible fluids which becomes very important in contemporary astronomy. 

Associated with my studies in this area are two closely related axioms. The 

first can be written succinctly. 

Axiom A. 

(i) Good Science implies good mathematics (but not necessarily conversely). 
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(ii) Good Modern Science implies good variational problems. 

Axiom B. 

If one cannot solve a hard problem, i t is helpful to solve an easier one by general 

methods that might generalize. 

The mathematical aspects of the four nonlinear problems discussed above are 

classic and I wish to describe the key issues raised. First, these problems are 

defined by nonlinear ell iptic partial differential equations and they are doubly 

nonlinear because the boundaries of the fluids involved are not known a priori. 

Such problems are global free-boundary problems. The calculus of variations 

aspects are also very interesting. Potential theory and Hilbert space approaches 

are very useful for dealing with problems involving fluids under gravitational and 

vorticity forces, whereas geometric measure theory and its modern variants seem to 

be essential to handle surface tension effects. Parameter dependence is very 

crucial in all the four problems raised because the equilibrium shape observed 

depends on the magnitude of the rotation involved. This effect gives rise to 

bifurcation phenomena as is well known, but i t also leads to new ideas and global 

linearization; for example, the phenomenon I call "nonlinear desingularization" 

(see C33) . A fifth important mathematical consideration is the classification of 

the free boundaries observed. This leads to fascinating questions of global 

geometry and topology. A sixth key point here is that the critical points of a 

functional associated with equilibrium figures are often of saddle point type or at 

least not absolute minima. This is because various physical quantities are 

conserved in the associated fluid problem. Finally, all these fluid problems 

involve consideration of stability. Here, new ideas are needed and I shall outline 

one that I have recently discovered in a special case. 

The special case I have in mind (Example 1 below) is easily described. It is 

related to a problem in pure geometry and requires us to find the simplest closed 

geodesic on an ovaloid in three dimensions that has no self-intersections. In 
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keeping with Axiom B I claim this problem is a simple version of the second classic 

problem involving fluid tension as mentioned at the beginning of this article. My 

reasons for saying this are as follows. First, the form of the closed geodesic is 

not known in advance but has a closed geometric shape. Secondly, the functional 

to be minimized is of (surface tension) surface area type, namely arc length. As 

we shall see, this variational problem possesses a volume constraint and the 

desired solution of the original variational problem is of saddle point type. All 

the arguments that I shall give for this problem can be extended to higher 

dimensions. Finally, determining closed geodesies on an ovaloid is a problem with 

multiple solutions of high complexity and we wish to find the simplest one, namely, 

"the one of shortest nonzero length" and to determine i ts stability. More 

formally, we note the following examples (mentioned in the sequel) relating to the 

classic problems mentioned above. Example 2 shows that for vortex ring problems, 

axisymmetry assumptions seem necessary at the moment for any possible analytical 

program. On the other hand, examples 3 and 4 show that for rotating figures of 

equilibrium under gravity an easier situation prevails, since equilibrium forms can 

be studied without symmetry assumptions. Indeed the classic Jacobi ellipsoids and 

Poincaré pear-shaped figures are important examples. 

3. SOME EXAMPLES. 

Example 1. Determine the shortest nonconstant closed geodesic, without self-

intersections, on an ovaloid (M ,g). 

(a) Standard variational 'problem. Minimize the arc length functional in a homotopy 

class of smooth closed curves on (M g). 

(b) Modified variational problem (cf. Klingenberg [63). utilize the critical point 

theories of Morse and Ljusternik-Schnirelmann [via Hilbert manifolds] to find 

the saddle point of the arc length functional that corresponds to the closed 

geodesic as described above. 
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(c) Variational problem via natural constraints. Minimize the arc-length 

functional among all simple closed curves {c} on (M ,g) such that C 

besects the total (integral) curvature of (M ,g) Ci.e. C divides the 
surface (M • g) into 2 pieces (C) and T,^ (C) and 

K(x)dV = 27T ] ( K(x) denotes the Gauss curvature of (N2,g)). 

