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F.W. KAMBER, P. TONDEUR 

DUALITY THEOREMS FOR FOLIATIONS 
by 

Franz W. Kamber and Philippe Tondeur 

INTRODUCTION. In this paper we establish several results on the basic co-
homology of foliations. The first main result, Theorem 1.4, establishes for any 
foliation 3 a canonical isomorphism between the cohomology of 3-basic forms and 
the homology of transveral and holonomy-invariant currents with respect to 3. 

For the further statements we need the concepts of tense and taut foliations. 
A Riemannian foliation 3 on M is tense, if there exists a Riemannian metric on M 
such that the mean curvature of the leaves is covariant constant (i.e. parallel) 
along the leaves of 3. If there exists a metric for which the mean curvature 
vanishes, then 3 is said to be taut [14] [15]. The harmonic foliations of [5] to 
[10] are foliations with minimal leaves on a Riemannian manifold (Mjĝ ). Thus the 
harmonic foliations represent exactly the class of taut foliations. 

The second main result, Theorem 2.14, establishes then for an oriented tense 
Riemannian foliation 3 on a closed oriented manifold the finite-dimensionality of 
the cohomology of 3-basic forms, and an isomorphism of certain basic cohomology 
groups in complementary dimensions. This isomorphism is a precursor of the 
Poincaré Duality Theorem 3.1, valid for the basic cohomology of taut Riemannian 
foliations. Thus the original assertion of Poincaré duality in [12] is correct 
(exactly) in the case of taut foliations. An example of a Riemannian foliation 
violating Poincaré duality was found in [2]. The results of the present paper 
answer several questions raised during the conference in Toulouse. 
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1. For a foliation 3 on a manifold M, the complex of 3-basic forms is the 
subcomplex ̂ (3) of the DeRham complex ft' (M) given by the forms w satisfying 6(X)o) = 0, 
i(X)u) • 0 for all X € FL. Here L <= TM denotes the bundle of vectors tangent to 3 
with normal bundle Q - TM/L. Similarly we have the complex of 3-basic forms with 
compact support CT B(<*)« The differential is the restriction of d on Q(M) to 
C (̂3f), and on Qc(M) to Qc fi(30 respectively. 

To explain the complex of transverse holonomy invariant currents with respect 
to 3, we need the spectral sequence E(3) [5] [6]. It is associated to the 
following filtration of Q' (M) : 

(1.1) Frcf ={(!)€ Cf|i(v)u) - 0, v - Xx A ... A Xm_r+1 , X£ € a} . 

Then Ê ,S - HS(M, AR2*~), where A'2*- is the sheaf complex of 3-basic forms. Thus 
El'° S 1̂ ™ dB and E2'° S Hr(^(^))* Tne spectral sequence convergences to 
the DeRham cohomology Ĥ R(M) of M. 

The same construction applied to £T (M) yields a spectral sequence Ec(3) con
verging to H(CV(M)). 

Now Haefliger [4] (and Ruelle-Sullivan [13] for r = 0) introduced the trans
versal holonomy invariant forms with compact support £T(Tr3). This complex 
satisfies E''P = 0" (Tr3f) . For the dual space (of continuous linear functionals c, 1 c 
with respect to the C -topology) we have canonically (p • dim3) 

* 
(1.2) E"'P sC.(Tr3?) (transversal, holonomy-invariant currents). 

The canonical differential • d̂  on the LHS corresponds precisely to the boundary 
on currents. 

Throughout this paper we assume M to be oriented, and 3 a transverally 
oriented foliation of codimension q on Mn(p+q • n), We consider the duality map 
sending a form a to the current c(u)) - J a A u>. This induces homomorphisms 
D1: Ê"'r,P""S -» Ê '̂  and in particular 

(1.3) Dt: cg~r(3) - E * | J * . 
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Our first result is then as follows. 
1.4 DeRHAM DUALITY THEOREM. The homomorphisms are compatible with  

differentials and induce isomorphisms 
D1R1 - id£^ = 0lAx + AIAI ; D1R1 - id£^ 

for r = 0,...,q. The canonical map 

can: Hr<E;;f , v - i £ £ * 

to continuous linear functionals on Ê '̂  Is. surjective with kernel (0). 
For the case of the point foliation (q = n) this reduces to DeRham's theorem 

identifying Ĥ R(M) with the homology of currents [3]. 
The proof consists in constructing diffusion operators 

D1R1 - id£^ = 0lAx + AIAI ; 

and homotopy operators 

1 c,l c,l 

satisfying the following properties: 

