Astérisque

HANS MICHAEL UNSÖLD Topological minimal algebras and Sullivande Rham equivalence

Astérisque, tome 113-114 (1984), p. 337-343

http://www.numdam.org/item?id=AST_1984__113-114__337_0

© Société mathématique de France, 1984, tous droits réservés.

L'accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

TOPOLOGICAL MINIMAL ALGEBRAS AND SULLIVAN -DE RHAM EQUIVALENCE

by Hans Michael UNSÖLD

1. Statement of theorem.

Let QS_1 denote the category of 1-reduced rational simplicial sets and let Min_1 denote the category of 1-connected minimal topological algebras over Q (see section 3 below).

<u>Theorem</u>: There exist functors *M* and *G* inducing an equivalence of homotopy categories

$$M : Ho(as_1) \rightleftharpoons Ho(Min_1) : g$$

For $M \in Min_1$ and $X \in QS_1$ we have :

	*		¥		
(i)	н [*] (м)	ĩ	н"(9	GM;Q)	ł

1	(0)	~	1 6
(ii)	([][1]])		π _* (GM)

(11)	(40) -	"*(9")
(i)'	н [*] (х; <i>Q</i>)	≅ н*(//іх)

(ii)' $\pi_*(X) \cong (Q/!X)'$

Here QM := M^+ / closure(M^+ . M^+) , and ' denotes the topological dual.

<u>Remark</u>: If $(M,d) = (\Lambda Z,d)$ is an "ordinary" minimal algebra then we can never have properties (i) and (ii) together (whatever \mathcal{G} may be !). Look at the following

<u>Example</u>: Fix an integer $r \ge 2$ and a *Q*-vectorspace V. Let $Z = \bigoplus Z^{i}$, $Z^{i} = 0$ ($i \ne r$), $Z^{r} = V$, d = 0. i Assuming (i) we get $H^{r}(\mathcal{G}M;Q) \cong V$, and assuming (ii)

H. UNSÖLD

we get : $H^{r}(\mathcal{G}M; \mathcal{Q}) \cong Hom(H_{r}(\mathcal{G}M), \mathcal{Q}) \cong Hom(\pi_{r}(\mathcal{G}M), \mathcal{Q}) \cong V"$. But in general $V \neq V"$, so this example suggests to look out for a topology guaranteeing $V \cong V"$.

2. Linear topologies.

We regard \mathcal{Q} , the field of rationals , as a discrete space.

<u>Definition</u> (see [L]): A topological vectorspace V over Q is said to be linearly topological (abbrev: l.t.) iff it is hausdorff and there is a fundamental system of neighbourhoods of O consisting of nuclear (i.e. open - closed) subspaces . V is called linearly compact (l.c.) iff any filterbase \mathcal{F} consisting of affine subspaces has a clusterpoint , i.e. \bigcap {closure(F) : $F \in \mathcal{F} \neq \emptyset$.

Let V be a l.t.space. We topologize the topological dual V' by requiring that for any l.c. subspace K of V the annihilator $K^0 := \{ \psi \in V' : \psi(K) = 0 \}$ is nuclear in V'.

Theorem (S.Lefschetz)

(a) A l.t. space V is l.c. iff V' is discrete.
(b) If V is l.c. or discrete then V = V".
(c) If V,W are discrete (resp. l.c.) then L(V,W) = L(W',V') .

<u>Remark</u>: There is another interisting link between l.c. spaces and discrete spaces (see [L]): Any two of the following properties imply the third:

- (1) V is discrete.
- (2) V is l.c.
- (3) dim $V < \infty$.