^ (C) 

Comments on the various approaches to the problem. The approach (a) leads to the 

wrong answer for the ovaloid (viz. the trivial solutions the point geodesic 

x(t) = point because an ovaloid has TT^ (M ) = {o} ) . The approach (b) has 

difficulties: in higher dimensional generalizations since i t uses arc length 

parametrizations of curves, requires special arguments for eliminating the 

possibility of self-intersections, the approach is basically not analytically 

effective so that computational and stability questions are not natural in this 

context. 

In the approach (c) differential geometry instead of topology is used to 

introduce a strict analytic approach to the problem that enables one to study 

stability questions. Moreover, this approach requires moving outside the usual 

Hilbert space of curves to geometric measure theoretic arguments, since point sets 

Ê (C) and their boundaries on a Riemannian manifold are the essential variables. 

Discussion of viewpoint (c). In my language the constraint 

K(x) = 2TT 

is a "natural" one. This fact means (i) all the smooth simple closed geodesies 

desired have this property and (ii) adding the natural constraint to the problem of 

miniming arc length of curves does not affect the fact that i ts smooth solutions 

are geodesies. 

Proof of ( i ) . Apply the Gauss-Bonnet theorem to the curve C as in the diagram 

to find 
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(2.1) K + J> Kg = 2TT 
^(C) >C 

^(C) Z2(C) 

(M2,g) C 
Then since C is a geodesic Kg = 0 on C so the natural constraint is satisfied. 

(Here Kg is the geodesic curvature on C on (M ,g) ) . 

Proof of ( i i ) . The Euler-Lagrange equation for the new isoperimetric problem is 

(2.2) Kg = AK 

where X is the Lagrange multiplier. Integrating (2.2) over C we find 

l Kg = X I K . 

Applying (2.1) and the fact C satisfies the constraint we find 

X <)> K = C which implies X = 0 

since K>0 on an ovaloid. 

The details of the facts that (i) variational problem of (c) attains i ts 

infimum, (ii) the infimum is positive, ( i i i) the minimizing curve C for (c) has 

no self-intersections ( i .e . C is simple) and (iv) C is smooth followed by the 
theory of integral currents as developed by Bombieri [43 provided one restricts 

(M ,g) to be not too distant from the metric of the standard sphere. This 

restriction has been removed in recent research by C. Croke and W. Allard. The 

details of the approach via Bombieri's theory of integral currents can be found in 

our paper Berger and Bombieri [23 and my review Berger [13. The problem was first 

brought up by Poincaré [73 almost 80 years ago and remained unresolved until we 

began our work. 

A key virtue of the approach (c) by geometric measure theory is that i t 

extends to higher dimensional problems involving surface tension, such as outlined 
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at the beginning of this article. In fact, this example reflects my application of 

Axiom B, mentioned earlier. I hope to treat surface tension problems mentioned 

earlier for large magnitudes on rotation by utilizing the idea in this example. 

The methods of geometric measure theory we intend to use do not require symmetry 

assumptions for the solution. 

In C23 the following two results are proven. 

Theorem 1. Poincare's isoperimetric variational problem has a smooth solution T 

without self-intersections for all C ovaloids (M ,g). Provided < 2K 

along 3T , 3T is a connected one dimensional manifold and thus a simple closed 

geodesic of shortest nonzero length on (M ,g). 

Stability Theorem. A perturbation g of the standard metric g of the 

sphere S leads to a simple closed geodesic c whose Hausdorff distance from a 

great circle C can be controlled by | |g -g | | ... (See C23 for the precise 

statement). 

This result is a new type of nonlinear stability for free boundary problems, 

since i t relies on geometric arguments. I intend to continue this type of result 

to higher dimensional examples. 

Example 2 . Vortex motion of an ideal fluid via Euler equations. 

Find an analogue of steady vortex rings in an ideal incompressible fluid 

without assuming axisymmetry on the solution. The Euler Equations for the problem 

are 

(2 .3) V x curl V = grad H 

(2.4) div V = 0 

Here V represent the velocity vector of the fluid and H the "modified pressure". 

Introducing the vector potential V = curl A div A = 0 this problem can be 

reduced to the complicated quasilinear system 
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- curl A x AA = grad H 

div A = 0 

This problem has proved very difficult analytically but Garabedian using Clebsch 

potentials has made considerable progress numerically recently by variational 

methods. 