(1.5) D1R1 - id£̂  = 0lAx + AIAI ; 

(1.6) Rl0]L - d ^ (dB: restriction of d to C (̂30) ; 

(1.7) Â  preserves diffuse currents (images under D̂ ) and induces 
D1R1 - id£^ = 0lAx + AIAI ; QB 

(1.8) RlDl " l\ " V B + V B ' 

The details of this construction will appear elsewhere. The surjectivity of the 
map can follows by an application of the Hahn-Banach theorem. * 
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2. In the remainder of this paper we discuss the case of tense and taut 

Riemannian foliations (see Introduction). Let Xg; denote the characteristic p-form 

of 3< with respect to a bundle-like metric ̂  onM [8] [10] [14]. Let v be the 

transversal Riemannian volume on Q. Then v € f|J(3) and in fact dV * 0. We choose 

the orientation of L c TM such that 

(2.1) *v - X3 , 

i.e. jo, = v A Xg; represents the Riemannian volume form of M. The characteristic 

form x*j satisfies then the formula 

(2.2) dXg; + K A X3 .2 0 (mod F2fffl(M)) , 

i.e. modulo 3-trivial forms. Here K € PQ* is the mean-curvature form of 3 with 

respect to given by K(s) • Tr W(s) , s 6 PQ, i.e. as the trace of the 

Weingarten operator of 3 [8],[10],[14]. 3 is tense, if K € £¿(39 for a suitable 

bundle-like metric ĝ  on M, and in this case one has d̂ K S 0. 

For a bundle-like metric there is further a star operator * in C£(3). The 

relationship between these operators is given by the formulas 

(2.3) *a= (-l)p(q"r)*(a A XT) - (-l)p(q"r)i(v)*a 

and 

(2.4) *cx - *a A x^ » for a € c£(3) , v - §T A . . . A ? . 

By (2.2) one has the following formula 

(2.5) d(a A Xg) = (dBa - K A a) A x3 , a € c£(3) , 

or by (2.4) 

d*a = (dfi*a - K A *a) A x3 , a € c£"r(3) , 

where the congruence again has to be taken modulo the 3-trivial forms 3r+̂ rf>+r. 

This motivates the following definitions. 

For any y £ with dfi7 88 0 we define a new differential operator on C (̂3) 

of degree 1 by 

111 



F.W. KAMBER, P. TONDEUR 

(2.6) d̂ a = dfia - Y A a , dy = 0 

and an operator of degree -1 by 

(2.7) d*a = (-l)q(r"1)+1 *dy*a for a € r£(3) . 

We define further a pairing <g> fij^"' -1R by ̂ (a,?) « J a A p A Xg. This 
M 

determines a scalar product on 0̂  by 

(2.8) <<x,p>B - Y1(a,*p) for a,p € c£ . 

In view of (2.4) this coincides with the canonical scalar product on Q* (M) 

(2.9) <a,p> = J a A *p , 
M 

and by (2.1) also 

(2.10) \(a,p) = <a A p,v>B . 

The operators d̂  and d̂  for a tense foliation are related by 

(2.11) ^(dgCCp) + (-l)r-\<i*9d^) = 0 for a € C^'1, p € c£"r . 

2.12 PROPOSITION. For a € Ĉ "1, P € 

(dfia,p>B - <a,d*p>B 

(dKa,p>B - <a,dJp>B 

i.e. d* i£ the adjoint d* of d^9 and d* the adjoint d* of d̂ . 
Note that this implies in particular for the transversal volume v of 3 

(2.13) d*v - *K . 

We can now develop the harmonic theory for the transversally elliptic 
Laplacian Ag - (dfi + d£)2 - dfid* + d*dfi as in [l] [12]. One obtains finite-
dimensional spaces of harmonic forms ft* (3) whose inclusions into (Ĉ (3),dfi) induce 
isomorphisms &*(#) z Hr(Ĉ (3)) for r = 0,...,q. The finite-dimensionality of 
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Hr(Ĉ ,dK) follows in the same way by considering the Laplace operator 
AK (dK + d*)2 on Ĉ (3). 

The second main result of this paper is then as follows. 
2.14 THEOREM. Let 3 be an oriented Riemannian foliation on a closed, 

connected and oriented manifold M. Then the following statements are equivalent; 
(i) 3r is tense, 

* q-1 
(ii) there exists a bundle-like metric g^ for which d^j € Q£ (3r) . 