TOPOLOGICAL MINIMAL ALGEBRAS

Pronosition: Given two l.t.spaces V,W there is a linear topology on V a W such that the canonical map $V \times W \rightarrow V a W$ is universal with respect to uniformly continuous bilinear maps. We denote by V $\hat{\mathbf{a}}$ W the completion of V \mathbf{a} W. If V,W are l.c. (resp. discrete) then V $\hat{\mathbf{a}}$ W is l.c. (resp. discrete) and $(V \hat{a} W)' \cong V' \hat{a} W'$. Now let $A = \bigoplus A^p$ be a (differential) graded algebra. p≥0 (We assume all our algebras to be augmented an commutative in the graded sense.) A is called a complete (D)GA iff: (i) A^p is a complete l.t.space for all $p \ge 0$. (ii) Multiplication $A^{p} \times A^{q} \rightarrow A^{p+q}$ is uniformly continuous. Call A linearly compact if A^p is l.c. for all p. 3. Topological minimal algebras. Let $V = \bigoplus_{i \ge 1} V^i$ be a connected graded l.t.space. <u>Proposition</u>: There is a linear topology on AV such that the usual universal mapping property holds with respect to continuous maps. We denote by FV the completion of ΛV . FV is a complete graded algebra in the sense of our definition. If V is l.c. in each degree then FV is l.c. and (FV)'

is the symmetric coalgebra over $\,V\,^{\,\prime}\,$. If $\,V\,$ is discrete then $\,\Lambda V\,$ is discrete,hence $\,\Lambda V\,$ = FV .

<u>Delinition</u>: A complete 1-connected DGA (M,d) is called minimal (in the topological sense) iff:

(1) Disregarding differentials $M \cong FV$ for some graded 1-connected l.c.space V.

(2) $d(V^n) \subset F(V^2 \oplus V^3 \oplus \dots \oplus V^{n-1})$ for all $n \ge 2$.

If M happens to be of finite type then M is a (discrete) minimal algebra in the usual sense.

4. Minimal models for simplicial sets.

Let X be a simplicial set and let $A^*(X)$ be the algebra of Q-polynomial forms on X (as in **[**BG**]**). Topologize $A^*(X)$ as follows : for any simplicial map $\tilde{x}:\Delta^q \rightarrow X$ the subspace $\ker(A^p(\tilde{x}):A^p(X) \rightarrow A^p(\Delta^q))$ is nuclear in $A^p(X)$. Then $A^*(X)$ is a complete DGA. Now assume X,Y to be 1-reduced simplicial sets.

<u>Proposition</u>:

- (a) There exist $nX \in min_1$ and a weak equivalence $e_x:nX + A^*(X)$.
- (b) Given a simplicial map $f:X \rightarrow Y$ there exists $n f:nY \rightarrow nX$, unique up to algebraic homotopy, such that $e_X o^n f$ is homotopic to $A^*(f) o e_Y$. Furthermore if f is homotopic to g then n f is homotopic to n g.

The rule $X \longrightarrow MX$, $f \longrightarrow Mf$ defines a functor $M : Ho(QS_1) \longrightarrow Ho(Min_1)$.

5. An adjoint for M .

For any complete DGA M let $\mathcal{G}M$ be the simplicial set given by $(\mathcal{G}M)_q = \operatorname{Hom}(M, A^*(\Delta^q))$. It is easy to prove that A^* and \mathcal{G} are adjoint functors A^* : simplicial sets \xleftarrow complete DGA's : \mathcal{G} . Let $\rho_M : M \neq A^*\mathcal{G}M$, $\tau_X : X \neq \mathcal{G}A^*X$ denote the adjunction maps. Using a little abstract homotopy theory (as in [8]) it can be shown that \mathcal{M} and \mathcal{G} induce adjoint functors

 $M : Ho(QS_1) \xleftarrow{Ho(Min_1)} : G$

It remains to show that :

- (1) The adjunction $\tilde{\rho}_{M_{p}}: M \neq \mathcal{MG}(M)$ $(M \in \mathcal{Min}_{1})$ is a weak equivalence. (In fact $\tilde{\rho}_{M}$ can be shown to be an isomorphism.)
- (2) The adjunction $\tilde{\tau}_X : X \to G/!X$ $(X \in QS_1)$ is a homotopy equivalence.

If $e_{\mathcal{M}GM} : \mathcal{M}GM \to A^*(GM)$ is the minimal model of $\mathcal{G}M$ then the adjunction map $\tilde{\rho}_M$ is defined up to homotopy by requiring that $e_{\mathcal{M}GM} \circ \tilde{\rho}_M$ is homotopic to ρ_M . In order to prove (1) it suffices to show that ρ_M is a weak equivalence. First assume that M = FV, d=0, where V is concentrated in some degree $r \ge 2$ (i.e. $V^i = 0$ if $i \ne r$). There exists an inverse system $\{W_{\alpha}\}_{\alpha}$ of finite dimensional spaces such that $V \cong inv \lim W_{\alpha}$. The maps ρ_{AW} : $AW_{\alpha} + A^*\mathcal{G}AW_{\alpha}$ are weak equivalences (see [BG]). It can be checked that $FV \cong inv \lim AW_{\alpha}$, $H^*A^*\mathcal{G}FV \cong$ inv lim $H^*A^*\mathcal{G}AW_{\alpha}$ and that ρ is compatible with inverse limits.