Key Remarks. Before beginning the third example on self-gravitating rotating 

fluids and their equilibrium figures i t is important to remark that this problem 

possesses one simplifying feature that distinguishes i t from the study of steady 

vortex motion. In particular, it can be studied without symmetry assumptions in 

terms of semilinear elliptic partial differential equations. To see this we beginx 

with the Euler momentum equation for an ideal fluid in 3R moving with constant 

angular velocity OJ , about the z-axis. 

To see this I now briefly mention: 

Example 3 . Figures of equilibrium of a rotating fluid under gravity, (incompressi­

ble) . 

Here the Euler momentum equation for an ideal fluid in IB? moving with 

constant angular velocity U) , about the z-axis with density p and pressure p 

i s given by the formula 

-|o)2V(x2+y2) = - £ Vp + . 2 p 

Here denotes the Newtonian potential. Under appropriate assumptions concerning 

the dependence of the pressure p and density variable we find by the first 

integral of this relation 

+ i- 0 ) 2 (x2 + y2) = const 

Thus on the free boundary 3B where p = constant and p = const, we find 

2 
(*) + ~-(x2+y2) = const 
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On the other hand in the interior of B we find 

(**) Ai|> = -4TT y p 

(Y = gravitational constant). 

Thus we need to solve (*) and (**) for various assumptions on p the density. The 

classic homogeneous case is p = constant in B. 

Instead of treating this classic problem in this article we consider the following 

simpler model problem. In passing however we note the interesting two dimensional 

example of Kirckoff CLamb, Hydrodynamics, p. 232D of a two dimensional rotating 

ellipsoid of permanent form with constant vorticity. 

Example 4. Model problem for a rotating ideal fluid under gravity without symmetry  

assumptions. 

Here we consider the following analogue for the problem (*), (**) on the 

bounded domain Q 

(1*) AiJ; + h(x,i|;) = 0 with H (̂x,̂ ) = h 

(1**) M = a 
3nL^ ~ l a t t i l9ft 

where |3fi| denotes the measure of 9ft. Here H(x,t) is a strictly convex 

function of i ts argument, possibly depending on parameters and possible vanishing 

whenever t_<0. Limiting processes can treat the cases of h(x,t) the Heaviside 

function or h(x,t) merely continuous. Roughly speaking a graph of h looks for 
fixed x = x like o 

h(x,t) • 

and represent a generalized density with H(x,t) mass. 
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The associated variational problem consists in studying the critical points of the 

functional 

i w = 
r( 2 + ) 

r a H(x,*) - T^T 
8ft 

Lemma. This variational problem possesses a natural constraint 
( ) 

m = h(x,i|j) = a J 

Proof. We adapt the definition given previously in Example 1. 

(i) First, assume we have a smooth critical point of then standard 

results imply \\) satisfies 

A\p = -h(x,i|0 in 

and the boundary condition 

3£ = _ a 
an I I 

(ii) Now suppose IJJ i s a smooth critical point of I (\\)) restricted to the set fll 

then \\) satisfies the Euler-Lagrange equation 

Ai|; + h(x,i|j) + gh1 (x,i|>) = 0 . 

Integrating over ft we find utilizing the condition (1**) 

3 h' (xf*) = 0 . 

Jft 

This fact implies 3 = 0 by the positivity convexity properties of h. 

Now we note that the problem (1*) - (1**) has a solution obtained by 

minimizing I on W (ft) PI fll. 
The solution is smooth by el l iptic regularity theory and thus we assert after 

a fairly straightforward argument of the calculus of variations in the Sobolev 
space W1 2(Q) : 

Theorem. The problem (1*) - (1**) has a smooth nontrivial solution obtained by 
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minimizing over fltflWj 2 (ti). 

Remark. To get a solution to the physical problem of rotating fluids we let 

0, •> 3R3 , keeping careful bounds on the solutions \\)̂  so that converges in the 

limit. Also h(x,i|/) is chosen so that the level surfaces ip = const determine 

the free boundary of the rotating fluid. Finally i t is more convenient to utilize 

angular momentum as a parameter measuring the magnitude of rotation rather than 

angular velocity as described above. This approach is being used in joint research 

in progress with Prof. L.E. Fraenkel. This type of argument is a generalization of 

the methods we used in the study of global vortex rings C53. 
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