If 3 is tense, the cohomology spaces H(f̂ ,dB) and H(Ĉ ,dK) are finite-dimensional  
and induces a non-degenerate pairing 

(2.15) Y2: H ' O ^ ) ®Hq"r(^,dK) 

for r = 0,...,q. 

The non-degeneracy of the pairing ̂  gives rise to isomorphisms 

(2.16) D^: Hr(̂ ,dfi) ̂ n ^ q j . d / 

(2.17) DB̂ : Hq-r(Ĉ ,dK) SHr(C^,dB)* . 
Let a(a) • a A x̂ . Then a induces a chain map ĉ : (̂ >dK) ~* (Ê ,P,d1) by (2.5), 
and hence a map a2* H(Ĉ ,dK) -» E'2'P with (continuous) dual a^: Ê'*5 -» H(C£>dK)*. 
The map (2.16) above is then related to the duality map Dt. by the following 
commutative diagram 

Hq-r(^,dB) DB* Hr<c£,dK)* 

°2 °2 

E2 
can Hr(Ei>P 'V " 

qd (2.18) 

in which all maps are isomorphisms as a consequence of our results. In particular 
is an isomorphism. 
The map (2.17) appears similarly in the t commutative diagram 
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(2.19) 

E2 ^ 
Di* 

V 1 

Di* Di* d 

a2 
D 

. 2 can 

Hq"r(^,dK) . 
D ̂  
B* 

4 r (qq,q)* 

Here (Q^ , ôg) denotes the complex of basic currents. 

2.20 PROPOSITION. All maps in (2.19) are isomorphisms. In particular, the  

duality map induces isomorphisms D2: *9P • E^'°, i.e. 

(2 .21 ) D2: Hq"r(Qc(Tr3)) -Hr(^,dfi)* , r = 0,...,q . 

3. We consider finally the case of taut Riemannian foliations. In the 

notation of §2, they are characterized by K = 0 and d̂  = d̂ . 

3.1 THEOREM. Let (M,3) be given as in Theorem 2.14. Then the following  

statements are equivalent: 

(i) 3 is taut; 

(ii) there exists a bundle-like metric Riemannian metric such that the  

transversal invariant volume v € Cg(3) satisfies dfiv • 0 (or equivalently 

V = 0) ; 

(iii) dim Hq(f£) < 00, and there exists a volume form u)Q € T(APL*), such that the  

associated pairing : <S> -»1R induces a mapping 

D1R1 - id£^ = 0lAx + AIAI ; QFDQ 

If 3 JLs taut, the basic cohomology spaces H(Ĉ ,d̂ ) are finite-dimensional  

and ̂  induces a non-degenerate pairing Hr(Ĉ ) ® Hq"r(C£) ~*3R for r - 0,... ,q, 

i.e. the basic cohomology algebra satisfies Poincare Duality. 

A complete proof of this theorem will appear elsewhere. The pairing ¥ in 

(iii) is defined by Y (<X,P) • J a A (3 A co, where u) € cf(M) is a form representing 

(DQ € EQ,P. is independent of the choice of u). We also note that the mapping 

Ĥ (Ô ) H°(C^)* S1R is then necessarily surjective. Namely the cohomology class 

of the transversal volume v € is mapped to a non-zero number, i.e. the volume 
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of M. As a consequence of the theorem, one has in fact Hq(oB,dB) =R. In a paper 

appearing in these proceedings, Y. Carrière asserts that the examples of (non-taut) 

Riemannian flows of [2] are actually tense. Thus they satisfy Hq(CB,dB) = 0, but, 

by Theorem 2.14, Hq(OB,dK) = H°(OB,dB)* = R and H
q-1 (OB,dk ) = H

l(OB,dB) = 0. 

Let 3 be a compact foliation (all leaves compact). In view of Rummler's 

results [14] the conditions in Theorem 3.1 are satisfied exactly in the locally 

stable case. The leaf space B of 3 is then a Satake manifold with a canonical 

submersion f: M -> B and the DeRham complex of B is identified with the basic 

complex OB(3) via f* . 

3.2 COROLLARY. If 3 is_ a locally stable compact foliation on M, then the  

DeRham cohomology of the leaf space B satisfies Poincaré duality. 

The isomorphism D2: E°2,P = Hq(OB)* of (2.21) for r - q was established by 

Rummler [14] for this particular case. 

Combination with the preceding results now also yields Poincaré duality for 

the homology of transversal holonomy invariant currents. Some geometric 

applications were discussed in [9] [10]. 
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