<u>Definition</u>: Let (M,d) be a complete DGA, W a l.c.space (not graded). Denote by (W,r) the graded space given by W in degree r and O otherwise. Let $t: W \neq Z^{r+1}(M)$ be a linear map and define a differential d_t on M $\hat{\bullet}$ F(W,r) by $d_t|M = d$, $d_t|W = t$. The algebra (M $\hat{\bullet}$ F(W,r), d_t) is denoted by M $\hat{\bullet}$ F(W,r) t and is called an elementary extension of M. The homology class $[t] \in H^{r+1}(L(W,M)) \cong L(W,H^{r+1}(M))$ is called the structure class.

Proof of (1), general M : We proceed by induction over the elementary extensions $F(V^{\leq n}) \rightarrow F(V^{\leq n})$. The inductive step is achieved with the help of the following propositions.

H. UNSÖLD

<u>Proposition</u>: Assume that $\rho_{M} : M \neq A^{*}(\mathcal{G}M)$ is a weak equivalence. Let $M \neq N = M \stackrel{\circ}{\textcircled{a}} F(W,r)$ be an elementary extension. Then $\mathcal{G}N \neq \mathcal{G}M$ is a principal simplicial fibre bundle with fibre F = K(W',r) and the transgression $T : W \cong H^{r}(F;Q) \neq H^{r+1}(\mathcal{G}M;Q) \cong H^{r+1}(M)$ is given by the structure class [t].

<u>Proposition</u> (Hirsch - lemma) : Let F + E + B be a principal simplicial fibre bundle with fibre $F = K(\pi, r)$, π a rational vectorspace (discrete). Let $e_B : \ (MB + A^*(B))$ be a minimal model of B and suppose that the transgression $T : H^r(F; Q) + H^{r+1}(B; Q)$ is represented by some map $t : \pi' + Z^{r+1}(\ (MB))$. Then there is a weak equivalence

 $\underset{t}{^{n}B} \stackrel{\bullet}{\Rightarrow} F(\pi', \mathbf{r}) \xrightarrow{\sim} A^{*}(E) .$

The proof of (2) is now very easy. $\tilde{\tau}_X$ is defined by $\tilde{\tau}_X = \mathcal{G}(\mathbf{e}_X) \circ \tau_X$ where $\mathbf{e}_X : \mathcal{M} \times A^*(X)$ is the model of X. A straightforward computation shows that $\mathbf{e}_X = A^*(\tilde{\tau}_X) \circ \rho_{\mathcal{M}X} \cdot \mathbf{e}_X$ and $\rho_{\mathcal{M}X}$ are weak equivalences hence $A^*(\tilde{\tau}_X)$ is a weak equivalence and by duality of $H^*(-;\mathcal{Q})$ and $H_*(-;\mathcal{Q})$ we get $\tilde{\tau}_{X*} : H_*(X;\mathcal{Q}) \cong H_*(\mathcal{G}\mathcal{M} X;\mathcal{Q})$. Since X and $\mathcal{G}\mathcal{M} X$ are 1-connected rational simplicial sets an application of Whitehead's theorem gives the desired result.

342

TOPOLOGICAL MINIMAL ALGEBRAS

References

- [B] K.S. Brown : Abstract homotopy theory and generalized sheaf cohomology. Transact.Amer.Math.Soc. 186(1973) 419-458.
- [BG] A.K. Bousfield , V.K.A.M. Gugenheim : On PL de Rham theory and rational homotopy type. Memoirs of the Amer.Math.Soc. 179(1976)
- [L] S. Lefschetz : Algebraic topology . Amer.Math. Soc. Collog. Publ. Vol. XXVII , 1942 .
- [U] H.M. Unsöld : Über die Sullivan de Rham Theorie einfach zusammenhängender simplizialer Mengen. Diplomarbeit , Freie Universität Berlin , 1982.